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A New Class of Dantzig Selectors for Censored Linear Regression Models

Yi Li, Lee Dicker and Sihai Zhao ∗

Abstract

The Dantzig variable selector has recently emerged as a powerful tool for fitting regularized
regression models. A key advantage is that it does not pertain to a particular likelihood
or objective function, as opposed to the existing penalized likelihood methods, and hence
has the potential for wide applicability. To our knowledge, limited work has been done for
the Dantzig selector when the outcome is subject to censoring. This paper proposes a new
class of Dantzig variable selectors for linear regression models for right-censored outcomes.
We first establish the finite sample error bound for the estimator and show the proposed
selector is nearly optimal in the `2 sense. To improve model selection performance, we further
propose an adaptive Dantzig variable selector and discuss its large sample properties, namely,
consistency in model selection and asymptotic normality of the estimator. The practical utility
of the proposed adaptive Dantzig selectors is verified via extensive simulations. We apply the
proposed methods to a myeloma clinical trial and identify important predictive genes for
patients’ survival.
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1 Introduction

Technical advances in biomedicine have produced an abundance of high-throughput data. This

has resulted in major statistical challenges and helped bring great attention to the variable se-

lection and estimation problem, where the goal is to discover relevant variables among many

potential candidates and obtain high prediction accuracy. For example, variable selection is es-

sential when performing gene expression profiling for cancer patients in order to better understand

cancer genomics and design effective therapies (Anderson et al., 2005; Pawitan et al., 2005; Potti

et al., 2007).

Penalized likelihood methods, represented by the LASSO, have been extensively studied as

a means for simultaneous estimation and variable selection (Tibshirani, 1996). It is known that

the LASSO estimator can discover the correct sparse representation of the model (Donoho and

Huo, 2002); however, the LASSO estimator is in general biased (Zou, 2006), especially when the

true coefficients are relatively large. Several remedies, including the smoothly clipped absolute

deviation (SCAD) (Fan and Li 2001) and the adaptive LASSO (ALASSO) (Zou 2006) have been

proposed to discover the sparsity of the true models, while producing consistent estimates for

nonzero regression coefficients. Though these methods do differ to a great extent, they are all

cast in the framework of penalized likelihoods or penalized objective functions.

More recently a new variable selector, namely the Dantzig selector (Candès and Tao, 2007), has

emerged to enrich the class of regularization techniques. Though under some general conditions

the LASSO and Dantzig may produce the same solution path (James et al., 2008) and are

asymptotically equivalent (Bickel et al., 2009), they differ fundamentally in that the Dantzig

selector stems directly from an estimating equation, whereas the LASSO requires the specification

of a likelihood or an objective function. Moreover, as the Dantzig selection is a linear programming

problem, the computational burden is manageable.

To our knowledge, most work on the Dantzig selector has been performed with fully observed

outcome variables. In many clinical studies, the outcome variable, e.g. the CD4 counts in an

AIDS trial or patients’ survival times, may not be fully observed. In a myeloma clinical trial

that motivated this research, the goal was to identify predictive genes for patients’ survival times,
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which were subject to right censoring. Given the infinite-dimensional nuisance parameters in the

likelihood function for censored linear regressions, the estimating equation-based Dantzig selector

may be a natural choice.

While the vast majority of work in variable selection for censored outcome data has focused on

the Cox proportional hazards model (e.g. Tibshirani, 1997; Li and Luan, 2003; Li and Gui, 2004;

Gui and Li, 2005a,b), a linear regression model offers a viable alternative, as it directly links the

outcome to the covariates. Hence, its regression coefficients have an easier interpretation than

those of the Cox model, especially when the response does not pertain to a survival time. Some

recent work in censored linear regression can be found in Engler and Li (2009), Cai et al. (2009),

Wang et al. (2008), and Ma et al. (2006). To our knowledge, however, results concerning the

Dantzig selector suitable for censored linear models are lacking from the literature. Antoniadis et

al. (2009) and Martinussen and Sheike (2009) consider using the Dantzig selector to fit survival

data and compute the finite sample error bounds of their estimators, but they only deal with

the Cox proportional proportional hazards model and the semiparametric additive risk model.

Furthermore, large sample properties, e.g. model selection consistency and asymptotic normality,

are unavailable.

This paper proposes a new class of Dantzig variable selectors for linear regression models when

the response variable is subject to censoring. The proposed method has several attractive features

that make it a competing tool for analyzing high-dimensional data with censored outcomes. First,

it carries out variable selection and estimation simultaneously, without resorting to maximizing

or minimizing a given likelihood function, which is important for some semiparametric models

whose likehood functions are often difficult to specify. Second, finite-sample bounds on the

error of the estimator can be derived when p > n, which are nearly optimal in the `2 sense.

Third, we show that a refined version of the Dantzig selector – the adaptive Dantzig selector

– can achieve appealing large sample properties when the tuning parameters follow appropriate

rates, providing further support for the theoretical basis of the proposed procedures. Finally, the

complex regularization problem has been reduced to a linear programming problem, resulting in

computationally efficient algorithms.

The rest of the paper is structured as follows. Section 2 reviews the censored linear regression
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model and the Buckley-James estimation approach. Section 3 shows the Buckley-James approach

naturally leads to a Dantzig-type selector when the number of covariates exceeds the sample size.

We show that the resulting estimator reaches the near-optimal `2 non-asymptotic error bound.

In Section 4, we propose an adaptive Dantzig selector and derive the large sample properties of

the estimators. We discuss implementation and the choice of tuning parameters in finite sample

settings in Section 5. We conduct numerical simulations in Section 6 and apply the proposal to

a myeloma study in Section 7. We conclude with a discussion in Section 8. All technical proofs

are relegated to the Appendix.

2 Censored Linear Regression and Buckley-James Estimation

Consider a censored linear regression model,

Yi = X′iβ + εi (1)

where Xi = (Xi1, . . . , Xip)′ is the covariate vector for the i-th subject and εi are iid with an

unspecified distribution F (·) and survival function S(·) = 1 − F (·). The mean of εi, denoted by

α, is not necessarily 0. Let β0 = (β01, . . . , β0p)′ denote the true β and A = {j; β0j 6= 0} be the

true model. Suppose that the response Yi may be right censored by a competing observation Ci

and that only Y ∗i = Yi ∧ Ci and δi = I(Y ∗i = Yi) are observed for each subject. We assume that

Yi is independent of Ci conditional on Xi. When the response variable pertains to survival time,

with both Yi and Ci measured on the log scale, the model is called the accelerated failure time

(AFT) model (Kalbfleisch and Prentice, 2002).

Denote by ei(β) = Y ∗i − β
′Xi, and consider

Ỹi(β) = E(Yi|Y ∗i , δi,Xi,β) = Y ∗i + (1− δi)

∫∞
ei(β) S(s,β)ds

S{ei(β),β}
. (2)

Clearly,

E
{
Ỹi(β)|Xi,β

}
= α+ X′iβ.

The Buckley-James estimating equation is
n∑
i=1

(Xij − X̄j)
{
Ŷi(β)−X′iβ

}
= 0, j = 1, . . . , p, (3)
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where X̄j = 1
n

∑n
i=1Xij for j = 1, . . . , p and

Ŷi(β) = Y ∗i + (1− δi)

∫∞
ei(β) Ŝ(s,β)ds

Ŝ{ei(β),β}
. (4)

is the empirical version of Ỹi(β). Here, Ŝ(·,β) is the one-sample Nelson-Aalen estimator based

on (ei(β), δi),

Ŝ(t,β) = exp

{
−

n∑
i=1

∫ t

−∞

dNi(u,β)
Ȳ (u,β)

}
, (5)

where Ni(u,β) = I{ei(β) ≤ u, δi = 1} and Ȳ (u,β) =
∑

i I{ei(β) ≥ u}. Under mild conditions,

Lai and Ying (1991) have shown that the Buckley-James estimator β̂BJ , which solves (3), is
√
n

consistent.

Note that (3) can be written in a more compact form

X′Pn{Ŷ(β)−Xβ} = 0, (6)

where Pn = In−11′/n, In is an n×n identity matrix, 0 is a p× 1 vector with all elements being

0, 1 is an n× 1 vector with all elements being 1 and Ŷ(β) = (Ŷ1(β), . . . , Ŷn(β))′. It is clear that

the Buckley-James estimator is a direct generalization of the least squares estimator to censored

data; it is most efficient when the error terms εi follow a normal distribution (Lai and Ying, 1991).

Unfortunately, when p > n, model (1) becomes nonidentifiable and the Buckley-James procedure

fails.

3 Dantzig Selector Derived from B-J Estimation and its Non-
asymptotic Error Bound

When p > n but the model is sparse, our proposal is to adopt the following constrained optimiza-

tion problem:

minimize
∑

j |βj |
subject to |X′·jPn{Ŷ(β)−Xβ}| ≤ γ, j = 1, . . . , p,

(7)

where γ > 0 is a constant and X·j is the j-th column of matrix X. We refer to (7) as the Dantzig

selector for censored linear regression (or just, the Dantzig selector), as it is motivated by Candès

and Tao’s procedure of the same name. We will denote the procedure by DZ and its solution by
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β̂. The goal of this section is to show under proper assumptions on the information matrix for

the underlying model, β̂ exists with high probability and has good finite-sample properties even

for p = O(nκ), κ ≥ 1, and in the presence of censoring.

For convenience, we introduce concise notation for referring to subvectors and matrices. For

a subset H ⊂ {1, . . . , p} and a vector α ∈ Rp, let αH = (αj)j∈H be the |H| × 1 vector whose

entries are those of β indexed by H, where |H| refers to the cardinality of H. For an n×p matrix

M, MH is the n × |H| matrix whose columns are those of M that are indexed by H. When

M is a p × p covariance or information matrix, we slightly abuse notation and let MH denote

the |H| × |H| submatrix of M whose rows and columns are both indexed by H. Define the sign

vector corresponding to α, sgn(α), by sgn(α)j = sgn(αj) (by definition, sgn(0) = 0). Finally,

define the `r-norms || · ||r by ||α||r = (
∑p

i=1 |αi|r)1/r for 0 < r < ∞, ||α||0 = #{j : αj 6= 0} and

||α||∞ = max1≤j≤p |αj |.

We compute the `2 error bound of the Dantzig selector using the following steps. Denote

the left hand side of (6) by U(β). We first establish that with a proper tuning parameter γ and

with probability going to 1, the true β0 is a feasible solution to the Dantzig selector optimization

problem (7). Then immediately ‖β̂‖1 ≤ ‖β0‖1. This, coupled with some assumptions on the

decomposition of the information matrix of the underlying model, will lead to an error bound for

||β̂ − β0||2.

