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ABSTRACT
Introduction African cities, particularly Abidjan and 
Johannesburg, face challenges of rapid urban growth, 
informality and strained health services, compounded 
by increasing temperatures due to climate change. This 
study aims to understand the complexities of heat- related 
health impacts in these cities. The objectives are: (1) 
mapping intraurban heat risk and exposure using health, 
socioeconomic, climate and satellite imagery data; (2) 
creating a stratified heat–health forecast model to predict 
adverse health outcomes; and (3) establishing an early 
warning system for timely heatwave alerts. The ultimate 
goal is to foster climate- resilient African cities, protecting 
disproportionately affected populations from heat hazards.
Methods and analysis The research will acquire health- 
related datasets from eligible adult clinical trials or cohort 
studies conducted in Johannesburg and Abidjan between 
2000 and 2022. Additional data will be collected, including 
socioeconomic, climate datasets and satellite imagery. 
These resources will aid in mapping heat hazards and 
quantifying heat–health exposure, the extent of elevated 
risk and morbidity. Outcomes will be determined using 
advanced data analysis methods, including statistical 
evaluation, machine learning and deep learning 
techniques.
Ethics and dissemination The study has been 
approved by the Wits Human Research Ethics Committee 
(reference no: 220606). Data management will follow 
approved procedures. The results will be disseminated 
through workshops, community forums, conferences and 
publications. Data deposition and curation plans will be 
established in line with ethical and safety considerations.

INTRODUCTION
The HEat and HEalth African Transdisci-
plinary Center (HE2AT Center), a consor-
tium spanning South Africa, Côte d'Ivoire, 
Zimbabwe and the USA, embodies global 
collaboration. Funded through the US NIH 
‘Data Science for Health Discovery and Inno-
vation in Africa’ (DS- I Africa) programme, 

the centre amalgamates diverse expertise in 
pursuit of comprehensive urban climate resil-
ience strategies.1

This study emerges from the HE²AT Center 
as a research project aiming to interrogate 
the intricate relationships of urban spaces to 
heat–health impacts, emphasising the need 
for nuanced responses. It highlights the 
disproportionate risks borne by residents of 
impoverished areas, the elderly, those with 
pre- existing health conditions, children, 
outdoor workers and inhabitants of densely 
populated or informal settlements—groups 
for whom the urban heat island (UHI) effect 
is a daily lived reality.2–4

Research on heat- related health risks in 
Africa, including seminal works in Abidjan and 
Johannesburg, reveals a critical need for local-
ised interventions. Ncongwane et al, Pasquini 
et al and Wright et al lay the groundwork, 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ Our study collects comprehensive data from clini-
cal, socioeconomic and remote sensing sources, 
ensuring a multidimensional analysis of urban heat 
exposure.

 ⇒ It leverages state- of- the- art machine learning tech-
niques for modelling of heat–health outcomes, ad-
vancing the field of environmental health research.

 ⇒ A cross- disciplinary approach enriches the interpre-
tation of data, linking climate science with public 
health implications.

 ⇒ Presents a risk of sampling bias due to secondary 
data utilisation, which may influence the represen-
tativeness of findings.

 ⇒ The spatial resolution of datasets, particularly those 
capturing microclimatic urban variations, may limit 
the granularity of exposure assessments, affecting 
the precision in capturing heat stress metrics.
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explaining the socioeconomic and infrastructural factors 
that exacerbate heat–health vulnerabilities.5–7

Enhanced night- time heatwaves over African urban 
clusters, as investigated by Igun et al, underline the 
growing threat of heatwaves exacerbated by UHI effects.8 
Furthermore, an assessment of the health- related impacts 
of UHIs in Douala metropolis, Cameroon, by Enete et 
al provides insight into the localised health burdens of 
urban heat.9

Building on this foundation, our study seeks to 
contribute to this burgeoning field by creating an effec-
tive, data- driven urban heat health early warning system 
(EWS) tailored to the unique sociodemographic makeup 
of African metropolises. Integrating insights from recent 
studies, including Rohat et al’s ‘human exposure to 
dangerous heat in African cities’ (2019), which assesses 
human exposure to extreme heat conditions,10 our 
research aims to offer a holistic understanding and inno-
vative solutions to mitigate these escalating health risks.

