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Mixed Multiplicative Factor Analysis Model

for Air Pollution Exposure Assessment

Margaret C Nikolov, Brent A Coull, Paul J Catalano, John J Godleski

Department of Biostatistics
Harvard University

July 21, 2006

SUMMARY

A primary objective of current air pollution research is the assessment of health effects related to

specific sources of air particles, or particulate matter (PM). Because most PM health studies do

not observe the activity of the pollution sources directly, investigators must infer pollution source

contributions based on a complex mixture of exposure. Methods such as source apportionment

and multivariate receptor modeling use standard factor analytic techniques to estimate the source-

specific contributions from a large number of observed chemical concentrations. In the interest of a

more flexible source apportionment, we propose a multiplicative factor analysis with a mixed model

on the latent source contributions. A factor analysis with multiplicative errors serves to maintain

the non-negativity of the measured chemical concentrations. A mixed model on the latent source

contributions provides for systematic effects on source activity as well as an adjustment for residual

correlation in the source-specific exposures. In a simulation study, we examine the impact of (1)

accounting for meteorological covariates and (2) adjusting for temporal correlation in the exposures

on the estimation of the source profiles and the source activities. Finally, we expore the influence of

meteorological conditions on source-specific exposures in an analysis of real PM exposure data.
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Table 1: Major Sources of Boston Air Pollution

Source Chemical Components
Road Dust silicon and aluminum

Power Plants sulfur and sulfate
Oil Combustion nickel and vanadium
Motor Vehicles black carbon, organic carbon, elemental carbon

1 Introduction

Evaluation of health effects associated with major sources of air pollution, such as power plants and

motor vehicles, often relies on the characterization of complex air pollution exposures. In most health

effects studies, investigators are unable to measure the activity of the pollution sources directly, and

instead collect samples of ambient air, which reflect dynamic mixtures of source contributions. Meth-

ods such as source apportionment and multivariate receptor modeling use factor analytic techniques

to estimate the contributions of a small number of pollution sources from the measured mixture

components. While the exposure assessment literature contains a large amount of research that

focuses on estimation of source-specific contributions (i.e., Koutrakis and Spengler 1987; Kavouras

et al. 2001; and for review see Seigneur et al. 1999; Hopke 2003; Kim et al. 2004), little work has

been done to explore the role of important factors that influence source activity in a formal way.

Over the past decade, researchers at the Harvard School of Public Health (HSPH) have been conduct-

ing animal toxicology studies to evaluate the mechanisms of morbidity and mortality associated with

ambient air particulate matter (PM). As part of these studies, samples of Boston aerosol have been

collected, concentrated, and analyzed for a series of elements and other chemical components. Source

apportionment analyses of these exposure mixtures have indicated four major sources of Boston PM,

often referred to as resuspended road dust, coal-fired power plants, oil combustion (primarily for

home-heating), and motor vehicle exhaust based on their key chemical components as described in

Table 1. Standard source apportionment methods used to analyze the Boston PM exposures char-

acterize pollution sources strictly in terms of the source profiles and the source contributions.
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Presently, researchers seek to better characterize source activity. A primary research objective is to

allow the unobserved source contributions to depend on systematic effects, such as meteorological

conditions. Consider, for instance, the potential for temperature to influence source activity. During

periods of low temperature, home heating typically increases, which results in elevated contributions

from oil combustion. Under this scenario, incorporating information on temperature in the source

apportionment model may provide for better characterization of the oil combustion pollution source.

Extending source apportionment methods to allow for systematic effects, such as meterology, on

the source activities may lead to better estimation of the source profiles and, more importantly, the

source contributions.

Another limitation of most existing source apportionment methods is failure to adequately adjust

for temporal correlation in exposures measured on consecutive days. Most current source apportion-

ments assume independent exposures, an assumption that is often unrealistic given the similarity of

ambient air composition from one day to the next. In particular, the HSPH toxicology studies, by

design, often collected air samples in blocks of three consecutive days. A second research objective

aimed at improving source characterization is to account for residual correlation due to the clustered

study design in the source apportionment model. Park, Guttorp, and Henry (2001) build on the

multivariate receptor model using a time series approach to account for temporal dependence in the

exposures. Christensen and Sain (2002) develop a nested block bootstrap method to incorporate a

dependence structure in multivariate receptor modeling.

In this paper, we consider source apportionment methods to better characterize source activity. Fol-

lowing Wolbers and Stahel (2005; and Billheimer 2001), we impose a multiplicative error structure on

the factor analysis model. A multiplicative factor analysis with log-normal source contributions and

log-normal errors respects the non-negativity of the observed elemental concentrations. The typical

factor analysis model with additive error, in constrast, is not conducive to this property. In the

additive error formulation, normally distributed errors allow for negative elemental concentrations.

Alternatively, log-normally distributed errors perserve non-negativity; however, these distributional

assumptions violate the mean zero assumption in that log-normal errors are always positive.
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We build on Wolbers and Shahel (2005; and Billheimer 2001) in two important ways. First, we

propose a mixed model on the latent source contributions to allow source activity to depend on sys-

tematic effects, such as meteorological covariates, while adjusting for temporal correlation through

random block effects. Second, we take a Bayesian approach to estimation. Our ultimate goal in de-

veloping such an elaborate source apportionment is two-fold; (1) to assess factors that are associated

with higher source contributions, and (2) to gain better estimates of the latent source countributions

in the interest of improving estimation of source-specific health effects. Since studies investigating

the health effects of air pollution typically consist of a small number of unique exposures, Bayesian

methods provide a distinct advantage over classical methods given the ability to leverage historical

exposure information (Nikolov et al. 2006). In keeping with this paradigm, we fit the mixed multi-

plicative factor analysis model using Bayesian methods.

The remainder of this paper is arranged as follows. Section 2.2 describes the exposure and covariate

data in detail. Section 2.3 presents the mixed multiplicative factor analysis model, discusses the

implications of this modeling framework, and describes a Bayesian approach to estimation. Section

2.4 provides a simulation study to evaluate the impact of adjusting for covariates and temporal cor-

relation in the source apportionment, and Section 2.5 implements the proposed methods to analyze

the HSPH exposure data. Finally, we summarize our findings and conclusions in Section 2.6.

2 Data

Our exposure data consists of detailed information on the chemical composition of concentrated am-

bient particles (CAPs) collected in Boston between September 1996 and March 2003. Located on

Huntington Avenue, a major road in Boston, the Harvard Ambient Particle Concentrator (HAPC)

takes in ambient air and concentrates the samples approximately 30 times without altering the phys-

ical and chemical properties of the mixture. The CAPs exposures are then measured for sulfate

(SULF) via ion chromatography, black carbon (BC) using an aethalometer, elemental carbon (EC)

and organic carbon (OC) determined with a thermal and optical reflectance method, and elemental
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Table 2: Summary of CAPs measured in ug/m3 (N = 139)

Element Mininum 25th Perc Median 75th Perc Maximum
Si 1.434 5.612 9.013 13.794 47.856
S 3.453 15.438 29.510 53.651 378.171
Ni 0.002 0.032 0.053 0.094 0.589
OC 9.100 44.700 76.144 119.231 617.552
Al 0.055 1.279 2.906 4.998 21.726
Ti 0.079 0.281 0.441 0.651 1.780
Ca 0.780 2.507 3.526 5.349 15.540

SULF 9.172 43.127 83.100 152.650 1237.400
Se 0.001 0.010 0.022 0.048 0.255
V 0.003 0.058 0.091 0.148 0.681
Br 0.010 0.050 0.092 0.152 0.442
BC 1.746 5.836 10.545 15.318 42.009
EC 2.400 12.701 22.535 31.150 91.445

concentrations (in ug/m3) collected via X-ray fluorescence (XRF), specifically: aluminum (Al), ar-

senic (As), barium (Ba), bromine (Br), calcium (Ca), cadmium (Cd), chlorine (Cl), chromium (Cr),

copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), sodium (Na), lead (Pb), sulfur

(S), selenium (Se), silicon (Si), titanium (Ti), vanadium (V), and zinc (Zn).

