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Abstract

The class of weighted logrank tests proposed by Fleming & Harrington (1991) has

been widely used in survival analysis and is nowadays, unquestionably, the established

method to compare, nonparametrically, k different survival functions based on right–

censored survival data. This paper presents a new general class of rank based tests for

interval–censored data, Gρ,λ, which plays an analogous role to the Fleming & Harrington

class for right–censored data. We first derive the class of tests Gρ which is shown to

correspond to the efficient score test in a general regression model if data are discrete.

We consider a Fisher information and a permutation approach to derive an asymptotic

normal distribution. Then, we develop a weighted log–rank form of the test statistics,

which makes explicit the analogy between our proposal and the original class for right–

censored data and makes easier the understanding of the power behavior of the family.

Finally, the class Gρ,λ is obtained as a natural extension of the Gρ family.

Some key words: interval–censored data; treatment comparison; weighted log–rank test;

permutation test.

1 Introduction

Comparison of two or more samples when data are censored is one of the topics which arises

in most survival studies. The complexity of the censoring mechanism has determined the
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development of new survival statistical methods. While many tests have been proposed when

data are right–censored, research for interval–censored data is still ongoing and lacks of an

unified approach. Interval censoring often arises when individuals are inspected intermittently

and the event of interest is only known to have occurred between two consecutive inspection

times. Mantel (1967) and Peto and Peto (1972) were the first authors to propose testing

methods for interval–censored data. These authors extend the Wilcoxon test and the log–

rank test to interval–censored data and use a permutation approach to avoid the difficulty

of finding the distribution of the corresponding test statistics. Finkelstein (1986) derives the

log–rank test as a score statistic of a proportional hazards model. Finkelstein assumes grouped

continuous data and uses the Fisher information matrix to obtain the asymptotic distribution

of the test statistic instead of the permutation distribution. There is a large literature on

interval–censored data associated to the extension of the Wilcoxon and log–rank tests, see for

instance Fay (1996, 1999), Fay and Shih (1998), Sun (1996), Zhao and Sun (2004), Sun et

al. (2005) and Huang et al. (2008). Other authors such as Petroni and Wolfe (1994), Fang

et al. (2002) and Lim and Sun (2003) discuss generalizations of the weighted Kaplan–Meier

class developed by Pepe and Fleming (1989) for right–censored data. An extensive review of

k–sample methods for interval–censored data can be found in Gómez et al. (2004) and in Sun

(2006).

A large number of k–sample methods have been proposed for right–censored data. A useful

family of test statistics is the so–called class of weighted log–rank statistics and, in particular,

the Gρ,λ subfamily introduced by Fleming and Harrington (1991). For this subfamily, the

weight function is chosen to be the product between the Kaplan–Meier estimate of the survival

function raised to power ρ and its complementary (the cumulative distribution function) raised

to λ. The appropriate selection of the parameters ρ and λ gives emphasis to early, middle

or late hazard differences. The Gρ,λ family contains as special cases the log-rank statistic

(ρ = 0 and λ = 0) something as well as an statistic close to the Peto–Prentice extension of the

Wilcoxon statistic (ρ = 1 and λ = 0). Moreover, when λ = 0, the corresponding subfamily is

called the Gρ family.

In this paper we propose an extension, for interval–censored data, of the Gρ,λ family.

Section 2 formulates the problem and gives the basic notation. A gradual and intuitive
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presentation of our proposal is introduced from Section 3 to Section 6. Section 3 derives

the subclass Gρ as a likelihood score procedure under discrete data. Section 4 describes

the permutation approach we apply for the test statistics as an alternative to the likelihood

approach. Section 5 shows the equivalence between a general weighted log–rank form of

the test statistics and the linear form given in the previous sections. Finally, the class Gρ,λ is

obtained as a natural extension of the Gρ family in Section 6. The paper continues with Section

7 where we report a simulation study which has three main goals: first, it gives guidance on

the behavior of the Gρ,λ family of tests and shows their good behavior, second, by simulating

4 different configurations for the hazards, the weight function is easily interpreted, and third

it compares our proposal to a different extension for the Gρ,λ family given in Sun et al. (2005).

In Section 8 we apply the new family of tests to a real data set from an AIDS study. Section

9 concludes the paper.

2 Notation

Let T be the time to the event of interest. Assume that we have k groups of data, G1, . . . , Gk

with respective sample sizes N1, . . . , Nk and define S1, . . . , Sk the survival functions of T

under each one of these groups. Our goal is to test the hypothesis H0 : S1 = · · · = Sk versus

Ha : Sj 6= Sj′ for some j 6= j′. If data are interval–censored, the only information about the

lifetime T is that it lies between two observed times, namely L and R, and we write T ∈ (L,R].

In this paper we consider that the observed intervals are half open intervals. The methods we

describe below are, however, easily modifiable if we would observe closed intervals. The use of

closed intervals would have the advantage that the uncensored observations would be included

when L = R and would accommodate grouped data. However, the use of half open intervals

is more common and appears in situations where the individuals are inspected intermittently.