The study is structured around three primary objectives 
(see figure 1): (1) mapping intraurban heat risks, (2) 
developing a heat–health outcome forecast model and 
(3) establishing an EWS that empowers both policymakers 
and the public with actionable insights for pre- emptive 
action. These are inspired by the robust frameworks 
and pioneering methods established by Thiaw et aland 

Chapman et al, who have significantly advanced the field 
of heat–health EWSs in the African context.11 12

Our approach is grounded in the Intergovernmental 
Panel on Climate Change (IPCC)’s hazard–vulnerabili-
ty–exposure paradigm, as evidenced by the key concepts 
and definitions in heat exposure studies (table 1). 
This alignment ensures consistency with the globally 
recognised framework and reinforces our research’s 
applicability to the broader discourse on climate change 
and public health. The terms ‘exposure,’ ‘vulnerability,’ 
‘hazard’ and ‘adaptive capacity’ are defined in table 1, 
providing a clear conceptual framework for our study.

By integrating state- of- the- art machine learning tech-
niques with comprehensive socioeconomic and geospa-
tial data as well as clinical trial/cohort health datasets, 
this study endeavours to provide stakeholders with a gran-
ular understanding of heat–health dynamics, ultimately 
aiding in the formulation of targeted interventions that 
can bolster the resilience of urban populations amidst the 
escalating challenges posed by global warming.

STUDY SETTING
Abidjan, located in Côte d'Ivoire, and Johannesburg, 
in South Africa, are cities experiencing rapid urbanisa-
tion—defined as the population shift from rural to urban 

Figure 1 Development stages of the early warning system (EWS) for heat- related health risks. This illustrates the structured 
four- step process to establish an EWS for heat- related health risks. Step 1 focuses on defining vulnerability and heat hazards, 
which includes quantifying social determinants of health (SDOH) and environmental factors (Aim 1a), and developing geospatial 
heat hazard maps (Aim 1b). Step 2 integrates various data sources to define a heat–health hazard model. This step involves 
developing a model that combines biomedical data, vulnerability and heat hazard data from clinical trials and mortality data, 
including data from RP1 cohorts/trials and other Data Science for Health Discovery and Innovation in Africa (DS- I Africa) Hubs 
(Aim 2). Step 3 is divided into app codesign for the Department of Health EWS and workplace EWS, including engaging multiple 
stakeholders to select risk temperature thresholds and commercialisation strategies (Aim 3a). Step 4 involves implementing and 
testing the EWS, which entails monitoring the app’s performance through metrics such as the number of downloads, usage 
during heatwaves, symptom reports and user feedback (Aim 3b). Each step outlines specific objectives and strategies, aligning 
with the broader aim of reducing heat- related morbidity and mortality by leveraging advanced data integration and analysis, 
stakeholder collaboration and targeted communication.
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areas along with the corresponding change in land use—
compounded with stress on health services and increasing 
temperatures owing to climate change.13–15 In Johannes-
burg, a diverse metropolis of 6.1 million people, HIV/
AIDS, tuberculosis and non- communicable diseases pose 
significant challenges. These are intensified by urban-
isation, socioeconomic disparities and broader social 
determinants of health (SDOH) such as education and 
employment.15–17 Areas with less vegetation and higher 
levels of poverty face greater heat impacts, a reflection 
of the ‘Green Apartheid’ that characterises the city’s 
urban forest and its accessibility.18 Similarly, in Abidjan, 
an economic centre with a population of 6.3 million, 
diseases such as malaria and non- communicable diseases 
are driven by urbanisation and wider SDOH.19–21

Both cities present UHIs, a phenomenon where urban 
areas exhibit higher temperatures than their rural 
surroundings due to human activities. While Johan-
nesburg’s extensive urban forest offers some respite, 
Abidjan’s Cocody district is increasingly experiencing the 
UHI effect due to accelerated urbanisation and land use 
modifications. These evolving urban landscapes under-
score the requirement for holistic health strategies in 
both cities.22

Abidjan and Johannesburg were selected for this study 
due to their unique characteristics and data availability. 
As cities with high population density and experiencing 
rapid urbanisation, Abidjan and Johannesburg represent 
the challenges facing many African cities in the context 
of climate change and heat- related health impacts. Addi-
tionally, these cities can access critical detailed health data 
from clinical trials and cohort studies. Both cities, there-
fore, enable a focused examination of heat- related health 
risks in urban African settings, potentially informing 
broader regional strategies for climate adaptation and 
public health.

