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Bayesian Hidden Markov Modeling of Array
CGH Data

Subharup Guha, Yi Li, and Donna Neuberg

Abstract

Genomic alterations have been linked to the development and progression of can-
cer. The technique of Comparative Genomic Hybridization (CGH) yields data
consisting of fluorescence intensity ratios of test and reference DNA samples. The
intensity ratios provide information about the number of copies in DNA. Practical
issues such as the contamination of tumor cells in tissue specimens and normal-
ization errors necessitate the use of statistics for learning about the genomic alter-
ations from array-CGH data. As increasing amounts of array CGH data become
available, there is a growing need for automated algorithms for characterizing ge-
nomic profiles. Specifically, there is a need for algorithms that can identify gains
and losses in the number of copies based on statistical considerations, rather than
merely detect trends in the data.

We adopt a Bayesian approach, relying on the hidden Markov model to account
for the inherent dependence in the intensity ratios. Posterior inferences are made
about gains and losses in copy number. Localized amplifications (associated with
oncogene mutations) and deletions (associated with mutations of tumor suppres-
sors) are identified using posterior probabilities. Global trends such as extended
regions of altered copy number are detected. Since the posterior distribution is
analytically intractable, we implement a Metropolis-within-Gibbs algorithm for
efficient simulation-based inference. Publicly available data on pancreatic adeno-
carcinoma, glioblastoma multiforme and breast cancer are analyzed, and compar-
isons are made with some widely-used algorithms to illustrate the reliability and
success of the technique.
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Abstract

Genomic alterations have been linked to the development and progression of cancer. The technique

of Comparative Genomic Hybridization (CGH) yields data consisting of fluorescence intensity ratios

of test and reference DNA samples. The intensity ratios provide information about the number

of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens

and normalization errors necessitate the use of statistics for learning about the genomic alterations

from array-CGH data. As increasing amounts of array CGH data become available, there is a

growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a

need for algorithms that can identify gains and losses in the number of copies based on statistical

considerations, rather than merely detect trends in the data.

We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent

dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy

number. Localized amplifications (associated with oncogene mutations) and deletions (associated

with mutations of tumor suppressors) are identified using posterior probabilities. Global trends

such as extended regions of altered copy number are detected. Since the posterior distribution is

analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-

based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme and

breast cancer are analyzed, and comparisons are made with some widely-used algorithms to illustrate

the reliability and success of the technique.

1 INTRODUCTION

The genomics of cancer. The normal DNA of human females has two copies of the entire genomic code

because there are 23 matched pairs of chromosomes. Human males have 22 matched pairs of non-sex (or auto-

somal) chromosomes and an unmatched pair of sex chromosomes. Hence the copy number of normal male DNA

is two for the autosomal chromosomes. The ends of the chromosomes are called the telomeres. The telomere
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corresponding to the short arm of a chromosome is called the p telomere, while the one corresponding to the long

arm is called the q telomere.

Human cells can be classified into somatic (or body) cells and germ cells. Barring a few exceptions like red

blood cells, muscle cells and brain cells, the life cycle of somatic cells consists of a period of growth followed

by cell division through mitosis. Cells must satisfy certain “quality control checks” before they can progress to

a subsequent stage of the cycle. These checks ensure that the cells develop normally, that defects are repaired

and that DNA is correctly copied during mitosis. Two kinds of genes play very important roles in the regulation

procedure: proto-oncogenes and tumor-suppressors. Proto-oncogenes encourage the body cells to grow and divide,

pushing them through the quality control check points. Tumor-suppressors tend to hold the cells back, inhibiting

mitosis when there are cell defects, and signaling the cells to die when their lifespans have ended or when there

are cell defects that cannot be repaired. Further details about the relevant biology for this problem are given in

Pasternak (1999).

Occasionally, proto-oncogenes may mutate into oncogenes. The mutations are propagated to new cells through

mitosis. Oncogenes duplicate themselves through several stages of mitosis so that cells end up with multiple copies

of oncogenes. Oncogenes have a dominant effect on the cell function, causing the cells to divide at a rapid rate and

resulting in the development of tumors. Tumors may also develop due to mutations in tumor-suppressors that

cause them to become non-functional and allow the proto-oncogenes to play a dominant role. Tumor-suppressor

mutations eventually result in the loss of one or both copies of the gene. A deletion is the loss of both copies in

a genomic region.

A single mutation is usually not enough to trigger cancer. A number of complex biological events occur before

a person acquires the phenotype of cancer. An example, but not a necessary condition, is the ability of tumor cells

to metastasize making the tumor malignant. Not all the cells in a tumor specimen necessarily exhibit the same

kind of genomic alteration. Additionally, there is a lot of variation among individuals. As the disease progresses,

there are larger-scale changes in tumor DNA because of the breakdown of quality control in cell division.

Copy number changes, or alterations in the number of copies in tumor DNA, are therefore closely associated

with the development and progression of cancer. A number of methods are currently available to detect genomic

changes. Karyotyping views the chromosomes through a microscope during the metaphase stage of the cell cycle.

This technique covers the entire genome but has low resolution because only the changes spanning large regions
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of the DNA, such as missing chromosomes, monosomies (loss of single copies) and trisomies (gain of additional

copies of chromosomes) can be detected by this method. At the other end of the spectrum, molecular genetic

studies are capable of single base pair resolution. Since the genome consists of approximately 3 billion bases, this

technique cannot be used in the absence of prior knowledge to identify the DNA regions associated with a disease.

Researchers must rely on other methods to first identify candidate loci involved in the disease pathogenesis.

Array-CGH. Comparative Genomic Hybridization (CGH) has emerged as a powerful technique because it

combines relatively high resolution of a few million bases with the ability to span the entire genome in a single

experiment (Kallioniemi et al. 1992). Fragmented DNA from a test sample is labeled with fluorochrome (typically

Cy3) and is mixed with normal DNA that is identically fragmented but labeled using a different (typically Cy5).

The normal and tumor DNA fragments are simultaneously hybridized to a normal metaphase spread. Image

analysis yields data consisting of fluorescence intensity ratios along the genomes of the test and reference DNA

samples. The more recently developed array-CGH techniques (Solinas-Toldo et al., 1997; Pinkel et al., 1998;

Snijders et al., 2001; Pinkel and Albertson, 2005) hybridize the DNA fragments or “clones” to mapped array

fragments rather than metaphase chromosomes. CGH arrays that rely on BAC (bacterial artificial chromosome)

clones have a resolution of the order of 1 Mb (one million base pairs). Oligonucleotide and cDNA arrays (Pollack

et al., 1999; Brennan et al., 2004) provide a higher resolution of 50–100 kb (1 kb = thousand base pairs). As with

all microarray-based techniques, the fluorescence intensity ratios have to be normalized as part of a pre-processing

step to correct for non-biological sources of error such as intensity fluctuations, background noise and fabrication

artifacts (Brown et al., 2001; McLachlan et al., 2004). Refer to Khojasteh et al. (2005) for a comparison of

different normalization methods for array-CGH data.