Under the assumption that the censoring process is noninformative, see Oller et al. (2004,

2007), the likelihood function for the pooled sample simplifies as follows:

Lik(S) =
n∏

i=1

{S(li)− S(ri)} , (1)

where n = N1 + · · · + Nk and (l1, r1), . . . , (ln, rn) are independent observations. As noted by
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Peto (1973) and Turnbull (1976), the nonparametric maximum likelihood estimator (NPMLE)

Ŝ(t) might not be unique. From the sets L = {li, 1 ≤ i ≤ n} and R = {ri, 1 ≤ i ≤ n} we

can derive all the distinct closed intervals whose left and right end-points lie in the sets L and

R respectively and which contain no other members of L or R other than at their left and

right endpoints respectively. Let these intervals, known as Turnbull’s intervals, be written in

increasing order as (q1, p1], (q2, p2], . . . , (qm, pm] with qj < pj ≤ qj+1 . Then, Ŝ(t) is unspecified

in each (qj, pj] and is well defined and flat between these intervals.

Fay and Shih (1998) define an estimate of the survival function for the ith individual, Ŝi(t),

as Turnbull’s overall survival Ŝ(t) truncated at the ith observed interval. That is,

Ŝi(t) = PŜ((t, +∞) | (li, ri]) =
Ŝ(li ∨ t)− Ŝ(ri ∨ t)

Ŝ(li)− Ŝ(ri)

where PŜ denotes the probability measure of T given by the survival function Ŝ(t) and a ∨ b

stands for the minimum between a and b. These individual estimators have two relevant

properties: 1) Ŝ(t) = 1
n

∑n
i=1 Ŝi(t), and 2) Ŝi(t) = 1l{t<ti} when the ith observation is not

censored and T = ti. Ŝ(t) and Ŝi(t) play an important role in the test statistics we introduce

next.

3 The rank class Gρ: Special case for discrete data

Let zi correspond to a covariate k–vector of group indicators associated with the ith observa-

tion, that is, zi =
(
α

(1)
i , α

(2)
i , . . . , α

(k)
i

) ′
and α

(j)
i is an indicator function that is equal to 1

if the individual belongs to group Gj and 0 otherwise. To test for differences among the k

survival functions S1, . . . , Sk we propose a class of test statistics of the form

U =
n∑

i=1

zici, (2)

where ci is a score value associated to each individual such that

ci =
(Ŝ(li))

ρ+1 − (Ŝ(ri))
ρ+1

ρ (Ŝ(li)− Ŝ(ri))
− 1

ρ
, ρ ≥ 0 (3)
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and Ŝ(t) is Turnbull’s overall survival function. This family extends, for interval–censored

data, the Gρ family given in Fleming and Harrington (1991) and it is a class of efficient

score statistics in a linear transformation model when interval–censored data are discrete,

as it is shown in the next Theorem. Furthermore, the statistic U reduces to the log-rank

and Wilcoxon–Peto test statistics originally proposed in Peto and Peto (1972) for choices of

ρ → 0 and ρ = 1, respectively. Finkelstein (1986) and (Fay, 1996; Fay, 1999) have already

shown that under discrete or grouped continuous interval–censored data, the log–rank and the

Wilcoxon–Peto tests introduced by Peto and Peto (1972) could be derived as the efficient score

statistics for a proportional hazards model and for a proportional odds model, respectively.

Several other score statistics can be derived, in this setup, from the linear transformation

model studied in Fay (1996). As a matter of fact we have used the results in Fay (1996) to

extend the Gρ family of tests.

Theorem Let g(Ti) = −z′iβ + εi be a linear transformation model with g being an in-

creasing function and εi having survival function Sε(t) = [1 + ρ exp(t)]−
1
ρ . Assume that the

censoring mechanism is independent of the covariates zi and that the support for the observ-

able data is finite, that is, L,R ∈ {t0, t1, . . . , tm} where 0 = t0 < t1 < · · · < tm−1 < tm = +∞.

Consider S(t | zi) = P (T > t | z′iβ, θ) where θ = (θj)
m
j=1 is a vector of nuisance parameters

such that θj = g(tj). Consider the likelihood function Lik(S) given in (1). Then,

(a) The maximum likelihood estimator of the nuisance parameters when β = 0 gives the

nonparametric maximum likelihood estimator of the survival function of the pooled

sample, that is, Ŝ(t) =
[
P (T > t | z′iβ,θ)

]
β=0,θ=θ̂

.

Moreover, if none of the parameters is on boundary of the parameter space, that is, 1 >

Ŝ(t1) > · · · > Ŝ(tm−1) > 0, then:

(b) The efficient score statistic U =

[
∂ log(Lik(S))

∂β

]

β=0,θ=θ̂

is given by (2) and (3).