METHODS
The study plans to combine datasets from many sources 
encompassing various fields—health, climate, environ-
ment and SDOH as summarised in table 2. This multi-
faceted approach will aid in building more thorough and 
locally pertinent models of heat- related health outcomes. 
These models will consider the diverse range of day- 
to- day realities and experiences encountered by inhab-
itants within each city, capturing how they impact their 
health in the context of heat.23 In this study, ‘lived experi-
ences’ refers to individuals’ unique daily conditions, chal-
lenges and opportunities shaped by their specific SDOH 
and environmental circumstances. Additionally, multiple 
datasets within a particular domain (eg, multiple health 
trial datasets) both increase the statistical sample sizes 
for more robust modelling and enable a rigorous quan-
tification of key uncertainties (eg, multiple climate data-
sets).24 25

Socioeconomic and environmental data
This research will collect socioeconomic geospatial data, 
which includes information on household economic 
conditions, service availability and residential character-
istics—referring to factors such as housing type, construc-
tion materials used and the quality and condition of 
living spaces.26 The data will include national census 
records, specialised household and demographic surveys 
and encompass details about individual and household 
income, education, occupation, living circumstances 
and accessibility to healthcare, education and transpor-
tation services.27 For Johannesburg, the Gauteng City- 
Region Observatory datasets will provide key variables for 
the study. In the case of Abidjan, equivalent data will be 
sourced from the National Institute of Statistics of Côte 
d'Ivoire, which provides comprehensive socioeconomic 
and demographic data.27 28

Table 1 Key concepts and definitions in heat exposure studies aligned with the Intergovernmental Panel on Climate Change 
(IPCC) framework

Concept Description

Exposure The presence of people, livelihoods, species or ecosystems, environmental functions, services, 
resources, infrastructure, or economic, social, or cultural assets in places that heat could adversely 
affect.

Vulnerability The propensity or predisposition to be adversely affected encompasses various concepts and 
elements, including sensitivity or susceptibility to harm and lack of capacity to cope and adapt to heat.

Hazard The potential occurrence of a natural or human- induced physical event or trend that may cause loss of 
life, injury or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, 
service provision, ecosystems and environmental resources.

Adaptive Capacity The ability of a population to adjust to heat is linked to socioeconomic factors, resource access, 
institutional support and social determinants of health and is often diminished in urban poor due to 
limited access to cooling resources and health services.

Risk There is a potential for adverse consequences when hazards interact with vulnerable and exposed 
elements. It is often represented as the probability of occurrence of hazardous events or trends 
multiplied by the impacts if these events or trends occur. Risk results from the interaction of 
vulnerability, exposure and hazard. In the context of heat, it refers to the likelihood and severity of 
negative outcomes due to heat exposure, considering the vulnerability and adaptive capacity of the 
affected population or system.
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Remote sensing data will be retrieved from satellite 
sensors, including optical images and indicators of phys-
ical aspects such as land surface temperature (LST), 
soil moisture, vegetation condition and land use and 
coverage.29 Where available, researchers will amalgamate 
data from current sensor networks with urban land use 
and building density details to create a model of urban 
land use heat.26 27 Although Landsat and Moderate 
Resolution Imaging Spectroradiometer (MODIS) data 
primarily measure LST, statistical models can estimate 
air temperature from remotely sensed LST. However, 
it should be noted that LST may not fully capture heat 
stress experienced in urban areas. In this study, appro-
priate statistical models will be used to indirectly retrieve 
air temperature from the LST data provided by Landsat 
and MODIS, and where possible, we will incorporate 
humidity data to provide a more comprehensive assess-
ment of heat stress.30