Array-CGH intensity ratios (equivalently, their transformation on the log2 scale) provide much useful infor-

mation about genome-wide changes in copy number. Imagine an idealized situation where all the cells in a tumor

specimen have identical genomic alterations and are uncontaminated by cells from surrounding normal tissue. In

the absence of normalization or measurement errors, the normal (or copy-neutral) clones would correspond to a

log2 ratio of zero because the normal and tumor DNA fragments both have two copies. The log-intensity ratios

of single copy losses would be exactly log2 1/2 = −1 and those of single copy gains would be log2 3/2 = 0.58.

Multiple copy gains or amplifications, often associated with oncogenes, would correspond to data belonging to

the sequence: log2 4/2, log2 5/2, . . .. Losses of both copies or deletions, often associated with tumor-suppressor
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mutations, would correspond to a value of −∞. In this hypothetical situation, the genomic alterations can be

easily deduced from the data without statistical techniques.

For comparison with the above idealized scenario, Figure 1 plots the normalized log2 ratios of breast cancer

specimen S0034 analyzed by Snijders et al. (2001). The data are available from Web Table J at http://www.nature.com

/ng/journal/v29/n3/suppinfo/ng754 S1.html Although relatively clean by array-CGH standards, the data

highlight some of the issues that necessitate the use of statistical methods. For example, even after accounting

for measurement error, the log2 ratios differ considerably from the theoretical values. In particular, the numbers

are typically shrunk toward zero. This is caused by several factors including contamination of the tumor sample

with normal cells. There is a more subtle effect of the zero varying slightly from chromosome to chromosome due

to normalization errors. There is also an obvious dependence among the intensity ratios of neighboring clones.

As increasing amounts of array-CGH data become available, there is a need for automated algorithms for

characterizing the genomic profiles. A number of well-known methods strive to fulfil this need. For example,

Pollack et al. (2002) propose a threshold method for identifying clones having extreme value of emissions. Cheng

et al. (2003) discuss a regression-based test for altered copy numbers. Hodgson et al. (2001) use a normal

mixture of three components to model the observed emissions. Olshen et al. (2004) develop a variation of

binary segmentation to identify chromosomal segments with altered copy numbers. Fridlyand et al. (2004) apply

an unsupervised hidden Markov model. Wang et al. (2005) build hierarchical clustering-style trees along each

chromosome and select interesting clusters by controlling the False Discovery Rate. Jong et al. (2003) propose a

break point model to segment the clones. Eilers and de Menezes (2005) apply quantile smoothing method, while

Huang et al. (2005) use penalized least squares regression and Hsu et al. (2005) apply wavelets. Hupe et al. (2004)

rely on a likelihood function with adaptively determined weights using a smoothed version of the data. Picard

et al. (2005) use a penalized likelihood function. Myers et al. (2004) apply an edge filter to detect the segments.

Lingjaerde et al. (2005) perform smoothing using the signs of neighboring data values, inspecting the width and

magnitude of the segments to detect regions of copy number change.

A recent paper by Lai et al. (2005) makes comparisons of some of the above algorithms using real and

simulated data. In evaluating the algorithms, Lai and co-authors comment that “a particularly helpful feature for

future implementations of some algorithms would be to estimate the statistical significance of the detected copy

number changes and then rank them accordingly.” They point out that only two algorithms (those of Wang et
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al., 2005 and Lingjaerde et al., 2005) can actually detect copy number changes based on statistical significance.

Both methods rely on false discovery rates.

In Section 2, we develop a statistical framework for detecting copy number gains and losses, identifying

localized amplifications and deletions, and partitioning tumor DNA into regions of relatively stable copy number.

We rely on the hidden Markov model (HMM) to account for the dependence between neighboring clones. We

adopt a Bayesian approach, assuming informative priors for the model parameters that are flexible enough to allow

Bayesian learning. Since the posterior distribution is analytically intractable, Section 3 develops a framework for

simulation-based posterior inference. In Section 4, we demonstrate the success of the technique using publicly

available data. Section 4.4 compares the proposed Bayesian HMM with some of the existing algorithms using the

framework of Lai et al.̃(2005).

Unlike the HMM of Fridlyand et al., which is purely a segmentation method, the likelihood function of Section

2.1 allows the use of objective decision rules based on posterior probabilities to detect copy number alterations.

Unlike most of the existing array-CGH methods, the biologist is not required to subjectively decide, after the

algorithm’s output has been obtained, plausible thresholds for identifying changes in the number of DNA copies.

The proposed framework allows the use of the simple classification scheme of Section 3.1, which is motivated

by biological considerations and which makes the algorithm output easy to interpret. Section 5 uses simulation

studies to compare the Bayesian HMM with alternative techniques for analyzing array-CGH data.

2 BAYESIAN HIDDEN MARKOV MODEL

2.1 Likelihood function

Since the propensity for genomic alterations varies across the chromosomes, we allow each chromosome to have a

distinct set of parameters. For a given chromosome, let L1, . . . , Ln represent the mapped clones or DNA fragments

arranged from the p-telomere to the q-telomere. Let Yk denote the normalized log2 ratio observed at clone Lk.

As mentioned earlier, the aim of the analysis is to learn about genome-wide changes in copy number from

the data. A key innovation that directly achieves this goal is a latent variable called the copy number state sk

associated with each clone Lk, where k = 1, . . . , n. The variable sk takes values in the set {1, 2, 3, 4}. The value

sk = 1 represents a copy number loss at Lk that could be either a single copy loss or a deletion; sk = 2 represents
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the copy-neutral state; sk = 3 represents a single copy gain; sk = 4 represents an amplification (i.e. multiple

copy gain) at Lk. The parameters of interest that summarize the copy number changes on the chromosome are

s1, . . . , sn.

For j = 1, . . . , 4, we define µj as the expected log2 ratio of all clones Lk for which sk = j. For example,

the expected log2 ratio of single copy gains is µ3. The theoretical value of µ3 is 0.58, but as mentioned earlier,

the actual value could be different for many reasons, e.g. contamination of tumor samples with normal tissue.

