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SUMMARY

For modern evidence-based medicine, decisions on disease prevention or management strategies

for individuals in a population are often guided by a risk index system. For each individual,

the system provides an estimate using the subject-specific “baseline” information for the risk of

experiencing a future disease-related clinical event. Such a risk scoring scheme is usually derived

from an overly simplified parametric model. To validate a model-based procedure, one may perform

a standard global evaluation via, for instance, the ROC analysis. In this paper, we propose a method

to calibrate the risk index system at a subject level. Specifically, a consistent estimation procedure

is derived for the t-year mortality rate of individuals who have the same estimated parametric risk

score. Furthermore, the corresponding pointwise and simultaneous confidence interval estimators

are also provided over a range of risk scores of interest. The proposals are illustrated with a data

set from a large clinical trial for evaluating various therapies for treating high risk patients after

myocardial infarction.

Keywords: Cardiovascular diseases; Cox’s model; Nonparametric functional estimation; Risk in-

dex; ROC analysis; Survival Analysis.
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1. INTRODUCTION

The choice of disease prevention or management strategy for an individual from a population of

interest is often made based on her/his risk of experiencing a certain clinical event during a specific

follow-up time period. Subjects classified as high risk may be recommended for intensive prevention

or therapy. The risk is usually estimated via a parametric or semi-parametric regression model

using ‘baseline” risk factors/markers. For example, recently Eagle et al. (2004) created a simple

bedside risk index system to predict 6-month post-discharge mortality for patients hospitalized due

to acute coronary syndrome (ACS). To estimate each individual risk, a Cox’s proportional hazards

model (Cox, 1972) was utilized to fit the data from the Global Registry of Acute Coronary Events

(GRACE) involving 17142 patients. The final model for prediction, consisting of nine covariates,

was developed using information on post-discharge follow-up mortality and all potential predictors

taken at admission as well as during hospitalization. The 6-month post-discharge mortality rate is

then estimated with the fitted model for each future individual patient.

An empirical model, such as a Cox model, is merely an approximation to the true model. It is

crucial to validate or evaluate the performance of a working model for appropriate clinical decision

making. In addition to checking the fitted model with routine goodness of fit techniques, the model-

based scoring system is often evaluated or validated globally based on specific summary measures, for

example, from the standard receiver operating characteristic curve (ROC) (Pepe et al., 2004; Wang

et al., 2006; Ware, 2006; Cook, 2007; Uno et al., 2007). For the aforementioned GRACE study, the

investigators used an independent cohort of 7638 patients to validate their system with an overall

c-statistic. However, even if the risk index system is acceptable using a global average measure,

for the group of patients with the same model-based risk score, the corresponding parametric risk

estimator may not estimate its true mortality rate well. Consequently clinicians may be misguided

in choosing inappropriate therapies for treating these individuals.

In this article, we propose a procedure for calibrating the parametric risk estimates. Specifically,
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under a general survival analysis setting, a consistent estimation procedure is proposed for the t-

year mortality rate of patients grouped by a parametric risk index system. Furthermore, we provide

pointwise and simultaneous confidence intervals for such risks over a range of estimated risk scores.

These interval estimates quantify the precision of our consistent point estimator. Moreover, the

upper or lower bounds of the intervals provide valuable information for the complex cost-benefit

decision making. Note that our proposal is also useful for calibrating a risk index system when

applied to populations different from the study population. For example, the Framingham Risk

Score (Anderson et al., 1991) for predicting the risk of Coronary Heart Disease (CHD) was developed

based on a US population. Its applicability to other populations has been extensively investigated

in recent years ( D’Agostino et al., 2001; Brindle et al., 2003; Zhang et al., 2005). For a new

population, our procedure can be used to assess the true risk of CHD for subjects with any given

Framingham Risk Score.

We illustrate the new proposal with a data set from the ”Valsartan in Acute Myocardial Infarc-

tion” (VALIANT) study (Pfeffer et al., 2003). This large clinical study was conducted to evaluate

the effect of angiotensin-converting-enzyme (ACE) inhibitors on overall mortality among patients

with myocardial infarction complicated by left ventricular systolic dysfunction and/or heart failure.

The trial was designed to compare three treatments, ARB valsartan, ACE inhibitor captopril and

a combination of these two drugs, for treating high risk patients after myocardial infarction with

respect to mortality and morbidity. The study was conducted from 1999 to 2003 with a total of

14703 patients randomly, equally assigned to the three groups. The median follow-up time is 24.7

months after randomization. At the end of the studies, 979, 958 and 941 patients died in the

three treatment groups, respectively. There are no significant differences among three groups with

respect to the overall mortality. On the other hand, the rich VALIANT data base provides valu-

able information about preventing future high risk patients from developing cardiovascular-related

diseases after MI with certain complications. In this paper, for simplicity, we used eleven baseline
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covariates from each study subject considered by Solomon et al. (2005) in our analysis. These

eleven predictors are potentially the most significant ones among the risk factors/markers identified

by Anavekar et al. (2004) for the overall mortality of VALIANT patients. We fitted the survival

data with an additive Cox model using these eleven covariates to obtain a parametric risk score

for each individual. We then estimated the t-year mortality rate consistently for subjects with a

given parametric score value to calibrate the model-based risk assessment. Lastly, we constructed

simultaneous and pointwise interval estimates for making inferences about such mortality rates over

a range of parametric risk scores.

