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f Populations Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada 
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A B S T R A C T   

The development of high-resolution spatial and spatiotemporal models of air pollutants is essential for exposure 
science and epidemiological applications. While fixed-site sampling has conventionally provided input data for 
statistical predictive models, the evolving mobile monitoring method offers improved spatial resolution, ideal for 
measuring pollutants with high spatial variability such as ultrafine particles (UFP). 

The Quebec Air Pollution Exposure and Epidemiology (QAPEE) study measured and modelled the spatial and 
spatiotemporal distributions of understudied pollutants, such as UFPs, black carbon (BC), and brown carbon 
(BrC), along with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in Quebec City, 
Canada. We conducted a combined fixed-site (NO2 and O3) and mobile monitoring (PM2.5, BC, BrC, and UFPs) 
campaign over 10-months. Mobile monitoring routes were monitored on a weekly basis between 8am–10am and 
designed using location/allocation modelling. Seasonal fixed-site sampling campaigns captured continuous 24-h 
measurements over two-week periods. Generalized Additive Models (GAMs), which combined data on pollution 
concentrations with spatial, temporal, and spatiotemporal predictor variables were used to model and predict 
concentration surfaces. 

Annual models for PM2.5, NO2, O3 as well as seven of the smallest size fractions in the UFP range, had high out 
of sample predictive accuracy (range r2: 0.54–0.86). Varying spatial patterns were observed across UFP size 
ranges measured as Particle Number Counts (PNC). The monthly spatiotemporal models for PM2.5 (r2 = 0.49), BC 
(r2 

= 0.27), BrC (r2 
= 0.29), and PNC (r2 

= 0.49) had moderate or moderate-low out of sample predictive ac-
curacy. We conducted a sensitivity analysis and found that the minimum number of ‘n visits’ (mobile monitoring 
sessions) required to model annually representative air pollution concentrations was between 24 and 32 visits 
dependent on the pollutant. 

This study provides a single source of exposure models for a comprehensive set of air pollutants in Quebec 
City, Canada. These exposure models will feed into epidemiological research on the health impacts of ambient 
UFPs and other pollutants.   

1. Introduction 

Exposure to ambient air pollution is associated with adverse health 

impacts throughout the life course, including respiratory conditions, 
cardiometabolic diseases, cancers, neurodegenerative diseases, birth 
outcomes, as well as premature mortality (Boogaard et al., 2022; Buteau 
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et al., 2018, 2020, COMEAP, 2022, GBD 2019 Diabetes and Air Pollution 
Collaborators, 2022; Crouse et al., 2010; Goldberg et al., 2001, 2006, 
2013; Parent et al., 2013; Smargiassi et al., 2020; Tétreault et al., 2016; 
Turner et al., 2020; World Health Organization, 2021). These impacts, 
whether acute or chronic (World Health Organization, 2021), can vary 
in magnitude across cities and neighbourhoods (Bennett et al., 2019; 
Kheirbek et al., 2016; Liu et al., 2017; Pascal et al., 2013; Stieb et al., 
2021). This is a result of spatial and temporal variations in air pollutant 
levels, which is influenced by locations of emissions (e.g., road-traffic 
networks, shipping ports, airports, industrial sites), atmospheric trans-
port of emitted pollutants (e.g., prevailing wind direction), factors 
which can attenuate or reduce pollutant levels (e.g., urban park-
s/trees/green infrastructure) (Gourdji, 2018), as well as population 
characteristics and behaviours which can influence exposure and sus-
ceptibility to health effects. As such, air pollution epidemiological 
studies, particularly those conducted within cities, require highly 
spatially resolved pollution data to capture local scale variations. 

The majority of the evidence of the health impacts of ambient air 
pollution are from studies of PM2.5, NO2, and O3 (Boogaard et al., 2022; 
COMEAP, 2022; GBD 2019 Diabetes and Air Pollution Collaborators, 
2022; Turner et al., 2020; World Health Organization, 2021) which are 
routinely monitored in many cities around the world. However, there is 
ongoing concern regarding ultra-fine particles (UFPs, typically with 
aerodynamic dynamiter <100 nm) as these are not typically regulated 
by governments and we don’t know whether they might induce more 
toxic effects than PM2.5 mass concentrations. It is of public health 
importance to study the health effects of UFPs, especially by investi-
gating the different size ranges that might induce health effects. 
Therefore, there is a need for dense urban monitoring campaigns using 
refined methods measuring several pollutants, including UFPs, to 
develop high resolution exposure models that can improve risk esti-
mates in epidemiological studies. 

Air pollution monitoring campaigns for epidemiological applications 
have traditionally used fixed-site approaches, where monitors are 
mounted at discrete locations for defined periods of time (Xie et al., 
2017). More recently, mobile monitoring (MM) campaigns have been 
undertaken to increase the spatial resolution of urban air pollution 
measurement, in a cost-effective and efficient way. This is done by 
attaching air pollution monitoring equipment to mobile apparatus (e.g., 
vehicles, bicycles, people) travelling along defined routes (Anand and 
Phuleria, 2021; Chambliss et al., 2020; Deshmukh et al., 2020; Dionisio 
et al., 2010; Hankey et al., 2019; Kerckhoffs et al., 2021; Liu et al., 2019; 
Messier et al., 2018; Xie et al., 2017). These routes are often travelled on 
multiple days or seasons of the year (called ‘visits’ or ‘drive days’) 
(Kerckhoffs et al., 2024) to obtain temporally representative estimates 
(Kerckhoffs et al., 2021; Messier et al., 2018). An important but still 
understudied question, which has implications for improving the 
cost-effectiveness of MM campaign design, is how many visits are 
needed to accurately characterize the spatial pattern of air pollution in 
different urban environments (Blanco et al., 2023; Kerckhoffs et al., 
2024). The answer to this question can vary by the pollutant, the tem-
poral context of the study’s research question (seasonal, annual, pre/-
post intervention), and the spatial context of a study (entire city, 
particular urban area of interest). 

