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Analyzing the long-term behavior of hyperchaotic systems poses formidable challenges in the field of 
nonlinear science. This paper proposes a data-driven model called the delayed self-feedback echo state network 
(self-ESN) specifically designed for the evolution behavior of hyperchaotic systems. Self-ESN incorporates a 
delayed self-feedback term into the dynamic equation of a reservoir to reflect the finite transmission speed of 
neuron signals. Delayed self-feedback establishes a connection between the current and previous m time steps 
of the reservoir state and provides an effective means to capture the dynamic characteristics of the system, 
thereby significantly improving memory performance. In addition, the concept of local echo state property 
(ESP) is introduced to relax the conventional ESP condition, and theoretical analysis is conducted on guiding 
the selection of feedback delay and gain to ensure the local ESP. The judicious selection of feedback gain and 
delay in self-ESN improves prediction accuracy and overcomes the challenges associated with obtaining 
optimal parameters of the reservoir in conventional ESN models. Numerical experiments are conducted to 
assess the long-term prediction capabilities of the self-ESN across various scenarios, including a 4D 
hyperchaotic system, a hyperchaotic network, and an infinite-dimensional delayed chaotic system. The 
experiments involve reconstructing bifurcation diagrams, predicting the chaotic synchronization, examining 
spatiotemporal evolution patterns, and uncovering the hidden attractors. The results underscore the capability of 
the proposed self-ESN as a strategy for long-term prediction and analysis of the complex systems.

I. INTRODUCTION

Chaos is recognized for its intriguing nonlinear charac-
teristics, exhibiting complexity, ergodicity, and sensitivity to
initial conditions [1,2]. Over the past few decades, chaos
has found widespread applications in diverse fields, including
electrical power systems, astronomy, finance, and network
traffic [3–8]. As a subset of chaotic systems, the hyperchaos is
defined by having at least two positive Lyapunov exponents,
and the minimal dimension of the phase space embedded in
the hyperchaotic attractor is greater than three [1]. Compared
with conventional chaos, hyperchaos exhibits more complex
dynamics featuring higher dimensions, increased randomness,
and heightened unpredictability [9,10]. Consequently, under-
standing the overall system dynamics of hyperchaotic systems
poses a particularly challenging problem.

In recent years, there has been a significant surge in the
application of machine learning for the model-free analysis
of chaotic systems [11–15]. Reservoir computing (RC) is
a paradigm of machine learning in which the information-
processing capabilities of dynamical systems are exploited
for solving temporal tasks; it derived from recurrent neural
networks but with the major advantage of low training cost
and fast learning. It was independently proposed around the
same time as an echo state network (ESN) by Jaeger [16]
using conventional artificial neurons, and as a liquid state
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machine (LSM) by Maass et al. [17] using more biologically
plausible spiking neurons. Reservoir computing is a promis-
ing architecture for a variety of time series prediction tasks
that rely on short-term associations. Since RC exploits generic
dynamical systems for computing, the concept of RC has been
successfully extended into the quantum regime, and quantum
reservoir computing [18,19] was proposed to exploit dynami-
cal systems to solve nonlinear and temporal tasks [20–23].

As a particular technique of reservoir computing, echo
state networks (ESNs) have been widely used for model-
ing and analyzing complex systems [24–26]. Notably, ESNs
operate by being driven by input data, generating output
data through a readout function. In contrast to conventional
RNNs, ESNs only train the readout weights, while all other
parameters remain fixed during the initial construction. This
streamlined and rapid training process effectively addresses
challenges associated with gradient explosion and disappear-
ance in conventional RNNs trained using gradient descent
algorithms [25]. Consequently, it becomes feasible to signifi-
cantly reduce the computational cost of learning. ESN models
have found widespread applications in addressing complex
problems, including time series prediction, classification,
nonlinear system control, and dynamic pattern recognition
[27–34]. Thus it has become a valuable tool for model-free
analysis of chaotic systems, such as attractor reconstruction,
computing Lyapunov exponents, and generalized synchro-
nization of the chaotic systems [35–37].

However, ESNs face limitations in predicting the long-
term evolution of chaotic systems that heavily rely on initial
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conditions, especially in hyperchaotic and large spatiotem-
poral chaotic systems [12,38,39]. This becomes a critical
concern for practical applications like secure communica-
tion and encryption/decryption, where precise and prolonged
chaotic solutions are imperative [40,41]. The challenges stem
from the sensitivity of the ESN reservoir to various hyper-
parameters, requiring numerous trial-and-error attempts for
construction, and the computational load in determining op-
timal parameters [24]. Additionally, the insufficient memory
capacity of ESN models and their emphasis on short-term
memory constrain their ability to effectively address long-
term evolution challenges in complex systems.

To address these challenges, several ESN models have been
proposed to enhance memory performance. These include the
deep time-delay reservoir computing model [42], hierarchical
delay-memory echo state network [43], single-node delay-
based reservoir computer [44], variable memory length echo
state network [45], and leaky ESNs [46]. These advance-
ments effectively enhance the memory capability of ESNs by
integrating past information. However, existing models lack
comprehensive theoretical analyses for selecting appropriate
parameters and understanding their impact on performance.

