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Abstract

Ecologists use the relative abundance of fossil pollen in sediments to estimate
how tree species abundances change over space and time. To predict historical forest
composition and quantify the available information, we build a Bayesian hierarchical
model of forest composition in central New England, USA, based on pollen in a net-
work of ponds. The critical relationships between abundances of taxa in the pollen
record and abundances as actual vegetation are estimated for the modern and colonial
periods, for which both pollen and direct vegetation data are available, based on a la-
tent multivariate spatial process representing forest composition. For time periods in
the past with only pollen data, we use the estimated model parameters to constrain
predictions about the latent spatio-temporal process conditional on the pollen data.
We develop an innovative graphical assessment of feature significance to help to in-
fer which spatial patterns are reliably estimated. The model allows us to estimate the
spatial distribution and relative abundances of tree species over the last 2500 years,
with an assessment of uncertainty, and to draw inference about how these patterns
have changed over time. Cross-validation suggests that our feature significance ap-
proach can reliably indicate certain large-scale spatial features for many taxa, but that
features on scales smaller than 50 km are difficult to distinguish, as are large-scale
features for some taxa. We also use the model to quantitatively investigate ecological
hypotheses, including covariate effects on taxa abundances and questions about pollen
dispersal characteristics. The critical advantages of our modeling approach over cur-
rent ecological analyses are the explicit spatio-temporal representation, quantification
of abundance on the scale of trees rather than pollen, and uncertainty characterization.

keywords: Dirichlet-multinomial, Gaussian process, paleoecology, radial basis func-
tions, smoothing, spatial statistics
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1 Introduction
Scientific inference about forest composition in the past relies heavily on sediment records
of fossil pollen taken from ponds and other depositional environments (Davis 1981; Del-
court and Delcourt 1987). Fossil pollen collected from multiple sites over time acts as a
proxy for the abundance of different tree taxa (species or genera), telling us about spatio-
temporal vegetation dynamics over thousands of years. Paleoecologists ask questions such
as the following. How have relative population abundances and range boundaries changed
over time? Do stable assemblages of species exist for long periods of time or are forest
compositions constantly shifting? How have forest communities changed in response to
past climate shifts and what can forest composition tell us about climate? Practical envi-
ronmental questions relate to how human manipulation of forests compares to natural forest
change.

However, inferring tree abundance on the landscape from pollen abundance in sedi-
ments is not straightforward, because the relationship between the relative abundance of
trees near a pond and pollen in the sediment of that pond is not simple. Different tree
species produce different amounts of pollen on average (Jackson 1990), and the represen-
tation of any individual tree in deposited pollen is a complex function of distance to the
deposition basin, size of the deposition basin, landscape openness, forest structure, wind
regime, and preservation in sediments (Prentice 1985; Jackson and Lyford 1999; Nielsen
and Sugita 2005). Our understanding of the timing of sediment deposition depends on
indirect and inexact measurements of sediment age (through radiometric dating and strati-
graphic markers). The aggregate effect of these sources of uncertainty is pollen assem-
blages that are noisy reflections of the trees in the surrounding landscape.

Because of these uncertainties, most paleoecological studies do not attempt to make
explicit inference about the distribution of trees based on fossil pollen data. Instead, they
assume that robust changes in pollen abundances over space and time generally correspond
to changes in vegetation at the scales described above, primarily using multivariate time
series at one or more sites (Fuller et al. 1998). Efforts to explicitly correct for differen-
tial pollen production across taxa range from primarily statistical (Tauber 1965; Prentice
et al. 1987) to more mechanistic approaches (Bunting and Middleton 2005). These studies
highlight the difficulty of inferring a complicated spatial pattern of pollen source contribu-
tions across the landscape from pollen proportions in a single deposition site. The power
to disentangle this spatial signal using a network of sites was explored by Webb (1974) and
Sugita (1993, 1994, 2007a,b). Our work provides a statistical framework to estimate the
signal and quantify the uncertainty in this process based on a spatial network of noisy data.

Building on recent work in Bayesian spatio-temporal statistics (e.g., Wikle et al. 2001;
Banerjee et al. 2004; Fuentes and Raftery 2005; Royle and Wikle 2005; Gelfand et al.
2006; Haslett et al. 2006), we develop an approach for modelling forest composition based
on vegetation data from two key time points and pollen data from sediment cores, using
a multivariate latent spatio-temporal process representing the relative abundances of dif-
ferent taxa. The model allows inference across space and time, based on modeling the
relationship between forest composition and pollen composition for locations and times
at which both vegetation and pollen data are available. Assuming consistency in the re-
lationships over time, the model then predicts vegetation in the past using proxy pollen
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data. The statistical challenges are in computationally-efficient and sufficiently-resolved
representation of the latent spatio-temporal surfaces, modelling spatially correlated com-
positional data, and carefully borrowing strength across space, time and taxa. We seek to
allow the pollen data to provide as much information as possible, avoiding oversmoothing,
while constraining the model sufficiently to achieve reasonable prediction that accounts for
bias and noisiness. Finally, this high-dimensional model must be fit; MCMC in such situa-
tions is often time-consuming and prone to mixing difficulties (Knorr-Held and Rue 2002;
Christensen et al. 2006; Paciorek 2007). There has been recent fruitful collaborative work
between statisticians and ecologists in understanding patterns of species distributions (e.g.,
Hooten et al. 2003; Royle and Wikle 2005; Gelfand et al. 2006). Our work is in this tra-
dition, but differs in its consideration of a multi-taxon spatial process and its use of proxy
data to predict distributions over time, as well as through careful consideration of how to
assess the significance of predicted spatial patterns.

Our analysis focuses on central New England in the northeastern United States over
the past 2500 years. The network of pollen sites that we model is amongst the most dense
sets of pollen data in existence and and has taken decades to produce. Our goals are both
particular to this domain and quite general. In particular, we first want to understand the
relationship between the pollen record in a pond and vegetation in the surrounding area.
Second, we want to estimate and compare vegetation in our space-time domain in the colo-
nial and modern eras. Third, our key application goal is to predict, and quantify uncertainty
in, spatio-temporal patterns in tree abundances over the past 2500 years. More generally,
we want to explore the ability of the pollen record to inform vegetation composition and
dynamics spatially and temporally and create a modelling infrastructure useful in different
areas and time periods.

Section 2 describes the pollen and vegetation data available from central New Eng-
land. In Section 3 we build an estimation model to calibrate pollen to vegetation at times
at which both types of data are available and then present a prediction model that uses pa-
rameter estimates from the estimation model to make predictions when only pollen data are
available. We assess the model, considering the consistency and strength of the association
between the proxy pollen composition and forest vegetation composition, as well as using
cross-validation, and then use the model for prediction over the past 2500 years (Section
4). We also introduce innovative graphics that take advantage of the rich information in
the posterior samples to assess a variety of contrasts of interest. The discussion in Section
5 highlights the contributions of the modeling approach to the ecological problem. Addi-
tional ecological analysis of model results is currently underway and will be presented in
the ecological literature.

2 Data

2.1 Study area and study taxa
Our study area extends from 43◦, 21′ N, 73◦, 30′ W in the northwest to 41◦, 37′ N, 71◦, 13′

W in the southeast corner in south-central New England, USA, focusing on central and
western Massachusetts, west of the Boston metropolitan area. In projected coordinates,
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this defines a region, 192× 192 km2, which for computational reasons we divide into a 16
by 16 grid, with each grid cell 12 km on a side. All computations are done at the resolution
of the grid cell.

We focus on 9 particular taxa (genus or species), including the most common taxa in the
area: oak (Quercus spp.), pine (Pinus spp.), maple (Acer spp.), hemlock (Tsuga canaden-
sis), and beech (Fagus grandifolia); as well as several additional taxa of particular interest,
namely hickory (Carya spp.), birch (Betula spp.), spruce (Picea spp.), and chestnut (Cas-
tanea dentata). Other tree taxa, excluding taxa that are primarily shrubs and small trees, are
grouped into a tenth category and included in the analysis as a tenth reference ’taxon’. Note
that due to chestnut blight there have been essentially no adult pollen-producing chestnut
in the study area in the last 100 years, so many of our figures omit chestnut.

2.2 Pollen data
Plant pollen from trees, shrubs and herbaceous plants falls on the surfaces of ponds, sinks
to the bottom, and accumulates in sediment. Over time, these sediments are buried by
layers from successive time periods, creating a sediment record of what fell into the pond.
The scale of vegetation that corresponds most closely to the composition of pollen in the
sediments of small ponds and depositional environments is generally vegetation within one
to two km (Jackson 1990; Jackson and Lyford 1999; Nielsen and Sugita 2005), but more
than half of the total pollen in those sediments may originate beyond that distance (Sugita
1994; Sugita et al. 1998; Sugita 2007b).

As described below, the period of colonial settlement and the modern period are times
when vegetation and pollen data can be compared. While separated only by a few hundred
years, these periods are likely to be as disparate in forest structure and composition as any
two time periods considered, because of the drastic ecological effects of post-settlement
land use (Foster et al. 1998; Fuller et al. 1998; Oswald et al. 2007). Colonial era surveys
provide historical vegetation data, but the surveys occurred at different times in different
parts of the study region, generally 1650-1700 in the eastern part of our region and in the
Connecticut River valley and approximately 1700-1800 in the hill towns in the western
part of our region. Therefore, we used the appearance of agricultural weed pollen to select
pollen samples (~500 grains) at individual times from 23 ponds with archived sediment
cores to best match the time at which the survey in the township encompassing each pond
was completed (Fig. 1a). Because settlement occurred over a period of time, the colonial
era data do not represent a fixed snapshot in time, but rather a reasonably consistent window
within the settlement process, stretching over the years ca. 1635-1800. Because of the long
lifespans of trees and the relatively quick settlement, we consider this treatment of the
colonial data to be reasonable. For the modern era we use surface sediment samples to best
represent current vegetation, taken from 38 ponds (Fig. 1b).

To make predictions back in time, we make use of the full archived sediment cores
taken from the 23 ponds. The temporal coverage varies, with ponds having records of
length varying between 1000 and 15000 years (Fig. 2), with 2500 years the full period
of interest here. Each core is divided into intervals and approximately 500 grains from a
sample of sediment in each interval are identified and counted. A subset of samples is dated
using radiocarbon dating, with linear interpolation providing dates for all samples, resulting
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Figure 1. (a) Pollen composition by pond for the colonial era. (b) Pollen composition by
pond for the modern era. (c) Witness tree vegetation composition for the colonial era (plot-
ted at the centroids of colonial townships). (d) Forest service plot vegetation composition
for the modern era.
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Figure 2. Sampling points over time for each of the 23 ponds, truncated at 3000 years
before present.

in samples at different and irregular times for each pond. Some sediment mixing occurs
in upper sediments, so any individual sample represents pollen deposited over a period of
years, naturally smoothing the data. The long lifespan of trees also causes smoothness.
Accordingly, in our spatio-temporal predictions, we aggregate all samples into intervals of
100 calendar years and base the prediction model on this set of discrete times. The first
interval is centered on 1950 (defined to be the ’present’ or year 0 in the paleoecological
dating scheme) and the last is centered on 550 B.C. (denoted henceforth as year -2500).