Climate- associated data will be sourced from open data 
repositories, such as the Copernicus Climate Data Store 
(CDS) and Earth System Grid Federation (ESGF), offering 
observational- based datasets, historical reanalyses and 
climate simulations. While the CDS and ESGF provide 
valuable climate data, their spatial resolution may not be 
sufficient to distinguish different parts within the city.31 
To address this limitation, we will employ downscaling 
techniques to enhance the spatial detail of our geospatial 
climate data. Specifically, we will explore dynamic down-
scaling with high- resolution climate models such as the 
Weather Research and Forecasting and UrbClim urban 
climate models. These models offer detailed results on 

heat stress for cities, allowing for a more precise analysis 
of intraurban heat variations and can improve the accu-
racy of our heat risk assessments for Johannesburg and 
Abidjan.32 33

Additionally, the IBM Physical Analytics Integrated 
Data Repository and Services (PAIRS) platform will be 
employed as a source of climate data, including data from 
climate models, weather stations and satellite observa-
tions.34 To further enhance our analysis, we will integrate 
datasets from the European Space Agency’s WorldCover 
portal and the Global Human Settlement Layer, which 
provide detailed land cover and human settlement 
data, respectively.35 36 This will provide a comprehensive 
snapshot of Africa’s past and future climate conditions, 
including the frequency, duration and intensity of heat 
waves.

Health trials and cohort data
In this study, we use cohort data due to the limited avail-
ability and generally poor quality of administrative health 
data in Abidjan and Johannesburg. These data also 
commonly contain limited variables on characteristics and 
health outcomes. Clinical trial data offer a robust alterna-
tive, providing detailed health outcomes and covariates, 
essential for minimising biases in heat–health studies. 
These studies (primarily HIV prevention and COVID- 
19) typically involve many participants (hundreds to 
thousands) and are conducted over an extended period 
(multiple years) within a specific geographical area. They 
provide detailed longitudinal individual health data for 
building statistical models relating time- varying predictors 

Table 2 Summary of data sources for each objective

Objective Data sources

1. Mapping intraurban heat risk and exposure  ► Socioeconomic data (census, surveys, GCRO datasets)
 ► Geospatial data (land use, building density, OpenStreetMaps)
 ► Climate data (WRF, UrbClim models, downscaled CDS and 
ESGF data, IBM- PAIRS platform)

2. Creating a stratified heat–health outcome forecast model  ► Health data with clinical variables (eg, vital signs, heat- related 
illness indicators)

 ► High- resolution urban temperature hazard maps (Landsat, 
MODIS data with statistical models for air temperature 
estimation)

 ► Remote sensing data (satellite imagery, land surface 
temperature, soil moisture, vegetation condition)

 ► Socioeconomic and environmental data (household economic 
conditions, service availability, residential characteristics)

3. Establishing an early warning system  ► Integrated health and socioeconomic data
 ► Geospatial heat hazard maps
 ► Health outcome forecast model outputs
 ► COVID- 19 incidence and mortality rates (for pandemic period 
adjustment)

 ► Risk profile data (demographic groups, health conditions, 
locations, socioeconomic statuses)

CDS, Copernicus Climate Data Store; ESGF, Earth System Grid Federation; GCRO, Gauteng City- Region Observatory; MODIS, Moderate 
Resolution Imaging Spectroradiometer; PAIRS, Physical Analytics Integrated Data Repository and Services; WRF, Weather Research and 
Forecasting.
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to health outcomes. This approach aligns with findings 
from Gasparrini et al and others, who used diverse data 
sources to analyse heat mortality associations.37 38 Poten-
tial outcomes of interest include cardiovascular events, 
respiratory issues, kidney conditions and mental health 
impacts, which may be exacerbated by heat exposure in 
urban environments.39

More specifically, the health cohort data integrated 
into the study will be identified based on the availability 
of three classes of variables within each study:
1. Clinical variables: including vital signs (eg, body tem-

perature, blood pressure, and heart rate), indicators 
of heat- related illness (eg, headache, dizziness, fatigue, 
and nausea), and details on pre- existing medical con-
ditions (eg, hypertension, diabetes, and cardiovascular 
disease) that could increase the risk of heat- related ill-
ness, and documentation of adverse events potentially 
related to heat exposure.

2. Laboratory variables: including blood tests (eg, electro-
lyte levels, liver and kidney function tests), markers of 
inflammation and oxidative stress, HIV tests, including 
viral load and CD4 count, and COVID- 19 test results.

