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Abstract

In the NCI SEER program, the Annual Percent Change (APC) is a useful measure for analyz-
ing change trends in cancer rates. The associated models must be cautiously applied for trends
comparison because when dealing with overlapping regions it is not possible consider independence
between the samples of the regions to be compared (e.g., comparing the cancer mortality change rate
of California with the national level). In this paper a new perspective for understanding the distri-
bution of the overlapping region in the Age-strati�ed Poisson Regression model (Li et al. (2008)) is
introduced. We propose a new procedure to construct Z-test statistics that allows to have in practice
much easier computation and interpretation. In addition we do not restrict ourselves to the maximum
likelihood estimators and a uni�ed methodology is carried out for making statistical inference, valid
for a broad family of estimators, including the minimum chi-square estimators. These estimators are
the so-called minimum power divergence estimators. A Monte Carlo experiment supports the new
proposed methodology and in connection with the claim made in Berkson (1980) for not restricting
always to maximum likelihood estimators, it is shown that there are actually estimators with better
performance. The proposed methods are applied to the SEER cancer mortality rates observed from
1991 to 2006.

Keywords: Minimum power divergence estimators, Age-adjusted cancer rates, Annual percent change
(APC), Trends, Poisson sampling.

1 Introduction

According to the World Health Statistics 2009, published by the World Health Organization, in 2004
the age-standardized mortality rate in high-income countries attributable to cancer deaths was 164 per
100,000. Cancer constituted the second cause of death after cardiovascular disease (its age-standardized
mortality rate was equal to 408 per 100,000). For cancer prevention and control programs, such as the
Surveillance, Epidemiology and End Results (SEER) in the United States (US), it is very important
to rely on statistical tools to capture downward or upward trends of rates associated with each type of
cancer and to measure their intensity accurately. These trends in cancer rates are de�ned within a speci�c
spatial-temporal framework, that is di¤erent geographic regions and time periods are considered.
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Statistical Inference for Comparing Trends in Cancer Rates of Two Overlapping Regions 2

Let rki be the expected value of the cancer rate associated with region k and the i-th time point in
a sequence of ordered Ik time points ftkigIki=1. We shall consider that Region 1 starts with the earliest
time. Each point is representing an equally spaced period of time, for instance a year, and thus without
any loss of generality t1i = i, i = 1; :::; I1 (any change in origin or scale with respect to the time should
not a¤ect a measure of trend). The cancer rates are useful to evaluate either the risk of developing cancer
(cancer incidence rates) or dying from cancer (cancer mortality rates) in a speci�c moment. Statistically,
the trend in cancer rates is an average rate of change per year in a given relatively short period of time
framework when constant change along the time has been assumed. The annual percent change (APC)
is a suitable measure for comparing recent trends associated with age-adjusted expected cancer rates

rki =
JP
j=1

!jrkji; (1)

where J is the number of age-groups, f!jgJj=1 is the age-distribution of the Standard Population (
PJ

j=1!j =

1, !j > 0, j = 1; :::; J) and frkjigJj=1 is the set of expected rates associated with the k-th region
(k = 1; :::;K) at the time-point tki (i = 1; :::; Ik), or the i-th year, in each of the age-groups (j = 1; :::; J).
For example, the SEER Program applies as standard the US population of year 2000 with J = 19
age-groups [0; 1), [1; 5), [5; 10), [10; 15), ..., [80; 85), [85; �). The APC removes di¤erences in scale by
considering the proportion (rk;i+1 � rk;i)=rk;i = rk;i+1=rk;i � 1 under constant change assumption of
the expected rates. Proportionality constant �k = rk2=rk1 = ::: = rkIk=rk;Ik�1 constitutes the base for
de�ning APCk = 100(�k � 1) as a percentage associated with the expected rates frkjigJj=1 of the k-th
region. Since the models that deal with the APCs consider the logarithm of age-adjusted cancer rates,
the previous formula is usually replaced by

APCk = 100(exp(�1k)� 1); (2)

and we would like to make statistical inferences on parameter �1k.
The data that are collected for modeling the APC associated with region k, are:

� dkji, the number of deaths (or incidences) in the k-th region, j-th age-group, at the time-point tki;
� nkji the population at risk in the k-th region, j-th age-group, at the time-point tki;
so that the r.v.s that generate dkji, Dkji, are considered to be mutually independent. In a sampling
framework we can de�ne the empirical age-adjusted cancer rates as Rki =

PJ
j=1!jRkji =

PJ
j=1!j

Dkji

nkji
,

whose expected value is (1). Even though the assumption of �independence�associated withDkji simplify
the process of making statistical inference, it is in practice common to �nd situations in which the two
APCs to be compared, APC1 and APC2, share some data because there is an overlap between the two
regions. For example, in Riddell and Pliska (2008) county-level data on 22 selected cancer sites during
1996-2005 are analyzed, so that the APC of each county is compared with the APC of Oregon state. It
is not possible to assume independence between the data of counties (local level) and their state (global
level). Moreover, the APC comparison between overlapping regions is more complicated when the APCs
are not for the same period of time. For instance in the aforementioned study appeared in Riddell and
Pliska (2008), while Oregon APC was obtained for a period of time �nished in 2005, the US APC was
calculated for a period of time �nished in 2004 because the US data of year 2005 were not available.
Figure 1 represents the most complicated overlapping case for two regions, where f2; 6g � f5; 8g is the
set of points of the �rst region, f5; 9g � f2; 6g is the set the points of the second region, f5; 6g � f5; 6g
is the set of points of the overlapping region (boxed points). Each of the two regions have a portion of
space and period of time not contained in the other one (circular points).
This paper is structured as follows. In Section 2 di¤erent models that establish the relationship

between rki and �1k are revised and the two basic tools for making statistical inferences are presented,
the estimators and test-statistics for equal APCs. Specially the Age-strati�ed Poisson Regression model,
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Figure 1: Two overlapping regions not sharing the same period of time.

introduced for the �rst time in Li et al. (2008), is highlighted as model that arises as an alternative
to improve the previous ones. Based on Power-divergence measures, in Section 3 a family of estimators
that generalize the maximum likelihood estimators (MLEs) are considered for the Age-strati�ed Poisson
Regression model. In addition, a new point of view for computing the covariance between the MLEs
of �1k is introduced inside the framework of this family of estimators and this is key for improving
substantially the Z-statistic for testing the equality of APCs for the Age-strati�ed Poisson Regression
model. In addition, such a methodology provides explicit and interpretable expressions of the covariance
between the estimators of �1k. We evaluate the performance of the new proposed methodology in Section
4 through a simulation study and we also consider an application example to Breast and Thyroid cancer
data from California (CA) and the US population, extracted from the SEER*STAT software of the SEER
Program. Finally in Section 5 some concluding remarks are given.