Although the µj ’s are unknown parameters, the biological interpretation associated with the state space of sk

allows us to assume the ordering: µ1 < µ2 < µ3 < µ4. Conditional on the copy number states, the normalized

log2 ratios are assumed to be distributed as Yk
indep∼ N(µsk

, σ2
sk

), where k = 1, . . . , n.

We model the dependence of the neighboring clones using a hidden Markov model (Rabiner, 1989; MacDonald

and Zuchchini, 1997; Durbin et al., 1998). For any m indices for which 1 ≤ k1 ≤ . . . ≤ km ≤ n, a Markov

model for the copy number states assumes that Pr
[
skm | s1, . . . , skm−1

]
= Pr

[
skm | skm−1

]
. The hidden Markov

model (HMM) assumes that the conditional probabilities of neighboring clones is Pr [sk+1 | sk] = asksk+1 where

A = ((aij)) is the matrix of stationary transition probabilities. We assume that the elements of A are strictly

positive. The hidden Markov process is then aperiodic, irreducible and its four states are positive recurrent.

Transition matrix A has a unique stationary distribution, denoted by πA = (πA(1), πA(2), πA(3), πA(4)), where

πA(i) is strictly positive for state i = 1, · · · , 4 (Karlin and Taylor, 1981). We also assume that s1, the copy

number state of the first clone, is distributed as πA. Together with the hidden Markov assumption, this uniquely

determines the joint likelihood of a given sequence s1, . . . , sn. The chromosome-specific hyperparameters are

therefore the transition probability matrix A, means {µ1, µ2, µ3, µ4} and error variances {σ2
1 , σ2

2 , σ2
3 , σ2

4}.

2.2 Priors

The Bayesian approach assumes priors for all unknown parameters. Since the copy number states defined in

Section 2.1 have a well-defined meaning, this facilitates the use of informative priors based on our knowledge of

array-CGH data. For example, we know that the mean µ1 of copy number losses cannot be a positive number,

although individual log2 ratios that correspond to copy number losses could be. Independent priors are assumed

for the chromosome-specific parameters. This results in independent posteriors for all the chromosomes. The

marginal posterior [s1, . . . , sn | Y1, . . . , Yn] is of interest. As with many Bayesian applications, the marginal
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posterior cannot be analytically computed and so simulation-based techniques are necessary. While analyzing

HMMs, a key issue is label switching (refer to Scott, 2002 for a discussion). This is an identifiability issue where

the likelihood is invariant under arbitrary permutations of the state space labels, resulting in inefficient exploration

of the posterior by simulation. The likelihood of Section 2.1 avoids this problem by assuming order constraints.

Specifically, the constraint µ1 < µ2 < µ3 < µ4 is violated on permutating the labels.

Let X ∼ F · I(c < X < d) imply that X has the distribution F restricted to the interval (c, d) with

the density suitably rescaled to make it a random variable. For the mean µ1 corresponding to copy number

losses, we assume the prior µ1 ∼ N
(−1, τ2

1

) · I (µ1 < −ε) where ε > 0. We comment below on the choice of ε.

For the copy-neutral state, we assume µ2 ∼ N
(
0, τ2

2

) · I (−ε < µ2 < ε). For single copy gains, we assume µ3 ∼

N
(
0.58, τ2

3

)·I (ε < µ3 < 0.58), and for multiple copy gains, we assume [µ4 | µ3, σ3] ∼ N
(
1, τ2

4

)·I (µ4 > µ3 + 3σ3).

These informative priors were chosen as follows. For µ2 and µ3, the means of the untruncated distributions are

set equal to the theoretical values for pure samples. For µ1 (µ4), the untruncated distribution is centered at

the theoretical value for a loss (gain) of one copy. The lower endpoint of the support of µ4 is chosen to be

3σ3 units away from µ3 so that a small fraction of single copy gains are erroneously classified as multiple copy

gains. The results are not sensitive to choices of τ1, τ2 and τ3 belonging to the interval [0.5, 2]. Setting τ4 ≤ 2

guarantees sufficiently high prior probability to large values of µ4 associated with high-level amplifications. We

set τ1 = τ2 = τ3 = 1 and set τ4 = 2 in Sections 4 and 5.

Unlike a threshold-based approach for detecting changes in copy number, the constant ε determines the

boundaries for the means µj rather than for the log2 ratios. These boundaries are not the same as threshold

levels for detecting gains and losses. In fact, our assumptions allow positive log-intensity ratios for copy number

losses, especially with large measurement errors, although µ1 itself cannot exceed −ε. In our analyses of actual

array-CGH data, we have found the results to be robust to choices of ε in the range [0.05, 0.15]. This is shown by

verified in Section 5.2. For all our analyses, we set ε = 0.1.

For the measurement error precisions, we assume the priors σ−2
j ∼ gamma (1, 1) · I(σ−2

j > 6) for j = 1, 2, 3,

and σ−2
4 ∼ gamma (1, 1). For the states j = 1, 2, 3, the assumption σ−2

j > 6 is equivalent to σj < 0.41. This

assumption is mild because typical array-CGH data suggest much lower within-group variability for the states 1,

2 and 3. The support of σ−2
4 is not bounded below because state 4 is an aggregation of multiple copy gains which

usually results in a higher within-group variability (i.e. smaller precision).
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We assume independent Dirichlet priors on <4 for the rows of the stochastic matrix A, since this distribution

has the set of all probability 4-tuples as its support. That is, with ai denoting the ith row of matrix A, we assume

that ai
indep∼ D4 (θi1, θi2, θi3, θi4) where i = 1, · · · , 4 and the constants {θij} are positive. As shown in Section

5.2, the results are not affected by the choices of θij that are small in comparison to n. We fixed the θij ’s equal

to one in Sections 4 and 5.

The above priors are found to work consistently well for array-CGH data. They are flexible enough to allow

Bayesian learning and information sharing across the clones. We find in Sections 4 and 5 that the posterior

inference is reliable and sensitive to the characteristics of the data.

3 CHARACTERIZING ARRAY-CGH PROFILES

We rely on simulation-based methods for inference because the posterior distribution cannot be investigated

by mathematical analysis or numerical integration. An efficient Metropolis-within-Gibbs algorithm for generating

posterior samples of the parameters is given in the Appendix. The algorithm generates the parameters in blocks

conditional on the remaining parameters and the data. The transition matrix A is generated using an independent-

proposal Metropolis-Hastings algorithm. The copy number states are simulated by a stochastic version of the

forward-backward algorithm (Chib, 1996; Robert, Ryden and Titterington, 1999) that mixes faster than a Gibbs

sampler (refer to Scott, 2002). The remaining model parameters are generated by Gibbs sampling. The algorithm

has been implemented using R and will soon be publicly available.