(c) The likelihood based variance–covariance matrix V of the efficient score statistic for β

can be explicitly given and it is postponed to the Appendix.
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The proof of this result is omitted because it follows from standard statistical theory and

it is analogous to Fay (1996, 1999). We remark, however, that for a general error survival

function Sε(t), Fay (1996) shows that the efficient score statistic for a linear transformation

model is given by (2) and

ci =
S ′ε(S

−1
ε (Ŝ(li)))− S ′ε(S

−1
ε (Ŝ(ri)))

Ŝ(li)− Ŝ(ri)
(4)

where S ′ε(t) and S−1
ε (t) are respectively the first derivative and the inverse function of Sε(t).

Statement (b) follows straightforwardly from (4) when we consider the survival function

Sε(t) = [1 + ρ exp(t)]−
1
ρ . We will use again equation (4) in the next sections of this paper.

In the formulation of the model given in the Theorem, it could seem more intuitive to use

the parametrization β∗ = −β. However, we note that this model includes the well–known

proportional hazards model (when ρ → 0) and the proportional odds model (when ρ = 1), and

the usual formulation of these models in terms of hazard functions takes the parametrization

β.

The asymptotic behavior of U follows standard theory for score statistics. Under the null

hypothesis, the random variable UV −U ′ is asymptotically chi–squared with k − 1 degrees of

freedom, where V − is the generalized inverse of the observed Fisher’s information V . In

practice, however, score tests cannot be applied with interval–censored data because the

parameter estimates come near to the parameter boundary. To avoid this problem, it is

common to use a permutation approach. Next section contains the main aspects of this

approach.

4 Permutation distribution

In comparison with the likelihood method given above, the permutation approach is straight-

forward and it applies for discrete as well as for continuous data. A permutation test remains

valid even if the assumed model does not hold. In this case, however, the test might not

necessarily be asymptotically efficient. The main assumption to apply a permutation test is

that the underlying censoring process have to be identical across groups. This restriction,

though it is important, it is also necessary with other methods, for instance, in the likelihood
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approach given in the previous section, in the multiple imputation methods proposed in Zhao

and Sun (2004) and Huang et al. (2008) or in the asymptotic method proposed in Sun et al.

(2005).

The permutation approach can be applied easily to the linear form of the score statistic

U given by (2). The idea behind the permutation approach is that if the null hypothesis

is true, the labels on the scores ci are exchangeable. The permutation distribution of U is

then obtained by permuting the labels and recomputing the test statistic for all the possible

rearranged labels. The permutation distribution can be computed exactly when the sample

size is small. When n is large, a version of the Central Limit theorem for exchangeable random

variables can be applied yielding a normal approximation with expectation and variance–

covariance matrix given by E(U ) = nc̄z̄′ and V0 = 1
n−1

(
∑n

i=1 c2
i − nc̄2) (

∑n
i=1(ziz

′
i − z̄z̄′))

respectively.

In our situation c̄ = 0 and, consequently, E(U ) = 0. Moreover, we consider zi as a k–

vector of group indicator functions, thus the permutation test is based on the Mahalanobis

distance U ′V −
0 U = n−1∑n

i=1 c2i

∑k
j=1 nj c̄

2
(j), where V −

0 is the generalized inverse of V0 and c̄(j) =

1
nj

∑n
i=1 ciα

(j)
i . We would reject the null hypothesis for extreme values of U ′V −

0 U as compared

from a χ2
k−1 distribution. In the sequel we consider only the permutation distribution of the

statistic U .

5 The rank class Gρ: The weighted log–rank form

In this section we elucidate the analogy between our proposal and the original Gρ family

proposed by Fleming and Harrington for right-censored data. We present our proposal both

as a procedure to compare hazard functions between groups and as a class of statistics of

the form
∑

w (O − E), that is, as a weighted summation of the observed minus the expected

number of deaths. These two forms are the usual weighted log–rank formulations of the

original family for right–censored data.

Throughout this section, for any function F (t) and fixed value t, we denote a function

increment as dF (t) = F (t)− F (t−).
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Let us define the following estimator of the survival function for the jth group,

Ŝ(j)(t) =
1

Nj

n∑
i=1

α
(j)
i Ŝi(t). (5)

Let us consider dĤ(t) =
−dŜ(t)

Ŝ(t−)
and Ĥ(j)(t) =

−dŜ(j)(t)

Ŝ(j)(t−)
as estimators of the overall hazard

function and the hazard function for the jth group, respectively. Then, the Gρ family derived

in Section 3 can be written as a vector U =
(
U1, . . . , Uk

)′
where the jth component Uj is

expressed as

Uj =

∫ +∞

0

w(t) njt

[
dĤ(j)(t)− dĤ(t)

]
, (6)

with w(t) = Ŝ(t−) (Ŝ(t−))ρ−(Ŝ(t))ρ

ρ(Ŝ(t−)−Ŝ(t))
being a weight function and njt = n Ŝ(j)(t−) being an esti-

mation of the number of individuals at risk at t for the group j. Alternatively, if we define

nt = n Ŝ(t−) as the estimated total number of individuals at risk at t, and djt = −n dŜ(j)(t)

and dt = −n dŜ(t) as the estimated number at risk, then

Uj =

∫ +∞

0

w(t)
[
Ojt − Ejt

]
=

∫ +∞

0

w(t)

[
djt − njt

nt

dt

]
.