2 Models associated with the Annual Percent Change (APC)

When non-overlapping regions are taken into account, there are basically two models which allow us to
estimate the APC starting from slightly di¤erent assumptions, the Age-adjusted Cancer Rate Regression
model and Age-strati�ed Poisson Regression model. The main di¤erence between them is based on the
probability distribution of Dkji, number of deaths in the k-th region, j-th age-group, at the time-point
tki: while the Age-adjusted Cancer Rate Regression model assumes normality for logRki having Dkji

the same mean and variance, the Age-strati�ed Poisson Regression model assumes directly a Poisson
random variable (r.v.) for Dkji. The Age-adjusted Cancer Rate Regression model establishes logRki =

�0k + �1ktki + �ki, where �ki
ind� N (0; �2ki) with �2ki =

PJ
j=1!

2
j rkji=nkji =

PJ
j=1!

2
jmkji=n

2
kji under

E[Dkji] = Var[Dkji] = nkjirkji � mkji; (3)

i.e. logRki
ind� N (rki; �2ki) with

rki = exp(�0k) exp(�1ktki): (4)

According to the Age-strati�ed Poisson Regression model (Li et al. 2008), Dkji
ind� P(nkjirkji) and for

rkji it holds

log rkji = �0kj + �1ktki or log
mkji

nkji
= �0kj + �1ktki: (5)

Hosted by The Berkeley Electronic Press
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Observe that the parametrization of both models is essentially the same because the expected age-adjusted
rate rki in terms of (5) is equal to (4), where

exp(�0k) =
JX
j=1

!j exp(�0kj); (6)

and thus for both models it holds

�k =

�
rkIk
rk1

� 1
tkIk

�tk1
= exp(�1k): (7)

The original estimators associated with the Age-adjusted Cancer Rate Regression model and Age-
strati�ed Poisson Regression model are the Weighted Least Square estimators (WLSE) and Maximum
Likelihood estimators (MLE) respectively.
The hypothesis testing for comparing the equality of trends of two regions, H0 : APC1 = APC2, is

according to (2), equivalent to H0 : �11 � �12 = 0. Hence, the Z-statistic for both models can be de�ned
as

Z =
b�11 � b�12qdVar(b�11 � b�12) ; (8)

where b�1k, k = 1; 2 are the estimators of �1k associated with each region,dVar(b�11� b�12) is the estimator
of the variance of b�11� b�12, Var(b�11� b�12). The expression of the variance is Var(b�11� b�12) = �211+�

2
12,

with �21k � Var(b�1k), k = 1; 2, for non-overlapping regions. When overlapping regions are taken into
account the methodology for obtaining the estimators as well as Z-statistic (8) remain being valid, but
the given expression for Var(b�11� b�12) is not longer valid. When the overlapping regions do not share the
same period of time (t11 6= t21 or I1 6= I2), we must consider a new reference point for index i, denoted
by �I, such that t1�I represents the time point within ft1igI1i=1 where the time series associated with the
second region is about to start, i.e. we have ft2igI2i=1 such that t21 = t1�I + 1. In particular, if t1i = i,
i = 1; :::; I1, then t2i = �I + i, i = 1; :::; I1. Observe that ft1igI1i=�I+1, or equivalently ft2ig

I1��I
i=1 , is the time

series associated with the overlapping region (t1i = t2;i��I , i = �I + 1; :::; I1). In Figure 1 I1 = 6, I2 = 5,
�I = 4 and thus we can distinguish three subregions f5; 6g�f1; :::; 4g, f5; 6g�f5; 6g and f5; 6g�f7; :::; 9g.
Without any loss of generality each random variable Dkji can be decomposed into two summands

Dkji = D
(1)
kji +D

(2)
kji (9)

whereD(1)
kji, i 2 f1; :::; Ikg, is the the number of deaths (or incidences) in the k-th region, j-th age-group, at

the time-point tki for the subregion where there is no overlap nor in time nor in space; D
(2)
kji, i 2 f1; :::; Ikg,

is the the number of deaths (or incidences) in the k-th region, j-th age-group, at the time-point tki for
the subregion where there is overlap. Similarly, nkji = n

(1)
kji+ n

(2)
kji and mkji(�k) = m

(1)
kji(�k) +m

(2)
kji(�k).

Observe that when i 2 f�I + 1; :::; I1g, r.v.s D(2)
1ji and D

(2)

2j;i��I are associated with the same overlapping
subregion. Revisiting the example illustrated in Figure 1 it should be remarked that in the y-axis (space)
there are more points than those that represent one realization of r.v.s D(b)

kji in each time point, but
grouping the points belonging to the same vertical line inside the portion marked in dash we are referring
to one realization of them (for instance, for t11 = 1 we have two groups of points associated with D

(1)
1j1,

D
(2)
1j1 respectively, while for t1j5 = t2j1 = 5 we have three groups of points associated with D

(1)
1j5, D

(2)
1j5 or

D
(2)
2j1, D

(1)
2j1). In total there are 20 realizations of r.v.s D

(b)
kji in Figure 1.
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It is important to understand r.v.s D(b)
kji, b 2 f1; 2g as �homogeneous contributors� with respect

to Dkji, i.e. D
(b)
kji � P(m(b)

kji) such that it holds (10), and hence fm
(2)
1ji(�1)g

I1
i=�I+1

and fm(2)
2ji(�2)g

I1��I
i=1

are only equal when �11 = �12 (or equivalently, when �1 = �2). Now we can say thoroughly that
under �11 = �12, the reason why Cov(b�11; b�12) = 0 is not true inside Var(b�11 � b�12) = Var(b�11) +
Var(b�12)� 2Cov(b�11; b�12) for overlapping regions is that fD1jigi=1;:::;I1;j=1;::;J and fD2jigi=1;:::;I2;j=1;::;J
are not independent, because both regions share the same the set of r.v.s fD(2)

1jigi=�I+1;:::;I1;j=1;::;J with
D
(2)
1ji = D

(2)

2j;i��I .

Assumption 1 D
(b)
kji

ind� P(m(b)
kji), b 2 f1; 2g, where for n

(b)
kji > 0 it holds

m
(b)
kji =

n
(b)
kji

nkji
mkji; b 2 f1; 2g: (10)

We accept the case where n(b)kji = 0, for some b 2 f1; 2g, so that D
(b)
kji = 0 a.s. (degenerated r.v.) because

m
(b)
kji = 0.