As noted by Park, Guttorp, and Henry (2001), an important first step in source apportionment is to

select a subset of species that are contributed by major pollution sources. In this paper, we focus on

a subset of P = 13 elements deemed to be major components of the four known sources of Boston

PM; Si, Al, Ti, Ca, S, SULF, Se, Br, Ni, V, OC, BC, and EC. Table 2 summarizes the complete

CAPs exposure data (N = 139).

Using a mixed model (Diggle et al. 2002) with random effects for blocks of consecutive days, we

estimated the temporal correlation in the measured concentrations for each of the chemical species.

Table 3 presents the estimated correlations, where the four columns contain the elements mainly

contributed by the four major sources of Boston PM described in Table 1. Notice that, in general,

the estimates are quite similar among elements contributed by the same pollution source. This find-

ing suggests that the temporal correlation in the measured chemical components may be explained

5
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Table 3: Estimates of Temporal Correlation in CAPs

Elem ρ̂ Elem ρ̂ Elem ρ̂ Elem ρ̂

Si 0.54 S 0.32 Ni 0.26 OC 0.76
Al 0.60 SULF 0.29 V 0.17 BC 0.35
Ti 0.54 Se 0.46 EC 0.41
Ca 0.49 Br 0.45

Table 4: Summary of Meteorological Data

Covariate Mininum 25th Perc Median 75th Perc Maximum
Wind Speed 0.000 6.043 8.695 12.000 21.000

Pressure 29.230 29.870 30.020 30.160 30.590
Relative Humidity 30.000 48.000 60.000 75.000 100.000
Temperature (oC) -8.889 2.778 14.444 22.511 32.222

by the temporal correlation in the underlying sources.

In the interest of examining the impact of meteorology on source activity, we obtained data on wind

speed, pressure, relative humidity, and temperature in degrees Celcius in the Boston area for the

dates corresponding to our exposures from the National Climatic Data Center (available online at

http://www.ncdc.noaa.gov/oa/ncdc.html). Table 4 summarizes the meteorological data.

3 Model and Notation

3.1 Modeling Framework

Following Wolbers and Stahel (2005; and Billheimer 2001), we specify a multiplicative factor analysis

model to describe the relationship between the unobserved source activity and the observed elemental

concentrations. Let Yij be the (P × 1) vector of non-negative elemental concentrations and let ηij

be the (K × 1) non-negative source contributions (K < P ) for day j in block i (j = 1, ..., ni and

i = 1, ..., NB). We assume

Yij = (Ληij) ◦ εYij , (1)

6
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where Λ is the factor pattern, the columns of which {λ(c)
k } represent the source profiles, ηij and εYij

follow log-normal distributions, and ◦ denotes elementwise multiplication, such that

log(Yij) = log(Ληij) + log(εYij ). (2)

where log(ηij)
iid∼ MVNK(μη,Ση), log(εYij )

iid∼ MVNP (0,Ψ), Ση and Ψ are diagonal, and ηij ⊥
εYij .

We propose a mixed model (Diggle et al. 2002) on the log of the source contributions; ∀k = 1, ...,K,

log(ηijk) = XT
ijαk + ZTijbik + εηijk, (3)

where bik
iid∼ MVN(0,Σbk), ε

η
ijk

iid∼ N(0, σ2
ηk

), and εηijk ⊥ bik. Also, ∀k �= k′, bik ⊥ bik′ , and

εηijk ⊥ εηijk′ . This formulation is very flexible and allows for systematic effects as well as random

effects on the the source contributions.

Using this framework, we can explore the influence of meteorology on source activity through the

fixed effects, α. In addition, we can adjust for residual correlation in the source contributions due

to the clustered study design by specifying a random effect bi for each block i of consecutive days.

Finally, we specify unique fixed effects, αk, and unique random effects bik for each source k, so

that we can estimate separate covariate effects and correlations for the different underlying pollution

sources.

3.2 Model Identifiability

The source apportionment model specified in (1) and (2) is not identifiable without further assump-

tions. Because the source profiles are unknown and the source contributions are unobserved, the

factor analysis model does not have a unique solution. However, the model may be made identifiable

by constraining parameters in Λ. We consider the following set of identifiability conditions, which

result in a confirmatory, rather than exploratory, factor analysis (Park, Spiegelman, and Henry 2002).

7
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C1: There are at least K − 1 zero elements in each column of Λ

C2: The rank of Λ(k) is K−1, where Λ(k) is the matrix composed of the rows containing the assigned

0s in the kth column with those assigned 0s deleted.

C3: λpk = 1 for some p (p = 1, 2, .., P ) for each k = 1, 2, ..,K

The C1-C3 conditions are sufficient but not necessary to establish identifiability. While there exist

alternative conditions, other commonly used proposals are also sufficient but not necessary. For in-

stance, Park, Spiegelman, and Henry (2002) proposed sufficient conditions which, instead of placing

constraints on the factor loadings, assume that some sources are absent on some days. These authors

argued that in some settings, this alternative set of constraints may be plausible if one knows that a

particular source, such as a power plant in the region, has been shut down for some period of time.

In the same vein, Bandeen-Roche (1994) considered situations in which a subset of the source contri-

butions is known. In our setting, however, we do not have information on the presence or absence of

a particular source on a particular day. Thus, given the existing literature on the pollution mixture

in the Boston area (Oh et al. 1997), it seems safer to assume that certain elements are not markers

for certain sources. One important result of the C1-C3 identifiability constraints is that the scale of

each factor is now on the scale of the element whose factor loading is constrained to one.

3.3 Model Implications

When compared to the standard additive factor analysis formulation, the modeling framework de-

scribed above leads to different interpretation of the model parameters. First, the multiplicative

error structure on the factor analytic model, in conjuction with our distributional assumptions, im-

plies that, conditional on the source contributions, the elemental concentrations are log-normally

distributed. In our application, this result is an advantage of our modeling framework in that the

HSPH data suggest that the observed elements and compounds more closely follow a log-normal

distribution as opposed to a normal distribution (Figure 1). The degree of skew in the empirical

distributions is reflected in the specific variances, with larger values of ψp indicating a higher degree

of skew in the corresponding element, Yp. One drawback, however, is that the log-normal distribution

does not directly allow for null concentrations.
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Figure 1: Histograms of the Measured Chemical Components

The assumptions of multiplicative error and log-normality also have important implications on the

covariance structure of our measured outcomes. In the usual factor analysis model with additive

normal error,

Yij = Ληij + εYij ,

where εYij
iid∼ MVNP (0,Ψ), for diagonal Ψ. In this framework, the variances and covariances of the

measured components are simple functions of the factor loadings, {λpk}, and the variance-covariance

of the latent sources, V (ηij).

V ar(Yijp) = λ(r)T
p V (ηij)λ

(r)
p + ψp (4)

9
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Cov(Yijp, Yijp′) = λ(r)T
p V (ηij)λ

(r)
p′ (5)

Expressions (4) and (5) imply that the covariance (or correlation) between the measured components

is explained by the latent sources and any additional variation is residual and unique to each element.