2. CONSISTENT ESTIMATOR FOR MEAN RISK OF SUBJECTS WITH THE

SAME MODEL-BASED RISK SCORE

Consider a subject randomly drawn from the study population. Let T̃ be its time to a specific

event and U be the corresponding set of “baseline” risk factors/markers. Assume that T̃ has a

continuous distribution given U . Also, let P(U) = pr(T̃ < t0 | U), the risk of this individual

experiencing the event by a specific time point t0 conditional on U . The event time T̃ may be

censored by a random variable C which is assumed to be independent of T̃ and U . For T̃ , one can

only observe T = min(T̃ , C) and ∆ = I(T̃ ≤ C), where I(·) is the indicator function. Our data

{(Ti, ∆i, Ui), i = 1, · · · , n} consist of n independent copies of (T, ∆, U).

For a given U = u, P(u) may be consistently estimated nonparametrically. In practice, however,

such a nonparametric functional estimate does not behave well when the dimension of U is greater

than one. A standard, feasible way to reduce the dimension of u is to approximate P(u) with a

working parametric or semi-parametric model such as the Cox proportional hazards model:

P(u) = g{log Λ(t0) + β′x}, (2.1)

where g(s) = 1 − e−es
, Λ(·) is the working baseline cumulative hazard function for T̃ , x, a p × 1

vector, is a function of u, and β is an unknown vector of regression parameters.

4

http://biostats.bepress.com/harvardbiostat/paper92



To obtain an estimate for P(u) via (2.1), one may employ the maximum partial likelihood

estimator β̂ for β with all mortality information from the data collected during the study time

period [0, t0]. That is, β̂ is the maximizer of the log partial likelihood function,

n∑
i=1

∫ t0

0

[
β′Xi − log

{
n∑

j=1

Yj(t)e
β′Xj

}]
dNi(t), (2.2)

where Ni(t) = I(Ti ≤ t)∆i and Yi(t) = I(Ti ≥ t), for i = 1, · · · , n. When the model (2.1) is

correctly specified, β̂ consistently estimates the true value of β. In Appendix A, we show that under

a rather mild condition, β̂ converges to a finite constant β0, as n →∞, even when the model (2.1) is

misspecified. This large sample stabilization property is critical for establishing a risk score system.

Next, we estimate the function Λ(t) in (2.1) with the standard Breslow’s estimator (Kalbfleisch

& Prentice, 2002),

Λ̂(t) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 Yj(s)eβ̂′Xj

,

which is a step function that only jumps at observed failure time points. It follows that a model

based estimate of P(u) is P̂(u) = g(γ̂′~x), where γ̂ = (log{Λ̂(t0)}, β̂′)′ and ~x = (1, x′)′. Again,

in Appendix A, we show that under the working model (2.1), P̂(u) converges to a deterministic

function P̄(u) in probability, as n → ∞. When (2.1) is correctly specified, P̂(u) is consistent for

P(u).

Although most likely (2.1) is not the true model, the parametric risk scores {P̂(u)} or {γ̂′~x}

can be used as a risk index system for grouping future subjects in a population similar to the study

population. Now, consider a future subject whose (T̃ , U) = (T̃ 0, U0) and P̂(U0) = v. Then it is not

clear that v is a reasonable estimate for the risk of this individual experiencing the event before

time t0. Therefore, to calibrate the subject-level model-based risk estimate, one needs a consistent

estimate for

τ(v; t0) = pr(T̃ 0 < t0 | P̂(U0) = v), (2.3)

the mortality rate among subjects with risk score P̂(U0) = v. Here, the probability is with respect
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to T 0, U0 and {(Ti, Ui, ∆i), i = 1, · · · , n}.

To this end, let Λv(t) = − log{1 − τ(v; t)}, 0 ≤ t ≤ t0, the “cumulative hazard function” for

future subjects whose estimated risk index score is v. First, one may use a nonparametric kernel

Nelson-Aalen estimator smoothed over v for Λv(t) with the triplets {(Ti, ∆i, P̂(Ui)), i = 1, ..., n}.

Specifically, as for the one-sample estimation of the cumulative hazard function in standard survival

analysis, we consider the class of potential estimators which are step functions over t and only jump

at the observed failure time points with jump sizes dΛv(t) = Λv(t)−Λv(t−). Then a nonparametric

functional estimator for dΛv(t) can be obtained by minimizing

n∑
i=1

Kh(D̂vi)
{
dNi(t)− Yi(t)dΛv(t)

}2
, (2.4)

where dNi(t) = Ni(t) − Ni(t−), D̂vi = ψ{P̂(Ui)} − ψ(v), K(·) is a smooth symmetric density

function, Kh(x) = K(x/h)/h, h is a bandwidth such that h → 0 and nh2 → ∞ as n → ∞,

and ψ(·) : (0, 1) → (−∞,∞) is a known increasing smooth transformation function (Wand et al.,

1991; Park et al., 1997). This local constant estimator essentially assumes that for v′ in a small

neighborhood of v, dΛv′(t) ≈ dΛv(t). The resulting minimizer of (2.4) is

dΛ̃v(t) =

∑n
i=1 Kh(D̂vi)dNi(t)∑n
i=1 Kh(D̂vi)Yi(t)

.

The corresponding estimator for Λv(t0) is

Λ̃v(t0) =

∫ t0

0

∑n
i=1 Kh(D̂vi)dNi(t)∑n
i=1 Kh(D̂vi)Yi(t)

. (2.5)

When P̂(Ui) is subject-specific, not a function of the data, the limiting distribution of such a

nonparametric estimator with a fixed v has been derived by Dabrowska (1989) and Du & Akritas

(2002). Here, we are interested in the behavior of the estimator (2.5) over a set of risk scores v at

a specific time point t0.