Proposition 1 Let γ =
√
n(1 + a) log p for some a > 0. Then

P (‖U(β0)‖∞ ≤ γ) > 1− 2p exp
(
− γ2/n

L+ 2BKγ/n

)
,

where B,K,L are positive constants defined in Appendix A.0. Moreover, if p = O(nκ) for κ ≥ 1,

then

P (‖U(β0)‖∞ ≤ γ) > 1−O(n−aκ).

This proposition is important as it stipulates that with high probability ||U(β0)||∞ ≤ γ

for a proper γ, implying that even when p > n (7) will have a solution on the intersection of

{β : ‖β‖1 ≤ ‖β0‖1} and the closure of {β : ‖U(β)‖∞ ≤ γ}. Note that this intersection is

nonempty as it contains at least β0.
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To further characterize the bound of β̂, first note that U(β) is approximately equal to nΩ̃(β−

β0), where Ω̃ is defined in (23) and can be viewed as an information matrix (Lai and Ying,

1991). Let Ω̃
1/2

be an n × p decomposition matrix of the semipositive-definite Ω̃ such that

{Ω̃1/2}′Ω̃1/2
= Ω̃. Now define the constants δV1 and θV1,V2 such that for all disjoint subsets H

and H̃ of {1, . . . , p}, with respective sizes V1 and V2, and all vectors c and c̃ with respective

lengths V1 and V2, δV1 is the largest quantity such that δV1‖c‖22 ≤ ‖Ω̃
1/2
H c‖22, and θV1,V2 is the

smallest quantity such that |(Ω̃1/2
H c)′(Ω̃

1/2

H̃
c̃)| ≤ θV1,V2‖c‖2‖c̃‖2. These are related to the restricted

isometry and restricted orthogonality constants of Candès and Tao (2007).

Proposition 2 Let γ =
√
n(1 + a) log p for some a > 0. Define V = ||β0||0 to be the size of the

true model. If the constants δV and θV,2V for Ω̃
1/2

obey θV,2V < δ2V , then

P

(
‖β̂ − β0‖22 ≤

36V γ2/n2

(δ2V − θV,2V )2

)
> 1− 2p exp

(
− γ2/n

L+ 2BKγ/n

)
,

where B,K,L are the same constants defined in Proposition 1. Moreover, if p = O(nκ) for κ ≥ 1,

then

P

(
‖β̂ − β0‖22 ≤

36V γ2/n2

(δ2V − θV,2V )2

)
> 1−O(n−aκ),

We note that this error bound is of the same order as the bounds derived by Candès and Tao

(2007) for the uncensored linear models and by Antoniadis et al. (2009) for the Cox models.

Even if we knew the true subset of covariates of size V , it would be the case that ‖β̂−β0‖22 grew

at the rate of V/n (Lai and Ying, 1993). Hence, the rate guaranteed in Proposition 2 reaches the

optimal non-asymptotic bound (Candès and Tao, 2007), meaning we only pay a small price (up

to a factor of log p) for not knowing the true model.

The condition of θV,2V < δ2V is similar to the uniform uncertainty principle required by

Candès and Tao (2007), though it is applied to the information matrix rather than the design

matrix. In particular, δV puts a lower bound on the minimum singular values of the submatrices

of Ω̃ with less than V columns, indicative of how precisely the model can be estimated (Silvey,

1968). Hence, the θV,2V < δV condition can be interpreted as requiring our data to allow a

minimum level of precision for our model fitting, though verifying this condition is much involved

in practice (Antoniadis et al., 2009; Cai and Lv, 2007).
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4 Variable selection and the Adaptive Dantzig Selector for Cen-
sored Linear Regression

We note that the error bound established in Proposition 2 refers to the mean-squared error of the

point estimate, which does not directly translate into optimal variable selection. As we report in

our simulation studies, we found that the Dantzig selector may effectively reduce the size of the

model. However, given the relatively large false-positive rate (namely, the proportion of true zero

coefficients estimated to be nonzero), it appears that the Dantzig selector tends to select models

that are too large.

Indeed, following the asymptotic equivalence of the Dantzig selector and LASSO (Bickel et

al., 2009), Dicker and Lin (2009) have confirmed that the Dantzig selector, like LASSO (Zhao

and Yu, 2006), may not consistently select the true model for fully observed data. Furthermore,

Dicker and Lin have shown that the Dantzig selector is not asymptotically normal. To address

these issues, we consider the adaptive Dantzig selector – a modified Dantzig selector for censored

linear regression which, given the existence of a “reliable” initial estimate, is consistent for model

selection and is asymptotically normal in large samples.

Let β̂
(0)

be some initial estimator for β0. The adaptive Dantzig selector is the following

optimization problem:

minimize
∑

j wj |βj |
subject to |X′·jPn{Ŷ(β̂

(0)
)−Xβ}| ≤ γwj , j = 1, ..., p.

(8)

Here, γ > 0 is the tuning constant and wj are data driven weights that should be chosen to vary

inversely with the magnitude of β0j . If we take wj = |β̂(0)
j |−η for some η > 0, then (8) requires

us to nearly solve the j-th score equation (where the surrogate vector Ŷ(β̂
(0)

) is treated as a

fully observed outcome vector) when |β̂(0)
j | is large and heavily penalizes non-zero estimates of

β0j when |β̂(0)
j | is small.

Recall that A = {j : β0j 6= 0}. A variable selector β̂ for β0 in a generic model

Yi ∼
p∑
j=1

Xijβj

is considered to have reasonable large sample behavior if (i) it can identify the right subset model

with a probability tending to 1, i.e. P ({j : β̂j 6= 0} = A) → 1 as the sample size n → ∞,
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and (ii)
√
n(β̂A − βA) → N(0,Σ∗) where Σ∗ is some |A| × |A| covariance matrix. Property (i)

is often considered to be the consistency property, while property (ii) involves the efficiency of

the estimator. If properties (i) and (ii) hold, and Σ∗ is optimal (by some criterion), the variable

selection procedure is said to have the oracle property (Fan and Li, 2001). We show that if β̂
(0)

is
√
n-consistent for β0, then the adaptive Dantzig selector may have the oracle property.

The oracle properties of the adaptive Dantzig selector for the appropriate tuning parameter

γ have been established when the response vector Y is fully observed. Until now, however, it

has been unclear whether these properties hold when the response Y is subject to censoring. A

fundamental theoretical difficulty is that Ŷi(β̂
(0)

) is only a surrogate for the unobserved outcome

Yi, preventing the direct applications of the existing Dantzig selector results obtained for fully

observed outcomes.

In the ensuing theoretical development, we first quantify the “distance” between the surrogate

and the true outcomes, and show that the average difference between the imputed Ŷi(β̂
(0)

) and

true Yi is bounded by a random variable with order of n−1/2. This turns out to be essential for

establishing the consistency and oracle properties of the Dantzig selector estimator. Given this

random bound, we then show that the existing Dantzig selector results for the non-censored case

can be extended to the censored case, leading to the desirable oracle property. Note that for all

of the asymptotic results in this section, we assume that p is fixed.

4.1 Quantify the “Distance” Between the Imputed and “True” Responses.

We first use Lemma 1 to bound the difference between the surrogate and the true outcomes.

Proposition 3 Under the regularity conditions listed in Lemma 1, 1
n

∑n
i=1 Xi{Ŷi(β̂

(0)
) − Yi} =

Op(n−1/2) if β̂
(0)

= β0 +Op(n−1/2).

Several points are worth noting. First, the result can be succinctly rephrased as X′(Ŷ −

Y) = Op(n1/2), where Ŷ = Ŷ(β̂
(0)

) and Y = (Y1, . . . , Yn)′. Second, the result further implies

(PnX)′(Ŷ−Y) = Op(n1/2), where X is replaced by its centralized version; this will facilitate the

proof of consistency of model selection. Finally, as the validity of Proposition 3 requires β̂
(0)

to

be
√
n consistent, taking the β̂

(0)
equal to the Buckley-James estimate, which is

√
n consistent,

will suffice.
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4.2 Consistency and Oracle Properties

To ease notation in what follows, we use Ŷ to denote Ŷ(β̂
(0)

). Observe that the adaptive Dantzig

selector for data with a censored response, (8), can be rewritten compactly as

minimize ||Wβ||1
subject to ||Z′(Ŷ − ZWβ)||∞ ≤ γ,

(9)

where W = diag(w1, ..., wp) and Z = PnXW−1. The optimization problem (9) is a linear pro-

gramming problem, which means that there is a corresponding dual linear programming problem.

Specifically, the solution to (9), denoted by β̂, can be characterized in terms of primal and dual

feasibility and complementary slackness conditions as shown below.

Proposition 4 If there is µ̂ ∈ Rp such that,

||Z′(Ŷ − ZWβ̂)||∞ ≤ γ, (10)

||Z′Zµ̂||∞ ≤ 1, (11)

µ̂′Z′ZWβ̂ = ||Wβ̂||1, (12)

µ̂′Z′(Ŷ − ZWβ̂) = γ||µ̂||1, (13)

then the vector β̂ ∈ Rp solves (9).

The parameter µ in Proposition 4 is the dual variable and may be viewed as a Lagrangian

multiplier. Inequalities (10) and (11) correspond to primal and dual feasibility respectively, while

(12) and (13) concerns with complementary slackness. By inspecting (10)- (13), we prove that the

adaptive Dantzig selector is selection consistent, provided γ and (w1, ..., wp) follow an appropriate

rate.

Proposition 5 Suppose that β0 is the true parameter value and A = {j; β0j 6= 0}. Also assume

that 1
nX′PnX converges in probability to some positive definite matrix. Suppose further that

γ√
n
wj

P→∞ if j /∈ A and γwj = OP (
√
n) if j ∈ A.

Denote by Ā the complement of A in {1, . . . , p}. Then, with probability tending to 1, a solution

to the adaptive Dantzig selector, β̂, and the corresponding µ̂ from Lemma 2 are given by

µ̂A = (Z′AZA)−1sgn(β0)A (14)

µ̂Ā = 0 (15)

9
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and

β̂A = W−1
A

{
(Z′AZA)−1Z′AŶ − γ(Z′AZA)−1sgn(µ̂)A

}
= (X′APnXA)−1X′APnŶ − γ(X′APnXA)−1WAsgn(µ̂)A (16)

β̂Ā = 0. (17)

Corollary 1 (consistency of model selection) Suppose that the conditions of Proposition 5 hold

and let β̂ be any sequence of solutions to (9). Then P ({j; β̂j 6= 0} = A)→ 1.