Statistical-based modelling approaches have frequently been used to 
predict the spatial and/or temporal variability in ambient air pollution 
concentrations based on measurements from fixed or MM campaigns 
(Hoek et al., 2008) within cities in high resolution. The land use 
regression (LUR) model is based on regressing spatially, and sometime 
temporally, structured geospatial and temporal predictors that represent 
a range of sources and the propagation and attenuation of their emis-
sions in the urban environment (Hoek et al., 2008; Xie et al., 2017). 
LUR-based models have been successfully implemented with a variety of 
modelling approaches, including linear regression, generalized additive 
models (GAM), machine learning approaches, and Bayesian as well (e.g. 
(Hankey et al., 2019; Kerckhoffs et al., 2021; Lim et al., 2020; Liu et al., 

2019; Lloyd et al., 2023; Messier et al., 2018; Minet et al., 2018; Simon 
et al., 2018; Van den Bossche et al., 2020; Van den Hove et al., 2020),). 

The Quebec City Air Pollution Exposure and Epidemiology (QAPEE) 
study sought to characterize a diverse set of understudied air pollutants 
in Quebec City for applications in epidemiological studies. We leveraged 
exposure measurements of PM2.5, black and brown carbon, and UFPs 
collected in a 10-month MM campaign (collected between 8am–10am) 
as well as NO2 and O3 collected continuously throughout the 24-h day 
over two-week periods with fixed-site seasonal sampling. We then took a 
spatial and spatiotemporal land use regression (LUR) approach to model 
and predict annual and monthly ambient air pollutant concentrations in 
high-spatial resolution in Quebec City in a consistent way. Lastly, we 
conducted a sensitivity analysis to estimate the MM data collection 
sessions (‘n visits’) required to achieve robust spatial annual models for 
several pollutants. 

2. Materials and methods 

2.1. Study location 

Quebec City is the capital of the province of Quebec, Canada with an 
estimated population of ~530,000 people (Statistics Canada, 2017). 
Situated on the north bank of the Saint Lawrence River, the city expe-
riences cold winters and warm summers, with average temperatures 
dropping down between − 10 and − 25 ◦C in January, and up to around 
20 ◦C in July (Government of Canada, 2022). 

Residents of Quebec City may be exposed to a mixture of air pol-
lutants varying in magnitude across the city. There is a busy city-centre, 
a historic district atop the Cap-Diamant hill, an international airport 
(Jean Lesage Airport), and a seaport in close proximity to several resi-
dential areas (Limoilou, Vanier and Québec – Basse-Ville). Port activities 
include shipping, cruise line traffic and major industries including an 
incinerator and paper mill (Institut national de santé publique du 
Quebec, 2023). Furthermore, some of the population still burns solid 
fuels in winter for heating, which contributes to wintertime PM2.5 
concentrations. 

2.2. Data collection 

2.2.1. Air pollution data 
Our monitoring campaign consisted of 10-months of MM and two 

seasonal (two-week long) fixed-site measurements across Quebec City. 
The study area was established as a 372 km2 zone surrounding the urban 
area of Quebec City. Mobile and fixed-site sampling locations were 
selected using a location allocation algorithm that took into account 
spatial variability in land use parameters and the distribution of study 
population (Kanaroglou et al., 2005). A pre-estimated pollutant surface 
was created using suitability analysis which incorporates common 
influential factors identified from the literature (Weichenthal et al., 
2016a, 2016b), including highway, major road, local road, railway, 
parks, commercial zoning, and industrial zoning. Next, a surface of 
spatial variation of these factors was created using a semivariogram 
function. Also, as we were interested in the areas where the density of 
the population was high, a weighting scheme (Kanaroglou et al., 2005) 
was applied to the variability surface. Lastly, monitoring locations and 
routes were selected using a maximum attendance location allocation 
algorithm based on the population-weighted semi-variance (Kanaroglou 
et al., 2005). The location allocation algorithm was used to specify 60 
sampling locations for the fixed-site sampling (FSS) campaign and 100 
locations to inform route design for the MM campaign. 

The FSS campaign was carried out during 14-day continuous periods 
in the summer (September 2019) and winter (March 2020, prior to the 
closure of businesses as a result of the COVID-19 pandemic) to capture 
concentrations of NO2 (ppb) and O3 (ppb). Our approach was similar to 
previous work in another Canadian city employing passive badges in a 
multi-season FSS study to create annual NO2 models (Crouse et al., 
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2009). The later summer and winter periods were chosen over 
mid-season periods to avoid several complications such as fireworks, 
holidays, high snowbanks, and adequate sunlight for solar powered 
equipment. Having gained permission from the municipal authorities, 
sampling setups were mounted to lamp poles at a height of ~3 m. Setups 
consisted of a rain shelter, passive Ogawa samplers (Ogawa, Florida, 
USA) for NO2 and O3. For quality assurance and control (QA/QC) pur-
poses, we collected six duplicate and blank NO2 and O3 samples each 
season for blank corrections and to derive estimates of precision. 
Measured seasonal concentrations were averaged together to develop an 
estimate of an annual average concentration. 

Three routes, 179 km in total length, were designed to cover the 100 
locations specified by the location allocation algorithm, each requiring 
2 h to complete (Appendix 1). Residential areas were prioritized in the 
design of the MM routes. The use of local roads was prioritized, using 
arterial roads to transit from neighbourhood to neighbourhood. High-
ways represented ~5 km of the MM network. With the conservative 
assumption of a mean 65 km/h driving speed based on a previous MM 
campaign (Weichenthal et al., 2016a) and a minimum road segment size 
of 100 m, we set the objective of conducting ~54 MM sessions to yield 5 
min of data for each road segment thus providing a rich, seasonally 
balanced dataset to develop spatial and spatiotemporal air pollution 
models. Thus, the design of weekly monitoring sessions for the 1-year 
study period from June 2019–June 2020 was determined. Data 
collected after March 26, 2020 were removed from the analysis due to 
the COVID-19 pandemic and provincial lockdowns. A hydrogen fuel cell 
vehicle was equipped with monitoring equipment and an elutriator 
mounted on the back window (Fig. A1 in Appendix). Each monitoring 
week consisted of randomly assigning each route to either a Tuesday, 
Wednesday or Thursday and conducting each session from 8:00–10:00. 
For each route, six starting points were established and used in an 
alternating fashion to ensure the timing of each route was even over the 
standard 2-h time period. 