The following proposition gives the equivalence between the above weighted log–rank form

of the Gρ family and the definition given in Section 3.

Proposition 5.1. A weighted log–rank test statistic U =
(
U1, . . . , Uk

)′
with components given

by (6) holds the following properties:

(a) For any weight function w(t), the statistic U can be represented in the linear form

∑n
i=1 zici where the scores are given by

ci =

∫ +∞

0

w(t)

[
−dŜi(t) +

Ŝi(t−)

Ŝ(t−)
dŜ(t)

]
. (7)

(b) For the weight function

w(t) = Ŝ(t−)
γ(Ŝ(t−))− γ(Ŝ(t))

Ŝ(t−)− Ŝ(t)
= Ŝ(t−)

dγ(Ŝ(t))

dŜ(t)
(8)
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where γ(t) is a differentiable nondecreasing function ( γ(1) = 0 ), the weighted log–rank

scores (7) simplify to

ci =
Ŝ(li)γ(Ŝ(li))− Ŝ(ri)γ(Ŝ(ri))

Ŝ(li)− Ŝ(ri)
.

(c) The function γ(t) = S′ε(S
−1
ε (t)))
t

gives the general scores (4) derived by Fay (1996) under

the linear transformation model.

(d) The function γ(t) = 1
ρ

(tρ− 1) gives the weight function w(t) = Ŝ(t−) (Ŝ(t−))ρ−(Ŝ(t))ρ

ρ(Ŝ(t−)−Ŝ(t))
and

the Gρ scores (3).

Proof:

We only proof the result given in (b). The remaining results are almost immediate, indeed

(c) and (d) follow straightforwardly from (b).

Replacing the weight function w(t) = Ŝ(t−) dγ(Ŝ(t))

dŜ(t)
in equation (7), gives

ci =

∫ +∞

0

dγ(Ŝ(t))

dŜ(t)

[
Ŝi(t−)dŜ(t)− Ŝ(t−)dŜi(t)

]
,

which can be equivalently written as

ci =

∫ +∞

0

dγ(Ŝ(t))

dŜ(t)

[
Ŝi(t)dŜ(t)− Ŝ(t)dŜi(t)

]
.

Since Ŝi is a truncation of Ŝ at the observed interval (li, ri], then

ci =

∫ li

0

dγ(Ŝ(t)) +

∫ ri

li

Ŝ(t)− Ŝ(ri)

Ŝ(li)− Ŝ(ri)
dγ(Ŝ(t))−

∫ ri

li

Ŝ(t)

Ŝ(li)− Ŝ(ri)
dγ(Ŝ(t))

= γ(Ŝ(li))− γ(1)− Ŝ(ri){γ(Ŝ(ri))− γ(Ŝ(li))}
Ŝ(li)− Ŝ(ri)

=
Ŝ(li)γ(Ŝ(li))− Ŝ(ri)γ(Ŝ(ri))

Ŝ(li)− Ŝ(ri)
.

This completes the proof of (b).

¤
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6 The Gρ,λ family of tests

In this section we define the Gρ,λ family of tests for interval–censored data as a procedure for

testing the hypothesis H0 : S1 = · · · = Sk or, equivalently, H0 : H1 = · · · = Hk, where Sj

and Hj are the survival and cumulative hazard functions under each group, respectively. We

propose a class of test statistics within the weighted log–rank class (6), with a weight function

given by (8) and γ function which coincides with an incomplete beta function

γ(t) = −B(1− t; λ + 1, ρ) = −
∫ 1−t

0

xλ (1− x)ρ−1 dx. (9)

We define the Gρ,λ family as a class of vectors U =
(
U1, . . . , Uk

)′
with components Uj =

∫ +∞
0

w(t) njt

[
dĤ(j)(t)− dĤ(t)

]
and

w(t) = Ŝ(t−)
B(1− Ŝ(t); λ + 1, ρ)−B(1− Ŝ(t−); λ + 1, ρ)

Ŝ(t−)− Ŝ(t)
. (10)

Alternatively, a test statistic in the Gρ,λ family can be expressed as U =
∑n

i=1 zici with scores

ci given by

ci =
Ŝ(ri)B(1− Ŝ(ri); λ + 1, ρ)− Ŝ(li)B(1− Ŝ(li); λ + 1, ρ)

Ŝ(li)− Ŝ(ri)
. (11)

When λ = 0, this proposal reduces to the Gρ family given in Section 3. Furthermore, it is a

natural extension for interval–censored data of the original Gρ,λ family. To show this, we note

that the weight function given by (8) has the following property

lim
Ŝ(t−)−→Ŝ(t)

w(t) = Ŝ(t) γ ′(Ŝ(t))

where γ′(t) is the first derivative function of γ(t). This gives a characterization of the Gρ,λ

weights (10) equivalent to the weights given by Fleming and Harrington (1991) for right–

censored data, that is, the weights are close to Ŝ(t) γ ′(Ŝ(t)) = (Ŝ(t))ρ(1 − Ŝ(t))λ when Ŝ is

very nearly continuous at a given point t.