In the new modeling framework with multiplicative log-normal errors, the corresponding variances

and covariances have more complicated forms (see Appendix A for derivation of the following ex-

pressions), with

V ar(Yijp) = (λ(r)T
p E(ηij))

2(e2ψp − eψp) + (λ(r)T
p V (ηij)λ

(r)
p )(e2ψp) (6)

Cov(Yijp, Yijp′) = (e
ψp+ψ

p′
2 )(λ(r)T

p V (ηij)λ
(r)
p′ ). (7)

As demonstrated in (6), the variance of each element p is now a complicated function of its specific

variance, ψp, and depends on the mean of the latent sources, E(ηij), as well as V (ηij). According

to (7), the covariance between two measured elements now depends on the specific variances, such

that the correlation between the measured components is no longer entirely explained by the latent

sources. Finally, (6) and (7) indicate that both V (Yijp) and Cov(Yijp, Yijp′) are increasing functions

of ψ. The variance, however, increases at a faster rate than the covariance, such that Cor(Yijp, Yijp′)

is a decreasing function in ψ.

From a practical standpoint, the additive and multiplicative factor analysis models have the po-

tential to yield quite different results. The methods deviate in terms of the estimated factor pattern,

depending on the degree of skew in the measured components. Recall that elements that are highly

skewed have relatively large ψ’s. In the additive framework, the ψ’s do not impact the covariance

between any two elements; however, in the multiplicative framework, the ψ’s play an important role.
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http://biostats.bepress.com/harvardbiostat/paper47



Expression (7) indicates an interplay of the ψ’s and the λ’s in the multiplicative model. Specifically,

as ψp increases, the λ’s corresponding to pth element will decrease. Therefore, for elements that are

highly skewed, and thus have large ψ’s, the factor loadings corresponding to these elements will be

reduced in the multiplicative framework as compared to the additive framework.

In contrast, as ψp → 0,

V ar(Yijp) → λ(r)T
p V (ηij)λ

(r)
p ,

and as ψp′ → 0,

Cov(Yijp, Yijp′) → λ(r)T
p V (ηij)λ

(r)
p′

in both the additive and multiplicative models. Hence, when the specific variances are all zero, the

variances and covariances are identical in the two modeling frameworks.

3.4 Estimation

We take a Bayesian approach to estimation, and fit the multiplicative factor analysis with underly-

ing mixed model using Markov Chain Monte Carlo (MCMC) methods in WinBUGS (Spiegelhalter,

Thomas, and Best 2000). We specify normal priors on the fixed effects αk in the mixed model for

k = 1, 2, ...,K, and inverse gamma priors on all variance parameters in Σbk (for k = 1, 2, ...,K),

Ση, and Ψ. To ensure non-negativity, and because negative components of source profiles are not

interpretable, we define log-normal priors on the unconstrained parameters in Λ.

In setting the hyperparameters of the prior distributions, we urge caution when working with the

log-normal distribution. A log-normally distributed variable, say Z, is parameterized in terms of the

underlying normal distribution, i.e.

log(Z) ∼ N(μZ , σ2
Z),

11
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where the moments of Z are

E(Z) = eμZ+
σ2
Z
2

V (Z) = e2(μZ+σ2
Z) − e2μZ+σ2

Z

(Casella and Berger 1990). Likewise, the hyperparameters for a log-normal prior distribution are

generally specified in terms of the underlying normal moments. Therefore, when specifying a vague

log-normal prior, it may seem natural to choose the typical settings for a vague normal prior. How-

ever, a vague normal prior distribution does not translate to a vague log-normal prior distribution.

Consider, for instance, the typical vague normal prior with mean zero and large variance. Setting

a large variance on the underlying normal distribution impacts the mean of the corresponding log-

normal on the exponential scale, inducing a huge degree of skew and effectively leading to a very

informative log-normal prior. Given that the log-normal is a skewed distribution whose moments

both depend on the mean and variance of the underlying normal distribution, defining a vague log-

normal prior is not straightforward.

A similar issue in prior specification arises in the context of logistic regression. Bedrick et al. (1997)

noted that for a logistic model, a normal prior for β is convenient in large sample situations in

which the posterior is approximately normal. If the sample size is not large, however, one should

be cautious about using a normal prior with large covariances, as the induced prior distributions for

Pr(yi = 1) can have point masses at zero and one. In such cases, Bedrick et al. (1996) proposed using

a conditional means prior, which specifies the prior distribution on the success probabilities directly,

and sugggested that it may be preferable to use an analogous strategy in the lognormal setting as well.

Fortunately, for the purposes of our research, the issues pertaining to the log-normal distribution

are not prohibitive, since we can specify a log-normal with high density in the reasonable range of

our parameter space. For instance, we specify a log-normal prior distribution on the unconstrained

parameters in Λ.

Previous analyses have consistently estimated the majority of factor loadings within the range (0, 1)

12
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Figure 2: Log-Normal Prior on the Unconstrained Factor Loadings

and rarely do the estimates exceed 2. Given these prior results, our strategy for specifying the log-

normal priors on the {λpk} is to choose hyperparameters that yield a density that effectively assigns

prior weight in the interval (0, 1). For example, Figure 2 provides an example of such a log-normal

distribution that would be a reasonable prior for the {λpk} in our analysis. One may criticize that

the log-normal prior is not particularly vague in the sense that it is not flat even in the reasonable

range of our parameter space, and may instead argue for a uniform distribution. However, we prefer

the log-normal prior distribution over a uniform prior distribution, because the log-normal prior

allows the parameters to move beyond the reasonable range, while a uniform prior imposes a strict

boundary on the parameter space.

Finally, we use the Bayesian Deviance Information Criterion (DIC; Spiegelhalter et al. 2002) to

compare models. Like other information criterion, the DIC compares likelihoods from two compet-

13
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ing models after adjusting for the “effective” number of parameters in the model, with this number

depending on the model parameter priors. Let Θ = {Λ,μη,α1, ...,αK ,Ψ,Ση,Σb1 , ...,ΣbK} denote

the fixed parameters, and let u = {b1, ...,bK} denote the random effects. This criterion takes the

form

DIC = D(Θ,u) + 2 ∗ pD,

where D(Θ,u) = −2log
[
p
(
y|μy

)]
+ 2log

[
f
(
y|μy = y

)]
is the usual deviance, y represents the

observed chemical concentrations, μy is the mean vector for y, Θ, u, andD(Θ,u) denote the posterior

means of the model parameters and deviance, respectively, and pD = D(Θ,u) − D(Θ,u). All

necessary quantities can be calculated from the posterior samples generated by the MCMC model

fitting.

4 Simulation Study

We conducted a simulation study to evaluate whether adjusting for covariates and temporal corre-

lation improved estimation of the source profiles and the source activities. We also examined the

impact of ignoring temporal correlation in assessing covariate effects on the latent source contribu-

tions.

In order to make our findings most relevant to the HSPH PM studies, we based our simulations

on the K = 4 known sources of Boston pollution described in Table 1. To obtain realistic settings

for the parameters in our model, we conducted a preliminary analysis of the complete exposure data

(N = 139) described in Section 2.2. Since convergence problems are common when elemental con-

centrations are on widely different scales, each element was scaled by its sample standard deviation,

which is equivalent to conducting a factor analysis on the sample correlation matrix, as opposed to

the sample covariance matrix.