Regarding the basic models considered in the papers dealing with overlapping regions, the Age-
strati�ed Poisson regression model can be considered as the most realistic one, actually they have been
constructed by successive improvements on the previous models so that initially normality assumptions
were taken as approximations of underlying Poisson r.v.s. In the �rst paper concerned about trend
comparisons across overlapping regions (Li and Tiwari (2008)), it is remarked that �... the derivation of
Cov(b�11; b�12), ...., is nontrivial as it requires a careful consideration of the overlapping of two regions�.
The assumption considered by them (which is based on Pickle and White (1995)) for the overlapping
subregion is similar to the assumption considered herein in the sense that the overlapping subregion
follows the same distribution considered for the whole region. A similar criterion was followed in Li et
al. (2007) and Li et al. (2008).

3 Minimum Power Divergence Estimators for an Age-strati�ed
Poisson Regression Model with Overlapping

Let ms be the expected value of the r.v. of deaths (or incidences) Ds associated with the s-th cell of
a contingency table with Mk � JIk cells (s = 1; :::;Mk). In this section, we consider model (5) in
matrix notation so that the triple indices are uni�ed in a single one by following a lexicographic order.
Hence, the vector of cell means mk(�k) = (m1(�k); :::;mMk

(�k))
T = (mk11(�k); :::;mkJIk(�k))

T of the
multidimensional r.v. of deaths (or incidences) Dk = (D1; :::; DMk

)T = (Dk11; :::; DkJIk)
T , is related to

the vector of parameters �k= (�0k1; :::; �0kJ ; �1k)
T 2 �k = RJ+1 according to

log
�
Diag�1(nk)mk(�k)

�
=Xk�k or mk(�k) = Diag(nk) exp(Xk�k); (11)

where Diag(nk) is a diagonal matrix of individuals at risk nk = (n1; :::; nMk
)T = (nk11; :::; nkJIk)

T

(ns > 0, s = 1; :::;Mk) and

Xk =

0B@1Ik tk
. . .

...
1Ik tk

1CA
JIk�(J+1)

= (IJ 
 1Ik ;1J 
 tk);

Hosted by The Berkeley Electronic Press
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with tk � (tk1; :::; tkIk)T , is a full rank Mk � (J + 1) design matrix. Based on the likelihood function of
a Poisson sample Dk the the kernel of the log-likelihood function is given by

`�k(Dk) =

MkX
s=1

Ds logms(�k)�
MkP
s=1

ms(�k);

and thus the MLE of �k is b�k = arg max
�k2�k

`�k(Dk) :

It is well known that there is a very closed relationship between the likelihood theory and the Kullback-
Leibler divergence measure (Kullback and Leibler (1951)). Focussed on a multinomial contingency table
it is intuitively understandable that a good estimator of the probabilities of the cells should be such
that the discrepancy with respect to the empirical distribution or relative frequencies is small enough.
The oldest discrepancy or distance measure we know is the Kullback divergence measure, actually the
estimator which is built from the Kullback divergence measure is the MLE. By considering the unknown
parameters of a Poisson contingency table, the expected means, rather than probabilities and the observed
frequencies rather than relative frequencies, we are going to show how is it possible to carry out statistical
inference for Poisson models through power divergence measures. According to the Kullback divergence
measure, the discrepancy or distance between the Poisson sample Dk and its vector of means mk(�k) is
given by

dKull(Dk;mk(�k)) =

MkX
s=1

�
Ds log

Ds

ms(�k)
�Ds +ms(�k)

�
: (12)

Observe that dKull(Dk;mk(�k)) = �`�k(Dk) + Ck, where Ck does not depend on parameter �k. Such
a relationship allows us to de�ne the MLE of �k as minimum Kullback divergence estimator

b�k = arg min
�k2�k

dKull(Dk;mk(�k));

and the MLE ofmk(�k) functionally asmk(b�k) due to the invariance property of the MLEs. The power
divergence measures are a family of measures de�ned as

d�(Dk;mk(�k)) =
1

�(1 + �)

MkX
s=1

�
D�+1
s

m�
s (�k)

�Ds(1 + �) + �ms(�k)

�
; � =2 f0;�1g: (13)

such that from each possible value for subscript � 2 R � f0;�1g a di¤erent way to quantify the dis-
crepancy between Dk and mk(�k) arises. In case of � 2 f0;�1g, it is de�ned d�(Dk;mk(�k)) =
lim`!� d`(Dk;mk(�k)), and in this manner the Kullback divergence appears as special case of power
divergence measures when � = 0, d0(Dk;mk(�k)) = dKull(Dk;mk(�k)) and on the other hand case
� = �1 is obtained by changing the order of the arguments for the Kullback divergence measure,
d�1(Dk;mk(�k)) = dKull(mk(�k);Dk).
The estimator of �k obtained on the basis of (13) is the so-called minimum power divergence estimator

(MPDE) and it is de�ned for each value of � 2 R as

b�k;� = arg min
�k2�k

d�(Dk;mk(�k)); (14)

and the MPDE ofmk(�k) functionally asmk(b�k;�) due to the invariance property of the MPDEs. Apart
from the MLE (b�k or b�k;0) there are another estimators that are members of this family of estimators:
minimum modi�ed chi-square estimator, b�k;�2; minimum modi�ed likelihood estimator, b�k;�1; Cressie-
Read estimator, b�k;2=3; minimum chi-square estimator, b�k;1. These estimators are not new for this model

http://biostats.bepress.com/harvardbiostat/paper109
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from the point of view that if we want to make statistical inferences focussed on the MPDE of �11, b�11;�
(the last element of b�k;�, with k = 1), all the underlying theory is exactly the same as the case that

none overlapping is considered, actually it can be developed separately from the MPDE of �12, b�12;�.
Such estimators for non-overlapping regions were studied in Martín and Li (2009) inside a generalized
model that covers (11). It was shown though a simulation study that the minimum chi-square estimator
of �1k, b�1k;1, is more e¢ cient estimator than the MLE (b�1k or b�1k;0), specially when the total ofmk(�k),
Nk �

PJ
j=1

PIk
i=1mkji(�k), is small.

Taking into account that the asymptotic distribution of all MPDEs tend to be �theoretically� the
same, including the MLE, we are going to propose an alternative method for estimating Var(b�11� b�12) =
Var(b�11;0 � b�12;0) that covers a new element for overlapping regions, Cov(b�11; b�12) = Cov(b�11;0; b�12;0).
We postulate that for not very large data sets, the MLEs, b�11;0 � b�12;0, might be likely improved by the
estimation associated with � = 1, b�11;1 � b�12;1, when overlapping regions are considered.
In order to obtain the MPDE of (2), [APCk;� = 100(exp(b�1k;�)�1), we need to compute the estimator

of the parameter of interest by following the next result.