3.1 Classification scheme

The generated copy number states represent draws from the marginal posterior of interest, [s1, . . . , sn | Y1, . . . , Yn].

For each MCMC draw, the generated states are inspected and, possibly non-exclusively, classified as focal aber-

rations, transition points, amplifications, outliers and whole chromosomal changes. In the following discussion,

altered state refers to a copy number state which is different from 2:

1. Focal aberrations represent localized regions of altered copy number: (i) a single clone not belonging

to a telomere having an altered state different from its neighbors, (ii) two clones belonging to a telomere

sharing a common altered state different from that of the third clone from the telomere, or (iii) two or

9

Hosted by The Berkeley Electronic Press



more adjacent clones mapped within 5 Mb having a common altered state different from their neighbors.

Focal aberrations are used to detect transition points and outliers (defined below).

2. Transition points can be regarded as a property of the n − 1 inter-clonal spaces on the chromosome.

An inter-clonal space is a transition point if it borders on two large regions associated with different copy

number states. In contrast, focal aberrations represent small regions of altered copy number. A transition

point is an inter-clonal space for which both of these conditions hold: (i) it is not adjacent to a telomere,

and (ii) after excluding all focal aberrations on the chromosome, the neighboring clones on both sides of

the inter-clonal space have different copy number states.

Transition points are different from segments. Transition points differ from “segments” defined by the

CBS algorithm of Olshen et al. (2004), an outstanding algorithm (refer to Lai et al., 2005) for analyzing

array-CGH data. The CBS algorithm segments clones regardless of their spacing on the chromosome. A

transition point, on the other hand, is associated with large-scale regions of gains and losses, and is declared

only when the width of the altered region exceeds 5 Mb. For example, five contiguous clones that are highly

amplified would generally be identified as a segment by the CBS algorithm (although there are examples

in Section 4 where the procedure ignores obvious amplification and deletions to control the false positive

rate). In contrast, if these five clones are located within 5 Mb, the Bayesian HMM algorithm labels them

as focal aberrations rather than identify them as a separate region.

3. High-level amplifications. A clone for which sk = 4.

4. Outliers. An outlier is a focal aberration satisfying: (i) sk = 1 and (Yk − µ1)/σ1 < −2, or (ii) sk = 3

and (Yk − µ3)/σ3 > 2. Type-(i) outliers could be associated with mutations on tumor suppressors and are

labeled as deletions. Type-(ii) outliers may be associated with oncogene mutations.

5. Whole chromosomal changes. The entire chromosome is identified as gained or lost if all the clones

except the focal aberrations have altered copy number states.

3.2 Posterior inference

For a given clone, the classification scheme of Section 3.1 results in a Bernoulli variable for each MCMC iterate

and type of genomic alteration. For example, the kth clone is classified as a focal aberration (“1”) for some
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MCMC draws and as “0” for the remaining draws. The probability that this Bernoulli variable equals one is the

posterior probability that clone Lk is a focal aberration. For a sufficiently large number of MCMC samples, the

average of these binary outcomes is a simulation-consistent estimate of the posterior probability. Therefore, we

declare clone Lk to be a focal aberration if this posterior probability exceeds 0.5, which is the Bayes decision rule

corresponding to a 0-1 loss function (Berger, 1985, pp. 164). A similar method is used to identify deletions. Whole

chromosomal changes correspond to a common Bernoulli outcome for all n clones. A chromosomal alteration is

declared if the posterior probability of a chromosome-wide alteration exceeds 0.5.

High-level amplifications could be detected by a similar method. However, a more efficient method is available

as a by-product of the forward-backward algorithm, which computes the conditional probability that sk = 4 given

the hyperparameters and the data. Averaging these conditional probabilities over the MCMC sample gives a

simulation-consistent estimate of the posterior probability that clone Lk is a high-level amplification.

We have noticed a potential problem with identifying transition points based on the marginal posterior

probabilities of the inter-clonal gaps. We recommend detecting the change points based on the configuration of

change points having the highest joint posterior probability. Formally, let us write the configuration of change

points as ν(s) = (g1, . . . , gn−1), where gj equals one if the jth inter-clonal gap is a change point, and equals zero

otherwise. Notice that the mapping from s to ν(s) is many-one. The posterior distribution of ν(s) is maximized

to compute ν∗, the configuration having the highest posterior probability. A simulation-consistent estimate of ν∗

is computed using the MCMC sample and is used to detect the transition points.

Summary tables and plots that are of direct interest to the biologist can now be constructed. Large-scale and

localized regions of copy number change identified by the Bayesian HMM algorithm can be important tools for

identifying candidate genes associated with cancer.

4 ILLUSTRATIONS

4.1 Pancreatic adenocarcinoma data

Pancreatic adenocarcinoma is among the most lethal of cancers. The disease is characterized by a high level

of genomic instability from the earliest stages of the disease (Gisselsson et al., 2000 and 2001; van Heek et al.,

2002). Genomic changes identified in the progression of the disease include early-stage mutations in the oncogene
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KRAS and later-stage losses of the tumor supressors p16INK4A, p53 and SMAD4 (Bardeesy and DePinho, 2002).

Using a variety of techniques ranging from karyotype analyses, CGH and loss of heterozygosity mapping, frequent

gains and losses have been mapped to regions on chromosomes 3–13, 17, 18, 21 and 22 (Johansson et al., 1992;

Solinas-Toldo et al., 1996; Mahlamaki et al., 1997 and 2002; Seymour et al., 1994, among many others).

Aguirre et al. (2004) studied the array CGH profiles of 24 pancreatic adenocarcinoma cell lines and 13 primary

tumor specimens. In that paper, the profiles were individually analyzed using the CBS algorithm of Olshen et

al. (2004), which segments the data and computes the within-segment means but does not detect gains or losses.

The CBS algorithm was first run on the unnormalized log2 ratios to obtain the distribution of the within-segment

means. The tallest mode of the distribution was subtracted from the data to compute the normalized log2 ratios,

which are available at http://genomic.dfci.harvard.edu/array cgh.htm. Setting thresholds in an ad-hoc

manner, Aguirre et al. (2004) and declared normalized log2 ratios greater than 0.13 in magnitude as copy number

changes (gains or losses), greater than 0.52 as high-level amplifications, and less than −0.58 as deletions. They

also defined objective criteria for comparing the copy number alterations of individual array-CGH profiles. These

criteria were applied to analyze the 37 tumor samples and to identify 54 frequently altered minimal common

regions (MCRs) associated with pancreatic adenocarcinoma. In a subsequent study, candidate genes located

within the MCRs were confirmed by the analysis of expression profiles.