The above kernel estimator can potentially be improved by considering a local linear, not con-

stant, approximation to dΛv(t) around v (Fan & Gijbels, 1996; Li & Doss, 1995). That is, we
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replace dΛv(t) in (2.4) by a local linear function a + b{ψ(v′) − ψ(v)} with unknown intercept and

slope parameters a and b, where v′ is in a “neighborhood” of v. The resulting estimator d̂Λv(t) is

the intercept “a” of the vector (a, b)′ which minimizes

n∑
i=1

Kh(D̂vi)
{

dNi(t)− Yi(t)(a + D̂vib)
}2

. (2.6)

The corresponding estimator Λ̂v(t) for Λv(t) is the sum of d̂Λv(·) over all distinct observed death

times by t. The resulting estimator for τ(v; t0) is τ̂(v; t0) = 1− exp{−Λ̂v(t0)}.

In Appendix B, we show that under mild regularity conditions, if h = O(n−ν) with 1/5 < ν <

1/2, τ̂(v; t0) is consistent for τ(v; t0), uniformly in v ∈ J = [ψ−1(ql +h), ψ−1(qr−h)], where (ql, qr)

is a subset contained in the support of ψ{P̄(U)}.

3. POINTWISE AND SIMULTANEOUS INTERVAL ESTIMATION

PROCEDURES FOR τ(v; t0) OVER RISK SCORE v

For any fixed v ∈ J , we show in Appendix B that for large n and h = O(n−ν) with 1/5 < ν <

1/2, the distribution of

(nh)
1
2

{
Λ̂v(t0)− Λv(t0)

}
(3.1)

can be approximated well by the conditional distribution of a mean-zero normal

n−
1
2 h

1
2

n∑
i=1

Kh(D̂vi)V̂i(v; t0)Vi + (nh)
1
2

{
Λ̂v(t0, γ̂

∗)− Λ̂v(t0)
}

, (3.2)

given the data, where {Vi, i = 1, · · · , n} are standard normal random variables generated indepen-

dent of the data,

V̂i(v; t0) =

∫ t0

0

dNi(s)− Yi(s)dΛ̂v(s)

n−1
∑n

j=1 Kh(D̂vj)Yj(s)
,

Λ̂v(t0, γ) is given in (B·3) and γ̂∗ is given in (B·6). Here, Λ̂v(t0, γ̂
∗) is a random perturbed version of

the observed Λ̂v(t0) with the same perturbation random sample {Vi, i = 1, · · · , n} which accounts

for the extra variability in γ̂. Although asymptotically one only needs the first term of (3.2) due to
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the fact that γ̂ from the working Cox model is of order root-n, the inclusion of the second term is

likely to improve the approximation to the distribution of (3.1) in finite sample. This perturbation

method is similar to the so-called wild bootstrapping (Wu, 1986; Härdle, 1990; Mammen, 1992)

and has been utilized successfully for a number of interesting problems in survival analysis (Jin

et al., 2001; Park & Wei, 2003; Cai et al., 2005). Note that the distribution of (3.2) can be easily

approximated by generating a large number, say M , of realizations of {Vi, i = 1, · · · , n}.

With the above large sample approximation, for any v ∈ J , one may obtain a variance estimator

of (3.1), σ̂2
v(t0), based on the empirical variance of M realizations from (3.2). For any given α ∈

(0, 1), a 100(1− α)% confidence interval for Λv(t0) can then be obtained as

Λ̂v(t0)± (nh)−1/2cσ̂v(t0),

where c is the 100(1 − α/2)th percentile of the standard normal. Subsequently, the corresponding

pointwise 100(1− α)% confidence interval for τ(v; t0), the mortality rate with score v, is

1− exp
{
−Λ̂v(t0)± (nh)−1/2cσ̂v(t0)

}
. (3.3)

To make inference about the mortality rate over a range of v, one may construct simultaneous

confidence intervals for {τ(v; t0), v ∈ J } by considering a sup-type statistic

W = supv∈J

∣∣∣∣∣(nh)
1
2
Λ̂v(t0)− Λv(t0)

σ̂v(t0)

∣∣∣∣∣ . (3.4)

However, as a process in v, the distribution of (nh)
1
2{Λ̂v(t0)−Λv(t0)} does not converge to a proper

distribution, as n → ∞. Therefore, we cannot use the standard large sample theory for stochastic

processes to obtain a finite sample approximation to the distribution of W. On the other hand, by

the strong approximation arguments and extreme value limit theorem (Bickel & Rosenblatt, 1973),

in Appendix B, we show that a standardized version of W converges in distribution to a proper

random variable. In practice, for large n, one can approximate the distribution of W by W ∗, the sup

of the absolute value of (3.2) divided by σ̂v(t0), with (3.2) perturbed by the same set of perturbation
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variables {Vi, i = 1, · · · , n} for all v ∈ J . It follows that the 100(1 − α)% simultaneous confidence

interval for τ(v; t0) is

1− exp
{
−Λ̂v(t0)± (nh)−1/2d σ̂v(t0)

}
, (3.5)

where the cutoff point d is chosen such that pr(W ∗ < d) ≥ 1− α.