2.3 Uncertainty in dating pollen samples
There are three primary sources of uncertainty in the dating of samples. First, dates ear-
lier than ca. 300 years before present are based on measurements of 14C while dates
since the Industrial Revolution (the last ca. 150 years) are dated using Pb-210 chronolo-
gies developed for each core; for both these methods there is natural stochasticity in the
counts of the isotopes for each sample that is dated. Second, sedimentation rates vary over
time, introducing additional uncertainty for samples whose dates are from interpolation of
radiocarbon-dated samples. The natural stochasticity can be considered independent be-
tween dates and between ponds, while the interpolation error might be considered to be
roughly independent between ponds unless there were spatial structure in sedimentation
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rates. The third source of error is the variability in radioactive decay over time, i.e., un-
certainty in the radiocarbon model for calendar time, which introduces uncertainty in the
relationship between radiocarbon years and calendar years. Note the uncertainty in the cal-
ibration of radiocarbon to calendar years applies equally to all of our samples and therefore
only affects the calendar year labels we apply to our results. Essentially time is distorted to
the extent the calibration curve is wrong, but it is distorted equally in all of the ponds. A full
analysis, such as Blaauw and Christen (2005), could model the calendar dates in a way that
accounts for all sources of uncertainty in a single pond. Their work makes use of published
calibration curves estimated in a Bayesian way (e.g., IntCal04; Buck et al. 2006). A final
source of uncertainty is uncertainty in the assignment of calendar age to the appearance of
weed pollen in the cores, which combines variability in when weed pollen appears relative
to settlement and uncertainty in when settlement actually occurred in a given area.

We do not account for the dating uncertainties here, in part because of our focus on
changes at time scales of several hundred years or more, for which uncertainties in dating
should have limited impact. However, we believe the following strategy, which extends
Blaauw and Christen (2005) to the multiple pond spatial setting and includes uncertainty
in stratigraphic markers, holds promise for the dating uncertainty until the period of settle-
ment. First elicit a prior distribution on the age of the settlement horizon in each pond’s
core; we expect this to be a fairly simple unimodal distribution centered around the es-
timates we currently use, probably with the same level of uncertainty for all the ponds.
The uncertainty might be correlated for nearby ponds based on the uncertainty in when
settlement occurred but would be independent to the extent it reflects very fine-scale het-
erogeneity in when grass pollen builds up in a pond. Next, repeat the following steps many
times. First, draw a sample calibration curve from the published calibration curve includ-
ing uncertainty (e.g. IntCal04). Draw a calendar age from the settlement horizon prior
distribution for each pond and convert to radiocarbon ages using the sample calibration
curve. Using this radiocarbon age as an age with no uncertainty, use the model of Blaauw
and Christen (2005) to derive the posterior in radiocarbon years for each pond separately,
thereby accounting for the stochasticity in the isotope counts and interpolation uncertainty,
which might be considered approximately independent between ponds. Finally convert
all the radiocarbon ages for all ponds to calendar age using the sample calibration curve,
thereby accounting for the shared uncertainty in calibration across ponds. Repeat these
steps 50 times to get a posterior sample of 50 calendar ages for all pollen samples in all
ponds and run the prediction model once for each sample of ages, as we have done to re-
flect uncertainty in the model parameters from the estimation runs. We plan to pursue this
approach in our ongoing work.

Of course one could also build the dating model into the full model, but in line with our
strategy of modeling in modules, we prefer to build a model for the dating uncertainty and
then sample from the posterior of the dates and run multiple prediction runs, each with a
different sample of dates. While the pollen data contain some information about the true
dates, this is likely to be minimal given sediment mixing and tree lifespans.
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2.4 Vegetation data
2.4.1 Colonial witness tree data

During settlement of central New England in the 17th and 18th centuries, colonial sur-
veyors surveyed lots of size 0.5-65 ha for settlement, citing ’witness’ trees as permanent
markers of the lot corners within townships (approximately 6-mile square). Records of
these witness trees have been recovered from town archives, and surveyor identifications
have been mapped to modern taxonomic classification (Cogbill et al. 2002). These data are
available aggregated to the township, with between 26 and 3149 trees per township for 183
townships with known boundaries in our study region, providing 87,114 trees in total (Fig.
1c).

2.4.2 Modern vegetation data

The U.S. Forest Service (USFS) Forest Inventory Analysis (FIA: www.fia.fs.fed.us) pro-
gram samples vegetation using randomly-located plots on both public and private land,
counting and identifying (to species) all trees in four 7.3 m radius subplots located 36.6
m apart. Our data consist of FIA tree counts of individuals greater than 10 cm diameter
at breast height (1.3m) from 1990 for 1094 plots in the study area, with individuals ag-
gregated into our ten taxa (Fig. 1d). Because of privacy concerns, USFS randomizes the
plot locations to within 1.6 km of actual location. The plots contain between one and 115
trees per plot, with 29,938 trees in total. In the modeling described here, we use tree counts
to simplify the error structure, allowing for an overdispersed multinomial error structure.
However, basal (cross-sectional) area is likely to be more closely related to pollen pro-
duction, with production increasing sharply with tree size, and should therefore be more
closely related to pollen proportions in the sediment; in the discussion we further comment
on this issue.

3 Model description

3.1 Notation
Let p = 1, . . . , P (for population) index the P = 10 tree taxa. The subscript i indexes
the vegetation plots or townships. We work on a regular grid, with s = 1, . . . , S indexing
the S = 162 spatial locations on the grid and t = 1, . . . , T indexing the T time points,
discretized in 100 year intervals. To simplify the notation, we suppress the dependence on
t when considering the modern and colonial periods. With this exception, where we omit
subscripts, we indicate vectors, e.g., vi = (v1,i, . . . , vP,i) is the count of trees of all taxa in
the ith location.

3.2 Overview
Our modelling proceeds in two basic steps. First, in ’estimation runs’, we use the modern
and colonial data to estimate key parameters describing the pollen-vegetation relationships
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and critical hyperparameters that constrain the model structure, borrowing strength across
multiple ponds based on the spatial process structure. Second, in ’prediction’ runs, we use
only pollen data and the estimated key parameter values to make predictions in the past. The
critical hyperparameters reflect the general structure of vegetation and parameterize spatial
process variability, regression coefficient variability, and long-distance pollen dispersal.
They serve to constrain the model to produce reasonable predictions with only a small
number of ponds.

An alternative is to fit a coherent Bayesian model to all the pollen and vegetation data
at all points in time. However, with a complicated model and multiple data sources, model
misspecification and difficulty in model development and assessment are major concerns
that would be exacerbated in a single integrated analysis. Our approach also allows us to
carefully control what information is used to inform and constrain the inference at differ-
ent points in time, for example, making inference about parameters related to the general
structure of the vegetation based only on the vegetation data (Section 3.3.4). It also eases
the computational burden. An additional advantage of the two-stage approach is the ability
to more easily develop, diagnose, and improve the estimation model step by step before
making use of the model to make predictions. See also Haslett et al. (2006) for a similar
strategy.

We note that our multivariate non-normal outcome prevents conjugate updates of the
latent process values and integration over these process values, greatly affecting MCMC
mixing and limiting our ability to fit complicated structure in the model hierarchy, in con-
trast to much recent work with normal data that extends simple Bayesian spatial models to
spatio-temporal, multivariate, nonseparable and other settings. This constraint, combined
with sparse, noisy, and complicated data, necessitates careful attention to deciding upon
the key aspects of reality to represent in the model structure.

3.3 Estimation model
3.3.1 Likelihood terms

Our likelihood terms are conditional on a latent multivariate spatial process, which pro-
vides the the composition vector for each grid cell, r(s) = (r1(s), . . . , rP (s)), described
in Section 3.3.2. Here we define the separate likelihoods for modern plot data, colonial
witness tree data, and pollen data.

Vegetation For the vegetation, our basic strategy is to use a Dirichlet-multinomial (DM)
structure (also known as the compound multinomial distribution, a generalization of the
beta-binomial) (Dey and Maiti 2002) to account for overdispersion in the vegetation data
due to heterogeneity of vegetation within grid cells. First, consider the FIA plot data. We
associate each plot, i, with the grid cell in which the plot falls, s(i). The likelihood for the
vector of tree counts, conditionally independent between plots, is vi = {v1,i, . . . , vP,i} ∼
DM(ni, αFIAr(s(i))), where ni =

∑
p vp,i. The scalar Dirichlet precision parameter, αFIA,

is multiplied by each element of the composition vector for the grid cell in which the plot
falls, r(s(i)). For the witness trees, the structure is similar, except that the tree counts are
aggregated into townships, which are generally larger than the grid cells and are misaligned
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with respect to the grid. To account for this, we consider the count of trees in a township,
i, to represent a weighted average of the trees in the grid cells that the township overlaps,
s ∈ O(i), where O(i) is the set of overlapped grid cells. The weighting is based on the
proportion of the township falling in each grid cell, wi(s). This gives us the likelihood
for the ith township, vi ∼ DM(ni, αWTr̄(i))), where r̄(i) = (r̄1(i), . . . , r̄P (i)) and the
proportion of the pth taxa in the ith township is r̄p(i) =

∑
s∈O(i)wi(s)rp(s). In other words,

the composition for the township is calculated as the integral over the gridded piecewise
composition surface. Other approaches are possible, such as using the intersections of the
grid cells and townships (Mugglin et al. 2000) in the discretization of the spatial domain,
but seems unlikely to materially affect the results.

Pollen For the pollen, the likelihood must account for the fact that pollen production
and dispersal vary by taxon, which causes the proxy pollen data to be biased for the local
vegetation, even if one were to directly measure pollen falling to the ground. We again
use the Dirichlet-multinomial form for the pollen count data for the modern and colonial
eras, but we differentially scale the vegetation composition in the grid cell to account for
the bias. The likelihood for the vector of pollen counts at location i, ci, is,

ci = {c1,i, . . . , cP,i} ∼ DM(ni,φ • r(s(i))), (1)

where φ is a vector of taxon-specific scaling factors that relate pollen to vegetation and
r(s(i)) is the vegetation composition of the grid cell in which the pond lies. Note that
the multiplication is done element-wise (i.e., a Hadamard product). Because of chestnut
blight, there are essentially no pollen-producing chestnut adults in the modern era, so we
cannot estimate φ for chestnut in the modern era and assume this value is the same as for
the ’other’ category. Note that there is chestnut pollen in the modern sediment samples,
because of sediment mixing at the sediment-water interface.