This extension of the Gρ,λ family reproduces the interpretation of the weight function in

the original family: 1) when λ = 0, early hazard differences are stronger emphasized as ρ
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increases; 2) when ρ = 0, late hazard differences are stronger emphasized as λ increases; and

3) when ρ = λ, hazard differences around the median are stronger emphasized as ρ and λ

increase. This behavior is validated in the next simulation section.

Another interesting issue is whether or not the Gρ,λ family is a class of score statistics

under the linear transformation model. From Proposition 5.1 and the γ function given by (9),

it follows that the survival function of the error term Sε should be a solution of the following

differential equation,

S ′ε(S
−1
ε (t)))

t
= −B(1− t; λ + 1, ρ), (12)

Except for the special case λ = 0, we note that the differential equation (12) would not

generally have an analytic solution.

7 Simulation study

A large simulation study has been conducted to assess the performance of the Gρ,λ family

of tests given in Section 6, to validate, in terms of power, the interpretation of the weight

function given in the previous section and to compare our proposal to another generalization

of the Gρ,λ class given in Sun et al. (2005).

The censoring mechanism for T has been simulated mimicking a longitudinal study where

there is a periodical follow–up with scheduled visits following Schick and Yu’s model (2000).

Specifically, for an individual i, we consider a set of examination times {Yai, a = 1, . . . , τi}

which are sum of inter–follow–up times, Yai =
∑a−1

b=1 ξbi. The inter–follow–up times are in-

dependent and identically distributed as an exponential distribution (E(ξbi) = µ). For each

individual, the number of examination times satisfies that τi = sup{a ≥ 1 :
∑a−1

b=1 ξbi ≤ τ}
where τ represents the length of the study. The parameters µ and τ provide a control of the

length of the observed intervals and the percentage of right–censored observations, respec-

tively. In the present simulation study, we have considered µ = 2 and τ = 20. The study

has been based on 1000 replications and the normal approximation of the permutational

distribution has been used.

We have simulated a large number of scenarios where the null hypothesis was true and in all

Hosted by The Berkeley Electronic Press



12

of them the nominal significance level α = 0.05 was roughly reached. Even for scenarios with

small sample sizes, for instance a scenario of two groups and N1 = N2 = 50, the percentage

of rejection was near to 0.05 . We do not present the results here but they can be provided

upon request.

For the validation and the interpretation of the weight function, two groups have been

considered with sample sizes N1 = N2 = 50 and 10 scenarios within an accelerated failure

time (AFT) model for T and an error term distribution Sε(t) holding equation (12). Each

scenario has a parametrization (ρ, λ) of the function Sε(t), a location parameter for each group

and a common scale parameter for both groups. The location parameters have been chosen

in order to have median equal to 6.5 in the first group and 7.5 in the second. The scale

parameters are respectively 0.15, 0.1, 0.075, 0.06, 0.08, 0.04, 0.05, 0.035, 0.0055 and 0.0015.

Table 2 gives the empirical powers of the Gρ,λ family. The value within the parenthesis gives

the power ratio of our proposal to the proposal of Sun et al. (2005) and it is discussed at the

end of this section.

The results in Table 2 show that the Gρ,λ tests have higher power when they coincide

with the score statistic of the AFT model, that is, when the parameters (ρ, λ) of the test

statistic and the AFT model are identical. Moreover, the power decreases as the parameters

(ρ, λ) of the test statistic and the AFT model diverge. For instance, under a proportional

hazards model (scenario 1), the power of the test statistics decreases as the parameters ρ or λ

increase. Under a proportional odds model (scenario 2), the test statistics have higher power

when λ = 0 and ρ is close to 1 and have lower power when ρ = 0 and λ increases. Thus,

under an AFT with Sε(t) holding equation (12) and a continuous censoring mechanism, the

simulations show that the score test statistic is efficient, at least, within the class Gρ,λ.

***[TABLE 2 here]***

We have simulated other scenarios for two-sample comparisons where the corresponding

hazard functions differ at early times, at late times or around the median. T has been

simulated as a piecewise constant hazard function, as follows: a set of points 0 = x0 <

x1 < · · · < xb < xb+1 = +∞ has been fixed and for each group Gj (j = 1, 2), T has been

simulated with a hazard function hj(t) = hj,a when xa−1 ≤ t < xa (a = 1, . . . , b) and such

that the median of the pooled sample is 5. We have consider sample sizes N1 = N2 = 50 and
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N1 = N2 = 200.