As for any nonparametric functional estimation problem, the choice of the smoothing parameter

h for τ̂(v; t0) is crucial for making inferences about τ(v; t0). To incorporate censoring, we propose

to obtain an “optimal” h by minimizing mean integrated squared martingale residuals over time

interval (0, t0) through the standard K-fold cross validation procedure. Such a procedure has been

successfully used for bandwidth selection in Tian et al. (2005). Specifically, we randomly split the

data into K disjoint subsets of about equal sizes denoted by {Jk, k = 1, · · · , K}. For each k, we

use all observations which are not in Jk to obtain Λv(t) with a given h. Let the resulting estimators

be denoted by Λ̂v(k)(t). We then use the observations from Ik to calculate the sum of integrated

squared martingale residuals

∫ t0

0

∑
j∈Ik

{
Nj(t)−

∫ t

0

Yj(s)dΛ̂v̂j(k)(s)

}2

d

{ ∑

j′∈Ik

Nj′(t)

}
, (3.6)

where v̂j = P̂(uj). Lastly we sum (3.6) over k = 1, · · · , K, and then choose h by minimizing this

sum of K martingale residuals. Since the order of such optimal bandwidth is expected to be n−1/5

(Fan & Gijbels, 1995), the bandwidth we use for estimation is the minimizer of (3.6) multiplied by

a factor n−d0 with 0 < d0 < 3/10 such that it is of order n−v with 1/5 < v < 1/2. This assures that

the resulting functional estimator Λ̂v(t0) with the data-dependent smooth parameter has the above

desirable large sample properties.

4. EXAMPLE

We illustrate the new proposal with the data combined from three treatment groups of the

VALIANT study described in the introduction. Here, the vector U of potentially important base-

line risk factors/markers for overall mortality consists of age, Killip class (KC), eGFR, history of

9
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MI (MI), history of congestive heart failure (HF), percutaneous coronary intervention after index

MI (CorInt), atrial fibrillation after index MI (AF), history of diabetes (Dia), history of chronic

obstructive pulmonary disease (COPD), new left bundle-branch block (BBB), and history of angina

(Ang). There are n = 14088 patients (out of a total of 14703) in our analysis, who had complete in-

formation about these eleven covariates. The Kaplan-Meier estimate for overall survival for patients

in the analysis is given in Figure 1.

First, suppose that we are interested in predicting the 6-month mortality rates of future patients.

To this end, we let t0 = 6(month) and fitted the survival observations truncated slightly after 6

months with a Cox model (2.1) and x = u. The resulting vector of the regression coefficient estimates

β̂ is given in Table 1. These estimates, coupled with the intercept estimate for γ̂ of −6.02, create a

risk score index P̂(u) for 6 month mortality of future patients.

Now, for a given P̂(u) = v, to obtain τ̂(v, 6), we let K(·) be the Epanechnikov kernel, and

ψ(v) = log{− log(1− v)} which leads to ψ{P̂(U)} = γ̂′ ~X. The smoothing parameter h = 0.18 was

obtained by multiplying a factor of 1/2, which is of order n−0.07, to the minimizer of the integrated

mean squared martingale residuals defined in (3.6) with 10-fold cross validation. Furthermore,

we chose the 2nd and 98th percentiles of the empirical distribution of {γ̂′ ~Xi, i = 1, · · · , n} as

the boundary points ql and qr for interval J . To approximate the distribution of (3.1) and W in

(3.5), we used the perturbation-resampling method (3.2) with 500 independent realized samples of

{Vi, i = 1, · · · , n} from the standard normal distribution.

In Figure 2(a), we present a smoothed density estimate for P̂(U), which provides useful infor-

mation regarding the relative size of the subgroup of individuals with P̂(U) = v, where v ∈ J =

[0.02, 0.24]. In Figure 2(b), we present the point estimates τ̂(v, 6) (solid curve) and 95% pointwise

(dark shaded) and simultaneous (gray shaded) interval estimates for τ(v, 6). The dashed line is 45

degree reference straight line.

Note that the estimated risk scores for most VALIANT patients are less than 0.15. For groups
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of subjects with low risk scores, their interval estimates tend to be tight. For example, for subjects

with P̂(u) = 0.05, the true 6-month mortality rate is likely to be between 0.03 and 0.05, based

on the 95% pointwise confidence interval. The corresponding simultaneous confidence interval is

[0.02, 0.06]. For patients whose risk scores are greater than 0.15, the interval estimates are relatively

wide as expected. For example, the true mortality rate for patients with P̂(u) = 0.20 is likely to

be from 0.19 to 0.25, the boundaries of the 95% pointwise confidence interval. The simultaneous

interval is [0.18, 0.27].

Next, suppose that we are interested in predicting long term survival for future patients similar

to the VALIANT study population. Here, we let t0 = 24 months and fitted the survival observations

slightly truncated at 24 months with a Cox model and x = u. The resulting regression coefficient

estimates are also given in Table 1. For this case, the bandwidth h = 0.15 and the range of

the estimated risk score v is from 0.04 to 0.48. The smoothed density function estimation of the

parametric score is given in Figure 1(c). Note that relatively few patients have scores beyond 0.3.

Our consistent point estimates (solid curve) for the true mortality rate and the 95% pointwise (dark

region) and simultaneous (gray region) intervals are given in Figure 1 (d). For example, for subjects

with a risk score of 0.1, our estimate for their 24 month mortality rate is 0.09 with 95% pointwise

and simultaneous confidence intervals being [0.08, 0.11] and [0.07, 0.12], respectively. For patients

whose risk scores are high, as expected, their interval estimates can be quite wide. For example, for

subjects with risk score of 0.3, the true mortality rate is likely to be between 0.26 and 0.37 based

on the 95% simultaneous confidence interval.