An added complication is that examination of the pollen data suggests a substantial
fraction of pollen is derived from long-distance dispersal. Many ponds have taxa present
despite little evidence in the vegetation data (for either the modern or colonial periods) or
based on site visits by the authors that the taxa exist locally in sufficient quantity to explain
the pollen abundance. The model assumes that 0 ≤ γ ≤ 1 of the proportion of pollen
produced in a cell remains in the cell and the remaining 1 − γ distributes in a distance-
weighted fashion in a 15 by 15 grid of cells (some of which extend beyond our core grid)
centered around each cell (see also Nielsen and Sugita 2005 for a similar decomposition of
local and long-distance dispersal). The result is to replace rp(s(i)) in (1) with

γrp(s(i)) + (1− γ)
1

C

∑
sk 6=s(i)

rp(sk)w(s(i), sk), (2)

where C is a normalization term calculated by summing w(s(i), sj) over cells sj in the
15 by 15 grid surrounding the focal cell. The second term is a weighted average of the
vegetation composition in the core grid cells other than s(i), where weights,

w(s(i), sk) = exp

(
−d(s(i), sk)

2

ψ2

)
,
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are calculated based on the distance between the cell in which the pond resides and the other
cells based on the grid cell centroids, d(s(i), sk), scaled by a dispersal distance parameter,
ψ. The result is that the model attempts to distinguish the portion of the pollen data that is
informative about the cell vegetation, ignoring pollen that reflects vegetation similar to the
region as a whole, and essentially attempting a deconvolution.

The implied Dirichlet precision parameter for the pollen data depends on the scaling
parameters and varies between ponds in different grid cells,

αpollen(i) =
∑
p

φp

γrp(s(i)) + (1− γ)
1

C

∑
sk 6=s(i)

rp(sk)w(s(i), sk)

 , (3)

with somewhat lower values and therefore lower precision for ponds on the periphery of
the domain because of the lack of modelled pollen input from cells outside the domain.

Ideally we would use an anisotropic, skewed dispersal kernel that reflects the effects of
prevailing wind direction, but we were not able to find a reasonable skewed kernel param-
eterization. It would also be preferable to extend the domain to include vegetation at fairly
large distances in all directions from the study ponds to limit boundary effects.

3.3.2 Spatially-correlated vegetation composition process

Using the spatial representation described below, which provides an approximate thin plate
spline-based spatial process, gp(·), for each taxon, we define the proportions of the ten taxa
at a given location using the additive log-ratio transformation (Aitchison 1986, p. 113),
where the proportion of taxon p at location s is

rp(s) =
exp(gp(s))∑P
k=1 exp(gk(s))

⇒
∑
p

rp(s) = 1. (4)

Note that the Aitchison (1986, p. 113) model has a one in the denominator in place of the
contribution to the sum from the tenth, ’other’, category, as well as replacing the numerator
with one for p = P . For our MCMC implementation (Section 3.5), we specify gP (·) in
order to improve mixing. The result is that the processes are not fully identifiable, but the
vegetation compositions are, because of the sum to one constraint (4). This approach allows
us to use standard spatial models, yet create a multivariate framework for compositional
data, and is very similar to the approach of Haslett et al. (2006).

Billheimer et al. (1997) take a similar approach to compositional data using a multi-
variate conditional autoregressive Markov random field model, while Tjelmeland and Lund
(2003) take a Bayesian approach with a multivariate Gaussian process prior defined on the
additive log ratio transformation. Pawlowsky and colleagues also focus on the additive
log ratio transformation, investigating dependence structure amongst compositional com-
ponents beyond that induced by the sum to one constraint and using kriging methods for
modeling after transformation (Pawlowsky and Burger 1992; Pawlowsky-Glahn and Olea
2004). Note that unlike these approaches, for which composition proportions are the data,
our data are in the form of counts, which requires the Dirichlet-multinomial structure (Sec-
tion 3.3.1) in addition to the Gaussian structure on the transformed compositions.
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Latent processes We take the P = 10 latent spatial processes to be independent spatial
processes , gp(·), defined at each grid cell location as gp(s), using a knot-based radial basis
function approximation to a thin plate spline (Ruppert et al. 2003, Ch. 13). The value of
the process at the 256 grid locations is

gp = β0,p1 +
∑
k

xkβk,p + Ψup. (5)

Here, Ψ is a reduced-rank basis matrix constructed using thin plate spline generalized
covariance matrices on an equally-spaced 9 by 9 grid of knots. The 81 basis coefficients
are taken to have prior distribution, up ∼ N (0, σ2I), with the single variance component
controlling the amount of smoothing. The covariates are described below.

We recognize that vegetation is likely to be nonstationary, while the construction is
stationary, but believe that by including key covariates in the mean structure, in particular
elevation, we have accounted for a major source of nonstationarity. Our approach avoids
the computational difficulties of nonstationary processes and recognizes the limitations on
resolution caused by the sparseness of the pollen data. The inclusion of covariates also
helps to justify our use of a single σ2 common to all taxa (an approach that Haslett et al.
(2006) also find to be sufficient) reflecting that taxon abundances tend to change in tandem
spatially.

Also note that our model assumes prior dependence between taxa only to the extent in-
duced by a sum to one constraint, reflecting our desire to avoid a dependence structure that
because of data sparsity would need to be implausibly constant over space. For example,
the ranges of two taxa may overlap in part of the domain, but only one taxon may be present
in another part of the domain. We do not want to infer the presence of the missing taxon
(it may in fact be beyond its range boundary) because of correlation inferred elsewhere.
Critically, for every pond we have a large multinomial sample and direct information on
each taxon from its count. Borrowing strength across taxa through a dependence structure
introduces potential for bias from misspecification of the dependence structure, while the
balanced sampling of data provides limited opportunity for variance reduction. Of course
a posteriori, the taxa will be correlated insofar as they share similar covariate values and
spatial process values. This approach reflects current ecological thinking that the distri-
butions of tree species are driven by abiotic factors more than tight interspecific linkages
(Davis 1981). There is real ecological dependence between taxa; individual taxa modify
forest light levels and soil characteristics in a way that influences the abundances of other
taxa (Pacala et al. 1996). However, these dependencies are likely to change over time and
are in fact one of the outcomes of interest; we do not want to assume a correlation structure
amongst the taxa that is constant over time.

Landscape covariates Vegetation abundance is strongly related to covariates such as
elevation, soil type and climate. Covariates are represented in the spatial process represen-
tation (5), where xk is a vector of values of the kth covariate at each grid cell, and βk,p is
the coefficient for the pth taxon. To predict in the past, we are limited to covariates whose
values are known at every time point, generally those that have not changed much over
time. In particular, we use elevation (averaged over the grid cell) and latitude (after projec-
tion) in the current model, as these are readily available and are the covariates most likely
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to influence vegetation at the spatial resolution of our grid. Note that latitude (at the cell
centroid) is merely a linear spatial term. We include only a linear term in latitude and not
in longitude because vegetation is likely to vary most substantially with climate differences
that vary most strongly with latitude, and for the prediction runs, with 23 or fewer ponds,
we wanted to estimate as few parameters as possible, leaving any variability by longitude
to be accounted for in the radial basis portion of the spatial process. Both covariates are
centered about their means, with elevation scaled to units of 1 km and latitude to 100 km.
In the estimation runs, these covariates allow us to better match grid-level vegetation es-
timates with pollen abundance at ponds for which there is little nearby vegetation data in
the estimation runs. In the prediction runs, they allow us to better predict vegetation at grid
cells not near ponds. Other potential covariates include modern climate information and
soil type, but for the moment we use only the two covariates above; in part because of the
limited sample size.

3.3.3 Hyperparameter representation, prior distributions, and shrinkage

The goal for our prior distributions for the various parameters is to allow the data to play
the primary role in estimating the parameters, while borrowing strength as necessary in
contexts in which the data provide limited information, which is particularly relevant for
the prediction runs, for which the small number of ponds provides limited information
about spatial structure and covariate effects.

For the covariate effects, we use exchangeable prior structures to allow us to estimate
hyperparameters in the estimation runs that can be used to constrain the relevant parame-
ters in the prediction runs. We take β1 and β2, the coefficients for elevation and latitude,
respectively, βk ∼ N (0, s2

βk
I),k = 1, 2. In the estimation runs, the coefficient for each

taxon could be estimated individually with independent prior distributions with little diffi-
culty based on the dense vegetation data, but the variance components allow us to stabilize
the estimates of the coefficients in the prediction runs, while still allowing the coefficients
to vary in time. Note that the coefficients are taken to have mean zero because (4) causes
the mean to not be identifiable; only relative differences can be estimated.

The pollen scaling parameters,φ, are taken to be independent a priori with non-informative
but proper priors, as are β0. The long-distance contribution parameter, γ, is taken to have a
uniform distribution on (0, 1). For the remaining parameters, {σ2, αFIA, αWT, ψ, s

2
β1
, s2
β2
},

we use independent, non-informative, but proper priors. In particular, for variance com-
ponents, we have used uniform priors on the standard deviation scale to avoid the use of
diffuse inverse gamma priors (Gelman 2006), which have sharp spikes in density at small
values, and decay extremely rapidly to zero density at values smaller than the location of
the spike. For all the parameters, we impose lower and upper limits on the parameter values
to prevent the MCMC sampler from wandering in areas of the parameter space in which
the data provide little information and ensure propriety. In all cases of non-informative
priors, the posterior distributions were concentrated away from the limits, suggesting that
the diffuseness of the prior is not of particular concern (see the considerations of Berger
et al. 2001).
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3.3.4 Model misspecification and model incoherence

With regard to model misspecification, we know that sediment pollen records are an error-
prone and biased proxy for vegetation, while the modern plot data, and likely the colonial
vegetation data to a lesser extent, are relatively error-free. Thus in doing the estimation
runs, we would like to estimate the key parameters used to constrain predictions in such a
way that our vegetation surface estimates are informed primarily by the vegetation data. In
our joint estimation model for vegetation and pollen data, in cells with limited vegetation
data, the vegetation estimates in a cell can overfit to the pollen data. To avoid this, in the
estimation runs, our MCMC samples the parameters used to construct the latent vegeta-
tion process, r(s), are done conditional only on the vegetation data, ’cutting feedback’
in a manner recently introduced into the BUGS software (Spiegelhalter et al. 2003) and
discussed in detail in Rougier (2008). Yucel and Zaslavsky (2005) have also considered
this issue in models with multiple data sources in which one data source directly informs a
parameter, but a second, larger, set of data can also influence the inference more strongly
than desired because of model misspecification. In our setting the pollen dataset acts as
the ’larger’ dataset within individual grid cells with ponds because of the large number of
pollen grains compared to the tree counts. A sensitivity analysis suggested that the coherent
model without cutting feedback overfits to some degree but not a substantial amount, with
increased estimates of the precision in the pollen data and of the proportion of grid-cell
pollen, γ.