Proposition 2 The MPDE of �1k, b�1k;�, is the solution of the nonlinear equation
f(b�1k;�) = IkX

i=1

tki�ki = 0;

with

�ki =
JX
j=1

mkji(b��) ('kji � 1) ;
mkji(b��) = nkji exp(b�0kj;�) exp(b�1ki;�tki) and 'kji =

 
Dkji

mkji(b��)
!�+1

;

exp(b�0kj;�) =  IkX
s=1

pkjs 
�+1
kjs

! 1
�+1

; j = 1; :::; J;

pkjs =
nkjs exp(b�1k;�tks)PIk
h=1nkjh exp(

b�1k;�tkh) and  kjs =
Dkjs

nkjs exp(b�1k;�tks) :
Our aim is to show that b�11;� � b�12;� is asymptotically Normal and to obtain an explicit expression

of the denominator of the Z-statistic (8) with MPDEs

Z� =
b�11;� � b�12;�qdVar(b�11;� � b�12;�) ; (15)

when the random vectors of observed frequencies of both regions, D1 and D2, share some components
(those belonging to the overlapping subregion). After that we will be able to proceed as usual, since
(15) is approximately standard normal for minfN1; N2g large enough, we can test H0 : APC1 = APC2
(�11 = �12) vs H1 : APC1 6= APC2 (�11 6= �12), so that if the value of jZ�j is greater than the quantile
z1��

2
(i.e., Pr(Z� < z1��

2
) = 1� �

2 ), H0 is rejected with signi�cance level �.
The following result is the key result for estimating the variances and covariance of the estimators of

interest, b�1k;�, k = 1; 2. It allows us to establish a linear relationship between the parameter of interest
and the observed frequencies under Poisson sampling when the expected total mean Nk in each region
(k = 1; 2) is large enough and the way that Nk increases is given in Assumption 3.

Hosted by The Berkeley Electronic Press
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Assumption 3 m�
kji(�

0
k) = mkji(�

0
k)=Nk remains constant as Nk increases, that is mkji(�

0
k) increases

at the same rate as Nk.

Theorem 4 The MPDE of �1k, b�1k;�, k = 1; 2, can be expressed as
b�1k;� � �01k = �21ketTk(�0k)XT

k (Dk �mk(�
0
k)) + o

�


Dk�mk(�
0
k)

Nk




� ;
where superscript 0 is denoting the true and unknown value of a parameter, o is denoting a little o function
for a stochastic sequence (see Appendix in Bishop et al. (1975)) and

�21k =
�etTk(�0k)XT

kDiag(mk(�
0
k))Xk

etk(�0k)��1 =
 

JP
j=1

IkP
i=1

mkji(�
0
k)(tki � etkj(�0k))2

!�1
; (16)

etTk(�0k) = ��etk1(�0k) � � � �etkJ(�0k) 1
�
;

etkj(�0k) = PIk
i=1mkji(�

0
k)tkiPIk

i=1mkji(�
0
k)

: (17)

Theorem 5 The MPDE of �1k, b�1k;�, k = 1; 2, is asymptotically Normal, unbiased and with variance
equal to (16).

Note that Theorem 5 would be more formally enunciated in terms of
p
Nk(b�1k;���01k), because �21k is

not constant as Nk increases. We have avoided that in order to focus directly on the estimator of interest.
Due to Assumption 3 and etkj(�0k) =PIk

i=1m
�
kji(�

0
k)tki, what is constant is

Nk�
2
1k =

 
JP
j=1

IkP
i=1

m�
kji(�

0
k)(tki � etkj(�0k))2

!�1
:

Let N be the total expected mean the region constructed by joining regions 1 and 2. Note that
N � N1 + N2, being only equal with non-overlapping regions. In order to establish the way that N
increases with respect to Nk, we shall consider throughout the next assumption.

Assumption 6 N�
k =

Nk

N (k = 1; 2) is constant as N increases, that is N increases at the same rate as
Nk.

Note that for overlapping regions it holds N�
1 + N�

2 > 1 and under the hypothesis that �011 = �012,
we have a common true parameter vector �0 � �0k (k = 1; 2). Hence, under the hypothesis that

�011 = �012, since N
�
1 + N�

2 = 1 +
PJ

j=1

PI1��I
i=1 m

(2)
2kj(�

0)=N is constant, the overlapping death fraction,PJ
j=1

PI1��I
i=1 m

(2)
2kj(�

0)=N , is also constant as N increases.

Theorem 7 Under the hypothesis that �011 = �012, the MPDE of �11 � �12, b�11;�� b�12;�, is decomposed
as b�11;� � b�12;� = X1 +X2 +X3 + Y; (18)

X1 = �211etT1 (�0)XT
1 (D

(1)
1 �m(1)

1 (�0));

X2 = ��212etT2 (�0)XT
2 (D

(1)
2 �m(1)

2 (�0));

X3 =
�
�211etT1(�0) �XT

1 � �212etT2(�0) �XT
2

�
( �D

(2) � �m(2)(�0));

Y = o
�


D1�m1(�

0)
N1




�+ o�


D2�m2(�
0)

N2




� ;

http://biostats.bepress.com/harvardbiostat/paper109
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where �Xk is an ampli�ed J(�I + I2)� (J + 1) matrix of Xk,

�Xk =

0B@�1k �tk
. . .

...
�1k �tk

1CA
J(�I+I2)�(J+1)

= (IJ 
 �1k;1J 
 �tk);

�1
T
1 = (1

T
I1 ;0

T
�I+I2�I1) and �1

T
2 = (0

T
�I ;1

T
I2);

�t
T
1 = (t

T
1 ;0

T
�I+I2�I1) and �t

T
2 = (0

T
�I ; t

T
2 );

and �D
(2)

= ( �D111; :::; �D1J;�I+I2)
T , �m(2)(�0) = ( �m

(2)
111(�

0); :::; �m
(2)

1J;�I+I2
(�0))T are the vectors obtained

joining D(2)
k for k = 1; 2 and m(2)

k (�0) for k = 1; 2 respectively, i.e.