3. Demographic and SDOH variables: involving basic de-
mographic information (eg, age, sex, race and ethnic-
ity) (We acknowledge the complex interplay between 
race, ethnicity and health outcomes, recognising them 
as social constructs rather than biological determi-
nants. We explicitly consider systemic racism and socio-
economic factors in our analysis, informed by Chokshi 
et al (2022), O'Reilly and Jones, to ensure a nuanced 
interpretation of demographic data), socioeconom-
ic factors (eg, education, income and occupation) 
and data on housing and urban infrastructure (eg, 
air conditioning availability, ventilation and shading) 
that could influence heat exposure and the degree to 
which individuals and households are at an increased 
risk.40–42

In response to the shifts in mortality and morbidity 
during the 2020–2022 COVID- 19 pandemic, we will 
analyse data separately for prepandemic, pandemic and 
postpandemic periods. Additionally, we will include 
COVID- 19- related variables as covariates in our models to 
control for the pandemic’s impact on health outcomes.

Integration of datasets
Our study relies on integrating socioeconomic, clinical, 
environmental and geospatial data to understand heat’s 
impact on health in African cities. We will cross- reference 
health trial participant geolocations with socioeconomic 
and environmental data, applying spatial jittering to 
protect privacy while retaining spatial trends. Addition-
ally, we will incorporate remote sensing and climate data 
to examine how environmental changes affect health 
outcomes related to heat exposure.

In pursuit of our research objective to explore the 
correlation between heat and health within the urban 
environments of Johannesburg and Abidjan, we have 
developed a comprehensive strategy to systematically 

identify relevant clinical trials and cohort studies. This 
strategy involves searching key databases using a combi-
nation of Medical Subject Headings and free- text terms, 
including study location, diseases of interest, the number 
of participants, study type, collected data and the time-
frame of study conduction. Our targeted search terms are 
designed to retrieve studies that provide robust clinical, 
laboratory and demographic data relevant to the impact 
of heat on health outcomes.

To identify potentially relevant studies, a two- step dual 
independent review process will be employed. Initially, 
studies will be screened based on their titles and abstracts. 
Subsequently, potentially eligible studies will be procured 
in their full- text format for a more thorough assessment 
against our predefined selection criteria (table 3).

Health researchers will evaluate the quality of the 
selected studies through a peer- reviewed tracking tool to 
ensure their scientific soundness and reliability. The data 
will be collated and synthesised, and any discrepancies 
will be addressed and resolved through consensus discus-
sions among team members.

The following criteria outlined in table 3 will be used 
to select research projects to be considered for inclusion 
in our study.

Access to relevant trials and cohort data is crucial for 
this project’s success. In the event of data unavailability or 
sharing restrictions, we have contingency plans to ensure 
the project’s progression. These include exploring alter-
native data sources such as the National Health Labo-
ratory Service, adjusting the study’s scope and using 
synthetic data if necessary.

Managing bias
Managing potential biases is critical to ensuring our 
study’s integrity and robustness, as outlined in the 
following strategy.

Primarily, our approach will involve carefully selecting 
health data sources, ensuring they meet established 
quality criteria and represent diverse demographic and 
geographic segments within our target cities of Johannes-
burg and Abidjan. This strategy will assist us in avoiding 
selection bias that could skew our findings.43

We will adjust the analysis phase when potential 
biases are identified. Specific statistical methods such as 
propensity score matching, inverse probability weighting 

Table 3 Eligibility criteria for research project 2

Criteria Description

Study type Cohort or trial with at least 200 adult 
participants

Study location Johannesburg or Abidjan, or both cities

Study design Randomised or non- randomised clinical 
trial, or observational or interventional 
cohort with prospectively collected data

Data collected At least two of the clinical or lab variables

Ethics approval Local ethics approvals obtained
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and stratification will be applied. These methods help 
to control for confounding variables and reduce bias 
in observational studies, increasing the validity of our 
outcomes.44

Objective 1: assessing the degree of increased risk within 
cities
The methodology for quantifying intraurban vulnerability 
to heat in Johannesburg employs dimension reduction 
techniques such as principal component analysis to iden-
tify critical variables impacting heat vulnerability.45 These 
identified components are aggregated using a scientifi-
cally derived weighting system, which reflects their relative 
importance and contribution to heat vulnerability. Aggre-
gating these weighted components forms a composite 
vulnerability index, effectively quantifying socioeconomic 
and environmental susceptibility to heat.46