Pollutants measured in the MM campaign included PM2.5 (μg/m3), 
black carbon (ng/m3), brown carbon (ng/m3), and UFPs (measured as 
Particle Number Count (PNC; pts/cm3)) and particle size mode (nm). 
These measures were collected at 1-s recording intervals. PNC and 
particle size mode were measured with the DiscMini from Testo (Lenz-
kirch, Germany) and covered a size range between 10 nm–700 nm, 
however the median annual particle size mode captured across MM lo-
cations was 38 nm with a range of 24.5 nm–50.2 nm which is within the 
typical UFP size range (<100 nm). One-minute PNCs were also esti-
mated seporatly for the following 13 particle size modes: 365.2, 273.8, 
205.4, 154.0, 115.5, 86.6, 64.9, 48.7, 36.5, 27.4, 20.5, 15.4, 11.5 nm by 
the Nanoscan from TSI, Inc. We measured PM2.5 concentrations with the 
DustTrak 8530 from TSI (Minnesota, USA), and black carbon (BC) and 
brown carbon (BrC) concentrations using the AE-200 Aethalometer from 
Magee Scientific (California, USA). Coordinate locations were measured 
with a DG-100 GlobalSat global positioning system (GPS) (WorldCom 
Group). For information on QA/QC methods please refer to Appendix 1. 

Following MM data collection, the routes were divided into 500 m 
road segments. Each second of MM data was assigned to the 500 m road 
segment to which it was closest based on the road segment centreline. 
The median value for each combination of monitoring week and road 
segment was then calculated, giving the median value of one pass. For 
the annual models, we further aggregated the data by taking the median 
value across the 40 passes of each road-segment from June 12th, 2019 to 
March 26th, 2020 and for the monthly models, we aggregated the data 
by taking the median value across the 4 passes of each road-segment 
each month. The ‘median of medians’ approach was chosen as the 
metric of central tendency to reduce the impact of influential observa-
tions (Hankey and Marshall, 2015). 

2.2.2. Predictor variables 
A list of the spatial GIS (Geographic Information Systems) and tem-

poral meteorological predictor variables which were candidates for the 

models, their transformations, and sources of information, are included 
in Appendix 2. To process predictor variable data, we created circular 
buffers with radius of 50, 100, 200, 300, 400, 500, 750 and 1000 m 
around the latitude and longitude coordinate location of the fixed 
measurement site (FSS campaign), or the centroid of the 500 m long 
road-segment (MM campaign). We then mapped the spatial predictor 
variables to each buffer, centred by the coordinate location of the 
measurement site, through spatial overlay. Zonal statistics (e.g., 
average, sum, area, depending on spatial predictor type – see Appendix 
2) of each spatial predictor overlapping within each buffer were calcu-
lated. We additionally calculated the Euclidean distances of the mea-
surement sites to predictor variable locations. Meteorological variables 
did not have any spatial features (i.e., one value applies to the whole 
area) and thus did not undergo the aforementioned processing steps. 

2.3. Modelling 

Prior to model building, we assessed the univariate distributions of 
our pollution and predictor data with histograms. Due to the right skew 
of our pollution data, we applied log transformations to achieve normal 
distributions for modelling. We then assessed the linearity/non-linearity 
of the bivariate distributions between all combinations of pollution and 
predictor data with scatter plots (two continuous variables) and box and 
whisker plots (one continuous and one categorical variable). 

For our predictive modelling framework, we used Generalized Ad-
ditive Models (GAM) as they allow for modelling linear and non-linear 
associations and can also flexibly account for spatial, temporal, and 
hierarchical structures within the data (Ross, n.d.). GAMs have also been 
used previously for similar applications achieving high predictive ac-
curacy (Harper et al., 2021; Lloyd et al., 2023). Using the FSS and MM 
data, we built two types of LUR models:  

i) models of annual median ambient concentrations of PM2.5, BC, BrC, 
PNC (total and for 13 size fractions), particle size mode and annual 
average ambient concentrations of NO2, and O3 (i.e., spatial models);  

ii) models of monthly median ambient concentrations of PM2.5, BC, 
BrC, and PNC (i.e., spatiotemporal models). 

2.3.1. Spatial annual models 
We used FSS data to model ambient average concentrations of NO2 

(ppb), and O3 (ppb) and MM data to model ambient median concen-
trations of PM2.5 (ug/m3), BC (ng/m3), BrC (ng/m3), PNC (pts/cm3), 
particle size mode (nm), and PNCs specific to 13 size fractions (pts/cm3). 

We initially identified the ‘best’ combination of predictor variables 
for each pollutant model by running up to 4017 models each, repre-
senting all combinations of predictors, and selecting combinations 
which maximized model predictive accuracy and minimized error (more 
details are in Appendix 2). After the ‘best’ combination of predictor 
variables were identified for each pollutant LUR model (regardless of the 
associated p-value of the coefficient), we continued to build the GAM 
models by testing and applying non-linear smooth functions to the 
predictor variables. Specifically, we first assessed the linearity between 
each continuous predictor variable and each log-transformed pollutant 
with bivariate scatterplots, without adjusting for the other variables. If 
the bivariate relationships appeared non-linear, we then applied non- 
linear spline functions to the corresponding predictor variables in the 
multivariable models. The optimal number of knots was determined 
through graphical analysis of GAMs to ensure that modelled relation-
ships did not overfit the data and key aspects of relationships were not 
missed. 