In the same vein, but in the temporal domain, we wish to estimate the key prediction
parameters from the time periods with vegetation data and use those parameter values in the
prediction runs. We want to avoid the danger that extensive pollen data from older time pe-
riods would swamp the inference about certain parameters in some way, even though there
is inherently no information in those time periods about the parameters. For example, infer-
ence about the spatial process parameter, σ2, might be influenced by the prediction points,
increasing the smoothness of the process because of the sparse pond data, even though the
vegetation data provide much more information about level of spatial variability in vege-
tation. Our strategy of splitting the analysis into estimation and prediction runs allows us
to make critical choices and estimates in the estimation runs and apply these choices to the
prediction problem, albeit at the cost of a strictly coherent Bayesian approach.

3.4 Prediction model
After fitting the model in the estimation runs for the colonial and modern eras, we use
fixed parameter values from those runs in the prediction runs, which have the same model
form as the estimation runs, but with temporal autocorrelation introduced as described
below. To account for uncertainty in the parameters in the estimation runs, we compute
separate predictions conditional on samples from the posterior of the parameters from a
given estimation run. In the prediction runs, only β0,p(t), β1,p(t), β2,p(t), and up(t),
which are the parts of the model that directly determine the vegetation composition at each
time, and autocorrelation parameters for these time series, are estimated. This approach
ensures that the vegetation predictions are primarily informed by the pollen proportions
at the time of interest, but that structural information that is well-informed only with rich
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vegetation data is based on the estimation runs.
The temporal structure gives us the ability to smooth over time to better estimate rp(s, t)

and assess how the relationship between taxon abundances and covariates have changed
over time (e.g., Williams et al. 2001) as inferred from the pollen data. For each of the
temporally-varying terms, we include an overall mean that we integrate over for better
MCMC mixing, giving us two temporal variance components. For example,

β0,p ∼ N (0, σ2
0(δ0J + (1− δ0)R(ρ0)))

where δ0 ∈ (0, 1) is the proportion of variance for the long-term mean, J is a matrix of
ones, σ2

0 is the overall variance, and R(ρ0) is the correlation matrix, a function of decay
parameter ρ0 and the relevant time lags. We use a Matérn correlation function with ν = 2
but also consider the exponential (i.e., AR(1)) correlation function. The priors for β1,p

and β2,p are analogous but with s2
β1

and s2
β2

in place of σ2
0 and ρ1 and ρ2 in place of

ρ0. We choose σ2
0 to be large, imposing no constraints on the overall mean, β0, while

using the variance components for β1 and β2 from the estimation runs to stabilize their
estimation. To provide for residual spatio-temporal structure, we specify an analogous
temporal correlation structure for the basis coefficients

uk,p ∼ N (0, σ2(δJ + (1− δ)R(ρ))),

again independent between coefficients for different knots, k = 1, . . . , 81, and where σ2

is taken from the estimation runs. This constraint ensures that the amount of spatial het-
erogeneity is based on information from the rich vegetation data in the estimation runs.
Nonseparability may come into play, particularly at times of range expansion and contrac-
tion, but would difficult to estimate based on the small number of sites, and would add even
more complexity to the modeling. For the proportion of variance and the decay parameters
we use uniform priors, where for the latter we impose upper and lower bounds based on
the discrete time lag and length of the time period.

Because vegetation changed markedly upon European settlement (Fuller et al. 1998),
introducing a likely nonstationarity in time, we run the prediction model separately for the
pre-settlement (2500 to 300 years before present) and post-settlement periods (500 to 0
years before present). Note the inclusion of a buffer on either side of the settlement period
for both runs to avoid boundary effects.

In our prediction runs, we make use of the posterior distributions for all parameters,
except those mentioned above, from either the modern or colonial estimation run. To in-
corporate uncertainty in these parameters, we fit the prediction model using 50 draws from
the joint posterior distribution of {φ, γ, ψ, σ2, s2

β1
, s2
β2
} from the chosen estimation run,

running a separate MCMC for each draw, and combining the iterations from the 50 chains
to estimate posterior quantities. In this way we incorporate parameter uncertainty into our
predictions, but we do not update these distributions as the pollen data alone do not contain
sufficient information to inform the parameters.

3.5 Implementation
We note that the lack of conjugacy and inability to integrate over the latent processes in
our hierarchical multivariate space-time model with a non-normal likelihood seriously af-
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fect mixing and require long run times, even with the simplifications in our model struc-
ture. We recognize that replication of complicated MCMC schemes is difficult and attempt
here to describe in detail some of the modifications, relative to a straightforward blocked
Metropolis-Hastings implementation, that we used to speed mixing.

3.5.1 MCMC sampling schemes

We first consider the sampling schemes used in the estimation runs. β0 is sampled as a
block via simple Metropolis. The elements of β0 are not identifiable; all could be shifted
by the same amount with no effect on the likelihood (4). Therefore in the MCMC for the
estimation runs we center the values at zero at each iteration (Besag et al. 1995), which
while not strictly appropriate because of the influence of the prior on β0, has no effect
in our setting in which the prior is essentially flat. Similarly, in sampling β1 and β2, we
employ blocked Metropolis proposals. We also use a Metropolis proposal that shifts all the
coefficients by the same amount. Since β1 and β2 are not identifiable in that a constant
shift of all the elements in each has no effect on the likelihood, the proposal that shifts all
the elements at once is constrained only by the prior, N (0, s2

βk
I), and allows the values to

mix in this region that is unconstrained by the data. The spatial process values are also in-
herently not identifiable because we use all 10 taxa in (4) instead of holding out a taxon as a
reference category, as is usually the case in the additive log-ratio transformation (Aitchison
1986). An initial assessment suggested that the this parameterization helps somewhat in
mixing, albeit not substantially, compared to a model in which the extra non-identifiable
component is excluded. Note that the process coefficients, up, are constrained by their
prior distributions, which helps with mixing. The coefficients are proposed via blocked
Metropolis with separate blocks for each taxon. Note that the complicated relationship
between the data and the latent processes, involving the Dirichelt-multinomial distribution
and the additive log-ratio transformation of multiple processes makes it very difficult to
use more targeted proposals than simple random walks. In sampling φ, we use two sam-
pling approaches. First, we use a block Metropolis proposal. Second, to allow the overall
magnitude to mix quickly, we propose to shift all the values by a constant amount (on the
log scale) in a Metropolis proposal. This helps mixing with respect to the overall Dirichlet
heterogeneity (3).

For some of the key hyperparameters that control population distributions (s2
β1
, s2
β2

) and
process structure (σ2), dependence between the hyperparameter and associated random ef-
fects can greatly slow mixing (Knorr-Held and Rue 2002; Rue and Held 2005; Paciorek
2007). Following Paciorek (2007), we use joint proposals that first propose the hyperpa-
rameter and then deterministically shift the associated random effects such that the random
effects prior density remains the same. For example, after proposing s2∗

βk
, we jointly pro-

pose, β∗
k = βk

√
s2∗
βk
/s2

βk
. These joint proposals propagate changes in a hyperparameter to

the level of the data, involving the log-likelihood in the acceptance decision. Acceptance is
determined in a single decision based on the prior distribution of the hyperparameter and
the log-likelihood because the random effects prior stays constant between the current val-
ues and proposed values, after accounting for the deterministic shift based on the Jacobian
of the transformation. The legitimacy of this proposal follows from an argument used in
justifying reversible-jump MCMC (Green 1995). For σ2 the joint proposal is similar except
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that the coefficients for all the taxa are scaled based on
√
σ2∗/σ2 as above within the same

joint proposal. For s2
β1

and s2
β2

we also propose to move them via simple Metropolis.
The remaining parameters are sampled by simple Metropolis sampling.
In sensitivity runs, we allow ψ and γ to vary between taxa, using an exchangeable prior

distribution with mean mψ and variance s2
ψ; for γ the prior is similar, but ensures that

γp ∈ (0, 1) by truncation. As above, to account for dependence between hyperparameters
and random effects, we use joint proposals, which we detail here for ψ; proposals for γ
are analogous. For mψ, we propose m∗

ψ, and in the same joint proposal, propose ψ∗ =
ψ − mψ1 + m∗

ψ1; this is similar to the joint proposals described for β1, and β2 above,
except that in this case the mean of the vector parameter is a parameter in the model. The
joint proposal involving s2

ψ is analogous to that for s2
βk

above.
In the prediction runs, the time series β0 (and similarly for β1 and β2) is sampled

in a block with a correlated Metropolis proposal using the current temporal correlation
induced by ρ0 and δ0. The coefficients for all taxa are sampled within the same block.
Sampling of up is done in similar fashion but the coefficients for the different taxa are
sampled in separate blocks. For β1 and β2 we also include a proposal in which the values
for all 10 taxa are moved by the same amount, but with a correlated proposal using the
current correlation. As before this helps with mixing with respect to the prior distribution
but does not change the likelihood. Finally for {ρ, ρ0, ρ1, ρ2} and {δ, δ0, δ1, δ2}, we use
joint proposals of hyperparameters and process values as described above. For example,
we jointly sample {ρ,up, p = 1, . . . P}as well as {δ,up, p = 1, . . . , P}, with analogous
sampling for the regression coefficient hyperparameters and their associated time series.

3.5.2 MCMC for the estimation runs

We first estimate the key prediction parameters in the estimation runs. The model is run
from three different sets of initial values for 400,000 iterations each after an initial burn-
in of 10,000, with every 40th iteration saved to economize on storage space and posterior
computations. This gives us a sample of 30,000 values from the posterior. A sample of
trace plots, with effective sample size estimates (Neal 1993, p. 105), is shown in Fig. 3 for
key hyperparameters as well as the model log posterior (up to the normalizing constant)
and log-likelihood terms. MCMC mixing is sufficiently fast to allow us to claim reliable
inference, but some parameters do show slow mixing, and computation times are on the
order of 36 hours for a full run of the 410,000 iterations in R with the Goto BLAS on a
Linux computer with a 2.3 GHz processor. Note that key log-likelihood calculations are
done in compiled C code called from within R.