The creation of this index serves as a crucial step 
towards synthesising a unified ‘heat risk index’ that 
consolidates multiple vulnerability factors into a single, 
actionable metric. This index underpins our spatial 
multicriteria analysis, which uses a weighted overlay 
approach to produce a vulnerability map. This map crit-
ically informs policy interventions and resource alloca-
tion, guiding targeted measures to mitigate heat risks in 
the most vulnerable urban zones.45–49

Objective 2: creating a geographically and demographically 
stratified heat–health outcome forecast model
The second objective of this study is to construct a 
geographically and demographically stratified heat–
health outcome forecast model designed to predict 
adverse health outcomes at varying temperature thresh-
olds for different populations and neighbourhoods.

This involves creating high- resolution urban tempera-
ture hazard maps. We will use remote sensing, statistical 
downscaling and combined modelling to derive near- 
surface air temperatures from Landsat and MODIS 
data.50 While Landsat and MODIS data are not direct 
measures of air temperature, they can be indirectly used 
for air temperature retrieval by applying an appropriate 
statistical model.30

These temperatures will then be validated using weather 
station records and land use maps. The resulting heat 
hazard maps will serve as a critical input for the subse-
quent stages of our machine learning pipeline.

Sample size considerations are integral at this stage 
to ensure precision of study findings, with acceptable 
uncertainty ranges. The selection of adequate sample 
sizes is based on the statistical power required to detect 
significant differences in heat- related health outcomes, 
including across the different geographical and demo-
graphic strata, where possible. This involves detailed 
calculations to ensure that the study has sufficient power 
to validate the predictions made by our heat–health 
models.51

Once generated, the temperature hazard maps will be 
integrated with health datasets. This combined dataset 

will then undergo feature engineering. Feature engi-
neering is a crucial step in machine learning and involves 
selecting and transforming relevant predictors that better 
represent the underlying data patterns.52 The features 
will be derived from the high- resolution temperature 
hazard fields and spatially disaggregated variables from 
the health datasets.

With the features engineered, we will apply various 
standard machine learning models, such as decision 
trees, linear and quantile regression trees, support vector 
machines and logistic regression.53 54 These models are 
chosen for their proven effectiveness in capturing rela-
tionships in complex datasets.

Additionally, we will explore deep recurrent neural 
networks, specifically gated recurrent units and long 
short- term memory networks, due to their ability to 
model temporal dependencies in time series data, essen-
tial for predicting heat- related health outcomes. While 
these models are state- of- the- art in computer science, 
their application in heat–health studies is still emerging, 
as demonstrated in a review of the literature on deep 
learning and ensemble tree- based machine learning 
models.55–66 However, recognising that simpler statis-
tical models may be effective, we plan to build on the 
work by Boudreault et al to compare the performance of 
deep learning models with tree- based approaches and 
nonlinear statistical models in our analysis.57

Throughout this process, we will assess the significance 
of predictors for different populations within the two 
cities. This will allow us to identify varying susceptibility 
levels to heat- induced health conditions based on demo-
graphics and risk factors. Potential health comorbidities 
to be explored include cardiovascular disease, respiratory 
disease, renal disease and HIV status.67

We will use k- fold cross- validation to assess model 
performance and generalisability, train models on a 
designated set and calibrate them with grid or random 
search techniques. Validation will occur on a separate set 
to evaluate generalisation, using metrics such as accuracy, 
precision, recall, F1 score, Mean Squared Error (MSE) 
and Mean Absolute Error (MAE). Special attention will 
be paid to model performance during heatwave periods 
to ensure effectiveness in predicting heat- related health 
outcomes.56

An iterative process of model refinement and valida-
tion will ensure the ongoing relevance of our model and 
enable us to continually improve the model’s perfor-
mance and maintain its applicability to the evolving urban 
heat–health landscape.68