We evaluated whether model assumptions (e.g., residual random and 
constant variance) were upheld using diagnostic plots of residuals. 
Furthermore, given the nature of our air pollution data and the data 
collection campaign, it was highly likely that the pollution data were 
correlated across space, which could lead to residual spatial 
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autocorrelation in the models. We thus checked whether the models had 
residual spatial autocorrelation using the Global Moran’s I statistic of 
spatial randomness (Dormann et al., 2007). We also visually assessed the 
potential spatial patterning of residuals by mapping them across the 
study area. If spatial autocorrelation appeared present, similar to the 
approach taken by Harper et al. (2021), we then explicitly modelled this 
spatial dependence by including the coordinate locations of 
road-segment centroids (MM) or sampling sites (FSS) into the model as 
interaction terms (longitude x latitude) with Gaussian Process (GP) 
smooth functions with 10–100 knots, opting for fewer numbers of knots 
where possible to do so. We call these the smooth spatial terms in the 
model. 

We evaluated and compared the predictive accuracy of the final 
selected spatial annual GAM models with 10-fold cross validation with 
10% random sites held out (10%SiteCV). Metrics of predictive accuracy 
on the held-out data included the Root Mean Squared Error (RMSE) 
(measure of dispersion) and Mean Error (ME) (measure of bias), and 
square of the correlation coefficient between the observed and model 
predicted values (r2) (approximates R2) as well as the slope of the line 
between the observed and model predicted values. As a stricter cross- 
validation test which accounted for more of the spatial correlation of 
the dependent (pollution) data, we additionally conducted cross- 
validation of spatially independent folds (sometimes called strategic 
block cross-validation) (Roberts et al., 2017). We created a grid over the 
study area with 10 spatially independent grid cells. We then assigned 
each of the MM routes/fixed-monitoring site coordinate locations to 
their corresponding spatially overlapping grid cell (1–10) and addi-
tionally ran the cross-validation process with 10% of spatially inde-
pendent sites held out ten times (10%SpatialCV). These model evaluation 
procedures were also applied to the spatiotemporal models described 
below. 

2.3.2. Spatiotemporal models (monthly models) 
Lastly, we built spatiotemporal GAM LUR models for the prediction 

of monthly ambient concentrations of PM2.5, BC, BrC, and PNC. The 
inputs for these models included monthly median concentrations from 
MM data collected over a 10-month period and spatial, temporal, and 
spatiotemporal predictor variables. 

2.3.2.1. Spatial component. As a first step in the spatiotemporal model 
building process, we built up the spatial component of each model by 
first identifying the spatial GIS predictors used in the annual median 
models. If a spatial GIS predictor could also vary over time and we had 
data for that (e.g., monthly NDVI levels), we used the temporally 
varying version. We then fit models of monthly aggregated pollution 
concentrations and spatial GIS predictors and extracted the residuals for 
each site and month of the year. Furthermore, if the model residuals 
were spatially autocorrelated, we added in a smoothed spatial term. 

2.3.2.2. Temporal component. As a second step, we identified the 
essential temporal components of the models by fitting models with the 
residuals from the spatial models developed in step one with monthly 
averaged meteorological data as predictors. This was done to identify 
which meteorological variables could account for variation in pollution 
concentrations, that was not accounted for by the spatial variables 
(Harper et al., 2021). Meteorological variables which were considered 
were temperature, relative humidity, wind speed, atmospheric pressure, 
and wind direction. The meteorological variables with significant 
p-values (<0.05) in the models were brought forward to the next step in 
the model building process, as was done in (Harper et al., 2021). 

2.3.2.3. Spatiotemporal components. As a third and final step, we built 
up the full spatiotemporal models of monthly median pollution con-
centrations by adding in the selected spatial GIS and temporal meteo-
rological variables as predictors. Additionally, to capture overall 

monthly trends in pollution concentrations, we fitted a spline function to 
a continuous variable representing ‘month of the year’ in the models. 
Lastly, we hypothesized that the underlying spatial relationship between 
pollution concentrations was non-stationary and could vary over time, 
and so we conditioned the smoothed spatial term (interaction between 
longitude and latitude) on season (n = 4 seasons). 

Model equations are included in Appendix 2. 

2.3.3. Sensitivity analysis 
A sensitivity analysis was conducted to determine the minimum 

number of ‘n visits’ required to attain stable models for spatial pattern of 
PM2.5, PNC, particle size mode, BC and BrC. The annual models for these 
pollutants were rerun reflecting MM designs consisting of 8, 12, 16, 20, 
24, 28, 32, and 36 visits (weekly MM sessions). For each of these ‘n visit’ 
categories, 15 random samples from the total 40 visits were taken. 
Boxplots presenting the adjusted r2 variability of the 15 models for each 
‘n visits’ group were plotted to investigate the relationship between the 
number of visits on model prediction. Further, model beta coefficients 
and spatial patterns were compared across ‘n visit’ categories to explore 
the number of visits required to attain stable models. 

3. Results 

3.1. Measured ambient concentrations 

From the FSS campaign, annual NO2 concentrations were measured 
across sites with a median value of 3.1 ppb (interquartile range (IQR): 
1.9–4.9) and ozone of 54.1 ppb (IQR: 50.4–58.8). From the three MM 
routes, we measured annual median concentrations of corrected PM2.5 
at 6.8 μg/m3 (IQR: 6.1–7.7) with levels varying in magnitude across sites 
(Fig. 1) and between seasons (Figure A3.1). Of the 10 months captured, 
February had the highest median monthly concentration of PM2.5 (9.1 
μg/m3) and September the lowest (4.8 μg/m3). BC and BrC had median 
measured annual concentrations at 1164 ng/m3 (IQR: 1047–1349) and 
881 ng/m3 (IQR: 719–1064), which correspond to ~1.16 (BC) and 0.88 
(BrC) in units of μg/m3. Monthly median BC (1476 ng/m3) and BrC 
(1148 ng/m3) concentrations were similarly elevated in February 
(Figure A3.1). 

Median total PNC were 8376 pt/cm3 (IQR: 5790–10,999), while the 
specific size fractions with the highest median concentrations were 
within the range of 27.4–115.5 nm and the lowest concentrations were 
found for larger size fractions of 205.4–273.8 nm (Fig. 2). PNC varied 
seasonally, with the highest median monthly concentrations in January 
and February and lowest in March 2020 (Figure A3.1). 