�D
(2)
= ((D111; :::; D1J �I); (D

(2)
2 )T )T ; D

(2)
2 = (D211; :::; D2JI2)

T ;

�m(2)(�0) = ((m
(2)
111(�

0); :::;m
(2)

1J �I
(�0));m

(2)
2 (�0))T ; m

(2)
2 (�0) = (m

(2)
211(�

0); :::;m
(2)
2JI2

(�0))T :

Theorem 8 Under the hypothesis that �011 = �012, the asymptotic distribution of b�11;�� b�12;� is central
Normal with

Var(b�11;� � b�12;�) = �211 + �
2
12 � 2�211�212�12

where �21k is equal to

�21k =

 
JP
j=1

IkP
i=1

mkji(�
0)(tki � etkj(�0))2!�1 =  JP

j=1

IkP
i=1

mkji(�
0)t2ki �

JP
j=1

mkj�et2kj(�0)
!�1

; (19)

with mkj� =
IkP
i=1

mkji(�
0), etkj(�0k) is (17) and

�12 =
JX
j=1

I1��IX
i=1

n
(2)
2ji

n2ji
m2ji(�

0)(t2i � et1j(�0))(t2i � et2j(�0)) (20)

=
JP
j=1

I1��IP
i=1

n
(2)
2ji

n2ji
m2ji(�

0)(t22i + et1j(�0)et2j(�0))� JP
j=1

I1��IP
i=1

n
(2)
2ji

n2ji
m2ji(�

0)t2i(et1j(�0) + et2j(�0)):
That is, the covariance between b�11;� and b�12;� is given by

�1;12 = Cov(b�11;�; b�12;�) = �211�
2
12�12; (21)

and the correlation by �1;12 = Cor(b�11;�; b�12;�) = �11�12�12.

For the expression in the denominator of (15) we need to obtain the MPDEs of �21k, k = 1; 2 and �12,b�21k;�, k = 1; 2 and b�12;� respectively. A way to proceed is based on replacing �0 by the most e¢ cient
MPDE b�0� �

( b�01;�; if N1 � N2b�02;�; if N1 < N2
:

An important advantage of this new methodology is that the expression of the denominator of (15) is
explicit, easy to be computed and it can be interpreted easily. The term (20) determines the sign of (21).
The structure of (20) is similar to the covariance proposed in the model of Li et al. (2007) for WLSEs or

Hosted by The Berkeley Electronic Press



Statistical Inference for Comparing Trends in Cancer Rates of Two Overlapping Regions 10

as well as for the estimators in the model of Li and Tiwari (2008). We can see that if there is no time-point
shared by the two regions, i.e. �I � I1, then b�1;12;� = 0 anddVar(b�11;�� b�12;�) = b�211;�+b�212;�; if there is no
space overlap, then it holds m(2)

2ji(
b�0�) = 0 for all i and j belonging to the overlapping subregion and henceb�1;12;� = 0 anddVar(b�11;��b�12;�) = b�211;�+b�212;�. On the other hand, when the two regions to be compared

share at least one time-point and there is space overlap it holdsdVar(b�11;�� b�12;�) = b�211;�+b�212;��2b�1;12;�,
being b�1;12;� 6= 0. Moreover, when the period of time not shared by the two regions is large (small), the
covariance tends to be negative (positive) because the average values, et1j(b�01;�) and et2j(b�02;�), are more
separated from (closer to) the time-points associated with the overlapping subregion. We shall later
analyze this behaviour through a simulation study, and we shall now see how is the structure of �12 when
the two regions to be compared share the whole period of time.

Corollary 9 When �I = 0 and I1 = I2, under the hypothesis that �011 = �012

�12 =
1

�21(2)
+

JP
j=1

m
(1)
1j�

m1j�

m
(1)
2j�

m2j�
m
(2)
j� (et(1)1j (�0)� et(2)1j (�0))(et(1)2j (�0)� et(2)2j (�0)); (22)

with

1b�21(2) =
JP
j=1

I2P
i=1

m
(2)
2ji(�

0)(t2i � et(2)2j (�0))2;
et(b)kj (�0) =

PIk
i=1m

(b)
kji(�

0)tkiPIk
i=1m

(b)
kji(�

0)
;

m
(b)
kj� =

IkP
i=1

m
(b)
kji(�

0); mkj� = m
(1)
kj� +m

(2)
kj�;

m
(2)
j� =

I2P
i=1

m
(2)
2ji(�

0) =
I1P
i=1

m
(2)
1ji(�

0):

�21(2) is representing the variance of
b�12;� focussed on the overlapping subregion. In particular, if region

2 is completely contained in region 1, �12 = 1=�21(2) = 1=�
2
12, m

(1)
2j� = 0 for all j = 1; :::; J , and hence

Var(b�11;� � b�12;�) = �212 � �211: (23)

4 Simulation Studies and Analysis of SEER Mortality Data

When dealing with asymptotic results, it is interesting to analyze how is the performance of the theoretical
results in an empirical framework. Speci�cally for Poisson sampling what is important to calibrate is the
way that the total expected mean of deaths (or incidences) Nk is a¤ecting on the precision of the results.
For that purpose we have consider three proportionality constants � 2 f1; 1

100 ;
1
300g associated with Nk

in each of the following snenarios for Regions 1 and 2, with �1k 2 f0:02; 0:005; 0;�0:005g being equal for
both (k = 1; 2) as it is required for the null hypothesis, i.e. APC1 = APC2 ' 2:02, APC1 = APC2 ' 0:50,
APC1 = APC2 ' 0, APC1 = APC2 = �0:50:
� Scenario A: Low level overlapping regions, I1 = 6; I2 = 11; I1 � �I = 3.
� Scenario B: Medium level overlapping regions, I1 = 10; I2 = 11; I1 � �I = 7.
� Scenario C: High level overlapping regions, I1 = 8; I2 = 8; I1 � �I = 8.
The values of nkji have been obtained from real data sets for female:
� Scenario A: Region 1 = United States (US) during 1993�1998, Region 2 = California (CA) 1996�2006.

http://biostats.bepress.com/harvardbiostat/paper109
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� Scenario B: Region 1 = US during 1993�2002, Region 2 = CA during 1996�2006.
� Scenario C: Region 1 = US during 1999�2006, Region 2 = CA during 1999�2006.
From the same data sets we have have taken �0kj = log(�Dkj1=nkj1) � �k1tk1, focussed on the Breast
cancer for the �rst year of the time interval (i = 1). All these data were obtained from the SEER
database and hence we are taking into account J = 19 age groups. Once the previous parameters have
been established we can compute in a theoretical framework the individual variances of estimators b�k1;�,
�21k, covariance �1;12.and Var(b�11;��b�12;�) = �211+�

2
12�2�1;12. We can also compute what the theoretical

value of �k � Nk=(JIk), the average expected mean per cell which useful to see if the value of Nk is large
enough, these values are in Table 1.

Table 1: Average total expected means of deaths per cell.