This paper introduces a solution, the delayed self-feedback
echo state network (self-ESN), to address the issues outlined
above. Its primary objective is to devise an effective technique
for achieving long-term behavior analysis of the future evolu-
tion of hyperchaotic systems based on available data. The key
contributions are outlined as follows:

(1) Incorporation of Delayed Self-Feedback: We integrate
a delayed self-feedback mechanism into the ESN model, en-
hancing its ability to simulate the delayed effects of neurons
within the reservoir.

(2) Explicit Use of Previous States: The self-ESN intro-
duces the past state of the reservoir to emphasize the impact
of previous inputs on the current state, thereby improving the
memory performance of the ESN model.

(3) Theoretical Analysis: This paper includes a compre-
hensive theoretical analysis that explores how time delay and
feedback gain affect the system dynamics, providing valuable
insights into the behavior of the self-ESN.

(4) Improved Prediction Technique: The self-ESN in-
troduces a technique for achieving enhanced predictive
performance, addressing challenges encountered in conven-
tional ESNs in determining optimal reservoir parameters.

Through these contributions, the self-ESN offers a promis-
ing solution to the challenges associated with hyperchaotic
systems, facilitating improved long-term predictions and
contributing to a deeper understanding of the underlying the-
oretical aspects of the model.

II. ECHO STATE NETWORKS (ESN)

An echo state network is a specialized neural network
architecture with an input layer, output layer, and reservoir
layer consisting of a large number of discrete-time artificial
neurons [24], as shown in Fig. 1. When there is no feedback
from the output to reservoir, the reservoir states at time step t
can be described as follows [12,24]:

xt+1 = f (Winut+1 + Wresxt ), (1)

FIG. 1. An echo state network: only the readout weight Wout

is trained, while all other parameters remain fixed at the initial
construction.

where xt ∈ RN is the reservoir state, f (·) is the activation
function of the reservoir nodes satisfying 0 � | f (·)| < 1,
Win ∈ RNres×D and Wres ∈ RNres×Nres are, respectively, the matri-
ces for the input-reservoir and reservoir-reservoir connections,
and u(t ) ∈ RD denotes the external input.

The output of the network is described by y(t ) =
fout(Wout[x(t ); u(t )]), where Wout is the reservoir-output
weight matrix, which is trained using a simple rule such as
linear regression.

Remark 1. Only the readout weights Wout are trained, and
other parameters are fixed at the initial construction.

The reservoir needs to have the echo state property to
eliminate the effects of the initial conditions of the reservoir
[12]. For an ESN with 1-Lipschitz activation function f (·), a
necessary condition for the ESP is ρ(Wres) < 1, where ρ is the
spectral radius of Wres. In the real computation, Wres is usually
rescaled by Wres = s/ρWres with 0 < s < 1.

III. DELAYED SELF-FEEDBACK ESN (SELF-ESN)

Due to scaling of the spectral radius of Wres to be slightly
below 1, the network has a fading “echo” of the previous
input. In order to improve memory performance, this paper
proposes a delayed self-feedback ESN (self-ESN) by intro-
ducing time-delay state feedback of reservoirs, as shown in

FIG. 2. The self-ESN model by introducing the delayed state
feedback (with delay m and gain γ ) of the reservoir; when γ = 0,
it is degenerated to the conventional ESN.



FIG. 3. Self-ESN for free-running prediction: solid black line (k
connected to a) for training, dashed red loop (k connected to b) for
prediction.

Fig. 2. Network dynamics is described by

xt+1 = f (Winut+1 + Wresxt + γ xt−m)

yt = fout (Wout[xt ; ut ]), (2)

where γ xt−m is the delayed self-feedback with gain γ and
delay m � 0. The proposed self-ESN differs from the conven-
tional ESN in several key aspects:

(1) The introduction of delayed self-feedback allows for a
more accurate simulation of the interaction between neurons
because the transmission speed of signals within neurons is
limited.

(2) Delayed self-feedback establishes a connection be-
tween the current and previous m time steps of the reservoir
state, offering an effective mean to capture the dynamical
characteristics of the system. This enhancement contributes
to improved memory performance in ESNs.

(3) In the absence of self-feedback (γ = 0), the self-ESN
reverts to the conventional ESN, providing flexibility in model
configuration.

(4) By judiciously selecting feedback gain γ and delay m,
the self-ESN may enable better predictions, and thus mitigates
the challenges in determining optimal reservoir parameters in
conventional ESN models.

During training, x(t ) are stacked into a state collection X,
and the desired output y∗(t ) are stacked into a vector Y. When
the activation function of the output units is the identity func-
tion, Wout can be calculated by Wout = YXT (XXT + ξI)−1,
where I is the identity matrix, ξ is Tikhonov regularization
parameter [12].

For time series prediction, the training target corresponds
to the value of the series one step ahead x(t + 1). After un-
dergoing sufficient training steps to achieve a low training
loss, the output y(t ) is fed back into the reservoir input for
a free-running prediction as shown in Fig. 3.

IV. LOCAL ECHO STATE PROPERTY

Roughly speaking, the echo state property (ESP) means
that the state of the network is primarily influenced by the
input data and is independent of the initial conditions of the
reservoir [47]. Essentially, the ESP implies that the network
should exhibit replicable and robust global attractors irre-
spective of the initial conditions of the reservoir. However,
in practical applications, a crucial aspect of assessing the

stability of network trajectories involves quantifying the im-
pact of small perturbations. In this section, a localized version
of ESP is defined as follows.