For the Early times situation where the hazard functions differ at early times we take

b = 1 and simulate hazard differences until the point x1 and equal hazards (h1,2 = h2,2 = 0.14)

thereafter. In this situation there are early hazard differences when x1 is clearly smaller than

the median, there are early and middle hazard differences when x1 is close to the median

and there are early, middle and late hazard differences when x1 is clearly bigger than the

median. We distinguish three different scenarios High–Early for x1 = 1.25, h1,1 = 0.06 and

h2,1 = 0.22, Intermediate–Early for x1 = 6.25, h1,1 = 0.12 and h2,1 = 0.16 and Low–Early

for x1 = 11.25, h1,1 = 0.12 and h2,1 = 0.16. Analogously, for the Late times situation where

the hazard functions do not show differences until x1 being equal to h1,2 = h2,2 = 0.14 and

differ thereafter, we distinguish as well three different scenarios Low–Late when x1 = 1.25,

h1,2 = 0.11 and h2,2 = 0.17, Intermediate–Late when x1 = 6.25, h1,2 = 0.10 and h2,2 = 0.18

and High–Late for x1 = 11.25, h1,2 = 0.10 and h2,2 = 0.18. For the Middle times situation

where the hazard functions only show differences between x1 and x2, we have taken h1,1 =

h2,1 = h1,3 = h2,3 = 0.14 and consider two scenarios Low–Middle for x1 = 1.25, x2 = 8.75,

h1,2 = 0.11 and h2,2 = 0.17 and High–Middle when x1 = 3.75, x2 = 6.25, h1,2 = 0.06 and

h2,2 = 0.22.

Table 3, giving the empirical powers and the power ratios of the Gρ,λ family, confirm the

interpretation of the weight function given in the previous section. When we look at early, late

and middle configurations, then the statistics with λ = 0, ρ = 0 and ρ = λ 6= 0 give the higher

powers, respectively. There are two exceptions, the Low–Early and Low–Late scenarios, where

the hazard pattern is less clear. Interestingly, in situations where the hazard pattern is very

clear, we observe that the power increases as the suitable combination of the parameters is

chosen and the parameters increase. That is the case of the High–Early, High–Late and High–

Middle scenarios. For instance, in the scenario High–Early, the combination (ρ, 0) increases

the power of the test statistic when ρ increases.

***[TABLE 3 here]***

We have as well simulated observations coming from two groups where the two hazards

cross each other. In this situation, and following analogous steps as before, we have considered

b = 1, h1,1 = 0.12, h2,1 = 0.16, h1,2 = 0.16, h2,2 = 0.12. Within this we have simulated a
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Crossing–Early Scenario with x1 = 2.5 where the two hazards cross before the median, a

Crossing–Middle Scenario with x1 = 5 where the two hazards cross at the median and a

Crossing–Late Scenario with x1 = 7.5 and where the two hazards cross after the median.

The results in Table 4 indicate that, as expected, the Gρ,λ family behaves poorly when

hazards cross. In scenario Crossing–Early the best powers are reached when late times are

weighted, that is, when ρ = 0. On the other hand, in scenario Crossing–Late the best powers

are reached when the early times are weighted, that is, when λ = 0.

***[TABLE 4 here]***

The last part of the simulation study attempts to compare our proposal with another

extension of the Gρ,λ family given in Sun et al. (2005). These authors use a class of tests

which has the linear form given in equation (2) and which we can write as a weighted log–rank

test (6) with weight function (8) fixed by

γ(t) = log(t)tρ(1− t)λ.

When ρ = 0 and λ = 0 the test statistic reduces to the log–rank test proposed in Peto and

Peto (1972). However, when ρ 6= 0 or λ 6= 0, this family differs from our extension of the Gρ,λ

family and does not include the Wilcoxon–Peto test statistic.

All the scenarios discussed earlier have been used as well to calculate the power of the

Sun’s family of tests. Tables 2, 3 and 4 present a value in parentheses indicating the power

ratio of our proposal to the proposal of Sun et al. (2005).

The simulation study shows a much better behavior of our class in Table 2. If we exclude

the log–rank test statistics (λ = 0 and ρ = 0), 66% of the power ratios are greater than one.

Indeed, when the parameters (ρ, λ) of the test statistic and the AFT model are identical,

all the power ratios are equal or greater than one. Moreover, when the test statistics have

parameter λ = 0 (this is parametrization more commonly used for right–censored data), the

ratios are equal or greater than 1 in all the situations (they are often greater than 1.5). We

observe a similar behavior when the test statistics have parameter λ = ρ 6= 0: the ratios are

greater than 1 except for scenarios 2, 3 and 4 where the ratios lie between 0.8 and 1. Our

proposal does not perform as well when ρ = 0, then the ratios almost always lie between 0.7

and 1. However it is worth mentioning that in the cases with ratios smaller than 1, hence,
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where Sun’s tests are superior, the power of the test statistics are very low and neither one

would be recommended.

For the situations with early, late or middle differences reported in Table 3, among the 144

evaluated cases (we exclude again the log–rank test statistics), we observe that our proposal

has the higher power in 68 cases (47%) and the same power in 22 cases (15%). Our proposal is

clearly better when we choose the powerful combinations of the parameters in each scenario.

For the Early times situation and the parameters ρ 6= 0 and λ = 0, our proposal has the higher

power in 11 cases (61%) and the same power in 2 cases (11%). For the Late times situation

and the parameters ρ = 0 and λ 6= 0, our proposal has the higher power in 8 cases (44%)

and the same power in 6 cases (33%). For the Middle times situation and the parameters

ρ = λ 6= 0, our proposal has the higher power in 8 cases (67%) and the same power in 2 cases

(17%).