3.5.3 MCMC for the prediction runs

For the prediction runs, using a single joint sample of the fixed parameters from the poste-
rior distribution from the chosen estimation run (modern or colonial), we run the model for
60,000 iterations after a burn-in of 30,000. We average the posterior estimates over 50 such
joint samples, giving a final sample of 37,500 values, after saving every 80th iteration. For
prediction at a single time point, a sample of trace plots for the colonial era cross-validatory
prediction model is shown in Fig. 4, with the sharp jumps occurring because of the changes
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Figure 3. Trace plots of three combined chains (delineated by the red dashed lines) from the
modern era estimation model for (a) log posterior density (up to the additive normalizing
constant), (b) log likelihood for the FIA data, (c) σ2, (d) φ for hemlock, (e) β1 for spruce,
and (f) proportion of maple in an arbitrary grid cell.

in the fixed parameter values. Mixing seems reasonable, with a large effective sample size
after aggregating over all 50 runs. In contrast mixing for prediction runs over long time
periods is much worse because of the higher-dimensional parameter space and temporal
correlation (Fig. 5). Prediction runs take on the order of four days for 90,000 iterations for
the 23 time points.

4 Model results and assessment
Results from the model come in several forms. In Section 4.1 we use the estimation runs
to learn about the relationship between pollen and vegetation in the modern and colonial
periods. We consider the ecological implications of parameter estimates and contrast re-
sults from the modern and colonial estimation runs to understand potential differences in
vegetation structure. In Section 4.2, we assess the use of the model for prediction in a
cross-validatory fashion. First, we focus on prediction of colonial era vegetation using pa-
rameter estimates from the modern estimation run and colonial pollen data. We compare
the predictions to the vegetation as informed by the witness tree surveys based on point
estimates, uncertainty estimates, and spatial pattern assessment. Second, we predict for the
modern era based on the surface sediment pollen and colonial parameter estimates. Having
argued that our model performs reasonably, in Section 4.3, we apply the prediction model
to pollen data over the past 2500 years.
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Figure 4. Trace plots of 50 combined chains (delineated by the red dashed lines, indicating
changes in the fixed parameters between chains) from the prediction model for the colonial
era for (a) log posterior density (up to the additive normalizing constant), (b) log likelihood
for the pollen data, (c) β1 for birch, (d) β2 for hemlock, (e) proportion of beech for an
arbitrary grid cell, and (f) proportion of spruce for a different arbitrary grid cell.

4.1 Estimation model results
4.1.1 Pollen as proxy for vegetation

Differential pollen production and dispersal The estimation runs allow us to character-
ize the relationship between pollen in sediments and local vegetation, thereby informing us
about the ability of pollen to serve as proxy data for vegetation. Our model attempts to find
the best fit between pollen and vegetation across a regional network of sites. As a resid-
ual diagnostic, we compare the pollen composition in each pond to the spatially-smoothed
estimated vegetation composition of the encompassing grid cell from the model. While
differences between pollen and vegetation composition may arise because the grid-scale
vegetation is poorly estimated, most ponds fall in areas with nearby FIA plots or township
data (see Figure 2.2), so we expect that most differences are due to long-distance pollen
transport and local (within grid cell) vegetation heterogeneity.

For the colonial and modern eras, respectively, Figs. 6-7 plot relative pollen abundance
in ponds versus model-smoothed grid cell relative vegetation abundance for each taxon (red
crosses). Most taxa show increasing relationships. The lack of 1:1 relationship shows the
importance of including φ to adjust for differential pollen production and dispersal. After
scaling the smoothed vegetation by the estimated values of φ, we see the values (black
squares) falling around a 1:1 line, albeit with some taxa, such as oak and hickory, show-
ing more consistent relationships than others, such as spruce. The substantial remaining
variability makes it difficult to precisely estimate φ.
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Figure 5. Trace plots of 50 combined chains (delineated by the red dashed lines, indicating
changes in the fixed parameters between chains) from the prediction model for the period
2500 to 300 years before present for (a) log posterior density (up to the additive normal-
izing constant), (b) log likelihood for the pollen data, (c) β1(t = 8) for birch, (d) ρ, (e) δ,
and (f) proportion of spruce for an arbitrary grid cell and time.
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Figure 6. For the colonial era, scatterplots by taxa of pollen proportions in each pond
against both the model-smoothed vegetation proportions in the grid cell of the pond (red
crosses) or model-predicted pollen proportions based on scaling the smoothed vegetation
in the cell by φ (black squares).
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Figure 7. For the modern era, scatterplots by taxa of pollen proportions in each pond
against both the model-smoothed vegetation proportions in the grid cell of the pond (red
crosses) or model-predicted pollen proportions based on scaling the smoothed vegetation
in the cell by φ (black squares).

Based on plots by pond rather than by taxon (not shown), most ponds show an increas-
ing relationship between relative abundance of each taxon in the pollen and in pollen as
predicted from vegetation, scaling by φ, although some ponds show sharp differences, par-
ticularly for some of the more abundant taxa. Fortunately, in almost all cases, taxa with
low abundance in the vegetation can be distinguished from taxa with high abundance in the
vegetation based on the pollen. Further exploration has not indicated any relationships with
covariates or spatial patterns that might explain which ponds have more noisy relationships
between the model-scaled pollen proportions and smoothed vegetation in the cell of the
pond. Nor are the ponds with the noisy relationships consistent between the modern and
colonial eras. This makes more sophisticated error modeling difficult.

The estimation runs also allow us to investigate differential taxon-specific pollen pro-
duction and dispersal. For both the modern and colonial parameter estimates, large un-
certainties prevent us from readily distinguishing among most taxa based on φ, but the
two taxa whose estimates are clearly different than the others are maple, with low produc-
tion/dispersal, and birch, with high production/dispersal (Fig. 8). These results agree with
previous finer-scale analyses of the relationship between trees and pollen assemblages in
the eastern U.S. (e.g., Jackson 1990), in which birch, oak, and pine are estimated to have
well-dispersed pollen and maple poorly-dispersed pollen. Note that the estimates have
been scaled so that the mean across taxa is one (this scaling is done by MCMC iteration),
because it is the relative magnitudes of the parameters that are relevant in the likelihood
(1). The large uncertainties in φ will make it difficult to compare abundances across taxa
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Figure 8. 95% credible intervals for logφ for the colonial (red) and modern (black) esti-
mation runs. Note that chestnut is not shown for the modern period because of the absence
of mature chestnut.

in the predictions, although we should be able to distinguish common from rare taxa and
to compare abundances spatially within taxa (as the latter inference does not rely on φ).
For ecological reasons, such as different landscape openness and different assemblages of
taxa, particularly over long time periods, the values of φ may vary over time. While we
can only estimate φ for two time periods close in time, the colonial and modern periods
represent stark changes in conditions; also the estimated values of φ represent averages
across different conditions and assemblages in the different ponds, so our inference may be
reasonably robust. Comparing between the two periods, the general patterns are consistent.
However, note that as we discuss in the cross-validation assessment (Section 4.2), changes
in φ over time can substantially affect the inferred overall abundance of taxa.

Long-distance dispersal To create diagnostic plots similar to Figs. 6-7, but that account
for long-distance dispersal, we create the weighted average of vegetation from the focal
grid cell and that from other cells and then scale by φ to represent the estimated pollen
contribution to the pond; plotting this against the actual pollen composition gives us a
residual diagnostic (black squares in Figs. 9-10). The relationship between pollen and
predicted pollen based on the mixture approach appears to be closer than when comparing
with pollen predicted solely based on grid cell contributions, suggesting that the model
with long-distance transport fits better than a model that attributes all pollen to grid cell
vegetation. Using DIC for model comparison also indicates that the simpler model fits
substantially worse than allowing γ to be estimated in the estimation runs, with a ∆DIC of
307 (427) for the modern (colonial era). Not surprisingly, the estimated precision for the
pollen data in the likelihood is smaller when γ ≡ 1, with values of ᾱpollen of 35 compared
to 60 for the modern run and 27 compared to 97 for the colonial run, as the additional
heterogeneity is accounted for in the Dirichlet heterogeneity parameter. Further assessment
using cross-validation supported the use of the mixture model, with the model without
long-distance dispersal producing predicted vegetation surfaces with much less distinct
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Figure 9. For the colonial era, scatterplots by taxon of pollen proportions in each pond
versus model smoothed vegetation in the grid cell of the pond (red crosses) and model-
predicted pollen from the mixture of local and long-distance dispersal, based on adjusting
by φ, ψ, and γ (black squares) .

spatial patterns (not shown) and less posterior confidence about feature significance, as we
would expect with the smaller estimated Dirichlet heterogeneity parameter for the pollen
data. In future ecological analyses we will consider different approaches for pollen source
contributions in more detail, as this is an issue of critical paleoecological importance and
others have attempted to infer relative contributions by various methods (e.g., Jackson and
Lyford 1999; Nielsen and Sugita 2005).

For the pollen data, γ represents the proportion of pollen data consistent with vegeta-
tion estimated in the encompassing grid cell, with 1− γ the proportion based on weighting
the composition in the other grid cells in the domain. In both the colonial and modern eras,
γ is about one-half: 0.48 for the modern era (with a 95% credible interval of 0.30, 0.61)
and 0.50 (0.41, 0.59) for the colonial era, indicating that much of the pollen in the ponds
is not consistent with the grid-cell-estimated vegetation. The pollen could be associated
with long-distance transport, reflecting the vegetation in other grid cells, or with local sub-
grid-scale vegetation that happens to be more similar to the region-wide vegetation than the
model-estimated vegetation in the grid cell of the pond. While local variability and lack
of identifiability in the model surely contribute to some extent, site visits by the authors
suggest that many of the ponds visited had few nearby trees of the type indicated by the
anomalous pollen, suggesting that much of the pollen may be due to long-distance trans-
port. Our results are consistent with previous paleoecological work (Jackson and Lyford
1999; Davis 2000; Nielsen and Sugita 2005), which suggests that mixing of pollen sources
makes distinguishing local from regional sources. For taxa that are at high abundance in
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Figure 10. For the modern era, scatterplots by taxon of pollen proportions in each pond
versus model smoothed vegetation in the grid cell of the pond (red crosses) and model-
predicted pollen from the mixture of local and long-distance dispersal, based on adjusting
by φ, ψ and γ (black squares).

most locations, such as maple in the modern era, it is particularly difficult to distinguish
pollen from the grid cell compared to long-distance transport. Additional vegetation data
from field surveys near ponds could help estimate local vegetation, thereby distinguishing
long-distance from local pollen and improving our estimation of φ, ψ, and γ. A strength of
the model is that it synthesizes already-existing data, but it could readily incorporate local
vegetation data.