14
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Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

RoadDust PowerP l OilComb V ehicles
Si λ1,1 λ1,2 λ1,3 λ1,4

S λ2,1 1 0 λ2,4

Ni 0 0 1 0
OC λ4,1 λ4,2 0 1
Al 1 0 λ5,3 0
T i λ6,1 λ6,2 λ6,3 λ6,4

Ca λ7,1 λ7,2 λ7,3 λ7,4

SULF λ8,1 λ8,2 0 0
Se 0 λ9,2 λ9,3 λ9,4

V λ10,1 λ10,2 λ10,3 λ10,4

Br λ11,1 λ11,2 λ11,3 λ11,4

BC λ12,1 λ12,2 λ12,3 λ12,4

EC 0 0 λ13,3 λ13,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Our simulation parameters were based on the following multiplicative factor analysis of the stan-

darized exposure data. First, to identify the model, we constrained parameters in Λ according to

the C1-C3 identifiability conditions (Park, Spiegelman, and Henry 2002) as defined in (8). Here,

aluminum, sulfur, nickel, and organic carbon identify road dust, power plants, oil combustion, and

motor vehicles, respectively.

As for the mixed model on source activity, we simulated the effect of a single covariate, X (temper-

ature in degrees Celcius), on all sources except road dust as well as the source-specific correlations,

i.e. ∀ k �= 1,

log(ηijk) = μηk + αk ∗Xij + bik + εηijk

and, for k = 1,

log(ηij1) = μη1 + bi1 + εηij1.

The parameters settings for the simulation study may be found in Appendix B. Covariate data for

the simulation study was pulled in blocks of three consecutive days from the meteorological data

described in Section 2.2.
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Each simulated data set consisted of 50 blocks of three days for a total of 150 unique exposures.

For each source k, we generated 50 random block effects and 150 errors from univariate normals,

bik ∼ N(0, σ2
bk

) and εηijk ∼ N(0, σ2
ηk

), respectively. The log contribution for source k, block i, day j

was computed as

log(ηijk) = μηk + αkXij + bik + εηijk.

To simulate observed exposures, we generated log errors on the elemental concentrations from a mul-

tivariate normal distribution, log(εYij ) ∼MVN(0,Ψ), where Ψ is diag(ψ). The vector of elemental

concentrations for day i, block j was computed as

Yij = (Ληij) ◦ εYij

where ◦ denotes elementwise multiplication.

For each simulated data set, we fit three different models. All three models assumed the multi-

plicative factor analytic structure,

Yij = (Ληij) ◦ εYij

where log(εYij )
iid∼ MVNP (0,Ψ) for diagonal Ψ. The models differed with respect to the mixed model

on the latent source contributions.

1. Simple Multiplicative Factor Analysis: For each source k (k = 1, 2, ..,K),

log(ηijk) = μηk + εηijk

where εηijk
iid∼ N(0, σ2

ηk
) and, ∀k �= k′, εηijk ⊥ εηijk′.

2. Multiplicative FA with Temperature Effects but Ignoring Temporal Correlation:

For each source k (k = 1, 2, ..,K),

log(ηijk) = μηk + αkXij + εηijk
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where εηijk
iid∼ N(0, σ2

ηk
) and, ∀k �= k′, εηijk ⊥ εηijk′.

3. Multiplicative FA with Temperature Effects and Adjusting for Temporal Correla-

tion: For each source k (k = 1, 2, ..,K),

log(ηijk) = μηk + αkXij + bik + εηijk

where bik
iid∼ N(0, σ2

bk
), εηijk

iid∼ N(0, σ2
ηk

), bik ⊥ εηijk, and, ∀k �= k′, bik ⊥ bik′ and εηijk ⊥ εηijk′ .

In all models, the prior distributions were defined as follows. We specified logN(−0.5, 0.588) prior

distributions (shown in Figure 2) on the unconstrained {λpk}. We specified N(0, 10) prior distribu-

tions on the {μηk} and the {αk}. Recall that while these settings may not seem vague on the normal

scale, these parameters define the mean of the ηijk’s which are log-normally distributed. Finally, we

specified IG(0.01, 0.01) priors distributions on the variance parameters, {ψp}, {σ2
ηk
}, and {σ2

bk
}.

All models were fit using a Bayesian Markov Chain Monte Carlo (MCMC) algorithm as implemented

in WinBUGS (Spiegelhalter, Thomas, and Best 2000). For each model fit, we ran 25,000 iterations,

discarding 20,000 as burn-in and thinning by five, for a total of 1,000 posterior samples. In several

test runs, we examined diagnostic trace and autocorrelation plots and found satisfactory convergence.

We ran 100 simulations to evaluate the effect of ignoring covariate effects and temporal correla-

tion in the estimation of the source profiles and the source contributions, and to examine the impact

of ignoring temporal correlation on the estimated covariate effects. Table 5 displays the estimated

source profiles obtained with the different source apportionment models. We find no major differ-

ences in estimated source profiles and all models appear to estimate the source profiles well.

To evaluate model performance with respect to source activity, for each simulation we computed
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Table 5: Estimated Source Profiles

Model Si S Ni OC Al Ti Ca SULF Se V Br BC EC

RD Truth 0.98 0.01 0 0.06 1 1.02 0.99 0.01 0 0.18 0.09 0.04 0
(1) 0.99 0.02 0 0.09 1 1.04 0.98 0.02 0 0.17 0.13 0.07 0
(2) 0.99 0.02 0 0.09 1 1.03 0.98 0.02 0 0.17 0.13 0.07 0
(3) 0.99 0.02 0 0.09 1 1.03 0.98 0.02 0 0.17 0.13 0.07 0

PP Truth 0.11 1 0 0.40 0 0.14 0.03 0.9 0.52 0.03 0.82 0.46 0
(1) 0.13 1 0 0.45 0 0.17 0.09 0.9 0.50 0.07 0.82 0.47 0
(2) 0.13 1 0 0.44 0 0.17 0.09 0.9 0.49 0.07 0.82 0.46 0
(3) 0.13 1 0 0.43 0 0.17 0.09 0.9 0.49 0.07 0.82 0.46 0

OC Truth 0.06 0 1 0 0 0.28 0.30 0.00 0.03 0.90 0.35 0.45 0.43
(1) 0.07 0 1 0 0 0.31 0.31 0.01 0.08 0.85 0.36 0.46 0.44
(2) 0.08 0 1 0 0 0.31 0.31 0.01 0.08 0.85 0.37 0.47 0.47
(3) 0.08 0 1 0 0 0.31 0.32 0.01 0.08 0.85 0.37 0.47 0.47

MV Truth 0.30 0.02 0 1 0 0.49 0.46 0 0.24 0.05 0.46 1.10 1.79
(1) 0.31 0.04 0 1 0 0.50 0.46 0 0.26 0.10 0.50 1.21 2.05
(2) 0.30 0.04 0 1 0 0.48 0.44 0 0.26 0.10 0.48 1.16 1.94
(3) 0.30 0.03 0 1 0 0.48 0.44 0 0.26 0.10 0.48 1.16 1.93

the sum of squared errors in the estimated source contributions,

SSEm =
50∑
i=1

3∑
j=1

4∑
k=1

(ηijk − η̂mijk)
2

where ηijk is the simulated source contribution and η̂mijk is the estimated source contribution based

on model m (m = 1, 2, 3) for block i, day j, source k. Table 6 summarizes the average SSE (over

the 100 simulations) for each model as well as the number of times each model has the largest SSE,

indicating worst performance, and the number of times each model had the smallest SSE, indicating

best performance. As expected, the simple model (1), excluding the covariate and ignoring temporal

correlation, had the overall worst performance with the largest average SSE as well as the largest SSE

78% of the time, whereas the complete model (3), adjusting for covariate and temporal correlation,

had the best overall performance, with the smallest average SSE as well as the smallest SSE 71% of

the time.

