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EVALUATING SUBJECT-LEVEL INCREMENTAL VALUES OF NEW

MARKERS FOR RISK CLASSIFICATION RULE

T. Cai1, L. Tian2, Donald M. Lloyd-Jones2, and L.J. Wei1

1Department of Biostatistics, Harvard University, Boston, MA 02115, USA

2Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA

Summary

Suppose that we need to classify a population of subjects into several well-defined ordered risk

categories for disease prevention or management with their “baseline” risk factors/markers. In

this article, we present a systematic approach to identify subjects using their conventional risk

factors/markers, who would benefit from a new set of risk markers for more accurate classification.

Specifically for each subgroup of individuals with the same conventional risk estimate, we present

inference procedures for the reclassification and the corresponding correct re-categorization rates

with the new markers. We then applied these new tools to analyze the data from the Cardiovas-

cular Health Study sponsored by the US National Heart, Lung, and Blood Institute (NHLBI).

We used Framingham risk factors plus the information of baseline anti-hypertensive drug us-

age to identify adult American women who may benefit from the measurement of a new blood

biomarker, CRP, for better risk classification in order to intensify prevention of coronary heart

disease for the next ten years.

Keywords: Coronary Heart Disease, Nonparametric Functional Estimation, Risk Factors/Markers,

Pointwise and Simultaneous Confidence Interval, Subgroup Analysis.
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1. INTRODUCTION

An integral part of evidence-based guidelines for disease prevention or management is a well-

defined risk classification rule, which assigns each subject from a population of interest to one

of several ordered risk groups. The assignment is based on the individual risk, the chance that

the subject will experience a specific type of events during a given time period. Appropriate

interventions will then be offered to subjects in each risk category. The risk is estimated using

a scoring system with the subject’s “conventional” baseline risk factors/markers. For example,

in the United States more than a half million women die of cardiovascular diseases (CVD) each

year and the majority of such deaths are due to coronary heart disease (CHD). Recently, the

American Heart Association (AHA) issued guidelines for prevention of CHD in adult women

(Mosca et al., 2004; 2007). Specifically, risk categories are defined by the individual’s predicted

risk of having a CHD event in the next ten years. Adult American women are classified as

being low risk (< 10%), intermediate risk (between 10% and 20%), or high risk (≥ 20%). Such

risk threshold values have also been employed by the Adult Treatment Panel III (ATP III) of

the National Cholesterol Education Program to develop an evidence-based set of guidelines on

cholesterol management (Grundy et al., 2004). For subjects with intermediate or high risk,

certain life style and pharmacologic interventions are recommended. The risk is estimated using

a modified version of the Framingham Risk Score (FRS), which is a multivariate risk equation

based on traditional risk factors such as age, blood cholesterol, HDL cholesterol, blood pressure,

smoking status and diabetes mellitus (Wilson et al., 1998).

Now, suppose that new risk markers for such future events are available, and they may

potentially improve the conventional risk estimation. Measuring these markers, however, may

be invasive or costly. Under various settings, novel procedures have been proposed to quantify

the overall incremental benefit from the new markers for the entire population of interest (Pepe

et al., 2004; Cook, 2007; Tian et al., 2007; Uno et al., 2007; Pepe et al., 2008; Pencina et al.,

2008). In a recent paper, Wang et al. (2006) concluded that almost all new contemporary

biomarkers for prevention of CHD added rather moderate overall predictive value to FRS.
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In general, for subjects whose conventional risk estimates are either low or high, clinical prac-

titioners would not require new markers for their decision making. Unfortunately, rather little

research has been done for developing a systematic procedure to identify a subset of individuals

who would benefit significantly from measurement new risk markers (D’Agostino, 2006). With

respect to the aforementioned risk classification rule recommended by the AHA and ATP III,

recently Cook et al. (2006) and Ridker et al. (2007) examined the incremental value of a new

blood biomarker, the C-Reactive protein (CRP) measured by a highly sensitive assay, with a co-

hort of subjects from the Women’s Health Study (Buring & Hennekens, 1992). They concluded

that subjects whose traditional risk scores are between 5% and 20% would benefit from this

marker. Their claims, however, were based on the reclassification rates with CRP among four

highly discretized subgroups of the entire cohort based on conventional risk estimates. Moreover,

it is not clear how to quantify the gain of reclassification solely based on the observed event rates

for the risk categories.

In this article, for each subject in the study we construct two individual risk estimates,

one based on the conventional risk markers and the other based on the conventional and new

markers. A subject may be reclassified into a different risk category with the new risk estimate.

For the subset D of subjects with the same conventional risk estimate, we obtain consistent

nonparametric functional estimates for the reclassification rates and their corresponding standard

error estimates. Note that large observed reclassification rates do not automatically imply that

the new markers are important for subjects in D. Consistent estimates for the proportions of

subjects who are reclassified correctly are also needed for cost-benefit decision making. In this

paper, we develop procedures for making inference about such proportions. Furthermore, we

propose a test procedure to examine whether reclassifications by the new markers are better

than “random allocations” of subjects in D.

As an illustration, consider the set D consisting of individuals who have the same conventional

FRS estimate of 9% for experiencing CHD events within ten years. Based on the aforementioned

prevention guidelines, individuals with this predicted risk would not be recommended for lipid-
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lowering drug therapy at present. Now, suppose that with the new markers, the estimate for

the proportion of subjects in D reclassified to the next higher risk category is 25%, and the

corresponding rate estimate for subjects in D, who are reclassified and had CHD events, is 3%.