3.2. Model performance 

The majority of models had relatively high or moderate-high pre-
dictive accuracy, even when predicting to new sites held out of the 
model training process. The predictive accuracy of the models, 
expressed as the r2, slope, RMSE, and the ME from 10-fold cross- 
validation of 10% random sites (10-fold 10%Site CV), is shown for all 
models in Table 1. Models of annual PM2.5, NO2, PNC, and for six of the 
smallest PNC size fractions within the UFP range (11.5 nm–48.7 nm), 
had 10-fold 10%Site CV r2 which ranged from 0.70 to 0.86, while models 
of O3, BC, and BrC had more moderate r2 ranging from 0.50 to 0.54. 
Models of the larger PNC size fractions had worse 10-fold 10%Site CV 
predictive accuracy compared with the smaller size fractions, with r2 

ranging from 0.29 to 0.56 for 64.9–154.0 nm size fractions. We were 
unable to successful model PNC size fractions larger than 205.4 nm. 
Almost all models tended to slightly over-estimate the mean predicted 
values compared with the measured, based on the ME statistics 
(Table 1). The spatiotemporal models of monthly median concentrations 
had moderate-high 10-fold 10%Site CV predictive accuracy for PM2.5 (r2 

0.49; RMSE: 5.6 μg/m3) and PNC (r2 0.49; RMSE: 5245.8 pt/cm3), while 
more moderate-low for BC and BrC (r2: 0.27–0.29). When undertaking 
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the model building process, in almost all cases, adding splines with 3–5 
knots to one or more continuous predictor variables to allow for non- 
linear associations, increased model predictive accuracy. Model tables 
are provided in the appendices and indicate which predictor variable 
associations were modelled as splines (Spatial models: Appendix 4; 
Spatiotemporal models: Appendix 5). 

Considering that some degree of spatial autocorrelation was present 
in almost all of the air pollution data collected from the MM campaign 
(as would be expected based on the MM method), and in the subsequent 
models developed, we added in spatial terms based on coordinate 
location into those models to account for this effect. In addition to 

increasing model predictive accuracy, this also removed most or all of 
the residual spatial autocorrelation present in the models (evaluated 
with Moran’s I statistic). However, given the spatial nature of our input 
data, we also conducted an additional assessment of model predictive 
accuracy with 10-fold CV of 10% spatially independent sites (10-fold 
10%Spatial CV). The models with the highest r2 from 10-fold 10%Spatial CV 
were of annual median concentrations of PM2.5 (0.77), PNC (0.75), 
particle size mode (0.63), and six of the smallest measured PNC size 
fractions 11.5 nm–36.5 nm (0.48–0.64), while r2 for BC and BrC was 
fairly moderate at 0.34 (BC) – 0.40 (BrC). For the spatiotemporal 
models, r2 from 10-fold 10%Spatial CV was moderate for PM2.5 (0.39), 

Fig. 1. Distributions of measured ambient annual concentrations of PM2.5 (μg/m3) (corrected), BC (ng/m3), BrC (ng/m3), nitrogen dioxide (NO2, ppb), and 
ozone (O3, ppb). Box plots show the median (centre line through box) and interquartile (IQR) ranges of the distribution (upper and lower bounds of the box 
(‘hinges’) between measurement locations. Data beyond the end of the whiskers (i.e., “outlying” points) are not shown. Note the different units and minimum and 
maximum values between plots. 

Fig. 2. Distributions of measured ambient annual concentrations of PNC for all particles and 13 particle size ranges from the mobile monitoring 
campaign. Box plots show the median (centre line through box) and interquartile (IQR) ranges of the distribution (upper and lower bounds of the box (‘hinges’)) 
between measurement locations. Data beyond the end of the whiskers (i.e., “outlying” points) are not shown. Note the different units and minimum and maximum values 
between plots and the total PNC was measured with the DiscMini and 13 particle size ranges with the Nanoscan. 
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Table 1 
Evaluation of annual and monthly air pollution concentration model predictive accuracy with 10-fold cross validation holding out 10% of random sites.  

Air 
pollutant 
(units) 

Obs. 
(n) 

N 
predsb 

Measured concentration across sites 
(median) 

r2 10-fold 10%Site 

CV r2 
10-fold 10%site CV slope 

of the line 
10-fold 10%Site CV 

RMSE 
10-fold 10%Site 

CV ME 

Spatial (annual) models 
NO2 (ppb) 

a 
60 8 3.1 0.84 0.76 1.02 1.06 0.13 

O3 (ppb) a 59 6 54 0.65 0.54 0.77 6.65 0.09 
BC (ng/ 

m3) 
355 9 1164 0.57 0.50 0.93 186.52 11.73 

BrC (ng/ 
m3) 

355 10 881 0.61 0.54 0.76 192.92 14.69 

PM2.5 (μg/ 
m3) 

355 6 6.8 0.87 0.86 1.00 1.25 0.05 

PNC (pts/ 
cm3)c 

355 8 8376 0.88 0.81 1.00 1656.71 107.22 

Particle 
size 
mode 
(nm)c 

355 9 38 0.81 0.78 0.78 2.01 0.06 

PNC size rangesd 

PNC11.5nm 

(pts/ 
cm3) 

353 9 201 0.78 0.67 1.03 78.24 9.12 

PNC15.4 nm 

(pts/ 
cm3) 

353 9 407 0.82 0.74 1.03 130.98 14.46 

PNC20.5 nm 

(pts/ 
cm3) 

355 9 360 0.81 0.71 1.00 115.98 12.71 

PNC27.4 nm 

(pts/ 
cm3) 

355 10 509 0.81 0.75 1.03 151.64 15.06 

PNC36.5 nm 

(pts/ 
cm3) 

355 8 555 0.82 0.73 1.01 151.99 12.35 

PNC48.7 nm 

(pts/ 
cm3) 

354 7 552 0.75 0.70 0.99 107.81 8.05 

PNC64.9 nm 

(pts/ 
cm3) 

355 9 525 0.63 0.56 0.97 105.23 7.99 

PNC86.6 nm 

(pts/ 
cm3) 