We applied the Bayesian HMM algorithm to analyze these data and made comparisons with the CBS proce-

dure. The complete set of results are presented in the supplementary materials. Throughout, the Bayesian HMM

is found to perform reliably and compare favorably with the CBS procedure. We discuss a few examples here.

Our primary reference for the MCRs associated with pancreatic cancer is Aguirre et al. (2004).

The upper left panel of Figure 2 displays the result for chromosome 8 of specimen 30. The green horizontal

lines represent the within-segment means computed by the CBS algorithm. The vertical lines correspond to the

transition points identified by the Bayesian HMM. We find that both algorithms picked up the overall trend

in the data. However, while the end-user (often a biologist with relatively little statistical training) decides

whether or not the CBS algorithm’s within-segment means correspond to copy number changes, the Bayesian

HMM automatically identified the first region as primarily copy-neutral and the second region as consisting of

mainly single-copy gains.

In the upper right panel of Figure 2, the CBS procedure declared the first set of high intensity ratios on
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chromosome 12 of specimen 6 as two separate segments. This is because the CBS procedure identifies trends in

the data. The Bayesian HMM, on the other hand, is motivated from the perspective of copy number change.

It declared these clones as high-level amplifications and therefore as a single region. The next set of clones

having lower log2 ratios were identified as focal aberrations because they are localized changes less than 2 Mb

in width. The two amplified regions detected by the Bayesian HMM correspond to the two minimal common

regions (MCRs) on chromosome 12 associated with copy number gains (see Table 1 of Aguirre et al.) The first

MCR contains the KRAS2 gene, point mutations of which occur in more than 75% of pancreatic cancer cases

(Almoguera et al., 1988). The CBS algorithm failed to detect the second MCR.

The bottom left panel of Figure 2 displays the profile for chromosome 17 of specimen 13. The region from

17p13.3 to 17q11.1 (10.36 Mb to 12.8 Mb) contains the tumor supressors p53 and MKK4. Mutations on the

gene p53 are found in at least 50% of pancreatic adenocarcinoma cases (Caldas et al., 1994). The single probe

corresponding to this region was easily detected by the Bayesian HMM as a deletion. In contrast, the CBS

algorithm effectively declared the entire chromosome as copy-neutral.

The bottom right panel presents the array-CGH profile of chromosome 18 of specimen 2. The Bayesian HMM

algorithm detected an outlier associated with a copy number loss around 48 Mb. The outlier corresponds to

the SMAD4 tumor suppressor gene located at 18q21, a mutation on which is associated with pancreatic cancer

(Bardeesy and DePinho, 2002). Aguirre and co-authors mention that the CBS procedure completely missed the

well-established association with the SMAD4 gene, even though it was clearly visible in several specimens of the

data set.

The CBS procedure often ignores obvious single-probe aberrations to control the False Discovery Rate. Such

errors can be misleading, because subsequent gene validation involves experimental techniques that are much

more expensive than CGH. For this reason, single-probe aberrations that are frequently observed across tumor

specimens provide one of the most cost-effective avenues for further research about the underlying causes of cancer.

There are many other instances of the differences between the CBS and Bayesian HMM algorithms. For example,

the MCR from 68.27 to 68.85 Mb on chromosome 12 maps to highly amplified clones in 34 out of 37 specimens

(see the supplementary materials). In every case, the Bayesian HMM declared them as high-level amplifications,

but the CBS procedure detected only the amplification in specimen 8. The Bayesian HMM also outperformed

the CBS algorithm in detecting the mutation on gene FEZ1 in specimen 26, and of the genes OZF and AKT2 in
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specimen 6.

The results demonstrate that the Bayesian HMM is effective not only in detecting global trends, but also

highly localized changes in copy number. This feature is important in identifying genes associated with cancer

(e.g. SMAD4 in the foregoing example) on which the point mutations do not become large-scale genomic changes

as the disease progresses. The algorithm has potential for use as a diagnostic tool during the early stages of cancer.

4.2 Corriel cell lines

The Corriel cell line is widely regarded a “gold standard” data set and analyzed in Snijders et al. (2001).

The data, normalized to the genome-wide median log2 ratio, are available in Web Tables E–H at http://

www.nature.com/ng/ journal/v29/ n3/suppinfo/ng754 S1.html. A table of known karyotypes is presented

in Web Table I on the same website. We compared these cytogenically mapped alterations with the profiles

produced by our algorithm and verified that the results match in all the specimens. For example, for cell line

GM05296, Web Table I reports a trisomy at 10q21–10q24 and a monosomy at 11p12–11p13. The array-CGH

profile for chromosomes 10 and 11 of cell line GM05296 are displayed in Figure 3. The regions of gain and loss

identified by the Bayesian HMM match the karyotypes presented in Web Table I. We omit the results for the

other cell lines for brevity.

4.3 Breast cancer data

A useful feature of the Bayesian approach is that posterior probability plots can be created for the different kinds

of genomic alterations. These plots provide a “bird’s eye view” of the copy number alterations. They are useful

in identifying genomic regions associated with the disease. The procedure can be easily automated for a large

number of genomic profiles. To illustrate, we analyzed the breast cancer data given in Snijders et al. (2001).

The data were normalized by centering to the genome-wide median log2 ratios. The posterior probability plot

for specimen S1514 is displayed in Figure 4. There are several high-level amplifications on chromosome 20 and

deletions on chromosomes 13 and 14. Consistent with Figure 4, a region of high-level amplifications is seen on

the array-CGH profile of chromosome 20 in Figure 5.

14

http://biostats.bepress.com/harvardbiostat/paper24



4.4 Comparisons with some existing methods

Using the Glioblastoma Multiforme data of Bredel el al. (2005), Lai et al. (2005) evaluated 11 array-CGH algo-

rithms based on segment detection as well as smoothing. The data was normalized using the Limma package

(Smyth, 2004) and are available at http://www.chip.org/∼ppark/Supplements/ Bioinformatics05b.html.