We make a few remarks about Proposition 5 and Corollary 1. First, to ensure that the condi-

tions in Proposition 5 hold, one selects data-driven weights wj and an appropriate γ. Examples of

weights and γ such that these conditions hold include wj = |β̂(0)|−η, where β̂
(0)

is
√
n-consistent

for β0 and η > 0, and γ such that n−1/2γ = O(1) and n(η−1)/2γ → ∞. Also note that though

Proposition 5 makes no uniqueness claims about solutions to (9), it can be shown that in “most”

cases (9) has a unique solution (Dicker and Lin, 2009). Furthermore, Corollary 1 states that

regardless of whether or not there is a unique solution, the adaptive Dantzig selector is consistent

for model selection.

The estimator defined in (16) and (17) solves (9) in probability. This expression may be

leveraged to obtain the large sample distribution of
√
n-standardized adaptive Dantzig selector

estimates estimates. However, since β̂
(0)

is not consistent for model selection, the solution to

(9), β̂, which we refer to in what follows as the one-iteration estimator, may not achieve optimal

efficiency. To remedy this, we propose two modified estimators which do possess the oracle

property.

To proceed, let T = {j; β̂j 6= 0} be the index set of non-zero estimated coefficients from the

one-iteration estimator β̂, and T̄ be the complement of T in {1, . . . , p}. Define the intermediate

estimator β̂
(0,T )

so that β̂
(0,T )

T̄ = 0 and β̂
(0,T )

T is the Buckley-James estimate obtained by solving

(6) with X replaced by XT . That is, we perform a Buckley-James estimation based on the subset

of covariates selected by the one-iteration estimator. Now, let Ŷ(1) = Ŷ(β̂
(0,T )

) be the imputed

value of Y, defined in (4) and based on β̂
(0,T )

. The two-iteration estimator β̂
∗

is then defined

to be the solution to (9) with Ŷ replaced by Ŷ(1) and X by XT . The rationale is that since T

is consistent for A, the intermediate estimator β̂
(0,T )

and the two-iteration estimator β̂
∗

will be

10
Hosted by The Berkeley Electronic Press



model selection consistent and efficient. As summarized in the following proposition and corollary,

β̂
(0,T )

and β̂
∗

achieve the oracle property.

Proposition 6 (oracle property) Assume that the conditions of Proposition 5 hold. Let T =

{j; β̂j 6= 0}, where β̂ is the one-iteration estimator for β0 and let β0,A be the non-zero subvector

of β0. Define β̂
(0,A)

so that β̂
(0,A)

Ā = 0 and β̂
(0,A)

A is the Buckley-James estimate obtained by

solving (6) with X replaced by XA. Then the intermediate estimator β̂
(0,T )

satisfies

P
(
β̂

(0,T )
= β̂

(0,A)
)
→ 1

and

√
n
(
β̂

(0,T )

A − β0,A

)
→ N(0,ΣA)

weakly, where ΣA = Ω−1
A ΛAΩ−1

A and ΩA and ΛA are the submatrices of Ω and Λ [defined in

(32) and (33)] corresponding to index set A.

Corollary 2 (oracle property) Let β̂
∗

be the two-iteration estimator. Assume that the conditions

of Proposition 6 holds and, additionally, that γwj = oP (
√
n) for j ∈ T . Then

P ({j; β̂∗j 6= 0} = A)→ 1

and

√
n(β̂

∗
A − β0,A)→ N(0,ΣA)

weakly, where ΣA is defined in Proposition 6.

Note that Σ in Proposition 6 and Corollary 2 is the asymptotic variance of the Buckley-James

estimator given the true subset of covariates; see Lai and Ying (1991).

4.3 A Coherent Two-stage Procedure When p > n

Like other adaptive variable selectors, the adaptive Dantzig selector theoretically requires a
√
n-

consistent initial estimator β̂
(0)

. This is straightforward in the fixed p, large n regime, where

the Buckley-James estimator or other rank based estimators can be a natural choice for β̂
(0)

.
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When p > n, a consistent initial estimator may not be well defined, but we propose the following

two-stage estimating procedure. The first stage uses the Dantzig selector defined in (7) to screen

out unimportant covariates and reduce the number of parameters. At the second stage, we use

the covariates selected from the first stage to implement the the one-iteration, intermediate, or

two-iteration adaptive Dantzig selector procedures described above. The corresponding selectors

will be denoted by DZ-ADZ-1, DZ-ADZ-INT, DZ-ADZ-2, respectively. We have found these two-

stage procedures to work quite well. Section 6 contains more extensive simulations to evaluate

the performance of these estimators, along with their competitors.

5 Computational Considerations

5.1 Tuning Parameter Selection For Finite Sample Cases

In practice, it is very important to select an appropriate tuning parameter γ in order to obtain

good performance. For regularized linear regression without censoring, Tibshirani (1996) and Fan

and Li (2001) proposed the following generalized cross-validation (GCV) statistic:

GCV ∗(γ) =
AR(γ)

{1− d(γ)/n}2

where AR(γ) is the average residual sum of squares 1
n ||Y −Xβ̂(γ)||22, β̂(γ) is the estimate of β

under γ and d(γ) is the effective number of parameters, i.e. the number of non-zero components

of the LASSO estimates (Zou et al. (2007)). When the data are censored, we adopt an inverse

reweighting scheme to account for censoring. Assume the potential censoring Ci are iid and

have a common survival function Gi, which is a reasonable assumption for clinical trials where

most censoring is due to administrative censoring. As suggested by Johnson et al. (2008), we

approximate the unobserved AR(γ) by

ÂR(γ) =
∑n

i=1 δi{Y ∗i − α̂(0) −X′iβ̂(γ)}2/Ĝ(Y ∗i )∑n
i=1 δi/Ĝ(Y ∗i )

where Ĝ(·) is the Kaplan-Meier estimator for G(·), and α̂(0) = 1
n

∑n
i=1{Yi(β̂

0)
) − X′iβ̂

(0)}.

Conditional on (Yi, Ci,Xi), the expected value of δi/G(Y ∗i ) is one, and hence, the expected

values of the numerator and the denominator of ÂR(γ) are equal to the expected value of∑n
i=1{Yi − α̂(0) − X′iβ̂(γ)}2 and n, respectively. Elementary probability implies that ÂR(γ)
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and AR(γ) have the same limit, justifying the use of the inverse reweighting scheme. To obtain

an estimate of the effective number of parameters for the estimator from (9), we follow Zou et al.

(2007). The expressions (16)-(17) suggests that d̂(γ) = trace{XT (X′TPnXT )−1X′TPn} = ||T ||0,

where T = {j; β̂j 6= 0}, is a consistent estimator for d(γ). In the ensuing data analysis and

simulation studies, we propose to select the γ that yields the smallest GCV, defined as

GCV (γ) =
ÂR(γ)

{1− d̂(γ)/n}2
. (18)

Similar GCV schemes have been proposed by Nan et al. (2006), Wang et al. (2008), and Johnson

et al. (2008) in various contexts.

5.2 Implementation

The proposed two-stage procedures for censored linear regression can be easily implemented. The

first stage iterates between imputing the outcome vector Ŷ(β) and solving the optimization prob-

lem (7) via the linear programming algorithm of James and Radchenko (2009). In our numerical

experiments, convergence is often achieved within a few iterations. Using the covariates selected

by the first stage, the second stage imputes the Ŷ(β) and uses the Buckely-James estimates as

the weights wj for the adaptive Dantzig selector. For each γ, it can again be programmed using

linear programming (see James and Radchenko, 2009), or using the DASSO algorithm (see, e.g.

James et al. 2008) after replacing the original design matrix X with XW−1.

6 Simulation Studies

6.1 Simulation Set-up

We examine the finite sample performance of the proposed methods through simulation studies.

For i = 1, . . . , n we generate the true response Yi (after the exponential transform) from an

exponential distribution with hazard rate exp(−β′0Xi) , i.e., Yi = β′0Xi + ei , where Xi =

(Xi1, . . . , Xip)′ is generated from a multivariate normal with mean zero and covariance matrix

Σ = (σjj′)p×p = (ρ|j−j
′|), and ei follows the standard extreme value distribution. This model falls

into both the censored linear regression and Cox model families. We consider p = 2n, mimicking

our data example in Section 7, and set all components of β0 to zero except for the first V .

To model different levels of sparsity, we consider V = 3 or 5. To model weak and moderate
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associations between the predictors and the response, we set each of the V non-zero components

to β0j = 1, 1.5, or 3 for j = 1, . . . , S. Finally, we let ρ equal 0, 0.5, or 0.9, corresponding to

zero, moderate, and strong collinearity among the predictors. The censoring variable Ci (after

exponential transform) is generated from a uniform[0, ξ], where ξ is chosen to achieve about 50%

of censoring.

To test the robustness of our method when the working model, ie. the censored linear regres-

sion model, is misspecified, we use the same simulation settings except that we generate n = 50

observations from a Cox proportional hazards model with a piecewise constant hazard function

λi(t) = 0.3{
∑6

k=1 I(t ≤ 0.4× k)−
∑4

k=1 I(t ≤ 2.4 + 0.4× k)} exp(β′0Xi).

6.2 Competing Methods and Measures of Performance

For each scenario, the following proposed estimation procedures are evaluated based on 500

simulated datasets with sample size n = 50 or 100: the proposed one-stage Danzig selector

DZ (defined in (7)), the proposed two-stage procedures for the censored linear regression model,

namely DZ-ADZ-1, DZ-ADZ-INT, DZ-ADZ-2 (defined in Section 4.3), the Dantzig selector for the

Cox model (Antoniadis et al., 2009), the adaptive LASSO for censored linear regression, and the

adaptive LASSO for the Cox model (Zhang and Lu, 2007). We feel that the selected competing

methods cover the spectrum of existing methods, especially the adaptive methods, reasonably

well: the Dantzig Cox selector is spiritually similar to our methods, the adaptive LASSO for the

censored linear regression model has been previously implemented (Cai et al., 2009), while the

adaptive LASSO for the Cox model seems to be a simple and standard method for the regularized

survival analysis.

The penalty parameters used in these regularized estimators are selected based on the gen-

eralized cross-validation function (18). The adaptive LASSO for the censored linear regression

model is performed by following Datta et al. (2007) and replacing the observed survival times Yi

with inverse probability of censoring-weighted (IPW) times δi log(Yi)/Ĝ(Yi), where Ĝ(Yi) is the

Kaplan-Meier estimator of the censoring survival function. Because initial estimates are needed,

the adaptive LASSO methods were not originally designed for the situations of p > n. Never-

theless, we follow the suggestion of Datta et al. (2007) and use ridge regression to estimate the
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initial weights when p > n.