Definition 1. (Local ESP [47]). A dynamical system has
the local ESP if for a small perturbation x̃(t0) of x(t0) at
time t0 : x̃(t0) = x(t0) + δ, ‖ x̃(t ) − x(t ) ‖→ 0 holds true for
a sufficiently small δ.

Definition 1 ensures the trajectory’s resilience to ade-
quately small perturbations. This is a distinction from the
conventional ESP, which guarantees the existence of a unique
globally stable attractor. In practical applications, when train-
ing and prediction are aimed at the same attractor, the local
ESP proves to be a satisfactory criterion [47].

Denote x̃(t, κ ) = Winut + Wresxt + γ xt−κ , then from
Eq. (2) we have xt+1 = f (x̃(t, κ )). Denote δt > 0 as the time
step, and then we have

(δt )−1[x(t + 1) − x(t )] = (δt )−1[−x(t ) + f (x̃(t, κ ))].

If we denote β = (δt )−1, the evolution of Eq. (2) is the
forward Euler approximation to the system of the relation
equation

β−1ẋ(t ) = −x(t ) + f (x̃(t, τ )), (3)

where ẋ(t ) = dx(t )/dt , τ = mδt is the time delay.
Let e(t ) = x(t ) − z(t ), where x(t ) and z(t ) are two reser-

voir states. Using Eq. (3) we have

β−1ė(t ) = −e(t ) + f (x̃(t, τ )) − f (z̃(t, τ )). (4)

Then the local asymptotical stability of zero equilibrium of
Eq. (4) implies the local ESP of Eq. (2). We have the following
results.

Theorem 1. If nonlinear activation function of the reservoir
neurons satisfies | f (·)| � 1, f ′(0) = 1 and ρ < 1, then self-
ESN has local echo state property if one of the following
conditions is met:

(i) ρ + |γ | < 1, ∀τ � 0
(ii) ρ + |γ | > 1, and γ is within the boundary χ (τ ) as

shown in Fig. 4.
The proof of Theorem 1 and stability boundary χ (τ ) can

be found in the Appendix.
For any τ � 0, the delay-independent stable boundary

χ (τ ) is a circle of radius κ = 1 − ρ centered at the origin as
shown in the red star curve in Fig. 4. At a finite delay, the
stable boundary showing as the teardrop-shaped closed curve
crosses the real axis in the positive half-plane at κ and in the
negative half-plane at a delay-dependent value γ∗. Only the
value of γ inside the stability boundary (the teardrop-shaped
closed curve) is actually stable.

Remark 2. Condition (i) in Theorem 1 implies that self-
ESN has the ESP for any given the time delay τ � 0. It
is the same ESP condition as that in the conventional ESP.
However, the delay-dependent local ESP condition (ii) relaxes
the conventional ESP condition.

Remark 3. From Fig. 4, it is clear that the larger the value
of the time delay, the smaller the feedback coefficient value
ensuring the local ESP.

Remark 4. Negative feedback coefficient γ can also ensure
ESP. This is very different from the leaky ESN [46] and the
hierarchical delay-memory ESN [43], where only the positive
parameters are used.



FIG. 4. Stability boundary χ (τ ) for feedback gain γ in the
complex plane, where the red star curve is the delay-independent
boundary, teardrop-shaped closed curves are the delay-dependent
boundaries, and purple circle curve and blue square curves represent
the stability boundaries for two time delays τ1 and τ2 with τ2 < τ1.

V. MEMORY PERFORMANCE

From Eq. (2), using the fact that activation function | f (·)|
is bounded between 0 and 1, we have

xt+1 � ‖Winut‖ + ρ‖xt‖ + |γ | · ∥∥xt−m

∥∥. (5)

Applying Eq. (5) repeatedly yields

xt+1 � ‖Winut‖ + ρ‖Winut−1‖ + |γ |‖Winut−2‖ + · · ·

=
+∞∑
l=0

l∑
k=0

Ck
l ρ l−k|γ |k‖Winut−(km+l )‖. (6)

Obviously, the output of the reservoir depends on all inputs
before the current time. In addition, if 0 < ρ < 1 and |γ | < 1,
then there exists an appropriately positive integer L such that
ρ j → 0 and |γ | j → 0 when j > L. Therefore, we have

xt+1 �
L∑

l=0

l∑
k=0

Ck
l ρ l−k|γ |k‖Winut−(km+l )‖ + o(ρL + |γ |L ),

where o(·) represents the higher order infinitesimal.
So we have

xt+1 � ρL‖Winut−L‖ + |γ |L‖Winut−L(m+1)‖ + · · · .

In the above equation, the first term on the right side indi-
cates that the reservoir in the conventional ESN model (γ =
0) can effectively memorize input samples that are L steps
away from the current time. However, the second term on the
right side indicates self-ESN (γ 	= 0) can effectively mem-
orize input samples that are L(m + 1) steps away from the
current time as shown in Fig. 5. Obviously, the introduction
of the delayed feedback improves the memory performance
of ESN.

Jaeger used the memory capacity (MC) to evaluate the
capabilities of ESN for recalling the history of the input data

FIG. 5. Comparison of the memory performance between ESN
and self-ESN.