Our family of tests, as well as Sun’s family, are not suitable for crossing hazards, and in

those cases, the power of the tests are quite low and no clear winner can be claimed from the

comparison (see Table 4).

8 Illustration

In this section we analyse the data corresponding to a cohort of injecting drug users (IDU)

attending the Germans Trias i Pujol detoxification unit (Badalona, Spain) between February

1987 and November 1997. Details from this study can be found in Gómez et al. (2000). We

are interested in the elapsed time T , measured in months, between intravenous drug initiation

and seroconversion (HIV infection). The analysis of such data distinguishes four calendar

periods according to the date for starting intravenous drug use: Period 1 (P1) contains those

patients who started IDU before or at 1980, Period 2 (P2) includes IDU patients who started

the addiction between 1981 and 1985, the third period P3 is for patients who started IDU

between 1986 and 1991 and finally P4 includes all those patients starting IDU after or at 1992.

In this illustration we only analyse the data for the last three periods P2, P3 and P4, as in

Gómez et al. (2000). In P1 most of the patients began the use of intravenous drugs earlier

than 1978, when HIV infection was extremely unlikely; furthermore the elapsed time between
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intravenous drug initiation and HIV infection is bounded below by at least 5 years, due to

the fact that HIV seropositivity could not be determined before 1985.

In our first analysis, we consider the elapsed time to seroconversion according to periods

P2, P3 and P4 separately for men and women. The gender stratification is meaningful since

factors such sexual risk habits and a more likely HIV transmission from men to women,

indicate that is appropriate to proceed in this way.

The estimates of the survival functions given in equation (5) have been applied to these

data and their plots are shown in Figure 1 and Figure 2 for men and women, respectively.

In this analysis we use the statistic U with parameters ρ = 1 and λ = 1 which emphasize

middle hazard differences, see equation (11). Concerning men, the statistic is equal to U =

(
4.24,−3.48,−0.76

)
with p-value 0.041. For women, we obtain U =

(
1.72,−2.04, 0.32

)
which

has a nonsignificant p-value equal to 0.087. However, it must be noted that for period P4

there are only 14 women and their follow-up is very short. This fact affects the value of the

statistic U and henceforth its significance.

The second analysis takes into account the age in which patients have started to use drugs,

since it is very likely that this could be a risk factor for HIV infection. We center this analysis

in period P3 taking into account that the median age for starting IDU in this period is 20

years. We split the 240 patients in P3 into two groups: individuals younger than or exactly 21

years old and individuals older than 21 years. Figure 3 shows the estimated survival functions

considering the two age groups in period P3. The statistic U with parameters ρ = 1 and

λ = 0 emphasize early hazard differences and it is equal to U =
(
1.72,−1.72

)
with p–value

equal to 0.043.

In Table 1 we provide the p-values of U for other choices of the parameters of the Gρ,λ

family. We note that the log–rank statistic (ρ = 0 and λ = 0), the most popular one, fails to

reject the null hypothesis in all scenarios. In this illustration we have done a post hoc choice

of the parameters. However, it is obvious that there are many situations where data do not

accommodate proportional hazard differences, for instance treatment effects studies. In these

cases, the goal is to infer whether the treatment effect appears in the early, late or middle

phase of the study.
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Figure 1: Elapsed time to seroconversion since starting intravenous drug use for men entering at risk either
in calendar period P2 (N1 = 300), or in period P3 (N2 = 240) or in period P4 (N3 = 73).

Figure 2: Elapsed time to seroconversion since starting intravenous drug use for women entering at risk
either in calendar period P2 (N1 = 74), or in period P3 (N2 = 66) or in period P4 (N3 = 14).

Figure 3: Elapsed time to seroconversion since starting intravenous drug use for individuals younger than
21 (N1 = 192) and individuals older than 21 (N2 = 114) entering at risk in calendar period P3.
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Table 1: Illustration: summary of p–values of the Gρ,λ family.

Parameters (ρ, λ) of the test statistic

Scenarios (0, 0) (1, 0) (2, 0) (3, 0) (0, 1) (0, 2) (0, 3) (1, 1) (2, 2) (3, 3)

P2, P3 & P4 .089 .166 .284 .402 .042 .057 .105 .041 .028 .022
(for men)
P2, P3 & P4 .086 .093 .111 .132 .111 .159 .215 .087 .089 .091
(for women)
Age ≤ 21 & > 21 .061 .043 .038 .036 .177 .372 .615 .100 .128 .148
(in P3)

9 Conclusions

This paper proposes a new class of test statistics for interval–censored data. We have shown

that this class extends the Gρ,λ family given in Fleming and Harrington (1991) and that

presents a better behavior than the extension considered in Sun et al. (2005). However,

several issues deserve further comments.

First, it is interesting to consider the application of our proposal to right–censored data.