5. REMARKS

Due to the complexity of the disease process and the heterogeneity among subjects, it is unlikely

that a fitted parametric model would provide a good approximation to the true risk, P (T̃ < t0 | U),

for every subject in the population. The standard method to evaluate the adequacy of an assumed
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model is based on a utility or loss function of the observed and predicted responses averaged over the

entire study population. When the observed mortality rate is not small in a relatively large sample,

it is likely that a standard lack of fit test would reject the fitted model, which can be useful in

practice. In the present case, the univariate risk index system constructed from an empirical, semi-

parametric model can be quite useful for reducing the dimension of the baseline covariate vector

and grouping the subjects with “similar” risks. For a given risk scoring scheme, the new proposal

presented in this article can be utilized to make valid inferences about the true mortality rate for

subjects with the same model-based risk score. On the other hand, to evaluate whether the scoring

system effectively partitions the population, one needs to estimate the distribution of the risks for

these subjects. The index system works well if the distributions are tight around their centers over

a range of risk scores of interest. Further research on this challenging problem is warranted.

APPENDIX

In the appendix, we use the standard notations for the empirical process: Pn and P represent

the expectation with respect to the empirical distribution generated {(Ti, ∆i, Xi), i = 1, · · · , n} and

the distribution generated by (T, ∆, X), respectively. Similarly, Gn = n
1
2 (Pn − P). Throughout,

we assume that h = O(n−ν) with 1
5

< ν < 1
2
, K(x) is a symmetric smooth kernel function, has a

bounded support [-1, 1] and
∫

K̇(x)2dx < ∞, where K̇(x) = dK(x)/dx. For convenience, we use the

following notations: Kj(x) = K(x)xj, Kj,h(x) = Kj(x/h)/h and m2 =
∫ 1

−1
K2(x)dx. In addition,

we assume that the covariate vector X is bounded.

A Convergence of P̂(U)

First, we show that the in probability convergence of P̂(U) = g(γ̂′ ~X) → P̄(U) = g(γ′0 ~X) for any

given U , where γ0 = (log{Λ0(t)}, β′0)′, Λ0(t) =
∫ t

0
P{Y (s)λX(s)}/P{Y (s)eβ′0X}ds], β0 = argmaxβ L(β),

L(β) =

∫ t0

0

[
β′X − logP{Y (t)eβ′X}

]
P{Y (t)λX(t)}dt,
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http://biostats.bepress.com/harvardbiostat/paper92



and λx(t) is the hazard function of T̃ conditional on X = x. It suffices to show that β̂ → β0

and Λ̂0(t) → Λ0(t), in probability. Regardless of the adequacy of the the proportional hazards

model, L(β) is a convex function and L̂(β) → L(β) in probability, uniformly in β. Under the

condition that there is no vector ζ such that pr(T1 > T2 | ζ ′X1 > ζ ′X2, T2 ≤ t0) = 1, L(β) has a

unique maximizer β0. It follows from Theorem 2.1 of Newey & McFadden (1994) that β̂ → β0 in

probability. Furthermore, |β̂ − β0| = Op(n
− 1

2 ). Furthermore, it follows from the same arguments in

Lin et al. (1993), |Λ̂0(t0)− Λ0(t0)| = Op(n
− 1

2 ). This implies the consistency of P̂(U) for P̄(U).

B Asymptotic Properties of τ̂(v; t0)

We next derive the asymptotic properties of τ̂(v; t0), for v ∈ [ψ−1(ql + h), ψ−1(qr − h)]. Without

the loss of generality, we choose ψ(x) = log{− log(1 − x)}. Thus, ψ{P̄(U)} = γ′0 ~X, ψ{P̂(Ui)} =

γ̂′ ~Xi, and ψ{P̂(Ui)} − ψ{P̄(Ui)} = Op(n
− 1

2 ). Let ṽ = ψ(v), λv(t) be the hazard function of T̃

conditional on γ′0 ~X = ṽ, Λv(t) =
∫ t

0
λv(s)ds, ξ(·) be the density function of γ′0 ~X, and Mi(t) =

Ni(t) −
∫ t

0
Yi(s)dΛγ′0 ~Xi

(s). In view of τ̂(v; t0) = 1 − exp{−Λ̂v(t)} and the delta method, in the

following we will establish the asymptotical properties of Λ̂v(t). Furthermore, we will repeatedly

use the fact that

sup
e0∈[a,b]

∣∣∣∣ Pn [Kh(E − e0)F − P{Kh(E − e0)F}]
∣∣∣∣= Op

[{
(nh)−1 log(n)

} 1
2

]
, (B·1)

where (Ei, Fi), i = 1, · · · , n are i.i.d realizations of the random vector (E, F ), satisfying that

supe0
P(|F |s | E = e0) < ∞, ∀s > 0.