Graphical summaries of the results are presented in that paper as Figures 3 and 4. Sample GBM31 (Figure 3 of

Lai et al., 2005) exhibits low signal-to-noise ratio. There is a large region of losses on chromosome 13. Lai and

co-authors found that the algorithms CGHseg of Picard et al. (2005), GLAD of Hupe et al. (2004), CBS of Olshen

et al. (2004) and GA of Jong et al. (2003) segmented chromosome 13 into two regions and detected the region of

copy number loss. Smoothing-based methods like lowess, the quantreg algorithm of Eilers and de Menezes (2005)

and wavelet algorithm of Hsu et al. (2005) were sensitive to local trends but were less effective in detecting global

trends. The HMM algorithm of Fridlyand et al. (2004) did not find any segments.

We followed an identical evaluation procedure to compare the Bayesian HMM with the afore-mentioned

methods. Figure 6 displays the result for sample GBM31. The partitioned regions are the same as those identified

by the CGHseg, CBS, GLAD and GA algorithms. Local changes in the number of copies, identical to those

collectively detected by the GLAD and CGHseg algorithms, are marked as high-level amplifications (N) and

deletions (H).

The second data set investigated in Lai et al. (2005) is a fragment of chromosome 7 from sample GBM29

(refer to Figure 4 of that paper). The data show some high log2 intensity ratios around the EGFR locus.

The algorithms CGHseg, quantreg, GLAD, wavelet and GA separated the data into three distinct amplification

regions. The algorithms CBS, CLAC and ACE (Lingjaerde et al., 2005) detected two distinct regions instead of

three. ChARM (Myers et al., 2004) grouped all the high log2 intensity ratios into a single region. The HMM

algorithm of Fridlyand et al. (2004) did not detect the amplifications.

Figure 7 displays the results for the Bayesian HMM algorithm. The high log2 ratios are identified as high-

level amplifications (N). Unlike the algorithms investigated in Lai et al. (2005), the single clone having a highly

negative value is detected by the algorithm and marked as a deletion. The amplifications are identified as focal

aberrations, rather than as separate regions, because both clusters are less than 5 Mb in width.

We find that the Bayesian HMM algorithm combines the strength of the smoothing-based algorithms in

detecting local features with the strength of the segmentation-based methods in detecting global trends. The
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reliability of the procedure is especially impressive with noisy data.

5 SIMULATION STUDIES

5.1 Comparison with non-Bayesian HMM and CBS algorithms

The frequentist analysis matching the foregoing Bayesian procedure estimates the hyperparameters of the likeli-

hood using the Baum-Welch EM algorithm, iteratively incrementing the likelihood until relative changes in the

hyperparameters become sufficiently small. Conditional on the estimated hyperparameters, the Viterbi algorithm

then computes the aposteriori most likely sequence of states s1, . . . , sn. This technique is not identical as the non-

Bayesian HMM of Fridlyand et al. (2004). In particular, the latter technique does not assign biological meanings

to the latent states and cannot directly detect changes in copy number.

To find the global maximum in the 20-dimensional hyperparameter space, the EM algorithm has to be run

from several starting points. For typical array-CGH data, each run often requires hundreds of iterations to

converge. Because of this, the computational costs associated with the frequentist and Bayesian analyses are

often comparable. When R is used as the computing platform, the CBS algorithm is considerably faster than

either method. However, all three approaches are computationally feasible and have negligible costs compared to

the many months of experimental effort required to process the tumor specimens.

The non-Bayesian array-CGH profiles for the Section 4.1 data are presented in the supplementary materials.

A detailed comparison with the Bayesian profiles reveals that the two procedures often gave similar results.

However, there are many profiles for which the answers are noticeably different. Examples of such chromosome–

specimen pairs include (5, 2), (5, 7), (12, 10), (7, 13), (15, 13), (5, 19), (18, 31) and (19, 34). Two of the profiles are

displayed in Figure 9. The non-Bayesian hyperparameter estimates correspond to a greater value of the likelihood

function than the Bayes estimates in all these examples. However, the Bayesian profiles look more reasonable.

We performed a simulation study of the differences between the methods. For each of the afore-mentioned

chromosome–specimen pairs, we obtained signal-to-noise ratios that were typical of array-CGH data by setting the

hyperparameters equal to the Bayes estimates. We then generated the underlying copy number states and data

for n = 200 clones. The Bayesian and non-Bayesian HMMs were applied to infer the latent copy number states.

The procedure was independently replicated 100 times. Table 1 displays the percentage of correctly labeled copy
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number states for the two methods. The Bayesian HMM outperforms the non-Bayesian HMM in all the cases.

Using eight randomly selected chromosome–specimen pairs, but an otherwise identical simulation strategy,

Table 2 compares the CBS algorithm with the Bayesian and non-Bayesian HMMs. The method used by Aguirre

et al. (2004) was applied to declare copy number gains and losses for the CBS algorithm. The Bayesian HMM

outperforms the CBS algorithm, often substantially, in seven cases. The difference is inconclusive in one case.

In six out of eight cases, the Bayesian HMM outperforms the non-Bayesian HMM, with the difference being

inconclusive in one case. These results provide significant evidence in favor of the Bayesian HMM.

The Bayesian HMM is found to benefit from the informative priors of Section 2.2. Prior knowledge about

array-CGH helps the procedure distinguish between competing sets of hyperparameter values that are almost

equally plausible under the likelihood but not under the posterior. For example, consider the frequently encoun-

tered situation where there are very few log2 ratios are assigned to one or more copy number state. In such a

situation, the likelihood alone may be unable to distinguish between the matching non-Bayesian HMM and a

model having fewer than four states. This results in likelihood-based estimates where one or more of the µj ’s are

approximately equal. Because of the well-defined meanings assigned to the four states of the HMM, the sequence

of copy number states assigned by the non-Bayesian model often seem incorrect in such cases. The Bayesian

approach is more robust in such situations. The informative priors prevent even states having very few probes

and log2 ratios having a considerable amount of overlap due to high measurement error from being classified as

a common state. For some data, a model having fewer states than four may be better-fitting than the proposed

model. However, the states might not have a simple biological interpretation in terms of copy number change.

The detection of copy number gains and losses, which is one of the main goals of the analysis, may also be less

straightforward.

Several examples in Section 4.1 suggest that the Bayesian HMM is better than the CBS algorithm in detecting

amplifications that are localized to a small number of probes. This advantage is of practical importance, because

single-probe amplifications frequently occurring across specimens are often the focus of future, more expensive

gene validation studies. To investigate the difference by a controlled simulation, we independently generated 25

data sets using the following procedure: (i) Fifty out of n = 200 clones were randomly chosen to be amplifications

having a mean signal of 2 on the log2 scale. (ii) The remaining clones were assumed to be copy-neutral with a

mean signal of zero. (iii) The data were generated by adding Gaussian noise with a standard deviation of 0.1 to

17

Hosted by The Berkeley Electronic Press



these means.