Objective 3: develop an EWS reflective of geospatial and 
individualised risk profiles
The third objective is to develop an EWS that integrates 
geospatial and individualised risk profiles of heat- related 
health impacts in Abidjan and Johannesburg, as depicted 
in figure 2. The EWS aims to provide actionable insights 
to stakeholders, including community health workers, 
clinic managers, urban planners and at- risk individuals. 
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It combines high- resolution heat hazard maps and a fore-
cast model to generate alerts for areas with predicted 
adverse heat–health outcomes. This involves refining 
the forecast model, merging it spatially with heat hazard 
maps and generating timely alerts. The EWS also incorpo-
rates heat hazard predictions for proactive risk manage-
ment, offering tailored guidance for at- risk individuals 
on hydration and activity scheduling. Inspired by the 
Ahmedabad Heat Action Plan, our system emphasises 
interagency coordination and community outreach for 
effective heat risk mitigation.69

While our EWS aims to provide advanced warnings, 
we acknowledge the challenges of long- term fore-
casting. Prediction accuracy depends on data reliability, 
model complexity and weather variability. Continuous 
model refinement is essential for improving predictive 
capabilities.

Patient and public involvement
Public and patient input is integral to our study, especially 
informing our EWS design: this input will guide risk miti-
gation strategies and the development of user- friendly, 
actionable digital tools.

Project timeline
The project is funded to run from 2022 to 2026.

ETHICS AND DISSEMINATION
Ethical approval and protection of human subjects
This research study received ethical approval from both 
the Wits Human Research Ethics Committee in Johannes-
burg (reference number 220606) on 30 June 2022 and the 
National Ethics Committee for Life and Health Sciences, 
Côte d'Ivoire, on 25 November 2022 (reference number 
176- 22/MSHPCMU/CNESVS- kp) and will follow the US 
Department of Health and Human Services regulations 
for the protection of human subjects in research (45 CFR 

46). Our research protocol has two critical ethical and 
legal considerations: informed consent for secondary 
data usage and the protection of potentially identifiable 
information.

Regarding informed consent for secondary data 
usage, we will critically examine the consent procedures 
intended for the original study. If a participant has previ-
ously provided ‘broad consent’, permitting the use of 
their data in future research endeavours, we can share 
their data without additional ethical approvals. Careful 
deliberation is required for participants who have granted 
‘narrow consent’, which restricts data sharing beyond the 
original study purpose. If obtaining renewed consent is 
unfeasible or involves a disproportionate effort, we will 
seek an informed consent waiver from the appropriate 
ethics committee.

To protect potentially identifiable information and 
minimise privacy risks (such as indirect identifiers like 
geographical data in the collected data), we will employ 
several protective measures, including the restriction of 
identifiable data and the non- use of real names or other 
identifying factors. Data will be stored on a password- 
protected server with limited access. Following data 
minimisation principles, we will retain only the data 
essential for achieving our study objectives. When 
applicable, we will anonymise data through geograph-
ical aggregation and jittering, especially when home 
addresses are used.

Finally, we acknowledge the specific legislative require-
ments for using health data in different countries, 
including the laws surrounding the cross- border transfer 
of such data. We will, therefore, require data providers 
to provide a contractual guarantee, as part of the data 
sharing agreement, that all original studies followed 
appropriate informed consent procedures and that the 
sharing of this data complies with all relevant data protec-
tion laws.

Figure 2 Methodological framework for the stratified heat–health outcome forecast model. This illustrates the methodology for 
developing a forecast model that predicts heat- related health outcomes, stratified by demographic and geographic variables. It 
involves harmonising clinical and cohort data with socioeconomic and climatic factors, using machine learning methods such 
as gated recurrent unit (GRU) and long short- term memory (LSTM) for analysis. The outputs include a heat–health outcome 
model, scholarly publications and advocacy tools, which lead to informed public health strategies and potential policy shifts.
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Study oversight
MC, SL and the Hub Administrator direct the HE2AT 
Center. Steering committee members represent six 
South, East and West African institutes. This study is led 
by GC of Ivory Coast’s Peleforo Gon Coulibaly University 
and co- led by CJ of the University of Cape Town.

Dissemination
Prompt dissemination of research findings is crucial to 
the HE2AT Center’s effectiveness. We devised a strategy 
detailing publication types, authors and release dates. 
Our findings will be shared with research and relevant 
working partners to inform various levels of activities and 
update recommendations as needed. Timely dissemina-
tion is vital to the HE2AT Center’s success and mission.

Study status
Ongoing.
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