Ecologists expect the contribution of local pollen dispersal, γ, and the distance of dis-
persal, ψ, may differ by taxa (Jackson 1990), but a model with γ and ψ varying by taxa,
both parameterized by exchangeable priors, showed little ability to distinguish differences
between taxa (Fig. 11), albeit with a small improvement in DIC (6.7 for the modern era
and 9.0 for the colonial). These parameters are difficult to estimate as the model involves a
deconvolution of the deposited pollen, so all taxa show high levels of posterior uncertainty.

4.1.2 Error structure

In the model, we specify a Dirichlet-multinomial distribution for the vegetation and pollen
data, with the mean for the distribution of the pollen data based on a mixture of grid cell and
long-distance components. For the modern era, the posterior mean estimate of the Dirichlet
precision parameter for the FIA data is 3.41 (3.24, 3.59) while for the colonial era for the
witness tree data it is 39.1 (34.6,44.2). As expected much more precision is indicated in the
colonial era, because the witness tree data are aggregated to the township level, smoothing
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Figure 11. (a) 95% credible intervals for ψ for the colonial (red) and modern (black)
estimation runs. (b) 95% credible intervals for γ for the colonial (red) and modern (black)
estimation runs. Note that chestnut is not shown for the modern period because of the
absence of mature chestnut.

over local heterogeneity, compared to scattered FIA plots with relatively few trees. Of
course, we are not sure how representative the witness trees are of the actual vegetation in
those areas, though the comparable estimates of abundance based on witness tree surveys
and predictions from pollen (Fig. 15) suggest the surveys are reasonably representative
as does the design of the original surveys and subsequent data processing (Cogbill et al.
2002).

For the pollen, the Dirichlet precision varies slightly between ponds because of the
weighted summation introduced by the use of φ and the mixture model (3). The lack of
pollen contribution from ponds outside the domain lowers the precision for ponds on the
periphery. Averaging the pondwise posterior means, the precision for the modern surface
sample data is 60.2 with a standard deviation of these pondwise means of 8.3. For the
colonial data, the average posterior mean across ponds is 96.6 with a standard deviation of
6.6. The higher precision for the pollen data in the colonial era may reflect better estimation
of the grid-scale vegetation with the large witness surveys, for which approximately three
times as many trees were measured than in the FIA dataset, and possibly additional local
vegetation heterogeneity in the modern era due to land use change

Note that the precision parameters for pollen and vegetation are not directly comparable
to each other because of the very different sources of the data and different biological
processes producing the compositions.

4.1.3 Spatial smoothing of composition data

By running the model for the modern and colonial eras, we can smooth the available vege-
tation data and provide estimates of colonial and modern vegetation in a visually appealing
fashion, with associated uncertainty. In accounting for the count data structure, this simple
application of the model has advantages over non-statistical smoothing and graphical dis-
play, allowing us to consider the ecological differences since European settlement in light
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Figure 12. Posterior mean vegetation estimates from the (a) colonial and (b) modern esti-
mation runs. Note that some beech and oak proportions are truncated to 0.5 in the colonial
era.

of the estimated uncertainty. In Fig. 12, we see the smoothed composition estimates. Spa-
tial gradients in vegetation appear to have become less distinct with European settlement,
consistent with the ecological literature (Foster et al. 1998; Oswald et al. 2007). Fig. 13
shows uncertainty estimates for each taxon, suggesting that with the rich vegetation data of
the FIA surveys we have reasonably precise estimates. However note that this is done at
the grid level, and there is certainly a large amount of within-cell heterogeneity that causes
individual stands of trees to have compositions that differ drastically from the composition
estimate in a cell. The standard deviations are larger for more common taxa, but this reflects
only that we can be quite certain in absolute terms that less common taxa are uncommon;
the coefficient of variation (not shown) indicates that relative uncertainty is greater for the
less common taxa and, for a given taxon, in locations in which the taxon is less common.

Our model relies on key parameters to translate between pollen data and vegetation
predictions in the prediction runs. In particular, the variance component for the basis co-
efficients of the spatial process representation influences the amount of smoothing, which
not only influences point predictions by determining the degree of local averaging, but per-
haps more importantly determines the degree of uncertainty, with uncertainty increasing
rapidly with increasing distance from ponds when the smoothing parameters specify more
unsmooth spatial processes. As expected because of changes in vegetation post-settlement
and sparser data in the modern surveys, the estimated heterogeneity is less in the modern
era with an estimate of σ of 1.8 (1.2, 2.5) compared to 5.9 (4.1, 8.2) in the colonial era.
This difference and the difference in the estimates of φ highlight the importance of choos-
ing between the estimation parameters estimated for the modern and colonial periods when
predicting in the past.
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Figure 13. Posterior standard deviations of vegetation estimates from the estimation runs,
using vegetation data, for (a) colonial and (b) modern eras.

4.1.4 Covariate effects

As shown in Fig. 12, spatial gradients in vegetation appear to have become less distinct with
European settlement. We can also assess the possible change in associations between taxa
and covariates affecting vegetation composition by comparing the elevation and latitude (as
a proxy for climate, particularly temperature) effects in the colonial and modern models.
Fig. 14 shows the estimated coefficients and uncertainty, suggesting that the covariate
effects were generally more pronounced in the colonial era, as expected because of the
influence of European colonists on vegetation through major land use changes, albeit with
high uncertainty in both cases.

4.2 Cross-validation
Our estimation runs allow us to compare reasonable model specifications, but the true test
of the model is its ability to predict and provide good uncertainty estimations for vegetation
when only pollen data are available. Our next assessment uses cross-validation, first using
modern parameter estimates to predict in the colonial period and then using colonial param-
eter estimates to predict in the modern period. Note that while only several hundred years
apart, the modern and colonial eras are separated by vast ecological changes induced by
European settlement, as great as any differences expected over the past 2500 years (Fuller
et al. 1998; Oswald et al. 2007), so this provides an important check on the model. The
results below suggest that our model is performing as well as may reasonably be expected,
able to resolve many spatial patterns and temporal changes at coarse scale but missing the
fine-scale details of vegetation and some coarse patterns.
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Figure 14. Regression coefficients for (a) elevation and (b) latitude with the colonial es-
timates in red and the modern estimates in black. Note that chestnut is not shown for the
modern period.

4.2.1 Feature Significance

Uncertainty assessment is a major concern for a complicated model with an ambitious
prediction goal. Pointwise standard deviations of prediction for each taxon provide some
information about how certain we can be about our point predictions of vegetation com-
position, including which taxa are most reliably predicted and at which spatial locations
we can be most certain. However, this does not give us a complete picture concerning our
certainty about spatial features of the predictive surfaces. Such feature significance can
take several forms, including inference about significant gradients (Banerjee et al. 2003),
inference about significant extrema (Chaudhuri and Marron 1999), and rankings of loca-
tion based on abundance (Laird and Louis 1989). Our primary interest lies in determining
which spatial areas can be reliably determined to have higher or lower abundances of a
given taxon than other areas, although detection of gradients and extrema may also be of
interest. We also want to compare abundances of individual taxa across time and between
taxa at individual times and spatial locations.

To make assessments about relative abundances of a single taxon across locations at
fixed time, we make use of the posterior distributions of contrasts between different lo-
cations. Ideally, we would make joint statements about contrasts between different areas,
aggregating over multiple grid cells. For example, we would like to be able to state, with
90% probability, that a group of specified grid cells has more oak than another group of
grid cells. This approach might sacrifice too much power, so we may want to phrase our
statements in terms of False Discovery Rate (FDR)-type criteria (Benjamini and Hochberg
1995), such as: with 95% probability, 90% of the pairwise comparisons of abundances
between two groups of cells show higher abundance in the first group. In principle such
statements can be made based on the full posterior distribution obtained from MCMC. Two
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difficulties stand in the way. First, finding areas of significant difference requires search-
ing a large dimensional space, particularly if one wants to make FDR-type statements.
Greedy searches might provide one approach, but there would be no guarantee that the ar-
eas obtained were optimal in terms of providing the largest areas of difference with highest
posterior probability. Second, results would focus attention on certain areas and provide
little information about what can be said about differences between other areas.

We take a graphical approach focused on pointwise comparisons, hoping to provide
approximate inference about all the locations at the expense of some loss of information
about joint properties. In general, the use of exchangeable prior distributions with the
resulting shrinkage justifies not adjusting for multiplicity (Berry and Hochberg 1999, Carlin
and Louis 2000, p. 339, Gelman et al. 2008). We do not adjust for multiplicity because our
spatial model has this flavor of exchangeability through the spatial process structure for the
vegetation processes that smooths abundances towards each other, potentially giving flat
surfaces (σ2 ≈ 0) if the data suggest little spatial variability. The prediction model also
smooths in time.

Our approach is to conduct pairwise tests for differential abundance for a given taxon
and plot the results in an informative way, demonstrated in the third column of plots in Fig.
15. For each pair of grid cells, we compute the posterior probability that the abundance of
the taxon in one grid cell is higher than the abundance in the other grid cell. We sequentially
consider each grid cell as the focal cell, making a subplot in which we color the other grid
cells for which pairwise differences between the focal cell and the other cell have at least
90% posterior probability of lying on one side of zero. The colors indicate the sign of
the difference and the posterior probability of lying on that side of zero. Finally we make a
mosaic of the subplots, with the subplot placed on a map in the position of the focal grid cell
and an ’x’ marking the relative position of the focal location within the subplot. By tiling
the subplots into a full plot, we present a color map of pointwise, pairwise probabilities of
differential abundance. Viewing the mosaic of subplots as a single plot, areas of substantial
probability of differential abundance from other areas show themselves as deep colors,
while individual subplots can still be examined to assess differences between a given focal
location and all other locations. Note that to preserve the scaling of the full plot, each
subplot needs to be square, even if the full region is not square, inducing some spatial
distortion within the subplots. In Fig. 15 we see that for beech, the northwestern and
north-central areas indicated in dark red show high probability of higher abundance than
the south-central and eastern areas. In contrast, for hickory, the evidence is less strong, with
moderate probability of a small area (in blue) in the northwest having lower abundance than
most of the rest of the region.