The high signal-to-noise ratio (SNR) of 20 is atypical of array-CGH data. The percentage of amplified probes

(25%) is also very high. However, in spite of these features that simplify the detection of copy number change,

the CBS algorithm failed to detect any amplification. The Bayesian HMM on the other hand, correctly identified

all the amplifications. Unsurprisingly for such a high SNR, the false discovery rate of the Bayesian HMM was

zero for all the data sets and the average true discovery rate exceeded 99%.

5.2 Prior sensitivity

The preceding analyses assumed that ε = 0.1 for the supports of the µj ’s (refer to Section 2.2) and that θij = 1 for

the priors of the transition matrix rows, where i = 1, . . . , 4 and j = 1, . . . , 4. To alleviate concerns that the results

are sensitive to the choice of ε, we generated 100 data sets with n = 500 clones each. For each data set, the true

means µ1, . . . , µ4 were uniformly generated from narrow intervals centered respectively at −0.5, 0, 0.5 and 1. The

standard deviations σj were uniformly generated in the interval [0.2, 0.25] which is typical of noisy array-CGH

data. The true transition matrices were simulated as follows. For row 2 corresponding to the copy-neutral state,

the off-diagonal elements were uniformly generated in the intervals [0.01, 0.02]; for the remaining rows, the off-

diagonal elements were uniformly generated in the intervals [0.02, 0.05]. These nine elements uniquely determined

the row-stochastic transition matrix. For k = 1, . . . , 500, the copy number states sk were then generated and the

data were obtained by adding Gaussian noise to the means µsk
.

For ε belonging to a grid of points in the interval [0.05, 0.15], the Bayesian HMM was used to analyze each

simulated data set. The posterior expectations of the means µj , the true discovery rates and false discovery rates

were found to be robust to the choice of ε. Figures 8 plots the estimates of µ1, . . . , µ4 for three randomly chosen

data sets as ε varies. The flatness of the lines provides evidence of the lack of sensitivity to ε ∈ [0.05, 0.15]. The

results were also found to be robust to {θij}i,j that were small compared to n.

6 CONCLUSIONS

We propose a Bayesian hierarchical approach relying on a hidden Markov model for analyzing array-CGH

data. The informative priors allow Bayesian learning from the data. One of the strengths of the fully automated

approach is the ability to detect copy number changes like gains, losses, amplifications, outliers and transition
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points based on the posterior. Summaries of the array-CGH profiles are generated. The profiles can then be

compared across individuals to identify the genomic alterations involved in the disease pathogenesis.

The examples of Section 4 demonstrate the reliability of the Bayesian HMM. The sensitivity of the algorithm

to individual probes often allows us to find candidate genes that are missed by other algorithms. The performance

of the algorithm is impressive not only for the “gold-standard” Corriel cell lines but also for the Glioblastoma

data set of Bredel el al. (2005) having high measurement error. Combined with the results presented in Lai et al.

(2005), the latter analysis reveals a very favorable comparison with outstanding algorithms like those of Picard

et al. (2005) and Olshen et al. (2004). Section 5 compares the Bayesian HMM and alternative algorithms using

controlled simulations. The results confirm the accuracy of the approach.

A strength of the Bayesian HMM is that it relies on essentially no tuning parameters. Unlike many other

algorithms (see Lai et al., 2005), the user is only required to input the normalized log2 ratios. This is a convenient

feature for the end-user with little or no statistical training. In all our analyses, we have used the default

parameterizations specified in Section 2.2. Certain features of the Bayesian HMM may be changed to produce

a different result. Possible features include the constant ε in the prior specification of the means µj and the

constants θij in the transition matrix priors in Section 2.2. However, the simulation study in Section 5.2 and

our own experience with the algorithm indicate that the results are robust to variations in these quantities. The

informative priors for the means µj substantially influence the results, as we find in Section 5.1 on comparing

the Bayesian HMM with the matching non-Bayesian model. However, the order constraints on the µj ’s and the

biological meanings assigned to sk ∈ {1, 2, 3, 4} allow the specification of priors that work consistently well across

different data sets. For this reason, we recommend using the default parameterizations of the Bayesian HMM for

most array-CGH applications.
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APPENDIX

An MCMC algorithm

The following algorithm is independently run for each chromosome to generate an MCMC sample for the chro-

mosomal parameters. We group the model parameters into four blocks, namely, B1 = A, B2 = (s1, . . . , sn),
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B3 = (µ1, µ3, µ4), and B4 =
(
σ2, σ2

4

)
. The starting values of the parameters are generated from the priors. The

algorithm iteratively generates each of the four blocks conditional on the remaining blocks and the data. Let

B
(v−1)
1 , . . . , B

(v−1)
4 denote the values of the blocks at the (v − 1)st iteration. In the next iteration, the blocks are

generated as follows:

Updating block B1. The transition matrix is generated using a Metropolis-Hastings step because the nor-

malizing constant of the full conditional cannot be computed in closed form. This step makes independent

proposals from a distribution that closely approximates the full conditional of the transition matrix. The pro-

posal is accepted or rejected with a probability that compensates for the approximation. Typically, most of the

Metropolis-Hastings proposals are accepted. Using the the copy number states generated at iteration v − 1, we

compute the number of transitions from state i to state j, denoted by u
(v)
ij =

∑n−1
k=1 I

(
s
(v−1)
k = i, s

(v−1)
k+1 = j

)
,

where i, j = 1, . . . , 4. We generate a proposal C for the transition matrix from the distributions [ci | Y , B−1] ∼

D3

(
1 + u

(v)
i1 , 1 + u

(v)
i2 , 1 + u

(v)
i3 , 1 + u

(v)
i4

)
, where row i = 1, . . . , 4, and B−1 denotes the blocks, {B2, B3, B4}. The

proposal ignores the marginal distribution of state s1 and so it differs from the full conditional of the transition

matrix. To compensate for this, we accept the proposal (in other words, set A(v)=C) with probability β, where

β = min
{

1, πC(s(v−1)
1 )/πA(v−1)(s(v−1)

1 )
}

, and otherwise reject the proposal (in other words, set A(v)=A(v−1)).

As defined earlier, πD(s) denotes the probability of state s under the stationary distribution of a given transition

matrix D.