To derive the asymptotic properties of Λ̂v(t0), we first show that asymptotically there is no extra

variation due to the uncertainty in γ̂. To this end, we write Λ̂v(t0) = Λ̂v(t0, γ̂) and aim to show

that for any γ̂ = γ0 + Op(n
− 1

2 ),

sup
v
|Λ̂v(t0, γ̂)− Λ̂v(t0, γ0)| = op{(nh)−

1
2}, (B·2)
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where

Λ̂v(t0, γ) =

∫ t0

0

π̂
(2)
v (t, γ)dN̂

(0)
v (t, γ)− π̂

(1)
v (t, γ)dN̂

(1)
v (t, γ)

π̂
(2)
v (t, γ)π̂

(0)
v (t, γ)− π̂

(1)
v (t, γ)2

(B·3)

N̂ (k)
v (t, γ) = n−1

n∑
i=1

Kh{Dvi(γ)}{h−1Dvi(γ)}kNi(t),

π̂(k)
v (t, γ) = n−1

n∑
i=1

Kh{Dvi(γ)}{h−1Dvi(γ)}kYi(t),

and Dvi(γ) = ψ{g(γ′ ~Xi)}−ψ(v). Here and in the sequel, the sup is taken over [ψ−1(ql+h), ψ−1(qr−

h)] for v and over [0, t0] for t. To this end, we write

Λ̂v(t0, γ) =

∫ t0

0

{
R̂(2)

v (t, γ)dN̂ (0)
v (t, γ)− R̂(1)

v (t, γ)dN̂ (1)
v (t, γ)

}

and seek to show that

sup
t,v

∣∣π̂(k)
v (t, γ̂)− π̂(k)

v (t, γt)
∣∣ = op{(nh)−

1
2}. (B·4)

where

R̂(k)
v (t, γ) =

π̂
(k)
v (t, γ)

π̂
(2)
v (t, γ)π̂

(0)
v (t, γ)− π̂

(1)
v (t, γ)2

, k = 1, 2.

Since π̂
(k)
v (t, γ) =

∫
Kj,h(x− ṽ)dPn{I(γ̂′ ~X ≤ x)Y (t)},

|π̂(k)
v (t, γ̂)− π̂(k)

v (t, γ0)| =
∣∣∣∣
∫

Kj,h(x− ṽ)dPn{I(γ̂′ ~X ≤ x)Y (t)− I(γ′0 ~X ≤ x)Y (t)}|
∣∣∣∣

≤
∣∣∣∣n−

1
2

∫
Kj,h(x− ṽ)dGn{I(γ̂′ ~X ≤ x)Y (t)− I(γ′0 ~X ≤ x)Y (t)}|

∣∣∣∣

+

∣∣∣∣
∫

Kj,h(x− ṽ)P{I(γ̂′ ~X ≤ x)Y (t)− I(γ′0 ~X ≤ x)Y (t)}|
∣∣∣∣

≤h−1n−
1
2‖Gn‖Hδ

+ Op(n
− 1

2 )

where Hδ = {[I(γ′ ~X ≤ x) − I(γ′0 ~X ≤ x)]Y (t) : x, s, |γ − γ0| ≤ δ} is a class of functions indexed

by x, s and δ. Furthermore, Hδ is uniformly bounded by an envelop function in the order of δ
1
2

with respect to L2 norm. By the maximum inequality (Theorem 2.14.2, Van der Vaart and Wellner,

1996) and the fact that |γ̂ − γ0| = Op(n
− 1

2 ), we have

h−1n−
1
2‖Gn‖Hδ

. Op{h−1n−
1
2 n−

1
4 log(n)}.
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It follows that |π̂(k)
v (t, γ̂) − π̂

(k)
v (t, γ0)| = (nh)−

1
2 (nh2)−

1
4 log(n) + Op(n

− 1
2 ) = op{(nh)−

1
2}. This,

together with (B·1), implies that

sup
t,v
|R̂(k)

v (t, γ0)− R̂(k)
v (t, γ̂)| = op{(nh)−

1
2}, k = 0, 1,

and sup
t,v
{|R̂(2)

v (t, γ0)− r(2)
v (t)|+ |R̂(1)

v (t, γ0)|} = Op{(nh)−
1
2 log(n)

1
2 + h2},

where r
(2)
v (t) = 1/{ξ(ṽ)Sv(t)} and Sv(t) = pr(T ≥ t|γ′0 ~X = ṽ).

Next, we note that

∣∣∣∣
∫ t0

0

R̂(2)
v (t, γ̂)dN̂ (0)

v (t, γ̂)−
∫ t0

0

R̂(2)
v (t, γ0)dN̂ (0)

v (t, γ0)

∣∣∣∣ ≤ ε̂1 + ε̂2 + ε̂3

where

ε̂1 = Pn

[∫ t0

0

∣∣∣R̂(2)
v (t, γ̂)− R̂(2)

v (t, γ0)
∣∣∣ Kh(γ̂

′ ~X − ṽ)dN(t)

]
+

ε̂2 = Pn

∣∣∣∣
{

Kh(γ̂
′ ~X − ṽ)−Kh(γ

′
0
~X − ṽ)

} ∫ t0

0

∣∣∣R̂(2)
v (t, γ0)− r(2)

v (t)
∣∣∣ dN(t)

∣∣∣∣

ε̂3 =

∣∣∣∣ Pn

[{
Kh(γ̂

′ ~X − ṽ)−Kh(γ
′
0
~X − ṽ)

} ∫ t0

0

r(2)
v (t)dN(t)}

] ∣∣∣∣

We will bound these three terms in the following. For the first term,

ε̂1 ≤ op{(nh)−
1
2}Pn

{
Kh(γ̂

′ ~X − ṽ)N(t0)
}

= op{(nh)−
1
2}.

For the second term,

ε̂2 ≤ h−1 sup
t

∣∣∣R̂(2)
v (t, γ0)− r(2)

v (t)
∣∣∣ sup

x

[
Pn

{∣∣∣I(γ̂′ ~X ≤ x)− I(γ′0 ~X ≤ x)
∣∣∣N(t0)

}]

≤ Op{h−1(nh)−
1
2 log(n)

1
2 + h}Op(n

− 1
2 ) = op{(nh)−

1
2}.