[16]. MC is defined by MC = ∑∞
k=1 MCk , where

MCk = cov2(u(n − K ), yk (n))
σ 2(u(n))σ 2(yk (n))

is the squared correlation coefficient between the input u(n −
K ) and the reconstructed value yk (n), “cov” denotes covari-
ance, σ 2 is the variance, and K is the delay time steps.

We consider the input data whose elements satisfy the
uniform distribution over [−1, 1]. The input contained 5000
data with the first 500 data for warm-up, the following 3500
for training, and the remaining 1000 for the test. It is noted
that Eq. (2) is a discrete dynamic system, and the state x(t )
of neurons in the reservoir is affected by their initial value
x0. In order to eliminate the influence of the initial state of
the reservoir, warm-up processing is required, which means
discarding a certain amount of data from the beginning of the
training process.

In particular, we considered a number of input delays up
to 100, and ρ = 0.9, Nres = 500, 800, γ = −0.4, and m = 4.
Figure 6 shows the “forgetting curve,” a plot of the mem-
ory capacities of K delay input. Obviously, traditional ESNs
exhibit almost 100% recall ability for input delays up to
13, followed by steep slopes descending in a clif-like man-
ner, as shown by the black star curve. This clearly indicates
the short-term memory capacity of the ESN. However, the

FIG. 6. The “forgetting” curve of the trained network in ESN
(black star curve) and self-ESN (blue square curve for Nres = 500,
and red circle curve for Nres = 800). This indicates that the self-ESN
has excellent memory performance.



self-ESN exhibits a close-to-100 recall for delays up to 18,
which is higher than conventional ESN. As the input delay
increases, its memory capacity gradually decreases. However,
unlike ESN, the MC value of self-ESN does not decrease in a
clif-like manner, but exhibits a gradually decreasing behavior
in a stepped manner as shown by the blue square curve in
Fig. 6. Ultimately, the memory capacity stabilizes around
MC∞ ≈ 0.55, which is much greater than the MC∞ ≈ 0.15
in ESN. Additionally, from this figure, when the number of
nodes in the reservoir is 800, the value of MCk is almost
equal to 1 for input delay up to 100, as shown in the inset in
Fig. 6. This indicates that the self-ESN has excellent memory
performance.

VI. NUMERICAL EXPERIMENTS

Several numerical experiments are conducted to assess the
effectiveness of the self-ESN. In each of the cases, the input
u(t ) and desired data y∗(t ) are both normalized to have mean
0 and standard deviation 1. A reservoir network with nodes
Nres = 500 is considered, where the elements in Win and W̃res

were obtained from a random uniform distribution with val-
ues between −0.5 and 0.5. The symmetric reservoir matrix
is then obtained by Wres = 0.5(W̃res + W̃ T

res) to guarantee the
conditions of Theorem 1. The sparsity is η = 0.1, and the
regularization factor is ξ = 10−8. In order to provide fair and
objective results, the experimental result is the average of 10
random reservoir initialization attempts. In the experiments,
the following root-mean-square error (RMSE)is used to mea-
sure the performance of the models:

RMSE =
√

1

T

∑T

t=1
[y∗(t ) − y(t )]2,

where y∗(t ) and y(t ) are, respectively, the desired and pre-
dicted values, and T is the prediction time steps.

A. A 4D hyperchaotic system

We consider the following hyperchaotic system [12]:

ẋ = a(y − x)

ẏ = ax − az2 − u

ż = x2 − bz

ẇ = my, (7)

where a = 20, b = 3, m = 36. The Lyapunov exponents of
the system are λ1 = 0.89, λ2 = 0.40, λ3 = 0, and λ4 = −24.2
[12]. So the system is in a hyperchaotic state as there are two
positive Lyapunov exponents, and the sum of all exponents is
less than 0.

The Runge-Kutta method [12] is used to solve Eq. (7)
and obtain the training and test data. The effectiveness of the
Runge-Kutta method in solving complex differential systems
has been proven by a large amount of work [12], even for
a large time span. In this experiments, we uses the classical
four-order Runge-Kutta algorithm to integrate chaotic system
(7), where the relative tolerance error is 1.0 × 10−8, the abso-
lute tolerance error is 1.0 × 10−10, the initial step size is 0.01,
and the maximum step size is 0.1, and the Dormand-Prince
algorithm is used to adaptively select the variable step size

FIG. 7. Prediction curve in the x, y, z, and w directions. The
black slash and red grid lines represent the prediction errors of
ESN and self-ESN, respectively. Obviously, self-ESN can exhibit the
long-term dynamical behavior as actual chaotic systems.

[12]. We generate the time series containing 10 000 data
points, where the first 1000 samples are used for warm-up,
4000 data are as the input u(t ) for training the reservoir, and
the following 5000 data as the desired output y∗(t ). Both
input and output are four-dimensional data (xk, yk, zk,wk ),
=1, 2,...,10 000.