355 11 524 0.45 0.38 0.97 111.20 9.35 

PNC115.5 

nm (pts/ 
cm3) 

355 7 448 0.46 0.44 1.01 90.89 8.50 

PNC154.0 

nm (pts/ 
cm3) 

355 7 263 0.32 0.29 0.96 62.43 6.20 

PNC205.4 

nm (pts/ 
cm3) 

351 5 61 0.09 0.05 0.77 23.10 3.93 

PNC 273.8 

nm (pts/ 
cm3) 

355 5 1 0.07 0.00 0.32 0.68 0.04 

PNC365.2 

nm (pts/ 
cm3) 

355 6 1 0.29 0.00 – – – 

Spatiotemporal (monthly) models 
BC (ng/ 

m3) 
3549 14 Range across months: 922–1476 0.31 0.27 0.97 450.00 67.61 

BrC (ng/ 
m3) 

3550 14 Range across months: 722–1148 0.39 0.29 0.92 462.77 78.77 

PM2.5 (ug/ 
m3) 

3538 11 Range across months: 4.8–9.1 0.63 0.49 0.86 5.61 0.71 

PNCc (pts/ 
cm3) 

3542 13 Range across months: 6096–13,336 0.62 0.49 0.97 5245.79 767.23 

RMSE: Root mean squared error; ME: Mean Error; N preds: Number of predictors. 
a FSS campaign. 
b Number of predictors include spatial (latitude and longitude) and temporal terms (e.g., month, season). 
c Instrumentation (DiscMini from Testo (Lenzkirch, Germany), range 10 nm–700 nm). 
d Instrumentation (Nanoscan from TSI Inc. (Minnesota, USA), range 10 nm–450 nm). 
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and PNC (0.40), but lower for BC (0.18). For BrC, the r2 from 10%Spatial 
CV was actually higher (0.32) than from 10-fold 10%Site CV (0.29). 

3.3. Spatial variations and predictors of ambient pollutant concentrations 

Predicted concentrations of pollutants had significant spatial vari-
ability across the city (Figs. 3 and 4). Each prediction surface shown in 
Figs. 3 and 4 also present some of their key predictors such as highways, 
bus routes, rail lines and ports. The spatial variation in many of the 
pollutants’ ambient concentrations was heavily influenced by the road- 
network in the city. NO2 in particular had concentrations which were 
notably elevated along the city’s bus routes. PM2.5, BC, BrC, PNC, and 
PNC size fractions between 11.5 and 15.4 nm and 115.5 nm had elevated 
concentrations along the highway network. Ambient concentrations of 
BC and BrC were additionally significantly associated with the location 
of the bus network, and additionally proximity to gas stations for the 
smallest PNC size fractions within the UFP range. Proximity to the 
seaports, namely Quai 106 (south of the city) was a significant predictor 
of higher concentrations of annual BC and PM2.5. Furthermore, aviation 
related variables had an influence in some models. Annual median 
concentrations of O3 were predicted by altitude of avgas fuel, with lower 
altitudes corresponding to higher O3. 

The presence of locations of interest dotted around the city some-
times predicted ambient pollutant concentrations in local areas. In 
particular, the location of restaurants was a consistent predictor in the 
BC, BrC, PNC, and PNC 20.5–86.6 nm models. Furthermore, the spatial 
patterns of predicted mid-range UFP size fractions 20.5–86.6 nm 
appeared to be highly influenced by the spatial distribution of this 
variable, showing elevated concentrations in the city centre and com-
mercial areas. The degree of urbanicity, greenness, and elevation had an 
influence in some of the models. Higher NDVI levels in the NO2, PNC, 
and PNC 11.5–15.4 nm models for example was a strong predictor of 
lower ambient concentrations. Annual average concentrations of O3 
were predicted by elevation, with the highest concentrations appearing 
towards the outlying western and northern parts of the city. 

The spatial patterning of the monthly predicted concentrations from 
the spatiotemporal models of PM2.5, BC, BrC, and PNC was influenced by 
a combination of the GIS spatial predictor variables (which were shared 
with the annual median models) as well as the spatial terms (latitude x 
longitude) which were allowed to vary by season. As well, the tempo-
rally varying nature of some of the GIS variables, such as NDVI, could 
have an additional influence on changes to the spatial patterning of 
predicted concentrations throughout the year. The magnitude of the 
predicted concentrations in each month were further influenced by 
temporally varying meteorological variables as well as the month of the 
year. Examples of the monthly predicted maps can be seen in 
Figure A5.1. 

3.4. ‘n visits’ sensitivity analysis 

In the sensitivity analysis, for all pollutants (PM2.5, PNC, particle size 
mode, BC, and BrC) the interquartile ranges of the adjusted r2 values 
overlap with that of the 36-visit category at 16 visits or less, suggesting 
minimal improvement in model prediction with additional visits beyond 
16. However, the subsequent examination of the impact of increasing 
visits on the stability of beta coefficients (Figures A6.2–6) and prediction 
surfaces (Figures A6.7–11) suggest more visits are required to achieve 
robust models. For PM2.5, 32 visits were required for all predictors to 
achieve beta coefficients that were consistent across the 15 models and 
similar to those of the main 40-visit model (Figure A6.1). This is re-
flected in the examination of the changes in the spatial pattern of pre-
diction surfaces with increasing ‘n visits’ (laps). Overall, to achieve 
stable models 32 visits were required for PM2.5 and BC, 28 for PNC and 
BrC, and 24 for particle size mode. Further detail on the results of the ‘n 
visits’ sensitivity analysis are presented in Appendix 6. 