Finally, to evaluate the impact of ignoring temporal correlation on the covariate effects, we compare

model (2) which ignores the temporal correlation in the data, and model (3) that appropriately

adjusts for the correlation. Tables 7 and 8 summarize the results for models (2) and (3), respectively.
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Table 6: Model Comparison Based on SSE in the Source Contributions

Includes Random Effect Average Count with Count with
Model Covariate for Block (of Days) SSE Largest SSE Smallest SSE

(1) No No 32.53 78 5
(2) Yes No 31.08 11 24
(3) Yes Yes 30.13 11 71

Table 7: Estimated Covariate Effects Ignoring Temporal Correlation

Reject
Source αk Mean α̂k H0: αk = 0 αk ∈ 95% CI

Road Dust 0 -0.0010 20 80
Power Plants 0.04 0.0432 100 88

Oil Combustion -0.03 -0.0301 93 83
Motor Vehicles 0.03 0.0305 100 88

The tables show that the different models provide similar effect estimates that are close to the

truth, but differ with respect to inference as demonstrated by the 95% credible intervals. First, we

incorrectly reject the null hypothesis, H0 : αRD = 0, 20% of time for model (2), but only 6% of the

time for model (3). This finding indicates that failing to adjust for the temporal correlation in the

exposures inflates the type I error rate. Secondly, the complete model provides better coverage of the

true parameters. The proportion of 95% credible intervals that contain the true α’s corresponding

to power plants, oil combustion, and motor vehicles are 98%, 94%, and 96%, respectively for model

(3), whereas the coverages for model (2) are 88%, 83%, and 88%, respectively. Lastly, model (3)

provides estimates of the source-specific correlations that are very close to the truth.

In summary, incorporating covariate effects on the source contributions and adjusting for temporal

correlation did not appear to impact estimation of the source profiles. This more elaborate source

characterization did, however, improve estimation of the source activity. Furthermore, while failure

to adjust for temporal correlation in exposures measured on consecutive days may not influence

the effect estimates, it does affect inference. Methods that ignore the temporal correlation are too

liberal, whereas methods that adjust appropriately are of the correct size. Additionally, the correctly
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Table 8: Estimated Covariate Effects Adjusting for Temporal Correlation

Reject
Source αk Mean α̂k H0: αk = 0 αk ∈ 95% CI ρk Mean ρ̂k

Road Dust 0 -0.0010 6 94 0.54 0.5278
Power Plants 0.04 0.0431 100 98 0.32 0.3285

Oil Combustion -0.03 -0.0301 87 94 0.46 0.4449
Motor Vehicles 0.03 0.0305 100 96 0.60 0.6046

specified model provides better coverage of the true effects.

5 Data Analysis

In this section, we apply our mixed multiplicative factor analysis model defined in (1), (3), and

(8) to analyze the complete standardized HSPH PM exposure data (N=139). We conducted these

analyses with two objectives in mind. First, to evaluate the multiplicative formulation, we fit the

simple additive and multiplicative factor analysis models, excluding covariates and ignoring tempo-

ral correlation. Second, to explore the influence of meteorology on source activity, we fit a suite of

models with various combinations of the meteorological covariates (described in Section 2.2), in all

cases adjusting for temporal correlation with the random effect for block of consecutive days.

All models were fit via MCMC methods in WinBUGS (Spiegelhalter, Thomas, and Best 2000),

as motivated in Section 2.3.4. We defined logN(−0.5, 0.588) priors on the unconstrained {λpk},
N(0, 100) priors on {μηk} and {αk}, and IG(0.01, 0.01) priors on {ψp}, {σ2

ηk
}, and {σ2

bk
}. We ran

80,000 iterations, discarding 70,000 as burn-in and thinning by ten, for a total of 1,000 posterior

samples. We examined diagostic trace and autocorrelaion plots and found satisfactory convergence.

Table 9 provides a summary of the models that were fit as well as the DIC for each model. We use the

DICs to compare the model fits, where a smaller DIC indicates better model fit to the data. First,

the simple multiplicative model (0b) has a DIC of 943.945 compared to the simple additive model

(0a) which has a DIC of 1145.790. This finding suggests that the factor analysis with multiplicative

error describes the exposure data better than the standard additive factor analysis model. Secondly,
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Table 9: Summary of Model Fits to PM Exposure Data+

Error Temp Wind Relative Temp
Model Structure DIC Block Speed Pressue Humidity (oC)∗

(0a) Add 1145.790 No
(0b) Mult 943.945 No
(0c) Mult 948.105 Yes
(1a) Mult 955.404 Yes X
(1b) Mult 947.381 Yes X
(1c) Mult 960.620 Yes X
(1d) Mult 950.551 Yes X
(2a) Mult 943.358 Yes X X
(2b) Mult 945.271 Yes X X
(2c) Mult 930.028 Yes X X
(2d) Mult 954.744 Yes X X
(2e) Mult 947.806 Yes X X
(2f) Mult 940.065 Yes X X
(3a) Mult 935.230 Yes X X X
(3b) Mult 950.162 Yes X X X
(3c) Mult 944.670 Yes X X X
(3d) Mult 942.925 Yes X X X
(4) Mult 937.850 Yes X X X X

+ separate effects for each pollution source
∗ quadratic effect of temperature in degrees Celcius
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the multiplicative model that adjusts for the temporal correlation but does not include covariates

(0c) has a larger DIC (948.105) than the simple multiplicative model (0b). While we would expect

this adjustment to improve model fit, perhaps four separate correlations, one for each source, are un-

necessary and fewer parameters would be sufficient. Finally, with respect to the models that include

covariates, we find that model (2c), adjusting for wind speed, temperature in degrees Celcius, and

temporal correlation, has the smallest DIC (930.028) and thus provides the best fit the exposure data.

The estimated covariate effects and corresponding credible intervals for each model may be found

in Appendix C. In general, these models suggest the following relationships between meteorology

and source activity. Oil combustion and motor vehicle contributions are negatively associated with

wind speed. PM contributions from power plants, oil combustion, and motor vehicles are positively

associated with relative humidity, whereas road dust contributions are negatively associated with

relative humidity. Oil combustion contributions have negative linear relationship with temperature

and motor vehicle contributions have a positive linear relationship with temperature; power plant

contributions have a significant non-linear relationship with temperature in degrees Celcius.

For the purposes of model selection, we refit the model with the smallest DIC, model (2c), re-

peatedly, constraining non-significant effects to zero. Table 10 summarizes the posterior medians

and 95% credible intervals for the final model on the source contributions.

The estimates of μηk represent the mean log standardized contribution for each source when both

wind speed and temperature are equal to zero. The estimated contributions for each source are on

the scale of a standard deviation of the element constrained to 1 on the corresponding source profile.