For the last term,

ε̂3 ≤ n−
1
2 h−1 sup

x

∣∣∣∣Gn

[{
I(γ̂′ ~X ≤ x)− I(γ′0 ~X ≤ x)

} ∫ t0

0

r(2)
v (t)dN(t)

]∣∣∣∣ + Op(n
− 1

2 )

= Op{n− 1
2 h−1n−

1
4 log(n)} = op{(nh)−

1
2}.
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Therefore,

sup
v

∣∣∣∣
∫ t0

0

R̂(2)
v (t, γ̂)dN̂ (0)

v (t, γ̂)−
∫ t0

0

R̂(2)
v (t, γ0)dN̂ (0)

v (t, γ0)

∣∣∣∣ = op{(nh)−
1
2}.

Similarly, ∫ t0

0

R̂(1)
v (t, γ̂)dN̂ (1)

v (t, γ̂)−
∫ t0

0

R̂(1)
v (t, γt)dN̂ (1)

v (t, γ) = op{(nh)−
1
2},

and thus (B·2) holds. On the other hand, the arguments given in Li & Doss (1995) can be used

to show that supv |Λ̂v(t0, γ0) − Λv(t0)| → 0, in probability. It follows that supv |Λ̂v(t0) − Λv(t0)| ≤

supv |Λ̂v(t0, γ̂)−Λ̂v(t0, γ0)|+supv |Λ̂v(t0, γ0)−Λv(t0)| → 0, in probability. This concludes the uniform

consistency of Λ̂v(t0).

We next derive the asymptotic distribution of Ŵv(t0) = (nh)
1
2{Λ̂v(t0)−Λv(t0)}. From (B·2), we

have Ŵv(t0) = W̃v(t0)+op(1), where W̃v(t0) = (nh)
1
2{Λ̂v(t0, γ0)−Λv(t0)}. Noting that n

1
2 h

5
2 = op(1)

and the decomposition that

W̃v(t0) = (nh)
1
2Pn

[∫ t0

0

{
R̂(2)

v (t, γ0)Kh(γ
′
0
~X − ṽ)− R̂(1)

v (t, γ0)K1,h(γ
′
0
~X − ṽ)

}
dM(t)

]

+ (nh)
1
2

{
h2 + op(h

2)

2

∫ t0

0

π̂
(2)
v (t, γ0)

2 − π̂
(1)
v (t, γ0)π̂

(3)
v (t, γ0)

π̂
(2)
v (t, γ0)π̂

(0)
v (t, γ0)− π̂

(1)
v (t, γ0)2

∂2λv(t)

∂ṽ2
ds

}
,

we have

W̃v(t0) = (nh)
1
2Pn

[∫ t0

0

{
R̂(2)

v (t, γ0)Kh(γ
′
0
~X − ṽ)− R̂(1)

v (t, γ0)K1,h(γ
′
0
~X − ṽ)

}
dM(t)

]
+ op(1).

By integration by part and maximum inequality for empirical process, we have

(nh)
1
2Pn

{
K1,h(γ

′
0
~X − ṽ)

∫ t0

0

R̂(1)
v (t, γ0)Y (t)dM(t)

}
= op(1)

and

(nh)
1
2Pn

[
Kh(γ

′
0
~X − ṽ)

∫ t0

0

{
R̂(2)

v (t, γ0)− r(2)
v (t)

}
dM(t)

]
= op(1),

uniformly in ṽ. Therefore,

Ŵv(t) =(nh)
1
2Pn

{
Kh(γ

′
0
~X − ṽ)

∫ t0

0

r(2)
v (t)dM(t)

}
+ op(1). (B·5)
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For any fixed v (or ṽ), by martingale central limit theorem,

(nh)
1
2Pn

{
Kh(γ

′
0
~X − ṽ)

∫ t0

0

r(2)
v (t)dM(t)

}
→ N{0, σ2

v(t0)},

in distribution, as n →∞, where

σ2
v(t0) = m2

∫ t0

0

r(2)
v (t)dΛv(t).

It follows that for any fixed v, Ŵv(t) converges in distribution to N{0, σ2
v(t0)}.

To demonstrate the validity of the resampling variance estimator, we define

γ̂∗ = (log{Λ̂∗0(t0)}, β̂∗′)′, (B·6)

where

β̂∗ = β̂ + Â−1

n∑
i=1

∫ [
Vi

{
Xi − Π̂(1)(t,β̂)

Π̂(0)(t,β̂)

}
− n−1

Pn
j=1 VjYj(t)e

β̂′Xj{Π̂(0)(t,β̂)Xj−Π̂(1)(t,β̂)}
Π̂(0)(t,β̂)2

]
dNi(t)

log{Λ̂∗0(t0)} = log{Λ̂0(t0)}+
n−1

Λ̂0(t)

n∑
i=1

∫ t

0

[
Vi

Π̂(0)(s,β̂)
− n−1

Pn
j=1 VjYj(s)e

β̂′Xj +Π̂(1)(t,β̂)′(β̂∗−β̂)

Π̂(0)(s,β̂)2

]
dNi(s)