We evaluate the accuracy and precision of the estimates based on mean-squared errors (MSE)

and prediction errors (PE). For the censored linear regression model-based methods, we calcu-

lated the prediction error as PE = n−1
∑n

i=1{Y val
i − α̂ − β̂′Xval

i }2, where Y val
i ,Xval

i are the log

survival time and the covariate vector, respectively, in a validation sample with the same num-

ber of subjects. For the Cox model-based methods, we followed Heller and Simonoff (1992) and

calculated PE = n−1
∑n

i=1{Y val
i − Ŷ med

i }2, where Ŷ med
i is the log median survival time predicted

by the fitted survival curve for the ith subject. To examine how well the proposed procedures

perform with respect to variable selection, we recorded the frequencies of truly zero regression

coefficients being incorrectly set to non-zero, leading to the false positive (FP) rates. The false

negative (FN) rates were defined analogously.

6.3 Results of Simulations

The simulation results are summarized in Tables 1 through 3, which exhibit several notable

patterns.

First, the two-stage adaptive procedures (DZ-ADZ-1, DZ-ADZ-INT, and DZ-ADZ-2) improve

the one-stage DZ estimator by greatly reducing the false positive rate and moderately reducing

the MSE, at the cost of a slight increase in the false negative rate. For example, Figure 1 plots

each component β̂j of β̂ against its coordinate j = 1, . . . , p over all 500 simulations when the

samples size n = 100, the first V = 5 non-zero elements of β0 are 1.5 and ρ = 0.5. The average

mean-squared error for the estimates was 2.450, or 21.8% of ‖β0‖2, while the average false positive

rate is 35.8% and false-negative rate is 0.6%. On the other hand, the mean-squared errors for

the estimates obtained by DZ-ADZ-1, DZ-ADZ-INT and DZ-ADZ-2 reduce to 1.232, 1.624 and

1.335, with much reduced false positive rates of 4.5%, 4.5% and 4.3%, respectively, and slightly

increased false-negative rates of 0.8%, 0.8% and 0.9%, respectively; see Table 2 for detail. This

suggests that the two-stage adaptive procedure may be a more effective variable selector than the

one-stage DZ.

Second, among all the examined methods, our proposed two-stage methods perform the best in

terms of prediction error. The advantage becomes more obvious with stronger signals, e.g. larger
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values of non-zero components of β. With regard to variable selection, when the collinearity

among covariates is low (e.g. ρ = 0), nearly all of the methods give very low false negative rates,

while our proposed two-stage methods give the lowest false positive rates. When the collinearity

is high, a mixed result is present. Our proposed two-stage methods still give the lowest false

positive rates, at the cost of higher false negative rates, indicating that our methods select much

smaller models.

Finally, when the working model is misspecified as a censored linear regression model while

the data are truly generated from a Cox PH model with a piecewise constant hazard, our two-

stage methods still behave reasonably. They tend to select small models, while achieving low

prediction error in most cases examined.

It is worth noting the computational efficiency and stability of the proposed estimators, com-

pared with that of the competing methods. For example, both the adaptive LASSO and the

Dantzig selector for the Cox model require the Cholesky decomposition of the Cox partial like-

lihood information matrix, and this decomposition is slow and unstable when the number of

parameters is large, resulting failures of the methods on a nonnegligible fraction of our simulated

datasets. In contrast, our proposed two-stage selectors avoid such a decomposition in computa-

tion, and are fast and stable based on our numerical experiences.

7 Example of Myeloma Patients’ Survival Prediction

Multiple myeloma is a progressive hematologic disease, characterized by excessive numbers of ab-

normal plasma cells in the bone marrow and overproduction of intact monoclonal immunoglob-

ulin. Myeloma patients are typically characterized by wide clinical and pathophysiologic het-

erogeneities, with survival ranging from a few months to more than 10 years. Gene expression

profiling of multiple myeloma patients has offered an effective way of understanding myeloma’s

genetic basis and designing gene therapy. Identifying risk groups with a high predictive power

could contribute to personalized medicine.

For this purpose, we ‘train’ the models on a total of 188 subjects with late stage multiple

myeloma recruited in a clinical trial run by Millennium Pharmaceuticals (Mulligan et al., 2005).

We refer to this dataset as our training dataset. Here, the main endpoint was overall survival
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and the median followup was 15 months. During the study, a total of 119 deaths were observed.

Subject RNA expression levels were measured using Affymetrix microarrays prior to receiving

the treatment.

Of interest is the detection of predictive genes among those genes with highly variable ex-

pressions, namely, those with sample standard deviation-mean ratio (SDM) larger than 0.5, a

clinically meaningful cutoff for the gene expression variability (Novaka etal., 2002; Cheung et al.,

2003). A total of p = 400 genes meet such a criterion, which is roughly twice as the sample size

n = 188. We use the adaptive Dantzig selector and the adaptive LASSO for the censored linear

regression and Cox models to select predictive genes among these p candidate genes. The Cox

Dantzig selector returns a final model of 97 genes, the censored linear regression adaptive LASSO

selects 152, and the Cox adaptive LASSO selects 73. In contrast, the three adaptive Dantzig

selectors for the censored linear regression model (one-iteration, intermediate, and two-iteration)

select only 6 genes, which are presented in Table 4.

To validate the results, we use the obtained models to predict the risks of death in an inde-

pendent validation dataset, consisting of 351 multiple myeloma patients recruited later but with

similar clinical characteristics, e.g. stage of cancer and treatment (Shaughnessy et al., 2007), and

with microarrays processed on the same platform. A subject is classified to be of high or low

risk based on whether the model-based predicted risk exceeds the median value in the training

dataset. Figure 2 depicts the comparisons of the Kaplan-Meier curves for the high and low risk

groups defined by the competing methods. It is noted that the risk score based on the much fewer

genes selected by the adaptive Dantzig selectors performs markedly better than those based on

the genes selected by the other methods. For example, the p-values for comparing high and low

risk groups are 0.0110 for DZ-ADZ-1, 0.0120 for DZ-ADZ-INT, 0.0036 for DZ-ADZ-2. In contrast,

the Cox Dantzig selector, the censored linear regression adaptive LASSO, and the Cox adaptive

LASSO selected far more genes, but the associated gene scores only moderately distinguish the

high and low risk groups, yielding p-values of 0.2230, 0.1063 and 0.0382, respectively.
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8 Discussion

Several issues merit further investigations. First, more research is needed on the evaluation of

the variation of the estimator for small or moderate sample size. Proposition 5 gives a nearly

closed-form solution of the Dantzig selector estimators (16) and (17), and this may be useful in

estimating the covariance of β̂, along the line of Tibshirani (1997). Conditional on the model

selected by T = {j : β̂j 6= 0}, a reasonable covariance estimator might be

ĉov(β̂T ) = (Z′TZT )−1Z′T var(Ŷ)ZT (Z′TZT )−1.

For the components of β̂ with zero values, the estimated standard errors would be set to zero,

coinciding with Tibshirani (1997), Fan and Li (2001) and Zou (2006). However, the form of

var(Ŷ) is elusive, making it difficult to use in practice. Furthermore, assigning zero variance

estimates to covariates with zero coefficients is not satisfactory. An obvious remedy is through the

bootstrap as proposed in Huang et al. (2006); however, this lacks theoretical justifications. Future

work towards obtaining reliable standard error estimates is warranted. Indeed, for most variable

selection and estimation procedures, including penalized likelihood procedures, the question of

standard errors remains open.

Second, our results have shown that methods based on Cox and censored linear regression

models differ in their predictive ability for different datasets. Some work has been done on the

issue of when each model should be used (see for example Heller and Simonoff, 1992), but the

high-dimensional data setting has not yet been addressed.

Finally, one potential advantage of the Dantzig selector over penalized likelihood methods

such as LASSO is that it can be naturally extended to the settings where no explicit likelihoods

or loss functions are available. We envision that our work can be extended to apply the Dantzig

selector to more general estimating equations.
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Appendix

A.0: Regularity Conditions

The following assumptions made for Propositions 1 and 2.

1. Assumptions 1–4 of Ying (1993, p. 80).

2. Assumptions (3.1)–(3.5), (5.1), and (3.19) of Lai and Ying (1991). In particular, Assumption

(3.1) states that each Xij is bounded by a nonrandom B > 0.
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3. Define ε̃i = Ỹi(β0)−α−X′iβ0, the imputation of (centered) εi defined in (1), where Ỹi(β0)

is as defined as in (2). Assume that there exists a constant K > 0 such that E(|ε̃i|m) <

m!Km−2L/2 for every m ≥ 2, where L = var(ε̃i).

4. The size V of the true model, i.e. the number of non-zero coefficients, is finite and is

independent of n.

Assumption 3 is a standard Bernstein type condition, which simply requires that the high mo-

ments of ε̃i do not increase too quickly and is generally satisfied when Yi has a ‘thin’ tail. The

other conditions are standard for censored linear regression models, while the S-sparsity condition

was assumed by Candes and Tao (2007) and Fan and Lv (2008).

A.1: Lemma 1 and the Proof

We state a lemma, which will be repeatedly used in our later proofs. It implies that even though

Ŝ [defined in (5)] is a discontinuous function, a first order asymptotic linearization exists.

Lemma 1 Assume the conditions 1-4 of Ying (1993, p.80). Also suppose that the derivative of

the hazard function λ(s) with respect to s is continuous for −∞ < s <∞. Then,

Ŝ(s1,β1)− S(s0) = S(s0){(β1 − β0)TA(s0,β0)− λ(s0)(s1 − s0)

+n−1/2Z(s0)}+ o{max(n−1/2, |s1 − s0|+ ||β1 − β0||)},

with probability 1 uniformly for any (s1,β1) ∈ B = {(s,β) : |s− s0|+ ||β−β0|| < Cn−1/2}, where

C > 0 is any arbitrary constant, A is a p×1 nonrandom function, λ(s) is the hazard function for

S(s) and the stochastic process Z(s) is a version of W(v(s)). Here, W(·) is the Wiener process

and v(·) is defined in (20).