For instance, in (8), the loading for aluminum is constrained to 1 on the road dust profile. There-

fore, given null wind speed and 0oC, we estimate a road dust contribution of exp(−0.3521) = 0.70

standard deviations of aluminum. Likewise, under these same conditions, we would expect a power

plant contribution of exp(−1.3930) = 0.25 standard deviations of sulfur, an oil combustion con-

tribution of exp(0.2267) = 1.25 standard deviations of nickel, and a motor vehicle contribution of

exp(−0.6722) = 0.51 standard deviations of organic carbon.
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Table 10: Estimates of the Mixed Model Parameters in the Final Model

Source μ̂ηk Covariate α̂k 95% Credible Interval ρ̂k

Road Dust -0.3521 — — — 0.5474
Power Pl -1.3930 Temp -0.0149 (-0.0616 , 0.0277) 0.3030

Temp2 0.0023∗ (0.0007 , 0.0039)
Oil Comb 0.2267 Wind Speed -0.0501∗ (-0.0819 , -0.0164) 0.4691

Temp -0.0306∗ (-0.0469 , -0.0149)
Vehicles -0.6722 Wind Speed -0.0453∗ (-0.0672 , -0.0250) 0.5427

Temp 0.0346∗ (0.0234 , 0.0460)

With respect to the covariate effects, we found a significant decrease in both oil combustion and

motor vehicle contributions associated with increasing wind speed. For instance, for a ten unit in-

crease in wind speed, we estimate a drop in oil combustion PM by a factor of exp(−0.501) = 0.61

(standard deviations of nickel), and a drop in motor vehicle PM by a factor of exp(−0.453) = 0.64

(standard deviations of organic carbon). This finding may suggest that the wind effectively dis-

perses the particles coming from these sources. We also estimate that oil combustion contributions

decrease by a factor of exp(−0.306) = 0.74, while motor vehicle contributions increase by a factor

of exp(0.346) = 1.41 for a 10oC increase in temperature. These findings support less home heating

and perhaps more traveling during warmer weather. Power plant activity has a significant parabolic

relationship with temperature as demonstrated in Figure 3 with elevated exposures at low and high

temperatures.

6 Discussion

In this paper, we considered methods to assess factors associated with pollution source activity. Our

primary objectives were (1) to allow source contributions to depend on covariates and (2) to adjust

for temporal correlation in the exposures. To meet these aims, we proposed a multiplicative factor

analysis with a mixed model on the latent source contributions. The multiplicative error structure

facilitated the modeling framework and also served to (3) respect the non-negativity of the measured
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Figure 3: Quadratic Effect of Temperature on Power Plant Contributions

chemical concentrations. The mixed multiplicative factor analysis model extends the model proposed

by Wolbers and Stahel (2005; and Billheimer 2001) by imposing mixed models on the unobserved

source contributions and taking a Bayesian approach to model fitting.

We conducted a simulation study with two goals in mind; (1) to examine the impact of incorporating

weather and design information on the estimation of the source profiles and the source activities,

and (2) to assess the impact of ignoring temporal correlation on the estimated covariate effects. We

demonstrated that including covariate effects and adjusting for temporal correlation does not have

a large influence on the estimation of the source profiles, but does in general improve estimation of

the source activities. This is an important advantage in the context of health effect studies since the

quality of the estimated health effects depends on the estimation of the source-specific contributions

from complex mixtures of exposure. We also showed that ignoring temporal correlation in the expo-
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sures affects the tests of significance for the covariate effects.

Using our proposed methods, we analyzed the HSPH exposure data. We found that the multi-

plicative factor analysis fits the data better than the standard additive factor analysis model. We

also demonstrated how this new modeling framework enables us to explore the role of important

factors, such as meteorological conditions and temporal correlation, that influence source dynamics.

One limitation of our modeling framework is that the assumption of log-normality does not di-

rectly allow for null chemical concentrations. Wolbers and Stahel (2005) propose adding a small

non-negative vector into source apportionment model to handle zero concentrations. Alternatively,

one could also consider extensions to incorporate left truncated concentrations, such as in limit of

detection problems.
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APPENDIX A

Derivation of Covariance Expressions

Multiplicative Factor Analysis Model:

Yij = (Ληij) ◦ εYij

Distributional Assumptions on the Errors:

log(εYij )
iid∼ MVNP (0,Ψ)

Ψ = diag(ψ)

Properties of the Log-Normal Distribution (Casella and Berger 1990; Aitchison and Ho 1989):

log(x1) = y1
iid∼ N(μy1 , σ

2
y1) ⇒ x1

iid∼ logN(μy1 , σ
2
y1)

log(x2) = y2
iid∼ N(μy2 , σ

2
y2) ⇒ x2

iid∼ logN(μy2 , σ
2
y2)

E(xi) = eμyi+
σ2
yi
2

V ar(xi) = e2(μyi+σ
2
yi

) − e2μyi+σ
2
yi

Cov(x1, x2) = (eσy1,y2 − 1)(eμy1+μy2+
σ2
y1

+σ2
y2

2 )

Moments of the Log-Normal Errors:

E(εi) =

⎛⎜⎜⎜⎜⎜⎝
e
ψ1
2

e
ψ2
2

...

e
ψP
2

⎞⎟⎟⎟⎟⎟⎠ , V (εi) =

⎛⎜⎜⎜⎜⎝
e2ψ1 − eψ1

e2ψ2 − eψ2

. . .
e2ψP − eψP

⎞⎟⎟⎟⎟⎠
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Covariance Terms in the Multiplicative FA Model:

V (Yij) = V ((Ληij) ◦ εYij )

V (Yij) = V ((

⎛⎜⎜⎜⎜⎜⎝
λ

(r)T
1

λ
(r)T
2
...

λ
(r)T
P

⎞⎟⎟⎟⎟⎟⎠ηij) ◦ εYij )

Letting λ(r)T
p =

(
λp1 λp2 ... λpK

)
represent the pth row in Λ,

V ar(Yijp) = V ar((λ(r)T
p ηij) ∗ εYijp)

Cov(Yijp, Yijp′) = Cov((λ(r)T
p ηij) ∗ εYijp, (λ(r)T

p′ ηij) ∗ εYijp′)

Variances:

V ar(Yijp) = V ar(E(Yijp|εYijp)) + E(V ar(Yijp|εYijp))

= V ar(E((λ(r)T
p ηij) ∗ εYijp|εYijp)) + E(V ar((λ(r)T

p ηij) ∗ εYijp|εYijp))

= V ar((λ(r)T
p E(ηij)) ∗ εYijp) + E((λ(r)T

p V (ηij)λ
(r)
p ) ∗ (εYijp)

2)

= (λ(r)T
p E(ηij))

2V ar(εYijp) + (λ(r)T
p V (ηij)λ

(r)
p )E((εYijp)

2)

= (λ(r)T
p E(ηij))

2V ar(εYijp) + (λ(r)T
p V (ηij)λ

(r)
p )(V ar(εYijp) + (E(εYijp))

2)

= (λ(r)T
p E(ηij))

2(e2ψp − eψp) + (λ(r)T
p V (ηij)λ

(r)
p )(e2ψp − eψp + (e

ψp
2 )2)

Therefore,

V ar(Yijp) = (λ(r)T
p E(ηij))

2(e2ψp − eψp) + (λ(r)T
p V (ηij)λ

(r)
p )(e2ψp)
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Covariances:

Let εY
∗

ij =

(
εYijp
εYijp′

)
, Wp =

(
1
0

)
, and Wp′ =

(
0
1

)
.

Then, W T
p ε

Y ∗
ij = εYijp and W T

p′ε
Y ∗
ij = εYijp′ .