Π̂(k)(t, β) = n−1
∑n

j=1 Yj(t)e
β′XjX⊗k

j and for any vector x, x⊗0 = 1, x⊗1 = x and x⊗2 = xx′. It

is straightforward to show that the distribution of n
1
2 (γ̂∗ − γ̂) conditional on the data and the

unconditional distribution of n
1
2 (γ̂ − γ0) converge to the same limiting normal distribution. Now

since γ̂∗ = γ0 + Op(n
− 1

2 ), by (B·2),

(3.2) = n−
1
2 h

1
2

n∑
i=1

Kh(D̂vi)V̂i(v; t0)Vi + op(1),

Thus the variance estimator for (nh)
1
2{Λ̂v(t0)− Λv(t0)} is

σ̂2
v(t0) =var

[
n−

1
2 h

1
2

n∑
i=1

Kh(D̂vi)V̂i(v; t0)Vi

∣∣∣∣ (Ti, ∆i, Ui), i = 1, · · · , n

]
+ op(1)

= Pn


hK2

h

(
γ̂′ ~X − ṽ

) {∫ t0

0

dN(t)− Y (t)dΛ̂v(t)

π̂
(0)
v (t, γ̂)

}2

 + op(1)

= Pn

[
hK2

h

(
γ′0 ~X − ṽ

) {∫ t0

0

r(2)
v (t)dM(t)

}2
]

+ op(1)

= P
{

hK2
h

(
γ′0 ~X − ṽ

) ∫ t0

0

r(2)
v (t)2Y (t)dΛv(t)

}
+ op(1) = σ2

v(t0) + op(1),
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which converges to σ2
v(t0) in probability.

C Justification for the Validity of the Confidence Band for τ̂(v; t0)

We first justify that after proper standardization, the supermum type statistics

W = sup
v

∣∣∣∣∣
(nh)

1
2 Λ̂v(t0)− Λv(t0)

σ̂v(t0)

∣∣∣∣∣

converges weakly. It follows from (B·5) and the consistency of σ̂v(t0) for σv(t0) that

W = sup
v

∣∣∣∣ (nh)
1
2Pn

{
Kh(γ

′
0
~X − ṽ)

∫ t0

0

r
(2)
v (t)

σv(t0)
dMi(t)

} ∣∣∣∣ +op(1).

This, together with the continuity of r
(2)
v (t)/σv(t0), implies that

W = sup
v

∣∣∣∣ (nh)
1
2Pn

{
Kh(γ

′
0
~X − ṽ)η

} ∣∣∣∣ +op(1).

where

η =

∫ t0

0

r
(2)

ψ−1(γ′0 ~X)
(t)dM(t)

σψ−1(γ′0 ~X)(t0)

If follows from the similar argument in Bickel & Rosenblatt (1973) that

pr {an(W − dn) < x} → e−2e−x

where

an =

{
2 log

(
ψ(qr)− ψ(ql)

h

)} 1
2

and dn = an + a−1
n log

{
1

4m2π

∫
K̇(t)2dt

}
.

Now, to justify the validity of the resampling procedure for constructing the confidence band, we

consider the statistics

W ∗ = sup
v

∣∣∣∣
(nh)

1
2

σ̂v(t0)

n∑
i=1

Vi

∫ t0

0

Kh(γ̂′ ~Xi−ṽ){dNi(t)−Yi(t)dΛ̂v(t)}
π̂

(0)
v (t,γ̂)

+ (nh)
1
2

{
Λ̂v(t0, γ̂

∗)− Λ̂v(t0, γ̂)
} ∣∣∣∣,

Again, since |γ̂∗ − γ̂| = Op(n
− 1

2 ), from (B·2), we have

W ∗ = sup
v

∣∣∣∣
(nh)

1
2

σ̂v(t0)

n∑
i=1

Vi

∫ t0

0

Kh(γ̂′ ~Xi−ṽ){dNi(t)−Yi(t)dΛ̂v(t)}
π̂

(0)
v (t,γ̂)

∣∣∣∣ +op(1).
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It follows from the same argument as given in Tian et al. (2005) that,

sup
x

∣∣∣pr {an(W ∗ − dn) < x | (Ti, ∆i, Ui), i = 1, · · · , n} − e−2e−x
∣∣∣

→ 0, in probability as n →∞. Therefore, the conditional distribution of an(W ∗ − dn) can be used

to approximate the distribution of an(W − dn) for large n.
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Figure 1: The Kaplan-Meier Curve with the survival time data for the entire VALIANT study.
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Table 1: Estimates (Est) of the regression coefficients, the corresponding standard errors (SE) and

p-values by fitting the Cox model to the VALIANT data based on survival time information up to

t0.

Covariates

Age KC eGFR MI HF CorInt AF Dia COPD BBB Ang

Est .028 .289 -.012 .206 .242 -.433 .252 .241 .161 .220 .164

t0 = 6 SE .003 .032 .002 .066 .072 .107 .072 .061 .088 .108 .062

p-value .000 .000 .000 .002 .001 .000 .001 .000 .070 .042 .008

Est .030 .237 -.010 .295 .327 -.463 .296 .268 .243 .231 .235

t0 = 24 SE .002 .023 .001 .047 .051 .077 .052 .044 .062 .080 .045

p-value .000 .000 .000 .000 .000 .000 .000 .000 .000 .004 .000
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Figure 2: Prediction of 6-month and 24-month mortality risks based on the eleven risk factors.

The top panel shows the estimated density function of the model based risk estimate for (a) t0 = 6

months; and (c) t0 = 24 months. The lower panel shows the point (thick solid curve) estimate of the

true risk function τ(v, t0) along with their pointwise (dark shaded region) and simultaneous (light

shaded region) confidence intervals for (b) t0 = 6 months; and (d) t0 = 24 months. The dashed line

is the 45 degree reference line.
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