By choosing ρ = 0.55, γ = −0.4, and m = 1, we illustrate
the prediction curve and RMSE using self-ESN and traditional
ESN as shown in Fig. 7. Each subgraph in Fig. 7 has two
vertical axes, with the left axis representing the system’s state
and the right axis representing the system’s RMSE. Due to
the sensitivity of chaotic system to initial conditions, ESN
produces good predictions (RMSE < 0.1) when the discrete
time step is less than about 500, but diverges from the actual
data as time evolves. However, the predicted trajectory from
self-ESN can accurately track the actual chaotic data with
RMSE < 10−2 when the discrete time step is less than about
4500. This example indicates that self-ESN can exhibit the
same long-term dynamical behavior as actual chaotic systems.
In addition, a comparison of predicting results between ESN
and self-ESN in the phase plane (see Fig. 8) further confirms
the superior long-term predictive abilities of self-ESN.

To illustrate the impact of the time delay m and gain γ

on prediction performance, the predicted errors in the m-γ
plane are depicted in Fig. 9, where the color map repre-
sents the RMSE, with bluer colors indicating smaller RMSE
values. The observations from the figure are as follows: (1)
self-ESN consistently yields better prediction results across



FIG. 8. Comparisons of the prediction results in the phase plane.
The results in the left column are obtained from the ESN, while the
right column are from self-ESN. Obviously, self-ESN exhibits the
same long-term dynamic behavior as actual chaotic systems, while
ESN cannot.

FIG. 9. Color maps of the predicted errors in the m-γ plane: the
darker (bluer) the color, the smaller the RMSE.

a wide range of parameters (γ , m), evident in the green and
blue regions where RMSE is below 0.1. This suggests that
selecting parameters (γ , m) for optimal prediction results is
more achievable in self-ESN. (2) With increasing delay, re-
gions with higher prediction accuracy (blue regions) gradually
decrease, indicating that a larger delay negatively impacts
prediction accuracy. (3) In some areas with negative feedback
gain, self-ESN has better prediction accuracy. This is different
from some existing methods, such as the leaky ESN [46] and
the hierarchical delay-memory ESN [43], where the parame-
ters used are usually positive. (4) The better RMSE is often lo-
cated at the regions with small delay and small feedback gain.

Remark 5. In real computation, we mesh the
parameters m and γ by mi = i(mmax − mmin)/M and
γ j = j(γmax − γmin)/M where i, j = 1, 2, . . . , M, and get
the grid points (mi, γ j ) on the m-γ plane. By computing
the short-term RMSE on the grid (mi, γ j ), we know that a
better RMSE implies the optimal parameters (m, γ ). Using
these optimal parameters, we can predict the long-term
evolutionary behavior of the system. So the self-ESN offers
a straightforward approach to improve accuracy by simply
adjusting the parameters m and γ . This contrasts sharply
with traditional ESN methods (γ = 0) that achieving optimal
parameters involves high computational costs due to the
ESN’s performance being highly sensitive to reservoir
parameters, such as spectral radius.

B. A hyperchaotic network with disturbed data

A small world network with six nodes is considered for the
synchronization analysis. The motion equation of ith node is
described by

u̇i(t ) = fi(ui ) +
N∑

j=1

ai ju j (t ) + k(ui − u0), (8)

where ui(t ) = (ui,x, ui,y, ui,z )T ∈ R3 is the state vector of node
i; i ∈ Z+ ≡ {1, 2, . . . , 6}, nodes 1 and 4 are set as the Chua
oscillator, and nodes 2, 3, 5, 6 are the Lorenz oscillator, u0 is
the solution of a separated Lorenz oscillator [7]. The topology
and parameters of the network are shown in Fig. 10(a).

According to Ref. [7], two Chua oscillators 1 and 4 are
synchronized, while the other four Lorenz nodes are also
synchronized. The synchronization manifolds are shown in
Fig. 10(b). In addition, by simple computation, we can get
two sets of Lyapunov exponents: 0.0, −0.199, 0.312 for node
1 and 4, and −0.476, 0.0, 0.151 for nodes 2, 3, 5, and 6.
Therefore, there are six positive Lyapunov exponents. So the
system is in the hyperchaotic state.

From Eq. (8), we generate time series containing 12 000
data points using the Runge-Kutta method, the details of
which can be found in experiment A. When the discrete time
step is smaller than 4000 steps, we applied a disturbed chaotic
signal u0(t ) on the nodes 2 and 4 in the Z direction to in-
vestigate whether self-ESN method can reconstruct chaotic
synchronization from input data with such disturbed signals
[see Fig. 10(c)]. The purpose of adding noise to the training
data is to consider whether the proposed method can learn the
inherent dynamics of systems with noise. The first 3000 sam-
ples are used for warm-up, the subsequent 6000 data points



FIG. 10. A small world network: (a) schematic; (b) two attrac-
tors; (c) disturbed training data on nodes 2 and 4.

serve as input u(t ) for training the reservoir, and the remaining
1000 data points are utilized as the desired output to evaluate
prediction performance.