The posterior probabilities are calculated as an expectation, over the 50 sampled values
of the estimation model parameters, of the posterior probability of one cell’s abundance
exceeding the other cell,∫

P (rp(si) > rp(sj)|ζest, Zpred)π(ζest|Zest)dζest ≈
50∑
k=1

P (rp(si) > rp(sj)|ζest,k, Zpred),

where Zest and Zpred are the data from the estimation and prediction runs and ζest is the set
of estimation parameters and where the probability on the right-hand side is computed as
the average over the posterior samples from the prediction model run with parameters ζest,k.
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Similar reasoning with regard to multiple testing, based on the spatio-temporal smooth-
ing in the model, applies to comparisons over time for a fixed taxon, demonstrated in Sec-
tion 4.2.3. We can take an analogous approach to compare abundance between two taxa for
a single time period, finding posterior probabilities of differential abundance in each grid
cell, although the difficulty in estimating φ makes it harder to detect differences between
taxa.

4.2.2 Assessment of Predicted Surfaces and Uncertainty Characterization

In Fig. 15 for the colonial period, we compare our best estimate of vegetation, from the
colonial estimation run, with predictions based on pollen from the colonial period and pa-
rameter estimates from the modern period. We also show feature significance plots and
plots of posterior standard deviations of prediction to assess uncertainty. Fig. 16 does the
same for the modern period, using modern pollen and colonial parameters. Based on com-
parisons of the vegetation-predicted surfaces with the pollen-predicted surfaces, interpreted
in light of the feature significance plots, it appears the model is doing a reasonably good
job of predicting spatial patterns. For the colonial period, the features are quite similar in
the prediction and estimation runs, and patterns detected in the feature significance plots
are seen in the vegetation-predicted surfaces when considered at a fairly coarse resolution,
suggesting minimal type one error, with few non-existent patterns detected. For the modern
predictions, the results are not as good, particularly for hemlock. The model fails to cap-
ture some large-scale patterns and is overly confident about the patterns it does estimate.
The poorer results in predicting modern vegetation may more strongly reflect difficulties in
predicting modern vegetation than problems with the colonial parameter estimates per se.
Land-use change post-colonization makes spatial patterns in modern vegetation less distinct
and less strongly associated with the covariates than in the colonial era (Foster et al. 1998;
Fuller et al. 1998), making prediction more difficult. The larger precision of the pollen data
as a proxy for vegetation in the colonial estimation runs than in the modern estimation runs
causes overconfidence in the modern predictions. Given that vegetation structure in the
past is very likely to be more similar to the colonial vegetation than the modern vegetation,
the success of the model in predicting colonial patterns gives us confidence in the ability of
the model to make predictions.

In terms of absolute abundance, the model generally indicates the taxa with high and
low abundance reasonably (maple is an exception) but often incorrectly predicts overall
relative abundance of a taxon. This relates to whether the estimated values of φ are ap-
propriate for the time period. In particular, maple is overpredicted in the colonial era and
underpredicted in the modern, while the reverse is true for oak and beech. This occurs
because the estimated values of φ for the two taxa are different for the two eras (Fig. 8);
use of the parameter estimates from estimation runs for the same era as the prediction runs
improves prediction of the overall level, indicating the sensitivity of predictions to this
key parameter. Given that we expect vegetation before settlement to be more similar to
the colonial vegetation than the modern vegetation, this suggests we should focus on the
colonial parameter estimates for prediction before settlement.

Posterior uncertainty varies widely between taxa and across space. Uncertainty is the
greatest far from ponds, as should be the case. Maple is particularly uncertain, because the
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Figure 15. For the colonial period, vegetation estimated in the colonial estimation run
(first column), vegetation predicted in the colonial prediction run based on colonial pollen
and modern parameter estimates (second column), feature significance for the prediction
run (third column) and posterior prediction standard deviations (fourth column). Note that
chestnut is not shown as we cannot obtain parameter estimates for the modern era with no
mature chestnut. In the first column, some cell abundances are truncated to 0.5.32
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Figure 16. For the modern period, vegetation estimated in the modern estimation run (first
column), vegetation predicted in the modern prediction run based on modern pollen and
colonial parameter estimates (second column), feature significance for the prediction run
(third column) and posterior prediction standard deviations (fourth column). Note that
chestnut is not shown because there are no mature chestnut in the modern era. In the
second column some cell abundances are truncated to 0.5 and in the last column some
standard deviations to 0.25.
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vegetation estimates
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oak
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Figure 17. Posterior probabilities of differences in abundance between selected taxa in the
colonial era based on the cross-validation run in which the modern parameter estimates
were used with the colonial pollen data. The first row and first column plot the estimated
vegetation composition for the selected taxa based on the colonial estimaton run. Each
cell within the table of figures indicates the posterior probability (with a threshold of 90%)
that the taxon distinguished by the row had higher (red) or lower (blue) abundance than the
taxon distinguished by the column. For example hemlock appears to be more abundant than
hickory over the north-central and western areas (indicated by the red) but less abundance
in the south-central and eastern portions. See Fig. 15 for legend.

low pollen production/dispersal of maple causes inference about maple to rely on a small
number of pollen grains in each pond, creating a large signal to noise ratio. In contrast,
the predictions for rare taxa are relatively certain. Note that considered relative to the
small magnitude of the proportions (e.g., using the coefficient of variation), the relative
uncertainty in the rare taxa may be large, which would affect our ability to make statements
about range boundaries for rare taxa. We recognize that we can say little about relative
differences in rarity.

We can also compare abundance between taxa at individual grid cells. In Fig. 17
we show some example comparisons between taxa for the colonial era. These suggest
differences between taxa can often be determined.

4.2.3 Assessment of temporal contrasts

To assess temporal changes across time, we can contrast abundance estimates for each
taxon between any pair of time points on a pointwise cell by cell basis, again without post
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Figure 18. Posterior probabilities of differences in recent beech abundance between pairs
of time points 0 to 400 years before present (1950) based on modern parameter estimates.
Each cell indicates the posterior probability (with a threshold of 90%) that the cell has
lower (blue) or higher (red - no examples here) abundance in the later time period than the
earlier time period. See Fig. 15, third column for color legend.

hoc correction for multiple testing because of the temporal smoothing done by the model.
The comparison takes the simple form, at each grid cell, of computing the posterior proba-
bility for the chosen taxon that the abundance is greater in one period than a second period.
If this posterior probability exceeds a threshold (we use 90% in our plots) for either pe-
riod, we plot the posterior probability as the color shade in the cell. As an example, Fig. 18
shows distinct changes in beech over time when comparing the present (i.e., 1950), denoted
as year 0, with the years 100 to 400 years before present. The areas of predicted robust de-
crease in beech match estimated declines based on the colonial and modern vegetation data
seen in Fig. 12 (but note that this is not full cross-validation given our use of the modern
estimation run parameters). Assessment of this and other such contrast plots in light of the
modern and colonial vegetation data suggests the model can detect changes over time with
reasonable specificity and some sensitivity to real changes in composition.

4.3 Operational prediction model results
Here we describe initial results from the prediction runs over the past 2500 years. Many
other uses of the full posterior distribution are possible. For display purposes, we use
predictions based on colonial parameter estimates; more detailed ecological analysis will
assess robustness with respect to the estimation run used. We also considered running the
prediction model at time intervals of 50 years and with an exponential temporal correlation
function. For most aspects of the predictions these changes had little effect, but there was
some sensitivity in the temporal contrasts.
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The parameter estimates for the temporal variance components indicate that changes
over time occur smoothly, particularly for the regression coefficients, but also for the resid-
ual spatio-temporal structure.

4.3.1 Surface predictions, feature significance, and uncertainties

Figs. 19 and 20 shows surface predictions, feature significance, and posterior standard
deviations for oak and beech, respectively, at 500-year intervals between 500 and 2500
years before present. These plots allow inference about potential spatial patterns and shifts
over time. For these taxa, the spatial patterns in the posterior means seem to be robust,
with little apparent change over time for oak, but potential declines in abundance of beech,
which could be assessed more confidently with temporal contrast plots.

In Fig. 21, we show temporal contrast plots for the pre-settlement period using colonial
parameter estimates for oak, which suggest that there was a trend toward increased oak
abundance in higher-elevation areas in central Massachusetts in the period 1000 to 500
years before present and a decreasing trend in roughly the same area 2500 to 2000 years
before present. There are no detectable trend in areas furthest to the east that have high oak
abundance. One concern is that with only 23 ponds, spatial predictions may be sensitive
to the loss of ponds as the number of ponds with data available drops over time (Fig. 2a).
Sensitivity analysis could be done using predictions from runs that rely only on the fixed
set of ponds available for the entire time window of interest.

4.3.2 Location-specific time trends

A common presentation of pollen data is in the form of a pollen diagram showing changes
in pollen composition in a pond over time. An analogous presentation using model out-
put is to estimate vegetation composition and associated uncertainty in a given grid cell,
demonstrating the ability of the model to estimate vegetation based on pollen with uncer-
tainty estimates. In Fig. 22 we compare pollen composition to model-estimated vegetation,
including a decomposition into the average across time and temporal deviation from that
average that allows assessment of contrasts across time. Maple, chestnut, spruce, and hick-
ory pollen are all represented at low abundance throughout the period of interest. After
accounting for taxon-specific biases in pollen representation and borrowing strength both
spatially and based on environmental covariates, the model provides some evidence that
birch, chestnut, maple, oak, and spruce increased over time pre-settlement, while the more
common beech and hemlock do not show a robust trend. In general the model-estimated
trends in the grid cell match those from the pollen in the single pond, but spatial smoothing
in the model can cause differences between raw pollen and estimated vegetation, such as
seen for maple.

4.3.3 Covariate effect trends

In Fig. 23 we plot the covariate effects at all times, with uncertainty, showing how our
estimates of the relationships between vegetation abundance and elevation and latitude have
varied over time. The estimates have a large amount of uncertainty, but when one considers
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Figure 19. For beech, vegetation prediction information, based on colonial parameter es-
timates, at 500 year intervals, starting 500 years before present (top row) and ending 2500
years before present (second from bottom row). Plots are the posterior mean vegetation
abundance (first column), feature significance (second column) and posterior prediction
standard deviations (third column). In the first and third columns the values in some cells
are truncated.
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Figure 20. For oak, vegetation prediction information, based on colonial parameter esti-
mates, at 500 year intervals, starting 500 years before present (top row) and ending 2500
years before present (second from bottom row). Plots are the posterior mean vegetation
abundance (first column), feature significance (second column) and posterior prediction
standard deviations (third column). In the first column the values in some cells are trun-
cated.
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Figure 21. Posterior probabilities of differences in pre-settlement oak abundance between
pairs of time points 500 to 2500 years before present (1950) based on colonial parameter
estimates. Each cell indicates the posterior probability (with a threshold of 90%) that the
cell has lower (blue) or higher (red) abundance in the later time period than the earlier
time period. See Fig. 15, third column for color legend.

uncertainty in the coefficient estimates relative to the average of the coefficient over time,
uncertainty decreases and there appears to be some limited evidence for changes over time,
for example, for beech with respect to elevation. The wiggliness in the confidence bands in
some plots is caused by a small number of prediction runs in which the estimated value of
the correlation decay parameter is small. Note that the asymmetries are caused primarily by
the averaging across relatively symmetric individual posteriors from the 50 prediction runs.
As mentioned above, over time the loss of ponds with substantial leverage could contribute
to any temporal changes seen here.