4. Discussion 

In this study, we conducted a unique 10-month monitoring campaign 
designed to capture both temporal and spatial variations in particles 
within the ultrafine size range, BC, BrC, and other more commonly 
measured air pollutants (PM2.5, NO2, O3). Leveraging these data, we 
developed 24 different land use regression models to predict high- 
resolution annual concentrations (spatial models), and for a subset of 
pollutants, monthly concentrations (spatiotemporal models) in Quebec 
City, Canada. Annual models of PM2.5, PNC, PNC11.5, PNC15.4, PNC20.5, 
PNC27.4, PNC36.5, PNC48.7, particle size mode, and NO2, had the highest 
out of sample predictive accuracy, with r2 ranging between 0.67 and 
0.86. The predicted pollutant concentrations had significant spatial 
variability across the city, and these spatial patterns sometimes differed 
between pollutants and pollutant size fractions. In the context of this 
city, the sensitivity analysis on the number of visits required to produce 
robust spatial annual models indicated that 32 visits were required for 
PM2.5 and BC, 28 for PNC and BrC, and 24 for the size mode. 

There are several previous studies conducted mostly in Europe, 
North America, and Asia which have used MM data, or in combination 
with fixed-site sampling data, to build LUR predictive models of ambient 
pollutant concentrations. These models represent annual averages, 
seasonal averages, and for a few studies, average concentrations which 
represent different periods of a day, for PM2.5, PM1, UFP (and UFP size), 
inorganic species (SO4, NO3, NH4), and organic aerosols, PNC, BC, NO, 
and NO2 (Blanco et al., 2023; Hankey et al., 2019; Kerckhoffs et al., 
2021, 2017; Lim et al., 2020; Liu et al., 2019; Messier et al., 2018; Minet 
et al., 2018; Robinson et al., 2019; Shairsingh et al., 2021; Simon et al., 
2018; Van den Bossche et al., 2020; Van den Hove et al., 2020; Xu et al., 
2021; Ye et al., 2020). Across these studies, LUR model R2 (sometimes 
reported from cross-validation and other times not) ranged from 0.08 to 
0.80. Comparison of model performance between studies can be chal-
lenging, due to studies being conducted in a variety of settings (rural/-
urban/national), data collected from a range of number of locations and 
passes at each location, and studies which used a variety of predictor 
variables and different types of statistical models such as linear regres-
sion (Hankey et al., 2019; Kerckhoffs et al., 2021, 2017; Lim et al., 2020; 
Liu et al., 2019; Robinson et al., 2019; Shairsingh et al., 2021; Simon 
et al., 2018; Van den Hove et al., 2020; Xu et al., 2021; Ye et al., 2020), 
LASSO (Kerckhoffs et al., 2021), Generalized Additive Models (GAMs) 
(Lloyd et al., 2023), Random Forest (Kerckhoffs et al., 2021; Lim et al., 
2020; Van den Hove et al., 2020), Kriging covariate models (Blanco 
et al., 2023; Messier et al., 2018), Support Vector Regression (Van den 
Bossche et al., 2020), deep Convolution Neural Network (CNN) (Lloyd 
et al., 2023), stacked ensemble combining multiple machine learning 
algorithms together (Lim et al., 2020), as well as combined models of 
GAMs and deep CNNs (Lloyd et al., 2023). Across this sample of MM 
LUR studies, we could not identify any clear indication of a certain type 
of statistical model outperforming the others, though worth mentioning 
that the stacked ensemble model in Lim et al. (2020) achieved a 
cross-validation R2 of 0.80. For our study, we chose to use GAM models 
because they allow for flexible modelling of linear and/or non-linear 
associations between predictor and dependent variables and can flex-
ibly account for spatial, temporal, and/or hierarchical structures within 
the data. A recent study by Lloyd et al. (2023) showed that combining 
GAM and deep CNN models trained on satellite-view images did not 
significantly improve over the GAM LUR models on their own. 

Unlike most previous MM LUR studies, we accounted for spatial re-
sidual autocorrelation within our LUR models built with MM data by 
including smoothed spatial terms in our models, capturing the under-
lying influence of space on pollutant concentrations, following a similar 
approach as (Harper et al., 2021) for models developed for Chongqing, 
China. We additionally evaluated these models by randomly holding out 
10% of sites in a spatially independent block pattern. This is because 
model accuracy evaluated from cross-validation where sites are 
randomly distributed across the study area may be over-inflated if data 
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Fig. 3. Predictions from annual spatial models of NO2, O3, BC, BrC, total PNCs, particle size mode, and PM2.5.  
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Fig. 4. Predictions from annual models of PNC size ranges.  
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are spatially autocorrelated (Harper et al., 2021). We found that the 
model accuracy statistics were not substantially different when evalu-
ating with 10-fold spatially independent sites and 10-fold 10% random 
sites. Annual models of PM2.5, PNC, particle size mode, and NO2 (10-fold 
10%site CV r2 range: 0.76–0.86), as well as models of smaller UFP size 
fractions between PNC11.5 – PNC48.7 (10-fold 10%site CV r2 range: 
0.67–0.75), were all high performing, particularly when compared to 
previous LUR MM studies (see paragraph above for previous studies). 

Our annual spatial model performance outperformed the predictive 
accuracy of the monthly spatiotemporal models. While the LUR 
spatiotemporal models included temporal (meteorological) predictor 
variables, temporal terms (month of the year), and allowed for the 
smoothed spatial terms to vary by season, the majority of predictors 
identified for the best set for the models were static in time (except for 
NDVI), and therefore unable to explain temporal variations in pollutant 
concentrations occurring across space. Furthermore, taking the median 
pollutant concentration across 10-months of the year (equal to 40 
passes) provides for greater stability in the estimate that is more easily 
explained by the spatial covariates in the model. Previous MM LUR 
studies have been extended to develop spatiotemporal models to predict 
pollution concentrations for different days (Van den Bossche et al., 
2020) or periods of the day (Hankey et al., 2019), as well as seasons of 
the year (Xu et al., 2021). While our spatiotemporal models had com-
parable performance to these previous studies, our out-of-sample pre-
dictive accuracy was slightly lower than what was found in the study by 
Xu et al., (2021) (PM2.5, BC), indicating that further work is needed to 
improve the accuracy of these spatiotemporal models, such as including 
additional time-resolved spatial predictors (e.g., hourly traffic count 
surfaces). 