Scenario A Scenario B Scenario C
� �1k �1 �2 �1 �2 �1 �2
1 0:020 2538:24 331:42 2741:10 331:42 2493:85 265:98
1 0:005 2441:69 292:43 2552:96 292:43 2360:81 251:71
1 0:000 2410:67 280:62 2494:19 280:619 2318:67 247:19
1 �0:0050 2380:23 269:35 2437:28 269:35 2277:59 242:79
1
100

0:020 25:38 3:31 27:41 3:31 24:94 2:66
1
100

0:005 24:42 2:92 25:53 2:92 23:61 2:52
1
100

0:000 24:11 2:81 24:94 2:81 23:19 2:47
1
100

�0:0050 23:80 2:69 24:37 2:69 22:77 2:43
1
300

0:020 8:46 1:10 9:14 1:10 8:31 0:89
1
300

0:005 8:14 0:97 8:51 0:97 7:87 0:84
1
300

0:000 8:03 0:93 8:31 0:93 7:73 0:82
1
300

�0:0050 7:93 0:90 8:12 0:90 7:59 0:81

Since both regions share a common space, we have generated �rstly its death counts by simulation
and thanks to the Poisson distribution�s reproductive property under summation, we have generated
thereafter the death counts for each region by adding the complementary Poisson observations. In Tables
2, 4, 6 are summarized the theoretical results as well as those obtained by simulation for the maximum
likelihood estimators (MLEs) and in Tables 3, 5, 7 for the minimum chi-square estimators (MCSEs). The
variances and covariances appear multiplied by 109 in all the tables. We have added tilde notation for
those parameter that have been calculated by simulation with R = 22; 000 replications:

~�21k;� =
1

R

RP
r=1
(b�1k;�(r)� ~E[b�1k;�])2; ~E[b�1k;�] = 1

R

RP
r=1

b�1k;�(r);
~�1;12;� =

1

R

RP
r=1
(b�11;�(r)� ~E[b�11;�])(b�12;�(r)� ~E[b�12;�]):

It is important to remark that such a large quantity of replications have been chosen in order to reach
a reliable precision in the simulation study (e.g., it was encountered that R = 10; 000 was not large
enough). The last column is referred to the exact signi�cance level associated with the Z-test obtained
by simulation when the nominal signi�cance level is given by � = 0:05,

e�� = 1

R

RP
r=1
I(jZ�(r)j > z0:95);

where I() is an indicator function and z0:95 ' 1:96 the quantile of order 0:95 for standard normal distri-
bution.
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It can be seen as expected, that in Scenario 3 the covariance is positive in all the cases, while in
Scenario 1 the covariance is negative. It is clear that the precision for gV ar(b�11;�� b�12;�) as well as for ~��
is better as � increases. While for large data sets (� = 1) there is no a better choice regarding �, for small
data sets (� = 1=300) the choice in favour of � = 1 is clear because estimators b�11;� � b�12;� are more
e¢ cient, in fact gVar(b�11;1 � b�12;1) < Var(b�11;� � b�12;�) < gVar(b�11;0 � b�12;0), and the exact signi�cance
levels or estimated type I error is less than for � = 0 in all the cases (~�1 � ~�0). Since perhaps type II
error could be better for MLEs, the power functions for both estimators have been studied. In particular,
for � = 1=300 it was observed the same behaviour as appears in Figure 2: in equidistant di¤erences
regarding � = �11 � �12, when �011 is �xed, if error II is better for MLEs when � > 0 (� < 0) then
error II is better for MCSEs when � < 0 (� > 0). Hence, in overall terms we recommend using MCSE
rather than MLEs for small data sets. This is the case of the study illustrated for instance in Riddell and
Pliska (2008) where there are a lot of cases such that the value of b�k =PJ

j=

PIk
i=1 dkji=(JIk) is quite low

(moreover, several cases such that b�k < 12=19 appear without giving any estimation �due to instability
of small numbers�).

­0.010 ­0.008 ­0.006 ­0.004 ­0.002 0.000 0.002 0.004 0.006 0.008 0.010

0.2

0.4

0.6

0.8

1.0Pr

β

Figure 2: Power fuction in terms of � = �11 � �12 when �011 = 0, for Scenario A and � = 1=300: MLEs
in �lled circles and MCSEs in blank circles.

We have applied our proposed methodology to compare the APC in the age-adjusted mortality rates of
California (CA) and the United States (US) for the same period of time, 1991-2006, with both estimators
and for two cancer sites: Breast cancer and Thyroid cancer. The second one is distinguished from the �rst
one because it is considered to be a rare cancer site. The rates are expressed per 100; 000 individuals at
risk. In Figures 3 and 4 the �tted models are plotted and from them we can see that while in both regions
there is a decreasing trend for Breast cancer, there is an increasing trend for Thyroid cancer. The speci�c
values for estimates and the test-statistics are summarized in Tables 8 and 9. Apart from the appropriate
test-statistic, we have included the naive test-statistic that is obtained by applying the methodology for
non-overlapping regions. For Thyroid cancer there is no evidence for rejecting the hypothesis of equal
APCs for CA and the US. However for Breast cancer with � = 0:01 we should reject the null hypothesis
and this conclusion would be di¤erent if we were using the naive test-statistic for � = 1. Observe that
for Breast cancer the test-statistic has more power to discriminate not very large di¤erences than for
Thyroid cancer, because the variability is less.
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Figure 3: Fitting Thyroid cancer mortality trends in the US (diamonds) and CA (circles) during 1991-
2006: MCSE (solid), MLE (dash).

Table 8: Thyroid cancer mortality trends comparison among the US and CA during 1991-2006: Maximum
Likelihood Estimators and Minimum Chi-Square Estimators.

Region k b�1k;0 b�0k;0 b�21k;0 [APCk;0 CIAPCk(95%)

US 1 0:006257 �0:833397 2:37502� 10�6 0:627701 (0:324213; 0:932109)
CA 2 0:006814 �0:751891 20:79309� 10�6 0:683716 (�0:212118; 1:587592)b�11;0 � b�12;0 = �0:000556b�212;0 � b�211;0 = 18:4181� 10�6 b�212;0 + b�211;0 = 23:1681� 10�6

Z0 = �0:129669 (p-value= 0:897) naive Z0 = �0:115614 (p-value= 0:910)

Region k b�1k;1 b�0k;1 b�21k;1 [APCk;1 CIAPCk(95%)

US 1 0:006110 �0:826197 2:36073� 10�6 0:612917 (0:310385; 0:916361)
CA 2 0:006584 �0:710174 19:92567� 10�6 0:660611 (�0:216219; 1:545147)b�11;1 � b�12;1 = �0:000474b�212;1 � b�211;1 = 17:5649� 10�6 b�212;1 + b�211;1 = 22:2864� 10�6

Z1 = �0:113081 (p-value= 0:910) naive Z1 = �0:1003901 (p-value= 0:920)
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Figure 4: Fitting Breast cancer mortality trends for females in the US (diamonds) and CA (circles) during
1991-2006: MCSE (solid), MLE (dash).