5 Discussion
Almost 100 years ago, von Post (1917) described the problem of interpreting forest com-
position from fossil pollen assemblages. Long-distance pollen dispersal, differential pollen
production, and a generally high level of process noise have continued to be major ob-
stacles for the interpretation of paleoecological data ever since. Analyses of pollen data
have identified important trends in the data (Berglund 1991; Davis et al. 1998; Fuller et al.
1998; Soepboer et al. 2007), but they have not quantified these trends in an inferential
framework that explicitly accounts for the various sources of uncertainty and the natural
spatial context of the data. Although theory and models about pollen production, disper-
sal, and accumulation have continuously evolved (Webb 1974; Jackson 1990; Davis 2000;
Haslett et al. 2006; Sugita 2007a,b), most paleoecological literature simply presents raw
pollen percentages and asks the reader to understand that these are rough and unquantified
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Figure 22. Vegetation diagrams for the grid cell encompassing pond 20 (Snake Pond) with
the recent period based on modern parameter estimates (top; 0 to 500 years before present)
and the pre-settlement period based on colonial parameter estimates (bottom, 300 to 2500
years before present). Black lines represents the posterior mean and gray shading the 95%
credible intervals for vegetation abundance, rp(s, t), with blue lines showing corresponding
pollen proportions from Snake Pond. Red lines represent 95% pointwise credible intervals
for the deviations over time in the vegetation (rp(s, t)− r̄p(s)), which are plotted as offsets
relative to the posterior mean of r̄p(s). Plotting the credible interval for the deviation in
this way removes the effect of uncertainty in φp, which affects all times in the same way,
and avoids the overly conservative contrasts of abundance across time indicated by the
gray shading.
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Figure 23. Time plots of posterior mean coefficient estimates (black lines) with pointwise
95% credible intervals (grey shading) for elevation (a) and latitude (b) regression coef-
ficients. The x-axes denote years relative to 1950. Red lines represent 95% pointwise
credible intervals for deviations over time in the coefficients (βk,p(t) − β̄k,p), which are
plotted as offsets relative to the posterior mean of β̄k,p. Plotting the credible interval for
the deviation around the mean in this way removes the effect of uncertainty in the overall
magnitude of the coefficient, which affects all times in the same way, and avoids the overly
conservative contrasts of abundance across time indicated by the gray shading
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approximations of the forest composition, which is the real variable of interest.
Our work tackles this problem, building a statistical framework for inferring histori-

cal forest composition based on proxy pollen sediment data. We present a multivariate
spatio-temporal model for compositions. We build the model in stages, allowing easier
model assessment and avoiding highly complicated space-time formulations that may be
difficult to understand and assess. Under a set of simple assumptions about the relationship
between trees and pollen through space and time, our model adds a quantitative estimate
of uncertainty to inference about changing vegetation, providing the first spatially-explicit
statistical analysis of paleoecological data, and borrowing strength across multiple ponds
and across time in a coherent way. Innovative graphical assessments of feature significance
based on the full posterior distribution suggest that the pollen data can reliably indicate cer-
tain large-scale spatial features for some taxa, but that features on scales smaller than ~50
km are not possible to distinguish, nor are large-scale features for some taxa, such as those
with low pollen production/dispersal relative to other taxa. The model does not resolve the
substantial problems involved in using pollen data to estimate forest composition, but does
suggest which inferences are more reliable and what additional data would be most helpful.

Specific results from the model demonstrate the advantages of the spatially-explicit
modeling approach that calibrates pollen to vegetation. For example, Fig. 22 estimates
the extent to which a classic pollen diagram misrepresents changing forest composition.
Most paleoecological studies (e.g., Fuller et al. 1998) would show only the blue pollen
proportions and interpret forest change by acknowledging that the representation of certain
tree taxa is likely to be biased in pollen data. Our analysis quantifies this in a coherent
probabilistic framework. The recent decrease in beech trees suggested in Fig. 22 is depicted
in a regional context in Fig. 21. Previous studies (Fuller et al. 1998; Oswald et al. 2007)
have identified this regional decrease, but were unable to describe this trend in a continuous
spatial setting. Graphical representations of output from our model allow a resolution of
spatial analysis previous unavailable to paleoecologists. More importantly, confidence in
the strength of the inferences is articulated. A similar set of maps for maple (not shown)
shows very little significant trend, due to the large uncertainty about maple abundance.
Given the amount of noise in the pollen representation and the relative sparseness of fossil
pollen datasets, it is important that paleoecologists are able to confidently detect patterns
emerging above the noise in their data.

The results also suggest particular avenues for future data collection that would help
refine our estimates and predictions. Our assessment of the model suggests that two critical
areas for data collection are 1.) to improve estimation of φ with vegetation data collected
close to each pond, and 2.) to improve spatial prediction and estimation of covariates with
additional ponds. The first area for data collection is feasible. The mismatch between
pollen composition and estimated vegetation composition in the cell in which each pond
resides is a critical area for improvement. At this point it is difficult to distinguish long-
distance dispersal contributions to the pollen data from contributions from local vegetation
that is more similar to the vegetation in the larger spatial region than the grid cell. The
result is to make it difficult to distinguish long-distance dispersal from local within-cell
heterogeneity. Several types of data could shed light on this and allow us to better esti-
mate the long-distance contribution. First, field surveys near ponds could help estimate
local vegetation. Also, additional vegetation data from established surveys, in particular
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Massachusetts state parkland data, may help to better estimate grid cell vegetation. Getting
many additional cores would be difficult: the current dataset represents decades of effort
by paleoecologists and is one of the most extensive sets of such data available, but it may
be possible to add a small number of additional ponds, selected based on examining the
model output to see which ponds would add the most information. In addition, sampling of
ponds that are likely to be anomalous in their pollen in such a way that the pollen is from
less common taxa (e.g., from ponds at high elevation relative to their grid cells) would
better allow us to distinguish the relative contributions of local and long-distance pollen,
thereby distinguishing the contribution of local heterogeneity and long-distance transport
to the pollen-vegetation mismatch. This is because the anomalous pollen in these ponds
would generally not be more similar to the larger spatial region than the grid cell, prevent-
ing the model from attributing the pollen to long-distance transport. Additional covariates
may help to better predict vegetation. For example, soil type and information about local
topographic patterns may be useful. Covariates defined at the actual locations of the ponds
and FIA plot data may help us to explain local heterogeneity and distinguish local effects
from long distance pollen transport. In particular, the difference between pond elevation
and the average elevation of the grid cell as a whole may help explain part of the local het-
erogeneity in pollen, accounting for some of the anomalies we have identified. However,
our ability to estimate covariate effects from the pollen data is limited by the number of
ponds with data.

In the modern era, we have used counts of trees larger than 10 cm DBH from the
FIA surveys as our vegetation data, but basal area (total cross-sectional area of trees) is
available. Because pollen production scales with tree size, basal area is likely to be more
closely associated with pollen production than tree counts. While exploratory plots suggest
there may not be a major difference between the two types of data, it would be worthwhile
to create a likelihood function for basal area in place of the likelihood based on FIA counts.
However, note that our estimates of φ do account for different average tree sizes between
taxa as this effect is reflected in the pollen. The main advantage of accounting for basal
area would be if the relative sizes of trees of the different taxa vary spatially in a way that
cannot be accounted for by space-invariant values of φ. The modeling difficulty is that
the basal area distribution is strongly zero-inflated. This occurs because of local vegetation
heterogeneity, the discrete nature of trees and the fact that small trees are not included
in the surveys (although there are separate plots for smaller trees that could be included
in the analysis). This requires a distribution that mixes a mass at zero with a continuous
distribution truncated at the smallest included basal area of a single tree. Such a distribution
is non-standard and is likely to be more highly-parameterized than our current Dirichlet-
multinomial distribution. In addition, the multinomial structure of the count data naturally
more heavily weights plots with more trees; a distribution for the continuous basal area
does not necessarily have this effect. Also note that the use of basal area would make it
more difficult to compare between the colonial and modern estimation runs as the witness
tree data are available only as counts.

We plan to apply the model in other domains. Michigan is an area of particular interest
because it covers an important vegetation gradient, and we believe the model could be di-
rectly applied to that dataset. Second, we are interested in application of the model to east-
ern North America post-glaciation. While the density of ponds is less than in our current
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application, the larger spatial differentiation in vegetation allows us to consider vegetation
dynamics on a larger scale and to consider post-glaciation dynamics, tree migration into
areas vacated by the glaciers, and species range boundaries over time. However, analyses
presented here are based on recent millennia of forest change. Over this time period, forest
structure and composition are not likely to have deviated far beyond our reference vegeta-
tion data from modern and early colonial times (Oswald et al. 2007). Extending such anal-
yses farther back in time would eventually strain this relationship (Jackson and Williams
2004), and the estimates of key parameters from our estimation runs may no longer be rea-
sonable. In such contexts, it will be important to either ensure that the relationship between
pollen and vegetation remains consistent over time or to somehow account for differences,
potentially using parameter information from other datasets reflecting a wider array of cli-
mate conditions or based on informative prior distributions. Finally, fossil pollen spectra
are increasingly used to complement population genetic data to understand past population
shifts (McLachlan et al. 2005; Magri et al. 2006). Current efforts at melding these comple-
mentary data sources are hampered by the difficulty of inferring tree population size from
networks of fossil pollen data. Our model can provide estimates of population size over
time including uncertainty estimates, which should help make integrating paleoecological
and genetic data more straightforward.

The long-term and broad-scale nature of modern environmental problems ensures that
networks of paleoecological sites will continue to provide important benchmarks for en-
vironmental change (Botkin et al. 2007). Our model provides the framework for testing
ecological theory through the incorporation of covariates and through its ability to distin-
guish important spatial trends from noise. The model was designed with few biological
assumptions, but it could be modified to incorporate such constraints, as well as additional
data such as more finely-specified pollen dispersal data, environmental covariates, or spa-
tial genetic information, as these data become available. We anticipate that our work, along
with parallel efforts by others to interpret paleoecological data in better articulated statisti-
cal terms (Haslett et al. 2006; Sugita 2007a,b), will allow this longstanding data source to
be better integrated into modern environmental analysis.
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