By choosing ρ = 0.95, γ = −0.2, and m = 5, Figs. 11(a)–
11(c) illustrate the system’s evolution pattern, where the
horizontal axis signifies the evolution time, the vertical axis
represents the spatial position of the nodes, and colors indicate
predicted values. Figure 12 visualizes the error between the
predicted and actual solutions, with greener areas denoting
smaller errors. For discrete time steps less than 200, ESN pro-
vides accurate predictions, as evidenced by the green regions
in Fig. 12(a), but diverges from the actual trajectory as time
evolves. However, the predicted trajectory from self-ESN ac-
curately tracks the actual chaotic curve even with discrete time
steps less than about 700 as shown in Fig. 12(b). Moreover,
even with time steps exceeding 700, synchronization behavior
can still be exhibited using self-ESN, as nodes 1 and 4, 2 and
5, and 3 and 6 maintain the same pattern [see Fig. 11(a)].
In contrast, ESN fails to predict synchronization behavior, as
nodes 1 and 4 and 2 and 5 exhibit markedly different behaviors
after time step 250 [see Fig. 11(c)]. Clearly, the proposed
self-ESN demonstrates superior predictive ability for synchro-
nization in complex systems with disturbed signals.

In a similar way to Fig. 9, the predicted errors of the chaotic
network in the m-γ plane are depicted in Fig. 13, where the
color map represents the RMSE, with bluer colors indicating
smaller RMSE values. The observations from the figure indi-
cate that self-ESN consistently yields better prediction results
across a wide range of parameters (γ , m) as shown in the blue
regions where RMSE is below 0.1. This also indicates that
selecting parameters (γ , m) is more achievable in self-ESN
for optimal prediction results. This transforms the difficulty of

FIG. 11. Prediction of synchronization pattern of the complex
networked systems: (a) self-ESN, (b) actual data, and (c) ESN. The
black rectangles in (a) and (c) show the difference between the
ESN and self-ESN with the actual data. Obviously, the self-ESN can
exhibit synchronous behavior and better prediction over a long period
of time but the ESN cannot.

FIG. 12. Error between the predicted and actual solutions, with
lighter (greener) areas denoting smaller errors.



FIG. 13. Predicted errors of the hyperchaotic network in the m-γ
plane. The colors indicate the predicted values from self-ESN with
the darker (bluer) the color indicating the smaller the RMSE.

obtaining optimal reservoir parameters in conventional ESN
into the problem of searching for parameters (γ , m). It is
clear from Fig. 9 and Fig. 13 that there are large continuous
regions on the γ -m plane where self-ESN has better prediction
accuracy. Therefore, it is not difficult to obtain the optimal
parameters (γ , m) through a grid search technique as dis-
cussed in Fig. 9. In addition, due to a larger delay negatively
impacting prediction accuracy, the range of empirical search
parameters is m ∈ [0, 30] and γ ∈ [−0.5, 0.5].

C. An infinite-dimensional chaotic system

We consider a nonlinear spring-mass system with negative
damping and the delayed feedback as described by [48]:

ẍ(t ) + cxτ + kxτ + bx3
τ + AxT x(θ ) = x0(t ),

ẋ(θ ) = x̃0(θ ), θ ∈ [−max(τ, T ), 0], (9)

where x(t ) denotes displacement, xτ = x(t − τ ), k > 0 is the
stiff, c � 0 is the negative damping parameter, |b| << k, τ �
0 is the inner delay, A and T � 0 are the feedback gain and
delay, respectively, and x0(t ) and x̃0(t ) are initial functions
defined in the interval [−max(τ, T ), 0].

The delayed system (9) is characterized as an infinite-
dimensional system due to the initial condition being a
continuous function defined in the [−max(τ, T ), 0]. Conse-
quently, the number of positive Lyapunov exponents is no
longer constrained by the dimensionality of the system; rather,
it becomes uncountable because the initial function is infi-
nite. This attribute highlights that delayed chaotic systems
can significantly augment the complexity of a system without
necessitating an increase in its dimensionality.

D. Reconstruction of bifurcation diagram

From Ref. [48], when k = 3, c = −0.03, τ = 0.45, b =
0.1, T = 0.83, system (9) exhibits period-doubling bifurca-
tion as A varies from Ab = 3.9 to Ae = 4.6. The bifurcation
diagram from the actual data is shown in Fig. 14(a) [48].

FIG. 14. Bifurcation diagram of system (9) on the Poincaré sec-
tion

∑= {(A, x) : (ẋ = 0, ẍ > 0)}.

We use the self-ESN to reconstruct the period-doubling bi-
furcation diagram, and make a comparison with conventional
ESNs. We first choose grid spacing Ai = i(Ae − Ab)/(M − 1).
In each Ai (i = 1, 2, . . . , M ), using the Runge-Kutta method,
we generate time series containing 12 000 data points from
the initial condition (x0, y0) = (0.1, 0, 01). The initial 1000
samples are designated for warm-up, while the subsequent
3000 data points serve as input for training. The ensuing data
are employed as the desired output to evaluate prediction per-
formance. The parameters in self-ESN models are ρ = 0.55,
γ = 0.2, and m = 6, and all others are the same as those at
the beginning of Sec. VI.

In Figs. 14(b) and 14(c), the predicted bifurcation diagram
from ESN and self-ESN are depicted. Clearly, both ESN and



FIG. 15. Prediction of period-4 solution when A = 4.04, where
self-ESN can predict the period-4 solution exhibited by the actual
data, but ESN predicts the period-2 solution.

self-ESN successfully reconstruct period-doubling bifurcation
diagrams. However, ESN falls short in accurately predicting
bifurcation values as shown in the inset in Fig. 14(b), poten-
tially hindering its ability to faithfully represent the dynamical
behaviors of the actual system near bifurcation points, for
instance, in the vicinity of the bifurcation point A = 4.04,
where Eq. (9) exhibits a period-4 solution, but ESN predicts
only a period-2 solution, as shown in Fig. 15. A similar dis-
crepancy occurs at A = 4.275, where Eq. (9) displays chaotic
behavior that ESN fails to capture, as illustrated in Fig. 16.
In contrast, self-ESN demonstrates the capability to precisely
predict dynamical behaviors near bifurcation points, as de-
tailed in Fig. 15 and Fig. 16. This underscores the superior
performance of the proposed model in bifurcation diagram
reconstruction.