Proof:

Decompose Ŝ(s1,β1)−S(s0) = Ŝ(s1,β1)−Ŝ(s0,β0)+Ŝ(s0,β0)−S(s0). First study Ŝ(s1,β1)−

Ŝ(s0,β0). Using the arguments of Lai and Ying (1988), it follows that with probability 1,

sup
(s1,β1)∈B

|Ŝ(s1,β1)− Ŝ(s0,β0)− ξ(s1,β1) + ξ(s0,β0)| = o(n−1/2),
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where

ξ(s,β) = exp

{
−

n∑
i=1

∫ s1

−∞

dExNi(s,β)
ExȲ (s,β)

}
= exp

{
−
∑

iGi(s+ β′Xi)f(s+ (β − β0)′Xi)∑
iGi(s+ β′Xi)S(s+ (β − β0)′Xi)

ds

}
where Ex denote the expectation conditional on X, Gi is the survival function of Ci conditional

on Xi and f is the density function of S. Note that ξ(s,β0) = S(s).

Now denote by d = β − β0 and by λ(·) the hazard function for S. Note that

ξ(s,β) = exp
{∫ s

−∞
−
∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)(λ(s+ d′Xi)− λ(s))∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)

ds−
∫ s

−∞
λ(s)ds

}
= S(s) exp

{∫ s

−∞
−
∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)λ(1)(s+ d′∗Xi)d′Xi∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)

ds

}

= S(s)

{
1− d′

∫ s

−∞

∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)λ(1)(s+ d′∗Xi)Xi∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)
ds

}
+ o(||d||),

where λ(1)(·) denotes the first derivative of λ(·). Hence,

ξ(s1,β1)− ξ(s0,β0)

= ξ(s1,β1)− ξ(s1,β0) + ξ(s1,β0)− ξ(s0,β0)

= −S(s1)d′
∫ s

−∞

∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)λ(1)(s+ d′∗Xi)Xi∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)
ds

+S(s1)− S(s0,β0) + o(||d||)

= −S(s0)d′
∫ s

−∞

∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)λ(1)(s+ d′∗Xi)Xi∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)
ds

−f(s0,β0)(s1 − s0) + o(||d||+ |s1 − s0|),

where ||d∗|| ≤ ||d||. Denote by

Γ(r)(s,β0) = plim
1
n

∑
i

Gi(s+ β′0Xi)X⊗ri (19)

for r = 0, 1, 2, where for a vector a a⊗0 = 1,a⊗1 = a and a⊗2 = aa′ and plim denote the

probabilistic limit. The argument of Ying (1993, p.87) leads to∫ s

−∞

∑
iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)λ(1)(s+ d′∗Xi)Xi∑

iGi(s+ β′0Xi + d′Xi)S(s+ d′Xi)
ds =

∫ s

−∞

Γ(1)(s,β0)
Γ(0)(s,β0)

dλ(s) + o(||d||)

Hence, Ŝ(s1,β1) − Ŝ(s0,β0) = (β1 − β0)′
{
−
∫ s
−∞

A1(s,β0)
A2(s,β0)dλ(s)× S(s0)

}
− f(s0,β0)(s1 − s0) +

o(n−1/2, ||β1 − β0||+ |s1 − s0|).
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Finally, note that

Ŝ(s0,β0)− S(s0) = S(s0)
∫ s0

−∞

∑
i dMi(u,β0)
Ȳ (u,β0)

+ op(n−1/2)

= n−1/2S(s0)Z(s0) + op(n−1/2),

where the last equality comes from the Martingale CLT,Mi(u,β0) = Ni(u,β0)−
∫ u
−∞ Yi(u,β0)λ(u)du

and Z(s) is a version of W(v(s)), where W(·) is the Wiener process and

v(t) =
∫ t

−∞
λ(s)ds/π(s,β0). (20)

Here, π(s,β0) = plim 1
n Ȳ (s,β0) = S(s)Γ(0)(s,β0).

Hence, the result follows by denoting A(s0,β0) = −
∫ s
−∞

Γ(1)(s,β0)

Γ(0)(s,β0)
dλ(s). �

A.2: Proof of Proposition 1

Define

Ỹ 0
i = E(Yi | Y ∗i , δi,Xi,β0) = Y ∗i + (1− δi)

∫∞
ei(β0) S(s)ds

S{ei(β0)}
,

and let Uj(β0) be the jth component of U(β0). Then

Uj(β0) =
n∑
i=1

(Xij − X̄j)
{[
Ŷi(β0)− Ỹ 0

i

]
+
[
Ỹ 0
i −X′β0

]}
.

Taylor expansion gives that Ŷi(β0)− Ỹ 0
i is asymptotically equal to

1− δi
S{ei(β0)}

{∫ ∞
ei(β0)

[
Ŝ(s,β0)− S(s)

]
ds

}
−

(1− δi)
∫∞
ei(β0) S(s)ds

S2{ei(β0)}

{
Ŝ{ei(β0),β0} − S{ei(β0)}

}
+Op(1).

By Lemma 1, the first term is equal to

n−1/2 1− δi
S{ei(β0)}

{∫ ∞
ei(β0)

S(s)Z(s)ds+ op(1)

}
,

where Z(s) is a version of W(v(s)) with v(s) defined in (20). Also by Lemma 1, the second term

is equal to

n−1/2
(1− δi)

∫∞
ei(β0) S(s)ds

S2{ei(β0)}
[S{ei(β0)}Z{ei(β0)}+ op(1)] .
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Let the sum of these two approximations be denoted by n−1/2ζi. Then by Chebyshev’s inequality,

for every M > 0,

P

[ n∑
i=1

(Xij − X̄j)(Ŷi(β0)− Ỹ 0
i )

]2

> M

 < M−1var

(
n∑
i=1

(Xij − X̄j)(Ŷi(β0)− Ỹ 0
i )

)
.

But

var

(
n∑
i=1

(Xij − X̄j)(Ŷi(β0)− Ỹ 0
i )

)
= E

(
var

[
n∑
i=1

(Xij − X̄j)(Ŷi(β0)− Ỹ 0
i )
∣∣∣∣Xi

])

+ var

(
E

[
n∑
i=1

(Xij − X̄j)(Ŷi(β0)− Ỹ 0
i )
∣∣∣∣Xi

])

= E

(
n−1(Xij − X̄j)2

n∑
i=1

var(ζi)
∣∣∣∣Xi

)
≤ 4B2var(ζi) <∞,

by Assumption 2 of our regularity conditions, which include (3.1) of Lai and Ying (1991) stating

that each Xij is bounded by a nonrandom B > 0. Therefore, P ([
∑n

i=1(Xij−X̄j)(Ŷi(β0)−Ỹ 0
i )]2 >

M) is independent of j, and we can claim that it approaches 0 as M →∞. We can conclude that

Uj(β0) = Op(1) +
n∑
i=1

(Xij − X̄j)
[
Ỹ 0
i −X′β0

]
.

Now let w(j)
i (β0) = (Xij − X̄j)

[
Ỹ 0
i −X′iβ0

]
. Conditional on Xi, E(w(j)

i (β0)|Xi) = (Xij −

X̄j)α. In addition, Assumptions 2 and 3 of our regularity conditions imply E(|(Xij − X̄j)ε̃i|m) <

m!(2BK)m−2L/2 for every m > 2. Thus Berstein’s inequality gives

P

(
|
n∑
i=1

w
(j)
i (β0)| > γ

∣∣∣∣X
)

= P

(
|
n∑
i=1

[
w

(j)
i (β0)− (Xij − X̄j)α

]
| > γ

∣∣∣∣X
)

= P

(
|
n∑
i=1

[
(Xij − X̄j)ε̃i

]
| > γ

∣∣∣∣X
)

≤ 2 exp
(
− γ2/n

L+ 2BKγ/n

)
.

Since the probability bound is independent of X, we can marginalize over X to conclude that

P

(∣∣∣∣∣
n∑
i=1

w
(j)
i (β0)

∣∣∣∣∣ > γ

)
≤ 2 exp

(
− γ2/n

L+ 2BKγ/n

)
.

Now, since |Uj(β0)| ≤ |
∑n

i=1w
(j)
i (β0)| + Op(1), and since we have shown that the Op(1)

doesn’t depend on j, then supj |n−1Uj(β0)| ≤ supj |n−1
∑n

i=1w
(j)
i (β0)| + op(1). In addition, for
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any ε > 0, P (R1 + R2 ≥ c) ≤ P (R1 ≥ c − ε) + P (R2 ≥ ε), where R1 and R2 are two random

variables and c is a constant. Hence

P

(
sup
j

∣∣∣∣∣
n∑
i=1

w
(j)
i (β0)

∣∣∣∣∣+ op(1) > γ

)
≤ P

(
sup
j

∣∣∣∣∣
n∑
i=1

w
(j)
i (β0)

∣∣∣∣∣ > γ − ε

)
+ P (op(1) ≥ ε).

The second term on the right-hand side can be made arbitrarily close to zero, so

P (‖U(β0)‖∞ > γ) ≤ P

(
sup
j

∣∣∣∣∣
n∑
i=1

w
(j)
i (β0)

∣∣∣∣∣ > γ

)
≤ 2p exp

(
− γ2/n

L+ 2BKγ/n

)
.

The choice of γ concludes the proof. Moreover, when p = O(nκ), κ ≥ 1, the result follows

immediately. �

A.3: Proof of Proposition 2

Let U0(β) be the smoothed version of U(β) such that U0(β0) = 0. The explicit form of U0(β)

can be found in (3.8) in Lai and Ying (1991). Then for 0 < ι < 1/32, Lai and Ying (1991) show

that

sup
β
‖U(β)− U0(β)‖∞ = op(n5/8)a.s. (21)

and

lim
n→∞

n−3/4

{
inf

‖β−β0‖2≥n−ι
‖Uo(β)‖∞

}
=∞. (22)

Define

Ω̃ =
∫ ∞
−∞

[
Γ(2)
n (t,β0)− {Γ

(1)
n (t,β0)}⊗2

Γ(0)
n (t,β0)

] ∫∞
t (1− F (s))ds

1− F (t)

{
d log f(t)

dt
+

f(t)
1− F (t)

}
dF (t), (23)

where Γ(r)
n (s,β0) = 1

n

∑n
i=1Gi(s+ β′0Xi)X⊗ri . Then the arguement in Lai and Ying (1991) also

leads to

Uo(β) = −Ω̃n(β − β0) + o(1)a.s. uniformly in ‖β − β0‖2 ≤ n−ι. (24)

To relate β to the score equation we invoke (24). We now show that the set of feasible β

must be within ‖β − β0‖2 ≤ n−ι almost surely for n sufficiently large. If not, the inequality

‖U(β)‖∞ ≤ γ implies that ‖n−3/4U0(β)‖∞ − o(n−1/8) ≤ 2n−3/4γ a.s. by (21), while (22) implies

that on the set ‖β − β0‖2 > n−ι the left-hand side tends to ∞. With γ, the right-hand side
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tends to zero, contradicting to ‖U(β)‖∞ ≤ γ. Thus for n sufficiently large, P ({β : ‖U(β)‖∞ ≤

γ} ∩ {β : ‖β − β0‖2 ≥ n−ι}) = 0, i.e. β̂ must be in {β : ‖β − β0‖2 ≤ n−ι} almost surely.