Updating block B2. The copy number states are generated by a stochastic version of the forward-backward

algorithm. We compute the distribution [sn | B−2, Y1, . . . , Yn] at the beginning of the backward step. We generate

sn from this distribution. The backward step is continued to compute and generate a draw the distribution [sn−1 |

sn, B−2, Y1, . . . , Yn]. The sequence of computing and generating a draw from [sk | sk+1, B−2, Y1, . . . , Yn] is iterated

for k = n− 2 down to k = 1. This produces a sample from the joint distribution [s1, . . . , sn | B−2, Y1, . . . , Yn].

Updating block B3. For s = 1, . . . , 4, let δ0s be the center of the untruncated normal distribution in the prior

specification of µs. Compute the sums ns =
∑n

k=1 I
(
s
(v)
k = s

)
, averages Ȳs = 1

ns

∑n
k=1 Yk ·I(s(v)

k = s), precisions

θ2
s = τ−2

s +
(
σ

(v−1)
s /

√
ns

)−2

and weighted means γs = 1
θ2

s

[
δ0s · τ−2

s + Ȳs ·
(

σ(v−1)
s√

ns

)−2
]

. For s = 1, . . . , 4, generate
[
µ

(v)
s | Y,B−3

]
∼ N

(
γs, θ−2

s

) · Is, where the intervals Is denotes the support of the µs (see prior specification).
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Figure 1: Normalized copy number ratios of a comparison of DNA from cell strain S0034 (Snijders et

al., 2001) with normal DNA. The BACs are ordered by position in the genome beginning at 1p and

ending at Xq. The vertical bars indicate borders between chromosomes.

Updating block B4. For j = 1, . . . , 4, compute nj =
∑n

k=1 I
(
s
(v)
k = j

)
and Vj =

∑n
k=1

(
Yk − µ

(v)
sk

)2

·

I
(
s
(v)
k = j

)
. Generate

[
σ

(v)
j | Y, B−4

]
∼

[
gamma

(
1 +

nj

2
, ε +

Vj

2

)]−0.5

.

25

Hosted by The Berkeley Electronic Press



0 20 40 60 80 100 140

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample 30 Chromosome 8

MB

Lo
g2

 r
at

io

0 20 40 60 80 100

−
3

−
1

0
1

2
3

Sample 6 Chromosome 12

MB
Lo

g2
 r

at
io

0 20 40 60 80

−
3

−
2

−
1

0
1

2
3

Sample 13 Chromosome 17

MB

Lo
g2

 r
at

io

0 20 40 60 80

−
2

−
1

0
1

2

Sample 2 Chromosome 18

MB

Lo
g2

 r
at

io

Figure 2: Array-CGH profiles of some pancreatic cancer specimens. In each panel, the clonal distance

in Mb from the p telomere has been plotted on the x-axis. High-level amplifications and outliers

are respectively indicated by N and H. The broken vertical lines represent transition points. For

comparison, the green lines display the segment means computed by the CBS algorithm. See Section

4.1 for further discussion.
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Figure 3: Array-CGH profile of chromosomes 10 and 11 of Corriel cell strain GM05296. The x-axis

displays the clonal distance from the p telomere in Mb. The broken vertical lines represent transition

points.
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Figure 4: Posterior probabilities of genomic alterations for specimen S1514. The solid line represents

high-level amplifications while the dashed line corresponds to deletions. The numbers on the horizontal

axis represent the q telomere of the chromosomes. The BACs are ordered by position in the genome

beginning at 1p and ending at Xq.
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Figure 5: Array-CGH profile of chromosome 20 of S1514. The x-axis represents clonal distance in Mb

from the p telomere. The broken vertical lines represent transition points. High-level amplifications are

shown using N.
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Figure 6: Array-CGH profile of chromosome 13 of GBM31. The clonal distance in Mb from the p

telomere is plotted on the x-axis. High-level amplifications and outliers are respectively indicated using

N and H. The broken vertical line represents a transition point.
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Figure 7: Partial array-CGH profile of chromosome 7 of GBM29. The clonal distance in Mb from the p

telomere is plotted on the x-axis. High-level amplifications and outliers are respectively indicated using

N and H.
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Figure 8: Estimated means Ê[µj |Y ] for three independently generated data sets (shown by solid, dashed

and dotted lines) plotted against ε.
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Figure 9: Examples from Section 4.1 where the Bayesian and non-Bayesian array-CGH profiles are

different. The upper panels correspond to chromosome 5 of sample 7 and the lower panels correspond

to chromosome 19 of sample 34. The clonal distance in Mb from the p telomere has been plotted on

the x-axis. High-level amplifications and outliers are indicated using N and H respectively. The broken

vertical lines represents transition points.
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Source Bayesian HMM Non-Bayesian HMM
Chromosome Specimen % accuracy SE % accuracy SE

5 2 94.81 0.789 86.89 1.685
5 7 91.99 1.188 81.44 1.942
12 10 95.22 0.390 89.08 1.378
7 13 92.41 1.019 80.09 2.333
15 13 92.42 1.322 82.55 1.649
5 19 88.02 2.189 73.09 2.873
18 31 84.95 2.512 71.17 2.448
19 34 88.13 2.000 72.10 2.124

Table 1: Estimated percentages of correctly discovered copy number states for the Bayesian and non-

Bayesian methods, along with the estimated standard errors. The estimates were based on 100 inde-

pendently generated data sets. The first two columns specify the chromosome and specimen numbers

of the Section 4.1 data set whose the estimated hyperparameters were used to generate the data. See

the text for an explanation.

Source Bayesian HMM Non-Bayesian HMM CBS
Chromosome Specimen % accuracy SE % accuracy SE % accuracy SE

13 33 94.38 1.203 72.01 2.634 67.72 3.512
19 4 88.20 1.129 87.94 0.534 75.36 1.726
14 1 87.35 1.893 76.47 1.834 86.70 0.426
12 17 80.84 1.736 76.11 1.453 44.12 1.791
1 24 40.64 2.512 54.31 1.460 35.37 2.470
3 35 96.03 0.239 72.06 2.509 92.43 0.488
23 12 74.31 3.417 65.2 2.420 58.08 3.311
15 34 90.79 2.164 68.3 2.798 55.22 4.175

Table 2: Estimated percentages of correctly discovered copy number states for the Bayesian and non-

Bayesian methods, along with the estimated standard errors. The estimates were based on 100 inde-

pendently generated data sets. The first two columns specify the chromosome and specimen numbers

of the Section 4.1 data set whose the estimated hyperparameters were used to generate the data. See

the text for an explanation.
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