Cov(Yijp, Yijp′) = Cov((λ(r)T
p ηij) ∗ εYijp, (λ(r)T

p′ ηij) ∗ εYijp′)

= Cov((λ(r)T
p ηij)(W

T
p ε

Y ∗
ij ), (λ(r)T

p′ ηij)(W
T
p′ε

Y ∗
ij ))

= E((λ(r)T
p ηij)(W

T
p ε

Y ∗
ij )(λ(r)T

p′ ηij)(W
T
p′ ε

Y ∗
ij ))−

E((λ(r)T
p ηij)(W

T
p ε

Y ∗
ij ))E((λ(r)T

p′ ηij)(W
T
p′ε

Y ∗
ij ))T

= E((W T
p ε

Y ∗
ij )(ε(Y ∗)T

ij Wp′)(λ(r)T
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APPENDIX B

Parameter Settings for Simulation Study

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

RoadDust PowerP lants OilCombustion MotorV ehicles
Si 0.98 0.11 0.06 0.30
S 0.01 1.00 0.00 0.02
Ni 0.00 0.00 1.00 0.00
OC 0.06 0.40 0.00 1.00
Al 1.00 0.00 0.00 0.00
T i 1.02 0.14 0.28 0.49
Ca 0.99 0.03 0.30 0.46

SULF 0.01 0.90 0.00 0.00
Se 0.00 0.52 0.03 0.24
V 0.18 0.03 0.90 0.05
Br 0.09 0.82 0.35 0.46
BC 0.04 0.46 0.45 1.10
EC 0.00 0.00 0.43 1.79

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ =

(
Si S Ni OC Al T i Ca SULF Se V Br BC EC

0.05 0.01 0.14 0.10 0.05 0.06 0.11 0.01 0.73 0.22 0.21 0.08 0.04

)

Settings for parameters in mixed model

Source k μηk αk σ2
ηk

σ2
bk

ρk =
σ2
bk

σ2
bk

+σ2
ηk

Road Dust 1 -0.32 0.00 0.51 0.60 0.54
Power Plants 2 -1.36 0.04 0.56 0.26 0.32

Oil Combustion 3 -0.18 -0.03 0.45 0.38 0.46
Motor Vehicles 4 -1.07 0.03 0.12 0.18 0.60
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APPENDIX C

Summary of Model Fits in Data Analysis

Model (1a) - Wind Speed Only

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5763 Wind Speed -0.0380∗ (-0.0735 , -0.0021)

Power Plants 0.3688 Wind Speed -0.0116 (-0.0573 , 0.0286)
Oil Combution 0.5209 Wind Speed -0.0408∗ (-0.0740 , -0.0099)
Motor Vehicles 0.5910 Wind Speed -0.0519∗ (-0.0748 , -0.0300)

Model (1b) - Pressure Only

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5674 Pressure 0.4985∗ (0.0370 , 1.0181)

Power Plants 0.3972 Pressure -0.5103 (-1.0310 , 0.0315)
Oil Combution 0.5217 Pressure 0.1346 (-0.3227 , 0.6130)
Motor Vehicles 0.6245 Pressure -0.2309 (-0.6390 , 0.1782)

Model (1c) - Relative Humidity Only

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4630 RelHum -0.0256∗ (-0.0361 , -0.0153)

Power Plants 0.3536 RelHum 0.0190∗ (0.0072 , 0.0308)
Oil Combution 0.4084 RelHum 0.0264∗ (0.0169 , 0.0360)
Motor Vehicles 0.6103 RelHum 0.0128∗ (0.0055 , 0.0200)

Model (1d) - Temperature (oC) Only

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5026 Temp -0.0259 (-0.0703 , 0.0231)

Temp2 0.0017 (-0.0001 , 0.0033)
Power Plants 0.2996 Temp -0.0160 (-0.0634 , 0.0288)

Temp2 0.0023∗ (0.0007 , 0.0039)
Oil Combution 0.4985 Temp -0.0068 (-0.0517 , 0.0358)

Temp2 -0.0008 (-0.0025 , 0.0009)
Motor Vehicles 0.5794 Temp 0.0320∗ (0.0030 , 0.0643)

Temp2 0.0002 (-0.0009 , 0.0013)
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Model (2a) - Wind Speed and Pressure

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5873 Wind Speed -0.0343 (-0.0675 , 0.0018)

Pressure 0.4062 (-0.0760 , 0.9097)
Power Plants 0.3996 Wind Speed -0.0179 (-0.0555 , 0.0223)

Pressure -0.5462∗ (-1.0821 , -0.0210)
Oil Combution 0.4839 Wind Speed -0.0437∗ (-0.0763 , -0.0078)

Pressure -0.0186 (-0.4801 , 0.4538)
Motor Vehicles 0.5939 Wind Speed -0.0574∗ (-0.0836 , -0.0332)

Pressure -0.5143∗ (-0.8793 , -0.1246)

Model (2b) - Wind Speed and Relative Humidity

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4780 Wind Speed -0.0340∗ (-0.0668 , -0.0035)

Rel Hum -0.0250∗ (-0.0346 , -0.0150)
Power Plants 0.3376 Wind Speed -0.0117 (-0.0500 , 0.0267)

Rel Hum 0.0194∗ (0.0074 , 0.0306)
Oil Combution 0.5099 Wind Speed -0.0438∗ (-0.0749 , -0.0136)

Rel Hum 0.0269∗ (0.0179 , 0.0349)
Motor Vehicles 0.6003 Wind Speed -0.0522∗ (-0.0735 ,-0.0307)

Rel Hum 0.0134∗ (0.0065 , 0.0196)

Model (2c) - Wind Speed and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5397 Wind Speed -0.0389∗ (-0.0749 , -0.0042)

Temp -0.0282 (-0.0751 , 0.0181)
Temp2 0.0018∗ (0.0001 , 0.0035)

Power Plants 0.2845 Wind Speed -0.0051 (-0.0415 , 0.0337)
Temp -0.0155 (-0.0576 , 0.0269)
Temp2 0.0023∗ (0.0008 , 0.0039)

Oil Combution 0.4863 Wind Speed -0.0453∗ (-0.0794 , -0.0127)
Temp -0.0087 (-0.0513 , 0.0337)
Temp2 -0.0008 (-0.0024 , 0.0007)

Motor Vehicles 0.5386 Wind Speed -0.0473∗ (-0.0688 , -0.0251)
Temp 0.0248 (-0.0025 , 0.0523)
Temp2 0.0004 (-0.0006 , 0.0014)
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Model (2d) - Pressure and Relative Humidity

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4832 Pressure 0.3624 (-0.0975 , 0.8454)

Rel Hum -0.0247∗ (-0.0352 , -0.0143)
Power Plants 0.3624 Pressure -0.4508 (-0.9167 , 0.0606)

Rel Hum 0.0180∗ (0.0062 , 0.0291)
Oil Combution 0.4278 Pressure 0.2797 (-0.1763 , 0.7645)

Rel Hum 0.0272∗ (0.0173 , 0.0361)
Motor Vehicles 0.6111 Pressure -0.1218 (-0.5058 , 0.2730)

Rel Hum 0.0123∗ (0.0050 , 0.0194)

Model (2e) - Pressure and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5127 Pressure 0.6003∗ (0.0855 , 1.0901)

Temp -0.0203 (-0.0689 , 0.0230)
Temp2 0.0017∗ (0.0002 , 0.0033)

Power Plants 0.3351 Pressure -0.3369 (-0.8231 , 0.1163)
Temp -0.0179 (-0.0603 , 0.0252)
Temp2 0.0023∗ (0.0007 , 0.0039)