Restricting our attention to this set, (24) and (21) give that for a feasible β, with probability

1,

‖Ω̃(β − β0)‖∞ ≤ o(n−1) + ‖n−1(U0(β)− U0(β0))‖∞

= o(n−1) + n−1‖(U0(β)− U(β)) + (U(β)− U(β0)) + (U(β0)− U0(β0))‖∞

≤ o(n−1) + o(n−3/8) + ‖n−1U(β)‖∞ + ‖n−1U(β0)‖∞ + o(n−3/8)

≤ o(n−3/8) + 2γ/n.

Let h = β̂ − β0. As γ/n dominates o(n−3/8) for n large enough and because β̂ is feasible by

definition and β0 is feasible with high probability by Proposition 1, we immediately have that

‖{Ω̃1/2}′Ω̃1/2
h‖∞ ≤ 3γ/n.

Now suppose T0 is a set of cardinality V with δV + θV,2V < 1, and T1 consists of the V

largest components of h outside of T0. Let T01 = T0 ∪ T1. Then Cauchy-Schwarz inequality gives

‖{Ω̃1/2
T01
}′Ω̃1/2

h‖2 ≤ (2V )1/23γ/n. By a trivial modification of Lemma 3.1 of Candes and Tao

(2007),

‖hT01‖2 ≤
(2V )1/23γ/n

δ2V
+

θV,2V

δ2V V 1/2
‖hT̄0

‖1,

and

‖h‖22 ≤ ‖hT01‖22 + V −1‖hT̄0
‖21

where T̄0 is the completement of T0 in {1, . . . , p}. Using the fact that ‖β̂‖1 ≤ ‖β0‖1, one can show

that ‖hT̄0
‖1 ≤ V 1/2‖hT0‖2. Subtracting ‖hT01‖2θV,2V /δ2V V

1/2 from both sides of the previous

inequalities gives

‖hT01‖2 ≤
δ2V

δ2V − θV,2V

{
(2V )1/23γ/n

δ2V
+
θV,2V
δ2V

(‖hT0‖2 − ‖hT01‖2)

}

≤ (2V )1/23γ/n
δ2V − θV,2V

.

Since

‖h‖22 ≤ ‖hT01‖22 + V −1‖hT̄0
‖21 ≤ ‖hT01‖22 + V −1V ‖hT0‖22 ≤ 2‖hT01‖22,
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this gives, along with the probability bound of Proposition 1,

P

(
‖β̂ − β0‖22 ≤

36V γ2/n2

(δ2V − θV,2V )2

)
> 1− 2p exp

(
− γ2/n

L+ 2BKγ/n

)
.

Moreover, when p = O(nκ), κ ≥ 1, the result follows immediately. �

A.4: Proof of Proposition 3

Denote by β0 the truth and

Ỹ 0
i = E(Yi|Y ∗i , δi,Xi,β0) = Y ∗i + (1− δi)

∫∞
ei(β0) S(s)ds

S{ei(β0)})
,

where S is the (true) survival function corresponding to the distribution function F , ie S(.) =

1− F (.). Then
n∑
i=1

Xi

{
Ŷi(β̂

(0)
)− Yi

}
=

n∑
i=1

Xi

{
Ŷi(β̂

(0)
)− Ỹ 0

i

}
+

n∑
i=1

Xi(Ỹ 0
i − Yi) (25)

The second term on the right hand side of (25) is Op(n1/2) by the CLT, we only need to

consider the first term on the right hand side of (25), which is equal to

∑
i

Xi(1− δi)


∫∞
ei(β̂

(0)
)
Ŝ{s, β̂(0)}ds

Ŝ{ei(β̂
(0)

), β̂
(0)}

−

∫∞
ei(β0) S(s)ds

S{ei(β0)})

 , (26)

where Ŝ(t,β) is the Nelson-Aalen estimator based on data (Y ∗i −X′iβ, δi), i = 1, . . . , n.

Equation (26) is asymptotically equal to∑
i

Xi(1− δi)
S{ei(β0)}

{∫ ∞
ei(β̂

(0)
)
Ŝ(s, β̂

(0)
)ds−

∫ ∞
ei(β0)

S(s)ds

}
(27)

−
∑
i

Xi(1− δi)
∫∞
ei(β0) S(s)ds

S2{ei(β0)}

[
Ŝ{ei(β̂

(0)
), β̂

(0)} − S{ei(β0)}
]

+Op(1) (28)

Next consider (27). Note that∫ ∞
ei(β̂

(0)
)
Ŝ{s, β̂(0)}ds−

∫ ∞
ei(β0)

S(s)ds

=
∫ ei(β̂

(0)
)

ei(β0)
Ŝ{s, β̂(0)}ds+

∫ ∞
ei(β0)

Ŝ{s, β̂(0)} − S(s)ds

=
∫ ei(β̂

(0)
)

ei(β0)
S{ei(β0)}ds+

∫ ei(β̂
(0)

)

ei(β0)
Ŝ{s, β̂(0)} − S{ei(β0)}ds

+
∫ ∞
ei(β0)

Ŝ{s, β̂(0)} − S(s)ds.
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It is obvious the first term in the above equation is equal to∫ ei(β̂
(0)

)

ei(β0)
S{ei(β0)}ds = S{ei(β0)}{ei(β̂

(0)
)− ei(β0)} = −S{ei(β0)}X′i(β̂

(0) − β0).

For the second term, applying Lemma 1 and noting that β̂
(0) − β0 = Op(n−1/2) yields∫ ei(β̂

(0)
)

ei(β0)
Ŝ{s, β̂(0)} − S{ei(β0)}ds = op(n−1/2).

Finally, for the third term as

√
n[Ŝ{s, β̂(0)} − S(s)]→ S(s)Z(s)

weakly, where Z(s) is a version of W(v(s)), by the weak convergence of stochastic integrals (e.g

Theorem 2.2 of Kurtz and Protter (1991)) and the Skorohod representation theorem, we have

that ∫ ∞
ei(β0)

[Ŝ{s, β̂(0)} − S(s)]ds = n−1/2

∫ ∞
ei(β0)

S(s)Z(s)ds+ op(n−1/2).

When applying Theorem 2.2 of Kurtz and Protter (1991), we need to verify that the variance of

the integrand of the last integral (or the “change of the time” in the Gaussian process), which is

var{S(t)Z(t)} = S2(t)v(t) is bounded at ∞. That is lim supt→∞ S2(t)v(t) <∞. Indeed,

S2(t)v(t) <
∫ t

−∞
S2(s)

λ0(s)
π(s,β0)

ds <

∫ ∞
−∞

dF (s,β0)
Γ(0)(s,β0)

<∞

by the regularity condition. Hence, (27) is equal (in distribution) to
n∑
i=1

Xi(1− δi)
(

[Ãi(β0)− S{ei(β0)}Xi]′(β̂
(0) − β0)

+ n−1/2

∫ ∞
ei(β0)

S(t)
S{ei(β0)}

W{v(t)}dt

)
+ op(n1/2)

= Op(n1/2),

where Ãi(β0) =
∫∞
ei(β0)

S(s)
S{ei(β0)}A(β0, s)ds and the last equality stems from that β̂

(0) − β0 =

Op(n−1/2).

Finally consider (28). Using Lemma 1, it is follows that

Ŝ{ei(β̂
(0)

), β̂
(0)} − S{ei(β0)}

d= S{ei(β0)}([A{ei(β0),β0} − λ{ei(β0)}Xi]′(β̂
(0) − β0) + n−1/2W[v{ei(β0)}]) + op(n−1/2),
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where d= is for equal in distribution.

Hence, (28) is equal, in distribution, to

∑
i

Xi(1− δi)

∫∞
ei(β0) S(s)ds

S{ei(β0)}

(
[A{ei(β0),β0}+ λ{ei(β0)}Xi]′(β̂

(0) − β0)

+n−1/2W[v{ei(β0)}]
)

+ op(n1/2)

=
∑
i

Xi(Ỹi(β0)− Y ∗i )([A{ei(β0),β0}+ λ{ei(β0)}Xi]′(β̂
(0) − β0) +Op(n−1/2)) + op(n1/2)

= Op(n1/2).

Combining (27) and (28) yields the result. �

A.5: Proof of Lemma 4

Define the Lagrangian

L(β,µ) = ||Wβ||1 + µ′Z′(Ŷ − ZWβ)− γ||µ||1.

Then (12) and (13) imply

||Wβ̂||1 = L(β̂, µ̂) = µ̂′Z′Ŷ − γ||µ̂||1.

Since

inf
β
L(β,µ) = µ′Z′Ŷ − γ||µ||1 + inf

β
(sgn(β)− µZ′Z)′Wβ

=
{
µ′Z′Ŷ − γ||µ||1 if ||Z′Zµ||∞ ≤ 1

−∞ otherwise,

and because (11) holds, we have

||Wβ̂||1 = inf
β
L(β, µ̂) ≤ sup

µ
inf
β
L(β,µ) ≤ sup

µ
L(β̃,µ)

for any β̃. This, the inequality (10), and the fact that

sup
µ
L(β,µ) = ||Wβ||1 + sup

µ
µ′[Z′(Ŷ − ZWβ)− γsgn(µ)]

=
{
||Wβ||1 if ||Z′(Ŷ − ZWβ)||∞ ≤ γ
∞ otherwise

imply that ||Wβ̂||1 ≤ ||Wβ||1 whenever |Z′(Ŷ − ZWβ)| ≤ γ. This means that β̂ solves (9). �
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A.6: Proof of Proposition 5

With µ̂ and β̂ as in (14)-(17), we check that (10)-(13) hold with probability tending to 1. First

note that

Z′AZµ̂ = Z′AZAµ̂A = sgn(β0)A

and

Z′ĀZµ̂ = ZĀZA(Z′AZA)−1sgn(β0)A

= (W−1
Ā,Ā

)′X′ĀPnXA(X′APnXA)−1WAsgn(β0)A

= oP (1).

This implies that (11) holds with probability tending to 1. To see that (10) holds with probability

approaching 1, first observe that

Z′A(Ŷ − ZWβ̂) = γsgn(µ̂)A. (29)

Furthermore,

Z′Ā(Ŷ − ZWβ̂) = Z′Ā
[
I− ZA(Z′AZA)−1Z′A

]
Ŷ + γZ′ĀZA(Z′AZA)−1sgn(µ̂)A

= W−1
Ā,Ā

X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Ŷ (30)

+γW−1
Ā,Ā

XĀPnXA(XAPnXA)−1WAsgn(µ̂)A.