For values of A at 4.0, 4.05, 4.2, and 4.3, Eq. (9) ex-
hibits period-2, period-4, period-3, and chaotic solutions [48].
Employing the parameters in Fig. 14, we visualize the spa-
tiotemporal patterns of the systems onto the t-index plane
using the self-ESN, as depicted in Fig. 17, where the hori-
zontal axis signifies the evolution time, and the vertical axis
represents the index of (x(t ), dx/dt ) under different param-
eters A. For example, the three consecutive scales on the
vertical axis represent the index of (Ai, xi(t ), dxi/dt ). The
black lines denote contour lines representing the values of
(A, x(t ), dx/dt ) generated by the actual data, and the color

FIG. 16. Prediction of chaotic solution when A = 4.275, where
self-ESN can predict the same chaotic solution with the actual data
but ESN cannot.

FIG. 17. Spatiotemporal pattern of the systems using self-ESN:
the period-2, period-4, period-3, and chaotic behavior are clearly
shown in the circles and rectangle.

map illustrates the results generated by the self-ESN. It clearly
reveals the period-2, period-4, and period-3 solutions (as
shown in the black circles) and the chaotic solution (as shown
in the black rectangle).

In the following, we check the chaotic motion by esti-
mating the maximal conditional Lyapunov exponent (CLE).
The CLE measures the convergence or divergence rate of the
system. If its maximal value is positive, the system exhibits
the chaotic behavior. We denote the solutions of two identi-
cal systems under the different initial conditions as v(t, ϕ0)
and ṽ(t, ϕ̃0). Then the distance between them is d (t, ϕ0) =
sup ‖v(t, ϕ0) − ṽ(t, ϕ̃0)‖ ≈ c exp(λmaxt ), where λmax deter-
mines the numerically approximated CLE.

It is noted that the delayed system (9) is an infinite-
dimensional systems, and the number of positive Lyapunov
exponents is infinite. Figure 18 illustrates the maximal CLE of
the predicted time series x(t ) at initial conditions (0.1, 0.01),

FIG. 18. Numerical estimations of conditional Lyapunov expo-
nents using self-ESN.



and xϕ (t ) at another initial condition (sin(θ ),− cos(θ )) with
θ ∈ [− max(τ, T ), 0]. The red square curve and blue circle
curve represent the CLEs from x(t ) and xϕ (t ), respectively.
It is clear that the system exhibits the hyperchaotic behavior
since there are two positive CLE when 4.25 < A < 4.35 and
4.5 < A < 4.6 as shown by the black circle in the figure.

E. Uncovering hidden attractors

Subsequent to obtaining Wout from the input data at the
specified initial conditions (0.1, 0.01), we investigate the fea-
sibility of using this weight to predict the hidden dynamical
behavior. The prediction of hidden attractors is carried out
using the following equation:

xt+1 = f (Winyt + Wresxt + γ xt−m)

yt+1 = Woutxt+1. (10)

Unlike Eq. (2), the first equation of Eq. (10) uses yt for the
free run prediction instead of ut+1, where y0(θ ) = (A, ϕ0, ϕ̂0)
with θ ∈ [− max(τ, T ), 0] and (ϕ0, ϕ̂0) is the initial condition
(−0.5, 1.4).

When A = 4.0, 4.05, 4.15, 4.25, using Eq. (10), we predict
the hidden period-2, period-4, period-3 and a chaotic attractor
as shown in Figs. 19(a)–19(d). In each subfigure, the left col-
umn depicts the attractors derived from the actual data, while
the right column shows the predicted results. The blue solid
attractors represent the predictions derived from training data
under the original condition (0.1, 0.01), and the red dotted
ones denote the hidden attractors under the original condi-
tion (0.5,−1.4). Remarkably, the predicted hidden attractors
closely align with the actual data, demonstrating a high level
of accuracy in tracking the dynamics.

Utilizing the self-ESN, Fig. 20 presents the predicted
hidden bifurcation diagram on the Poincaré section as
A varies from 3.9 to 4.6. Notably, two distinct period-
doubling bifurcation processes emerge for different initial
conditions. For parameter A < 4.25, these bifurcation pro-
cesses lack wrapping regions, leading to the coexistence
of multiperiod solutions and two separate single-scroll-like
chaotic attractors, as illustrated in Fig. 19. When A > 4.25,
two period-doubling processes develop wrapping regions,
resulting in the merging of two initially separated single-
scroll-like attractors into a double-scroll-like attractor, as
depicted in Fig. 21, where Fig. 21(a) shows the phase plane
diagram, and Fig. 21(b) presents the Poincaré section di-
agram

∑= {(x(t − τ ), x) : ẋ = 0, ẍ > 0}. Importantly, this
highlights the capability of self-ESN to uncover more intricate
hidden dynamics. The hidden dynamics observed align with
those of the actual system discussed in Ref. [48].