In this situation, our family does not coincide with the original family. The score values

ci for exact observations would be equivalent in both families, however they will differ for

right–censored observations. This difference was also noted by Peto and Peto (1972) for the

log–rank test and is due to the fact that our estimation of the hazard functions does not

coincide with the usual estimation for right–censored data. Zhao and Sun (2004) propose a

multiple imputation approach and another generalization of the log–rank test which seems

to be useful when data are interval–censored data and there is a high percentage of right–

censored observations. Sun (2006) gives an sketch of how to generalize this method to a

class of weighted log–rank tests. The comparison of our proposal and Sun’s method (2006),

including the new multiple imputation method proposed by Huang et al. (2008), remains as

a future research question.

Another issue is that the permutation approach we have applied is in fact a conditional

approach since the distribution of the test statistic is computed conditional on the observed

intervals. It is not obvious whether the permutation approach gives power properties similar

to an unconditional approach. With right–censored data, Heimann and Neuhaus (1998) show

that the permutation version of the log–rank test and the unconditional version are asymptot-
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ically equivalent even under unequal censoring. With interval–censored data, the comparison

of the asymptotic behavior of the permutation distribution of U with an unconditional distri-

bution, for instance the likelihood distribution, deserves further attention. In the particular

situation of case II interval–censored data, Sun et al. (2005) give the asymptotic uncondi-

tional distribution of the statistic U . A careful look at the estimation of the asymptotic

variance given by these authors shows that it coincides with the permutation variance given

above except for the use of the fraction 1
n

instead of 1
n−1

. Thus, for case II interval–censored

data, the conditional distribution of the test statistic given by the permutation approach is

asymptotically equivalent to the unconditional distribution given by Sun et al. (2005).

Acknowledgements

The authors are grateful to the GRASS group for their fruitful discussions. This research

was partially supported by Grants MTM2005-08886 and MTM2008-06747-C02-00 from the

Ministerio de Educación y Ciencia. Part of this paper has been written under the support of

Grant AI24643 from the National Institute of Allergy and Infectious Diseases.

References

Fang, H–B., Sun, J. and Lee, M–L T. (2002). Nonparametric survival comparisons for interval–

censored continuous data. Statistica Sinica, 12, 1073–1083.

Fay, M. P. (1996). Rank invariant tests for interval-censored data under the grouped contin-

uous model. Biometrics, 52, 811–822.

Fay, M. P. (1999). Comparing several score tests for interval-censored data. Statistics in

Medicine, 18, 273–285.

Fay, M. P. and Shih, J. H. (1998). Permutation tests using estimated distribution functions.

Journal of the American Statistical Association, 93, 387–396.

Finkelstein, D. M. (1986). A proportional hazards models for interval-censored failure time

data. Biometrics, 42, 845–854.

Fleming, T. R. and Harringon, D. P. (1991). Counting processes and survival analysis. Wiley,

New York.

Hosted by The Berkeley Electronic Press



20
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Appendix: Likelihood based variance–covariance matrix

The likelihood based variance–covariance matrix V of the efficient score statistic for β is given

by

V = −
[

∂2 log(Lik(S))

∂β∂β′
−

(
∂2 log(Lik(S))

∂β∂θ′

)(
∂2 log(Lik(S))

∂θ∂θ′

)−1(
∂2 log(Lik(S))

∂β∂θ′

)]

β=0,θ=θ̂

where for arbitrary parameters ψu and ψv

∂2 log(Lik(S))

∂ψu∂ψv

=
n∑

i=1

1

4iS

[(
∂24iS

∂ψu∂ψv

)
− 1

4iS

(
∂4iS

∂ψu

)(
∂4iS

∂ψv

)]
,

with

4iS = S(ri | zi)− S(li | zi)

and
[
∂S(tj | zi)

∂βu

]

β=0,θ=θ̂

= −1

ρ
{Ŝ(tj)}{1− (Ŝ(tj))

ρ}α
(u)
i

[
∂S(tj | zi)

∂θu

]

β=0,θ=θ̂

= −1

ρ
{Ŝ(tj)}{1− (Ŝ(tj))

ρ} 1{j=u}

[
∂2S(tj | zi)

∂βu ∂βv

]

β=0,θ=θ̂

=
1

ρ2
{Ŝ(tj)}{1− (Ŝ(tj))

ρ}{1− (ρ + 1)(Ŝ(tj))
ρ}α

(u)
i α

(v)
i

[
∂2S(tj | zi)

∂βu ∂θv

]

β=0,θ=θ̂

=
1

ρ2
{Ŝ(tj)}{1− (Ŝ(tj))

ρ}{1− (ρ + 1)(Ŝ(tj))
ρ}α

(u)
i 1{j=v}

[
∂2S(tj | zi)

∂θu ∂θv

]

β=0,θ=θ̂

=
1

ρ2
{Ŝ(tj)}{1− (Ŝ(tj))

ρ}{1− (ρ + 1)(Ŝ(tj))
ρ}1{j=u=v}

The proof of this result is omitted because it follows from standard statistical theory and

it is analogous to Fay (1999).
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