Proposition 3 implies that

X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Ŷ = X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Y

+OP (
√
n)

= OP (
√
n),

where the second equality above holds because

X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Y = X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
ε

and

∣∣X′jPn

[
I−PnXA(X′APnXA)−1X′APn

]
PnXj

∣∣ ≤ X′jXj ,
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which implies that

1√
n

X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Y

has mean 0 and bounded variance. Since W−1
Ā,Ā

= oP (γ/
√
n), it follows that

W−1
Ā,Ā

X′ĀPn

[
I−PnXA(X′APnXA)−1X′APn

]
Ŷ = oP (γ).

Combining this with (30) and the fact that

γW−1
Ā,Ā

XĀPnXA(XAPnXA)−1WAsgn(µ̂)A = oP (γ)

gives

Z′Ā(Ŷ − ZWβ̂) = oP (γ).

This fact, plus (29), implies that (10) holds with probability tending to 1. Since

µ̂′Z′ZWβ̂ = µ̂′AZ′AZAWAβ̂A = sgn(β)′AWAβ̂A

and sgn(β̂)A
P→ sgn(β0)A, the probability that (12) holds converges to 1. Lastly,

µ̂′Z′(PnŶ − ZWβ̂) = µ̂′AZ′A(PnŶ − ZWβ̂) = γµ̂′Asgn(µ̂)A = γ||µ̂||1,

which implies that (13) holds. We conclude that (10)-(13) hold with probability tending to 1 and

the proposition is proved. �

A.7: Proof of Corollary 1

Let β̂ be any sequence of solutions to (9), let T = {j; β̂1
j 6= 0} and let E = {j; |Z′j(Ŷ −

ZWβ̂)| = γ}. Proposition 5 implies that by slightly perturbing β̂ if necessary, we can assume

that E ⊆ A ⊆ T . The conditions (13)-(10) in Lemma 2 imply that there exists t ∈ {±1}|T | such

that

||W−1X′PnXT (X′TPnXT )−1WT t||∞ ≤ 1. (31)

Since wj/wk
P→ ∞, whenever j ∈ Ā and k ∈ A, it follows that T = A, with probability tending

to 1. Thus, P (T = A)→ 1 and β̂ is consistent for model selection.
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A.8: Proof of Proposition 6

Define

Ω =
∫ ∞
−∞

[
Γ(2)(t,β0)− {Γ

(1)(t,β0)}⊗2

Γ(0)(t,β0)

] ∫∞
t (1− F (s))ds

1− F (t)

{
d log f(t)

dt
+

f(t)
1− F (t)

}
dF (t), (32)

Λ =
∫ −∞
−∞

[
Γ(2)(t,β0)− {Γ

(1)(t,β0)}⊗2

Γ(0)(t,β0)

]{∫∞
t (1− F (s))ds

1− F (t)

}2

dF (t), (33)

where f(·) is the density function for F (·), the CDF of εi, and Γ(r)(t,β0) for r = 0, 1 are defined

as in (19).

Since {T = A} ⊂
{
β̂

(0,T )
= β̂

(0,A)
}

, coupled with P (T = A) → 1 implied by Proposition 5,

it follows immediately that

P
(
β̂

(0,T )
= β̂

(0,A)
)
→ 1.

Therefore,
√
n(β̂

(0,T )

A −β0,A) =
√
n(β̂

(0,A)

A −β0,A)+oP (1). Further, as Theorem 4 of Lai and Ying

(1991) implies that

√
n(β̂

(0,A)

A − β0,A) d→ N(0,ΣA),

the original claim is thus proved. �

A.9: Proof of Corollary 2

Since β̂
(0,T )

is
√
n-consistent for β by Proposition 6, Lemma 2 implies that, with probability

tending to 1, β̂
∗
Ā = 0 and

β̂
∗
A = (X′APnXA)−1X′APnŶ(1) − γ(X′APnXA)−1WAr = β̂

(0,A)

A − γ(X′APnXA)−1WAr,

where r ∈ R|A| and ||r||∞ ≤ 1. By assumption, (X′APnXA)−1 = Op(1/n). Since r is bounded

and γWA = op(
√
n),

γ(X′APnXA)−1WAr = op(1/
√
n).

It follows that P ({j; β̂∗j 6= 0} = A)→ 1 and

√
n(β̂

∗
A − β̂

(0,A)

A ) P→ 0.

�
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Table 1. Simulation results for p = 2n and V = 3 with correctly specified working model (based on 500 simulations)

β0j = 1 β0j = 1.5 β0j = 3

n Method MSE FN FP PE MSE FN FP PE MSE FN FP PE

ρ = 0
50 DZ 1.199 0.491 0.347 2.960 2.062 0.047 0.345 3.997 2.633 0.014 0.337 4.717

DZ-ADZ-1 1.361 0.793 0.062 3.161 1.585 0.131 0.047 3.335 1.558 0.043 0.045 3.457
DZ-ADZ-INT 1.851 0.793 0.062 3.706 1.878 0.131 0.047 3.645 1.863 0.043 0.045 3.795

DZ-ADZ-2 1.497 0.802 0.059 3.313 1.643 0.135 0.045 3.389 1.597 0.044 0.044 3.513
Dantzig Cox 1.656 0.039 0.227 3.620 1.579 0.004 0.204 5.057 5.890 0.000 0.162 14.987

ALASSO CLR 2.242 0.111 0.229 5.288 3.608 0.020 0.241 7.953 12.116 0.002 0.265 21.823
ALASSO Cox 1.570 0.056 0.132 3.515 1.673 0.007 0.112 5.089 10.865 0.002 0.104 16.579

100 DZ 1.215 0.329 0.387 2.941 1.833 0.002 0.380 3.731 2.233 0.000 0.379 4.261
DZ-ADZ-1 1.219 0.642 0.059 2.923 1.046 0.002 0.053 2.749 1.003 0.000 0.051 2.693

DZ-ADZ-INT 1.753 0.642 0.059 3.485 1.592 0.002 0.053 3.299 1.545 0.000 0.051 3.241
DZ-ADZ-2 1.393 0.650 0.056 3.104 1.199 0.003 0.051 2.902 1.143 0.000 0.048 2.837

Dantzig Cox 1.108 0.000 0.229 3.071 0.871 0.000 0.210 4.472 2.349 0.000 0.170 13.465
ALASSO CLR 1.857 0.007 0.239 5.097 3.238 0.000 0.254 7.857 11.472 0.000 0.281 23.932
ALASSO Cox 1.103 0.000 0.132 3.069 1.089 0.000 0.115 4.593 8.866 0.000 0.109 14.909

ρ = 0.5
50 DZ 1.133 0.392 0.330 2.877 1.985 0.035 0.327 4.232 2.424 0.011 0.331 5.174

DZ-ADZ-1 1.239 0.675 0.054 2.943 1.554 0.083 0.046 3.231 1.426 0.022 0.044 3.185
DZ-ADZ-INT 1.701 0.675 0.054 3.420 1.825 0.083 0.046 3.535 1.686 0.022 0.044 3.462

DZ-ADZ-2 1.351 0.682 0.051 3.050 1.652 0.093 0.044 3.313 1.485 0.023 0.042 3.241
Dantzig Cox 1.462 0.015 0.189 4.292 1.291 0.000 0.173 7.615 3.365 0.000 0.135 26.603

ALASSO CLR 2.120 0.078 0.214 6.841 3.964 0.032 0.241 11.929 14.764 0.006 0.297 38.532
ALASSO Cox 1.175 0.020 0.097 4.258 1.763 0.007 0.087 7.802 13.703 0.007 0.086 29.529

100 DZ 1.278 0.249 0.378 3.044 1.849 0.003 0.373 4.088 2.226 0.001 0.366 4.820
DZ-ADZ-1 1.122 0.506 0.053 2.837 1.009 0.004 0.047 2.663 0.996 0.001 0.046 2.719

DZ-ADZ-INT 1.595 0.506 0.053 3.333 1.456 0.004 0.047 3.116 1.452 0.001 0.046 3.173
DZ-ADZ-2 1.248 0.525 0.050 2.964 1.131 0.006 0.046 2.783 1.123 0.001 0.044 2.829

Dantzig Cox 1.062 0.000 0.196 3.890 0.933 0.000 0.183 6.772 1.350 0.000 0.149 24.764
ALASSO CLR 2.032 0.007 0.241 7.041 3.633 0.000 0.256 12.063 13.781 0.000 0.303 40.561
ALASSO Cox 0.849 0.000 0.102 3.933 1.406 0.000 0.095 7.088 13.249 0.003 0.098 27.822

ρ = 0.9
50 DZ 3.192 0.517 0.248 3.197 4.174 0.192 0.256 4.056 4.914 0.135 0.249 4.635

DZ-ADZ-1 2.065 0.709 0.042 2.820 3.991 0.365 0.042 3.091 4.481 0.260 0.042 3.135
DZ-ADZ-INT 2.778 0.709 0.042 3.157 4.166 0.365 0.042 3.279 4.673 0.260 0.042 3.363

DZ-ADZ-2 2.141 0.718 0.038 2.852 4.076 0.379 0.040 3.100 4.586 0.273 0.039 3.173
Dantzig Cox 2.246 0.110 0.100 5.078 2.680 0.042 0.090 10.171 7.038 0.013 0.031 40.462

ALASSO CLR 5.046 0.339 0.192 8.253 9.093 0.267 0.215 15.266 31.205 0.204 0.232 50.904
ALASSO Cox 1.556 0.171 0.040 5.070 3.033 0.161 0.038 10.417 17.637 0.205 0.041 42.760

100 DZ 4.106 0.397 0.322 3.337 4.912 0.097 0.319 4.295 5.634 0.057 0.314 5.271
DZ-ADZ-1 0.942 0.656 0.020 2.192 2.137 0.213 0.023 2.359 2.070 0.104 0.022 2.389

DZ-ADZ-INT 1.267 0.656 0.020 2.390 2.161 0.213 0.023 2.526 2.109 0.104 0.022 2.544
DZ-ADZ-2 0.974 0.673 0.018 2.194 2.173 0.222 0.022 2.382 2.114 0.111 0.021 2.409