Table 9: Breast cancer mortality trends comparison among females in the US and CA during 1991-2006:
Maximum Likelihood Estimators and Minimum Chi-Square Estimators.

Region k b�1k;0 b�0k;0 b�21k;0 [APCk;0 CIAPCk(95%)

US 1 �0:002151 3:509980 0:0694857� 10�6 �2:128452 (�2:179004;�2:077873)
CA 2 �0:002298 3:474544 0:6950581� 10�6 �2:272038 (�2:431597;�2:112217)b�11;0 � b�12;0 = 0:00146816b�212;0 � b�211;0 = 0:0625572� 10�6 b�212;0 + b�211;0 = 0:764544� 10�6

Z0 = 1:856243 (p-value= 0:063) naive Z0 = 1:679084 (p-value= 0:093)

Region k b�1k;1 b�0k;1 b�21k;1 [APCk;1 CIAPCk(95%)

US 1 �0:02158 3:511590 0:0694142� 10�6 �2:135291 (�2:185814;�2:084743)
CA 2 �0:02297 3:476792 0:0693344� 10�6 �2:270435 (�2:429801;�2:110809)b�11;1 � b�12;1 = 0:00138188b�212;1 � b�211;1 = 0:0623930� 10�6 b�212;1 + b�211;1 = 0:0762758� 10�6

Z1 = 1:749454 (p-value= 0:080) naive Z1 = 1:582256 (p-value= 0:113)
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5 Concluding Remarks

In this work, we have dealt with an important problem in practice, the case where the trends comparison
of two overlapping regions have to be made. Apart from considering Poisson sampling which is the best
choice according to the nature of the data for cancer rates, we have taken into account a new manner for
understanding the counts that belong to overlapping regions. The expressions derived from the proposed
methodology allows us to interpret when the overall variance is less or greater than the one we would
have with the naive test. In addition, the good performance of the minimum chi-square estimators with
respect to the maximum likelihood estimators, could be a good solution for the those works concerned
in comparing the APCs with small data sets such as those that are required in a county level inside the
states of the US. This behaviour of minimum chi-square estimators supports the claim made in Berkson
(1980) but it extends to Poisson sampling for which are not very well-known.

Technical Appendix

Proof of Theorem 4

Let �Mk
be the set with all possible Mk-dimensional probability vectors and CMk = (0; 1)�Mk� � � � (0; 1).

The way in which N increases is so that Diag�1(nk)mk(�k) does not change, hence ms(�k) and ns
increase at the same time (s = 1; :::;Mk). This means that as Nk increases, parameter �k does not su¤er
any change and neither does the normalized mean vector of deaths, m�

k(�) =
1
Nk
mk(�k). Note that

m�
k(�k) 2 �Mk

� CMk . Let V � RJ+1 be a neighbourhood of �0k and a function

F
(�)
Nk
= (F

(�)
1 ; :::; F

(�)
J+1) : C
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so that
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(�)
i (m�
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@�ki
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�
1; :::;m

�
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)T 2 �Mk

� CMk .

More thoroughly, consideringXk = (xsi)s=1;:::;Mk;i=1;:::;J+1 and d�(Dk;mk(�k)) =
PMk

s=1ms(�k)��(
Ds

ms(�)
),

where

��(x) =

(
x�+1�x��(x�1)
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It can be seen that replacing m�
k by m

�
k(�

0
k), �k by �

0
k, it holds F

(�)
i (m�

k(�
0
k);�

0
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1; :::;Mk. We shall now establish that Jacobian matrix

@F
(�)
Nk
(m�

k;�k)

@�k
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is nonsingular when (m�
k;�k) = (m
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0
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0
k). For i; j = 1; :::; J + 1
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�(1) = 1 for all �,

@F
(�)
i (m�

k;�k)

@�kj

�����
(m�

k;�k)=(m
�
k(�

0
k);�

0
k)

= Nk

MkX
s=1

m�
s(�

0
k)xsixsj :

Hence,  
@F

(�)
Nk
(m�

k;�k)

@�k

!�1������
(m�

k;�k)=(m
�
k(�

0
k);�

0
k)

= NkX
T
kDiag(m

�
k(�

0
k))Xk:

Applying the Implicit Function Theorem there exist:
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k(�
0
k);�

0
k) in C
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Furthermore, from the properties of power divergence measures and because e�(�)k (m�
k(�

0
k)) = �0k, we
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By applying the chain rule for obtaining derivatives on F (�)
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It is well known that for Poisson sampling Dk

Nk
converges almost surely (a.s.) to m�

k(�
0
k) as Nk

increases, which means that Dk
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2 Ak a.s. for Nk large enough and thus according to the Implicit

Function Theorem (Dk
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partitioned according to Xk = (U ;v), where U = IJ 
 1Ik , v = 1J 
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!�1
;

because
PJ

j=1

�PIk
i=1mkji(�

0
k)
�et2kj(�0k) =PJ

j=1

�PIk
i=1mkji(�

0
k)tkj

�etkj(�0k).
Proof of Theorem 5

Reformulating Theorem 4 we obtainp
Nk

�b�1k;� � �01k� = aTkpNk (Dk �mk(�
o
k)) + o

�


pNk �Dk

Nk
�m�

k(�
o
k)
�


� ;

with aTk � �21ketTk (�0k)XT
k . We would like to calculate the asymptotic distribution as a linear function ofp

Nk

�
Dk

Nk
�m�

k(�
o
k)

�
L�!

Nk!1
N (0;Diag(m�

k(�
0
k))):
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Since

Var
�
aTk
p
Nk (Dk �mk(�

o
k))
�
= aTkVar

�
Nk
p
Nk

�
Dk

Nk
�m�

k(�
o
k)

��
ak

= N2
ka

T
kDiag(m

�
k(�

0
k))ak = Nk�

2
1k;

it holds
aTk
p
Nk (Dk �mk(�

o
k))

L�!
Nk!1

N (0; Nk�21k): (27)

Taking into account that o
�


pNk �Dk

Nk
�m�

k(�
o
k)
�


� = o(OP (1)) = oP(1), according to the Slutsky�s

Theorem, the asymptotic distribution of
p
Nk

�b�1k;� � �01k� must coincide with the asymptotic distrib-
ution of 27.