The MM approach can increase the spatial resolution of data 
collection from the traditional FSS method. However, this comes at a 
cost to the temporal coverage for each data point. The data from FSS 
campaigns represent concentrations integrated over continuous two 
week-long periods covering 24-h of each day. MM data are far more 
limited in time, with each MM session providing only a ‘snapshot’ of the 
temporal variability of air pollution. This limitation is compensated for 
by conducting repeated MM sessions (or visits). The assumption 
inherent in each MM study is that the spatial pattern of the pollutant 
does not vary temporally beyond the chosen number of monitoring 
sessions (or visits to each location). Thus, the chosen number is suffi-
cient to give a robust characterization of the spatial variability of air 
pollution for the study’s area of interest (city, country, etc.) and time 
frame (annual, seasonal, etc.). Our ‘n visits’ sensitivity analysis 
attempted to address this assumption for an annually representative 
spatial pattern of five pollutants in Quebec City, Canada representing 
the rush hour and post-rush hour period of the morning (8am–10am). 
The reliability of the assumption of a temporally invariant spatial 
pattern may vary between pollutant due to the seasonal and spatial 
nature of their sources. Our sensitivity analysis suggested PM2.5 and BC 
to have the most variable spatial pattern, therefore needing more visits 
than PNC, BrC, and particle size mode to obtain a robust model. These 
results were comparable to similar work conducted in Seattle, USA; 
Blanco et al. conducted a study in a 1200 km2 area where the point of 
diminishing return and stable model results for PNC and BC was attained 
at 100–278 sites with 8–26 visits each. For PM2.5, this point was reached 
at 150–278 sites with 16–24 visits each (Blanco et al., 2023). Hatzo-
poulou et al. (2017) conducted a sensitivity analysis investigating the 
effect of number of visits on the stability of beta coefficients based on a 
MM study covering three seasons in Montreal, Canada. The study 
concluded that between 10 and 12 visits for 150–200 sites were required 
per site for UFP models. Further, they demonstrated that widely 
different model surfaces can result from subsets of their main dataset 
both in number of sites and visits per site. In our sensitivity analyses, we 
demonstrated this as well. Most importantly, we observed that while 
similar adjusted r2 values can be obtained with fewer visits, the spatial 
patterns of the prediction surfaces between these models can still differ. 

Therefore, it is wise to examine beta coefficient stability and spatial 
pattern consistency when comparing models reflecting difference 
choices in MM methodology. Further, this growing field of work em-
phasizes the value added in including sensitivity analyses in MM-based 
air pollution modelling studies. 

Strengths: A key strength of our study was our unique 10-month MM 
campaign designed to capture both temporal and spatial variation in 
UFPs and several other pollutants measured simultaneously. Our MM 
was conducted using a hydrogen fuel cell vehicle to avoid the moni-
toring vehicle emissions impacting our measurements. Other strengths 
include FSS and MM data collection design informed by location allo-
cation modelling, our rigorous model building and evaluation approach, 
which produced city-wide estimates of air pollution concentrations 
covering both space and time, with fairly high predictive accuracy. Our 
modelling approach also explicitly dealt with potential and real spatial 
autocorrelation in the MM air pollution data, which is often present but 
rarely accounted for in air pollution LUR modelling studies. Our study 
also features the creation of spatial models for various particle sizes 
within the UFP size range, allowing us to investigate the spatially 
heterogenous health effects of exposure to different UFP size fractions 
across the city in novel epidemiological studies. 

Limitations: The MM component of our study involved routine colo-
cation at a regulatory monitoring station to validate our monitoring 
methods for PM2.5, PNC, BC, and BrC. We observed good agreement for 
PNC (slope = 0.77, R2 = 0.92). For PM2.5, our measurements over pre-
dicted (slope = 0.35), however, good linear agreement (R2 = 0.88) 
allowed us to correct for the bias in our data. We had poor comparison 
for BC (R2 = 0.28), which may result in an overall under or over- 
estimation for the city, though spatial variations (e.g., differences be-
tween locations) are not expected to be impacted, or only at random. 
While the MM campaign was seasonally balanced, it was not diurnally 
balanced and therefore our resulting annual surfaces based on MM data 
are only representative of exposures during the morning rush hour, and 
post-rush hour period (8–10 AM) when road-traffic flows are generally 
higher than other times of the day (Blanco et al., 2023). Our MM-based 
models also are subject to a weekday bias. As weekends can be distinctly 
lower in PM2.5 relative to weekday concentrations (Elansky et al., 2020; 
Tavella et al., 2023) our monitoring exclusive to weekdays may have 
resulted in a positive bias. Although measurements may not represent 
annual concentrations, documenting spatial contrasts when sources of 
pollutants peak remain pertinent for health. Also, in general, previous 
work has been shown that MM-based models can result in measured 
concentrations which are systematically biased high relative to 
short-term stationary monitoring design (Kerckhoffs et al., 2016). We 
also had limited FSS monitoring sites on the outer edges of our study 
area and in the more rural areas, particularly near the airport. The 
sparce FSS monitoring network in these areas may have led to a greater 
inaccuracy in the predictions in these areas as the sites may not capture a 
fully representative dataset of measurements, such as near the airport 
where both NO2 and ozone were elevated. However, the model residuals 
in these areas were no higher or lower than in other, more urbanised and 
densely monitored, areas of the city, suggesting a more complex 
chemical relationship that annual LUR models are unable to capture. 

5. Conclusions 

In this study, we conducted a 10-month long MM and fixed-site 
campaign to measure particulate-based air pollutants (PM2.5, BC, BrC, 
UFPs) and two gaseous pollutants (O3 and NO2) across Quebec City, 
Canada. Leveraging these data, we produced predictive statistical 
models of the spatial and spatiotemporal pattern of these air pollutants. 
Our annual models for NO2, PM2.5, and particles within the UFP size 
fraction range achieved cross-validated r2 of 0.76–0.86. Models for O3, 
BC and BrC had lower r2 between 0.65 and 0.57. These exposure models 
will enable air pollution epidemiological research which will benefit 
from a common source of modelling and a range of UFP metrics to 
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advance the understanding of the health impacts of UFPs and other 
urban air pollutants. 
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