Dantzig Cox 1.260 0.022 0.100 4.915 1.431 0.001 0.094 9.405 3.937 0.000 0.019 38.290
ALASSO CLR 4.788 0.198 0.197 7.992 8.997 0.139 0.229 15.459 27.901 0.094 0.231 56.400
ALASSO Cox 1.040 0.059 0.041 4.880 2.516 0.070 0.040 9.680 17.538 0.101 0.043 40.903

DZ: one-stage Dantzig selector defined in (7);
DZ-ADZ-1: one-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-INT: intermediate adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-2: two-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
Dantzig Cox: the Dantzig selector proposed in Antoniadis et al. (2009);
ALASSO CLR: Adaptive LASSO for censored linear regression (Datta et al., 2007);
ALASSO Cox: Adaptive LASSO for Cox PH models (Zhang and Lu, 2007)
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Table 2. Simulation results for p = 2n and V = 5 with correctly specified working model (based on 500 simulations)

β0j = 1 β0j = 1.5 β0j = 3

n Method MSE FN FP PE MSE FN FP PE MSE FN FP PE

ρ = 0
50 DZ 1.278 0.491 0.344 3.030 3.217 0.090 0.341 5.238 4.314 0.041 0.338 6.620

DZ-ADZ-1 1.486 0.798 0.060 3.203 2.825 0.253 0.043 4.568 2.964 0.131 0.045 4.719
DZ-ADZ-INT 1.911 0.798 0.060 3.669 3.000 0.253 0.043 4.753 3.189 0.131 0.045 4.952

DZ-ADZ-2 1.591 0.806 0.057 3.321 2.865 0.256 0.042 4.611 2.986 0.132 0.044 4.733
Dantzig Cox 2.432 0.065 0.213 4.860 4.034 0.023 0.193 8.081 19.825 0.004 0.151 26.028

ALASSO CLR 3.405 0.125 0.242 7.012 6.423 0.064 0.261 11.670 22.966 0.020 0.295 39.186
ALASSO Cox 2.388 0.106 0.122 4.817 4.710 0.068 0.113 8.465 28.240 0.055 0.106 30.878

100 DZ 1.341 0.319 0.384 3.109 2.586 0.005 0.377 4.634 3.378 0.001 0.373 5.682
DZ-ADZ-1 1.387 0.644 0.059 3.105 1.252 0.008 0.052 2.958 1.324 0.000 0.052 3.058

DZ-ADZ-INT 1.924 0.644 0.059 3.683 1.778 0.008 0.052 3.505 1.882 0.000 0.052 3.609
DZ-ADZ-2 1.561 0.651 0.057 3.287 1.367 0.008 0.049 3.075 1.425 0.000 0.049 3.156

Dantzig Cox 1.271 0.000 0.215 4.032 1.621 0.000 0.193 6.589 11.070 0.000 0.148 22.571
ALASSO CLR 2.828 0.019 0.242 7.082 5.332 0.003 0.264 11.457 20.044 0.000 0.298 36.733
ALASSO Cox 1.306 0.002 0.120 4.051 2.369 0.001 0.110 6.979 22.879 0.000 0.109 26.190

ρ = 0.5
50 DZ 1.272 0.390 0.324 3.114 2.804 0.062 0.321 5.774 3.697 0.028 0.318 7.621

DZ-ADZ-1 1.434 0.676 0.049 3.201 2.124 0.125 0.037 3.761 1.995 0.049 0.035 3.697
DZ-ADZ-INT 1.811 0.676 0.049 3.588 2.230 0.125 0.037 3.936 2.137 0.049 0.035 3.865

DZ-ADZ-2 1.517 0.690 0.047 3.280 2.202 0.128 0.036 3.826 2.022 0.050 0.034 3.697
Dantzig Cox 1.587 0.025 0.168 7.093 2.321 0.007 0.146 14.359 14.647 0.000 0.104 57.015

ALASSO CLR 3.450 0.113 0.234 11.317 7.095 0.071 0.262 21.071 27.457 0.041 0.307 80.614
ALASSO Cox 1.844 0.062 0.086 7.232 4.816 0.062 0.083 15.583 30.634 0.087 0.089 64.889

100 DZ 1.397 0.234 0.379 3.222 2.450 0.006 0.358 5.396 3.163 0.001 0.342 6.852
DZ-ADZ-1 1.338 0.492 0.052 2.992 1.232 0.008 0.045 2.927 1.203 0.001 0.044 2.947

DZ-ADZ-INT 1.780 0.492 0.052 3.452 1.624 0.008 0.045 3.329 1.611 0.001 0.044 3.335
DZ-ADZ-2 1.467 0.508 0.050 3.106 1.335 0.009 0.043 3.010 1.283 0.001 0.042 2.998

Dantzig Cox 0.990 0.000 0.179 6.379 1.020 0.000 0.160 12.861 8.237 0.000 0.117 51.953
ALASSO CLR 3.225 0.022 0.260 11.255 6.638 0.008 0.293 21.302 24.818 0.004 0.304 75.416
ALASSO Cox 1.314 0.004 0.094 6.637 3.947 0.004 0.090 14.113 29.309 0.013 0.096 59.175

ρ = 0.9
50 DZ 3.094 0.504 0.248 3.143 5.733 0.245 0.243 5.856 8.133 0.214 0.229 8.080

DZ-ADZ-1 2.633 0.720 0.040 2.818 5.806 0.393 0.036 3.339 7.250 0.320 0.035 3.588
DZ-ADZ-INT 3.206 0.720 0.040 3.072 5.918 0.393 0.036 3.518 7.176 0.320 0.035 3.734

DZ-ADZ-2 2.719 0.729 0.036 2.841 5.937 0.408 0.033 3.358 7.295 0.328 0.033 3.589
Dantzig Cox 3.414 0.139 0.082 11.468 4.364 0.114 0.051 25.716 21.864 0.086 0.013 117.025

ALASSO CLR 8.954 0.422 0.208 17.213 18.518 0.388 0.226 34.293 112.656 0.226 0.458 163.348
ALASSO Cox 2.896 0.303 0.034 11.765 7.044 0.338 0.036 27.141 36.073 0.413 0.043 123.750

100 DZ 4.134 0.402 0.320 3.417 6.719 0.147 0.297 6.546 8.010 0.099 0.257 8.220
DZ-ADZ-1 1.522 0.664 0.021 2.300 3.544 0.261 0.020 2.532 3.873 0.162 0.020 2.526

DZ-ADZ-INT 1.791 0.664 0.021 2.465 3.460 0.261 0.020 2.659 3.799 0.162 0.020 2.652
DZ-ADZ-2 1.614 0.678 0.019 2.318 3.590 0.268 0.020 2.555 3.915 0.165 0.019 2.541

Dantzig Cox 1.944 0.033 0.088 10.775 2.279 0.014 0.053 24.271 15.829 0.005 0.002 110.641
ALASSO CLR 8.790 0.300 0.221 17.461 17.472 0.279 0.227 36.905 123.400 0.100 0.544 169.164
ALASSO Cox 2.437 0.200 0.038 11.165 6.661 0.222 0.041 25.843 35.505 0.273 0.044 116.626

DZ: one-stage Dantzig selector defined in (7);
DZ-ADZ-1: one-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-INT: intermediate adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-2: two-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
Dantzig Cox: the Dantzig selector proposed in Antoniadis et al. (2009);
ALASSO CLR: Adaptive LASSO for censored linear regression (Datta et al., 2007)
ALASSO Cox: Adaptive LASSO for Cox PH models (Zhang and Lu, 2007)
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Table 3. Simulation results for the misspecified working model with n = 50 and p = 2n (based
on 500 simulations)

β0j = 1 β0j = 1.5 β0j = 3
Method FN FP PE FN FP PE FN FP PE

V = 3
DZ 0.404 0.239 1.502 0.213 0.268 0.943 0.026 0.301 4.265

DZ-ADZ-1 0.682 0.04 1.648 0.495 0.045 0.951 0.129 0.05 3.24
DZ-ADZ-INT 0.682 0.04 1.648 0.495 0.045 0.951 0.129 0.05 3.24

DZ-ADZ-2 0.682 0.04 1.648 0.495 0.045 0.951 0.129 0.05 3.24
Dantzig Cox 0.201 0.24 1.389 0.09 0.23 1.009 0.003 0.2 7.348

ALASSO CLR 0.638 0.151 1.232 0.475 0.168 8.726 0.16 0.201 6.04
ALASSO Cox 0.251 0.161 1.494 0.102 0.146 1.232 0.004 0.104 7.473

V = 5
DZ 0.345 0.278 1.097 0.19 0.298 2.172 0.054 0.293 8.89

DZ-ADZ-1 0.66 0.046 1.48 0.494 0.048 2.133 0.192 0.045 4.866
DZ-ADZ-INT 0.66 0.046 1.48 0.494 0.048 2.133 0.192 0.045 4.866

DZ-ADZ-2 0.66 0.046 1.48 0.494 0.048 2.133 0.192 0.045 4.866
Dantzig Cox 0.219 0.227 1.731 0.098 0.21 1.646 0.01 0.171 10.159

ALASSO CLR 0.599 0.169 1.478 0.42 0.188 1.689 0.188 0.224 11.076
ALASSO Cox 0.251 0.146 1.713 0.116 0.121 1.728 0.015 0.085 10.795

DZ: one-stage Dantzig selector defined in (7);
DZ-ADZ-1: one-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-INT: intermediate adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-2: two-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
Dantzig Cox: the Dantzig selector proposed in Antoniadis et al. (2009);
ALASSO CLR: Adaptive LASSO for censored linear regression (Datta et al., 2007)
ALASSO Cox: Adaptive LASSO for Cox PH models (Zhang and Lu, 2007)
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Table 4. Final models for the multiple myeloma training dataset selected by the adaptive
Dantzig selectors

Probeset DZ-ADZ-1 DZ-ADZ-INT DZ-ADZ-2
202075 s at -0.03 -0.07 -0.01
206871 at 0.10 0.14 0.10

211674 x at -0.06 -0.10 -0.08
213674 x at 0.05 0.11 0.09
214777 at 0.02 0.05 0.01
225626 at 0.05 0.09 0.07

DZ-ADZ-1: one-iteration adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-INT: intermediate adaptive Dantzig selector at the second stage (defined in section 4.3);
DZ-ADZ-2: two-iteration adaptive Dantzig selector at the second stage (defined in section 4.3)
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Figure 1: Results of 500 simulations of the one-stage Dantzig selector for the censored linear
regression model with n = 100, p = 200, β0j = 1.5, and ρ = 0.5
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Figure 2: Survival comparison between the high/low risk groups using various selectors on an
independent validation dataset (the high or low risk is defined based on whether the model-based
predicted risk exceeds the median value in the training dataset)
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