Proof of Theorem 7

From Theorem 4 subtracting b�12;� � �012 to b�11;� � �011 we get
(b�11;� � �011)� (b�12;� � �012) = �211etT1 (�01)XT

1

�
(D

(1)
1 �m(1)

1 (�01))� (D
(2)
1 �m(2)

1 (�01))
�

� �212etT2 (�02)XT
2

�
(D

(1)
2 �m(1)

2 (�01))� (D
(2)
2 �m(2)

2 (�01))
�
+ o

�


D1�m1(�
0
1)

N1




�� o�


D2�m2(�
0
2)

N2




� :
Observe that XT

kD
(2)
k = �X

T
k
�D
(2)
, k = 1; 2, and under �011 = �012 it holds X

T
km

(2)
k (�0k) = �X

T
k �m

(2)(�0),
k = 1; 2. In addition, o () function is not a¤ected by the negative sign and under �011 = �012 it holds
�01 = �

0
2 and thus we obtain (18).

Proof of Theorem 8

We can consider the following decomposition

p
N
�b�11;� � b�12;�� = (NaT1 )pN D1�m1(�

0)
N + (NaT2 )

p
N D2�m2(�

0)
N +

p
NY; (28)

with p
NY = o

�
1

N�
1




D1�m1(�
0)p

N




�+ o� 1

N�
2




D2�m2(�
0)p

N




� ;
rather than (18). Note that from Assumptions 3 and 6 mk(�

0)=N = N�
km

�(�0) is constant as N

increases and hence
p
NY = o

�


D1�m1(�
0)p

N




� + o�


D2�m2(�
0)p

N




� = o (OP (1)) + o (OP (1)) = oP (1).

We would like to calculate the asymptotic distribution as a linear function of

p
N Dk�mk(�

0)
N

L�!
N!1

N
�
0;Diag

�
N�
km

�(�0)
��
:

From (28) and by applying Slutsky�s theorem we can conclude that the asymptotic distribution ofp
N
�b�11;� � b�12;�� is central Normal. In order to calculate the variance we shall follow (18) so that

p
N
�b�11;� � b�12;�� = pNX1 +

p
NX2 +

p
NX3 +

p
NY;
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with
p
NX1 = a

T
1

p
N
�
D
(1)
1 �m(1)

1 (�0)
�
;

p
NX2 = a

T
2

p
N
�
D
(1)
2 �m(1)

2 (�0)
�
;

p
NX3 =

�
�aT1 � �aT2

�p
N
�
�D
(2) � �m(2)(�0)

�
;

p
NY = oP (1)

where �aTk � �21ketTk (�0) �XT
k , and X1, X2 and X3 are independent random variables. Since

Var
�p

NXk

�
= Var

�
aTk
p
N
�
D
(1)
k �m(1)

k (�0)
��

= NaTkDiag(m
(1)
k (�0))ak; k = 1; 2;

Var
�p

NX3

�
= Var

��
�aT1 � �aT2

�p
N
�
�D
(2) � �m(2)(�0)

��
= N

�
�aT1 � �aT2

�
Diag( �m(2)(�0)) (�a1 � �a2)

= N
�
�aT1 Diag( �m

(2)(�0))�a1 + �a
T
2 Diag( �m

(2)(�0))�a2 � 2�aT1 Diag( �m(2)(�0))�a2

�
= N

�
aT1 Diag(m

(2)
1 (�0))a1 + a

T
2 Diag(m

(2)
2 (�0))a2 � 2�211�212�12

�
;

with

�12 = etT1(�0) �XT
1 Diag( �m

(2)(�0)) �X2
et2(�0)

=
PJ

j=1

PI1��I
i=1 m

(2)
2ji(�

0)(t2i � et1j(�0))(t2i � et2j(�0))
=
PJ

j=1

PI1��I
i=1

n
(2)
2ji

n2ji
m2ji(�

0)(t2i � et1j(�0))(t2i � et2j(�0));
it holds

Var
�p

N(X1 +X2 +X3)
�
= N(aT1 Diag(m

(1)
1 (�0) +m

(2)
1 (�0))a1

+ aT2 Diag(m
(1)
2 (�0) +m

(2)
2 (�0))a2 � 2�211�212�12)

= N(�211 + �
2
12 � 2�211�212�12);

that coincides with the asymptotic variance of
p
N
�b�11;� � b�12;��.

Proof of Corollary 9

Since etkj(�0) = et(2)kj (�0) + m
(1)
kj�

mkj�
(et(1)kj (�0)� et(2)kj (�0)); k = 1; 2;

formula (20) can be rewritten as

�12 =
JP
j=1

I1��IP
i=1

m
(2)
2ji(�

0)

�
t2i � et(2)1j (�0)� m

(1)
1j�

m1j�
(et(1)1j (�0)� et(2)1j (�0))��t2i � et(2)2j (�0)� m

(1)
2j�

m2j�
(et(1)2j (�0)� et(2)2j (�0))�

=
JP
j=1

I1��IP
i=1

m
(2)
2ji(�

0)(t2i � et(2)2j (�0))2 + JP
j=1

I1��IP
i=1

m
(2)
2ji(�

0)
m
(1)
1j�

m1j�

m
(1)
2j�

m2j�
(et(1)1j (�0)� et(2)1j (�0))(et(1)2j (�0)� et(2)2j (�0))

�
2P

k=1

JP
j=1

I1��IP
i=1

m
(2)
2ji(�

0)(t2i � et(2)2j (�0))m(1)
kj�

mkj�
(et(1)kj (�0)� et(2)kj (�0)):

Hosted by The Berkeley Electronic Press



Statistical Inference for Comparing Trends in Cancer Rates of Two Overlapping Regions 24

The last summand is canceled because

JP
j=1

I1��IP
i=1

m
(2)
2ji(�

0)(t2i � et(2)2j (�0))m(1)
kj�

mkj�
(et(1)kj (�02)� et(2)kj (�0))

=
JP
j=1

m
(1)
kj�

mkj�
(et(1)kj (�0)� et(2)kj (�0))I1��IP

i=1

m
(2)
2ji(�

0)(t2i � et(2)2j (�0))
and

PI1��I
i=1 m

(2)
2ji(�

0)(t2i � et(2)2j (�0)) = 0. Hence, it holds (22).
If region 2 is completely contained in region 1, �12 = 1=�12, and therefore

Var(b�11;� � b�12;�) = �212 + �
2
11 � 2�212�211�12 = �212 + �

2
11 � 2�211;

and it follows (23).
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