Oil Combution 0.5120 Pressure -0.0017 (-0.4685 , 0.4606)
Temp -0.0076 (-0.0503 , 0.0339)
Temp2 -0.0008 (-0.0023 , 0.0008)

Motor Vehicles 0.5746 Pressure -0.0449 (-0.4136 , 0.3404)
Temp 0.0333∗ (0.0027 , 0.0626)
Temp2 0.0002 (-0.0009 , 0.0012)

Model (2f) - Relative Humidity and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4366 Rel Hum -0.0240∗ (-0.0342 , -0.0134)

Temp 0.0031 (-0.0411 , 0.0492)
Temp2 0.0005 (-0.0012 , 0.0020)

Power Plants 0.1971 Rel Hum 0.0289∗ (0.0189 , 0.0389)
Temp -0.0525∗ (-0.0936 , -0.0121)
Temp2 0.0038∗ (0.0023 , 0.0053)

Oil Combution 0.3603 Rel Hum 0.0270∗ (0.0172 , 0.0368)
Temp -0.0444∗ (-0.0846 , -0.0018)
Temp2 0.0007 (-0.0007 , 0.0024)

Motor Vehicles 0.4755 Rel Hum 0.0160∗ (0.0099 , 0.0225)
Temp 0.0120 (-0.0178 , 0.0391)
Temp2 0.0010∗ (0.0000 , 0.0020)
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Model (3a) - Wind Speed, Pressure, and Relative Humidity

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4833 Wind Speed -0.0321 (-0.0646 , 0.0016)

Pressure 0.2808 (-0.2172 , 0.7684)
Rel Humid -0.0247∗ (-0.0345 , -0.0143)

Power Plants 0.3569 Wind Speed -0.0177 (-0.0593 , 0.0202)
Pressure -0.4802 (-0.9796 , 0.0186)

Rel Humid 0.0185∗ (0.0073 , 0.0301)
Oil Combution 0.5220 Wind Speed -0.0423∗ (-0.0739 , -0.0103)

Pressure 0.1816 (-0.2884 , 0.6088)
Rel Humid 0.0269∗ (0.0181 , 0.0361)

Motor Vehicles 0.5838 Wind Speed -0.0584∗ (-0.0828 , -0.0377)
Pressure -0.3882∗ (-0.7693 , -0.0137)

Rel Humid 0.0125∗ (0.0057 , 0.0192)

Model (3b) - Wind Speed, Pressure, and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.5473 Wind Speed -0.0287 (-0.0639 , 0.0068)

Pressure 0.4935 (-0.0168 , 0.9976)
Temp -0.0213 (-0.0657 , 0.0211)
Temp2 0.0016∗ (0.00004 , 0.0032)

Power Plants 0.3270 Wind Speed -0.0113 (-0.0485 , 0.0274)
Pressure -0.3698 (-0.8575 , 0.1442)
Temp -0.0194 (-0.0613 , 0.0266)
Temp2 0.0024∗ (0.0008 , 0.0039)

Oil Combution 0.4573 Wind Speed -0.0513∗ (-0.0851 , -0.0186)
Pressure -0.2071 (-0.6919 , 0.2547)
Temp -0.0133 (-0.0570 , 0.0251)
Temp2 -0.0007 (-0.0021 , 0.0009)

Motor Vehicles 0.5495 Wind Speed -0.0509∗ (-0.0745 , -0.0284)
Pressure -0.2822 (-0.6605 , 0.0740)
Temp 0.0239 (-0.0022 , 0.0529)
Temp2 0.0003 (-0.0006 , 0.0013)
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Model (3c) - Wind Speed, Relative Humidity, and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4680 Wind Speed -0.0335 (-0.0656 , 0.0014)

Rel Humid -0.0239∗ (-0.0349 , -0.0135)
Temp 0.0021 (-0.0419 , 0.0457)
Temp2 0.0005 (-0.0011 , 0.0021)

Power Plants 0.1442 Wind Speed -0.0047 (-0.0371 , 0.0284)
Rel Humid 0.0292∗ (0.0194 , 0.0384)

Temp -0.0541∗ (-0.0948 , -0.0125)
Temp2 0.0039∗ (0.0024 , 0.0054)

Oil Combution 0.3983 Wind Speed -0.0509∗ (-0.0818 , -0.0216)
Rel Humid 0.0268∗ (0.0186 , 0.0360)

Temp -0.0478∗ (-0.0844 , -0.0082)
Temp2 0.0008 (-0.0007 , 0.0022)

Motor Vehicles 0.5045 Wind Speed -0.0485∗ (-0.0665 , -0.0298
Rel Humid 0.0166∗ (0.0105 , 0.0226)

Temp 0.0033 (-0.0238 , 0.0288)
Temp2 0.0012∗ (0.0003 , 0.0022)

Model (3d) - Pressure, Relative Humidity, and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4572 Pressure 0.4584 (-0.0152 , 0.9041)

Rel Humid -0.0224∗ (-0.0339 , -0.0115)
Temp 0.0060 (-0.0369 , 0.0476)
Temp2 0.0005 (-0.0012 , 0.0021)

Power Plants 0.1920 Pressure -0.1393 (-0.6026 , 0.3512)
Rel Humid 0.0286∗ (0.0179 , 0.0384)

Temp -0.0527∗ (-0.0934 , -0.0092)
Temp2 0.0038∗ (0.0022 , 0.0053)

Oil Combution 0.3473 Pressure 0.1948 (-0.2892 , 0.6208)
Rel Humid 0.0272∗ (0.0173 , 0.0369)

Temp -0.0443∗ (-0.0858 , -0.0018)
Temp2 0.0008 (-0.0008 , 0.0022)

Motor Vehicles 0.4594 Pressure 0.1478 (-0.2136 , 0.5214)
Rel Humid 0.0167∗ (0.0097 , 0.0233)

Temp 0.0127 (-0.0184 , 0.0413)
Temp2 0.0010 (-0.0000 , 0.0021)
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Model (4) - Wind Speed, Pressure, Relative Humidity, and Temperature

Source Temp Corr Covariate Post Median 95% Credible Interval
Road Dust 0.4759 Wind Speed -0.0260 (-0.0616 , 0.0068)

Pressure 0.3744 (-0.0925 , 0.8528)
Rel Humid -0.0224∗ (-0.0329 , -0.0119)

Temp 0.0025 (-0.0471 , 0.0487)
Temp2 0.0006 (-0.0011 , 0.0023)

Power Plants 0.1850 Wind Speed -0.0072 (-0.0457 , 0.0262)
Pressure -0.1624 (-0.6708 , 0.2975)

Rel Humid 0.0286∗ (0.0183 , 0.0386)
Temp -0.0539∗ (-0.0934 , -0.0077)
Temp2 0.0038∗ ( 0.0020 , 0.0053)

Oil Combution 0.4151 Wind Speed -0.0505∗ (-0.0828 , -0.0201)
Pressure -0.0238 (-0.4976 , 0.4085)

Rel Humid 0.0264∗ (0.0174 , 0.0351)
Temp -0.0460∗ (-0.0855 , -0.0066)
Temp2 0.0007 (-0.0007 , 0.0021)

Motor Vehicles 0.4967 Wind Speed -0.0512∗ (-0.0723 , -0.0311)
Pressure -0.0854 (-0.4617 , 0.2755)

Rel Humid 0.0165∗ (0.0106 , 0.0225)
Temp 0.0039 (-0.0233 , 0.0293)
Temp2 0.0012∗ (0.0003 , 0.0022)
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