Furthermore, due to the chaotic system’s sensitivity to ini-
tial conditions, ESN produces accurate predictions only when
the discrete time step is less than about 400. In contrast, the
predicted trajectory from self-ESN accurately tracks the actual
chaotic motion even with about 1200 time steps as shown in
Fig. 22. This example underscores that the proposed self-ESN
can reconstruct the same dynamic behavior with the more
complex chaotic attractor, even over the long term.

Remark 6. We only compared self-ESN with conventional
ESN model for the sake of simplification. In fact, delayed
state self-feedback can be introduced into any improved ESN

FIG. 19. Predicted hidden attractors, where the left column is
from the actual data and the right column is from self-ESN where
the blue-solid attractors represent the predictions derived from actual
data under the original condition (0.1, 0.01), and the red circle ones
denote the uncovered hidden attractors under the original condition
(0.5,−1.4).

FIG. 20. Coexisting bifurcation diagrams on the Poincaré sec-
tion

∑= {(A, x) : (ẋ = 0, ẍ > 0)}.



FIG. 21. Hidden double-scroll-attractor using self-ESN.

models to fully demonstrate the dynamic and memory perfor-
mance of actual systems.

VII. CONCLUSION

This paper develops a self-ESN model for the long-term
evolution behaviors of the hyperchaotic systems. By incor-
porating delay state feedback into the reservoir, self-ESN
employs an explicit representation of the previous state of
the reservoir to emphasize the impact of past inputs on the

FIG. 22. Time history and RMSE of the hidden double-scroll-
attractor using self-ESN.

current state, significantly improving memory performance
and potentially obtaining long-term evolutionary behavior of
the system. In addition, the concept of the local echo state
property is introduced, and theoretical analysis is conducted
on how to select feedback gain and delay for ensuring lo-
cal ESP. The self-ESN thus offers a technique for achieving
superior prediction accuracy by selecting feedback delay and
gain, which sidesteps the challenges in obtaining optimal pa-
rameters in conventional ESN models. The effectiveness of
ESNs has been validated in a hyperchaotic system, the com-
plex chaotic networks, and an infinite-dimensional delayed
chaotic systems. The results indicate that self-ESN effectively
analyzes the long-term evolutionary behavior of hyperchaotic
systems and has potential application in the challenging field
of complex system. Future research efforts will concentrate
on two main areas: (1) developing a strategy for the automatic
selection of the parameters γ and m and (2) applying the
proposed self-ESN to analyze large spatiotemporal chaotic
systems and complex real-world systems.
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APPENDIX: PROOF OF THEOREM 1

To investigate the local ESP, for the very close initial value
x(0) and z(0), linearizing Eq. (4) around the zero equilibrium
yields

β−1ė(t ) = −e(t ) + Wrese(t ) + γ e(t − τ ). (A1)

Assumption 1. All the eigenvalues of Wres are simple real
roots.

Under the Assumption 1, we have the characteristic equa-
tion of Eq. (A1) as

det(λ) =
n∏

k=1

qk (λ) = 0, (A2)

where

qk (λ) = λ+κ − z exp(−λτ ) (A3)

with κ = β(1 − ρk ), ρk is the kth eigenvalue of Wres, and z =
βγ can be considered as a complex variable. If the spectral
radius of the reservoir matrix is adjusted to be smaller than 1,
then we have κ > 0.

For a given time delay τ , denote v = r(θ ) exp(iθ ), where
0 � θ < 2π , and r(θ ) > 0 is the radial distance away from
the origin v = 0. It is from Ref. [5] that the subsets of param-
eters space defined by λ = 0 and λ = iω form the boundary
of the stable region. Substituting λ = 0 into Eq. (A3) we
get the restriction |v| = κ . Substituting λ = iω (ω > 0) into



Eq. (A3) gives that κ + iω = r exp(θ − ωτ )i, where i2 = −1.
Separating its real and imaginary parts yields

r cos(θ − ωτ ) = κ, r sin(θ − ωτ ) = ω (A4)

and thus

r2 = ω2 + κ2, (A5)

κ tan(ωτ − θ ) + ω = 0. (A6)

For given κ, θ, τ , one can get many roots by solving
Eq. (A6) and ρm(θ ) by Eq. (A5) for m = 1, 2, . . .. We now
show how the number of positive real parts for the eigenval-
ues changes when r crosses each critical value rm(θ ). From
Eq. (A3), the derivative of eigenvalue λ with respect to r at

the critical values ωm and rm(θ ) is

sgn

[
Re

dλ

dr ωm,rm

= sgn

[
κ

rm
+ rmτ > 0. (A7)

Equation (A7) indicates that the system added a pair
of eigenvalues with a positive real part for each crossing
of critical value rm(θ ) for a given θ . We are interested
in the smallest values ωmin and rmin, and thus vmin(θ ) =
rmin(θ ) exp(iθ ). When 0 � θ < 2π , vmin(θ ) forms the stabil-
ity boundary χ (τ ). Large roots ωm produced large values of
r by Eq. (A5), which lie outside of the stability region shown
in Fig. 4. Applying the above discussion to Eq. (A2), we have
the results of Theorem 1.
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