The potential benefit with the new markers would be preventing 3% of subjects in D from

having future CHD events. However, the costs consist of measuring new marker values for every

subject in this subset, and giving possibly long-term, potentially toxic interventions to 25% of

the individuals. Even if we decide that for this scenario, the benefit outweighs the cost, we still

need to know whether this reclassification scheme is better than a “random allocation” process.

If we randomly move 25% of subjects in D to the next higher risk class, on average, 9% of these

subjects would have CHD events. The question is whether the observed 12% (3% out of 25%) is

significantly different from this null value of 9%.

The new proposal is illustrated with a data set from the Cardiovascular Health Study (CHS)

sponsored by the US National Heart, Lung and Blood Institute (Fried et al., 1991). This study

is a prospective, population-based, long term follow-up cohort study to determine risk factors for

predicting coronary future heart disease and stroke in adults 65 years or older. There were 5888

study subjects recruited between 1988 and 1993. For our analysis, we only considered data from

3393 female participants. For each subject, we utilized the risk factors/markers values at her

entry time to the study and her CHD event time by year 2003. The binary response variable is

whether the subject had experienced a CHD event (non-fatal MI, angina or CHD-related death)

during ten year follow-up. For this data set, the median age at the baseline is 72.5 and there

is no loss of follow-up for these endpoints. During the first 10 year follow-up, 19.5% of female

participants experienced non-fatal MI, angina or CHD-related death. On the other hand, 37% of

them died from non-CHD-related diseases. Among 3393 subjects, 52% of them survived by year

2003. In our analysis, the conventional risk factors consist of the Framingham risk factors and the

anti-hypertensive drug usage. The new marker considered here is CRP. For the risk classification

rule recommended by the ATP III, the CRP provides pointwise significant incremental values

for subjects whose conventional risk estimates are around 10% and 20% . On the other hand,
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we cannot find any subgroup of individuals who would benefit from the new marker under the

simultaneous inference setting when controlling the overall family-wise type I error rate of 0.05.

In the next section, we describe our proposed procedures for quantifying the incremental value

of new markers. Procedures for making inference about the incremental values were proposed

in Section 3. The results from analyzing the CHS data are detailed in Section 4. Concluding

remarks are given in Section 5.

2. QUANTIFYING INCREMENTAL VALUES FROM NEW MARKERS

Consider a subject randomly drawn from the study population. Let Y be its binary response

variable, U be the set of conventional markers and V be the set of new markers. Let p(U) =

pr(Y = 1| U) and p(U, V ) = pr(Y = 1| U, V ), the risks of this subject conditional on U and

{U, V }, respectively. Assume that the classification rule assigns each subject to one of L ordered

risk categories {C1, · · · , CL}. A subject is classified to Cl, if its risk for Y = 1 is in the interval

[νl−1, νl), where l = 1, · · · , L, and 0 = ν0 < · · · < νL = 1. Based on p(U, V ), the subject may be

reclassified into a higher or lower risk category.

Now, suppose that the data {(Yi, Ui, Vi), i = 1, · · · , n} consist of n independent copies of

(Y, U, V ). In theory, for any given (u, v), the probabilities p(u) and p(u, v) may be consistently

estimated nonparametrically. In practice, however, such nonparametric functional estimates do

not behave well even when the dimension of U or V is not small. A practical alternative is to

consider a working model for approximating p(U) by a parametric model

g1(β
′X), (2.1)

where X, a p × 1 vector, is a function of U, β is unknown vector of parameters and g1(·) is a

known, smooth, increasing function. Now, suppose that β is estimated by β̂ via an estimating

function S1(β). The risk for a subject with U = u, whose X = x, is estimated by p̂u = g1(β̂
′x).

With the additional marker set V, consider the working model for approximating p(U, V ) by

g2(γ
′W ), (2.2)
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where W, a r×1 vector, is a function of U and V, g2(·) is a known, smooth, increasing function, and

γ is a vector of unknown parameters. Let γ be estimated by γ̂ via an estimating function S2(γ).

For a subject with (U, V ) = (u, v) whose W = w, the estimated risk is p̂{u,v} = g2(γ̂
′w). Note

that when Models (2.1) and (2.2) are correctly specified, with reasonable estimating functions

S1(·) and S2(·), p̂u and p̂{u,v} are consistent estimators for p(u) and p(u, v), respectively.

Now, consider a random future subject with (Y, U, V ) = (Y 0, U0, V 0). For a given 0 < s < 1,

let Ds be the group of future subjects whose p̂U0 = s. For subjects in Ds with additional new

marker information, the probability of a subject being classified to Cl with Y 0 = q, is

η
(q)
l (s) = pr

{
p̂{U0,V 0} ∈ [νl−1, νl), Y

0 = q
∣∣ p̂U0 = s

}
, for q = 0, 1; l = 1, ..., L. (2.3)

Here, the conditional probabilities are with respect to the data {(Yi, Ui, Vi)}, Y 0, U0 and V 0.

The probability of a subject being classified to Cl is ηl(s) = η
(0)
l (s) + η

(1)
l (s). It is important

to note that large reclassification rates ηl(s) do not automatically imply that the new markers

are valuable for Ds. The (2.3) also plays an important role in cost-benefit decision making. For

subjects who are re-assigned to a higher risk category, {η(1)
l (s), l > ls} provides us the proportion

of subjects in Ds who would benefit from the new markers, where ls =
∑L

l′=1 I(νl′ ≤ s). On the

other hand, for subjects who are moved down to a lower risk group, {η(0)
l (s), l < ls} would reflect

the incremental gain.

Moreover, it is important to know whether the above reclassification is more than a purely

random allocation process. Specifically, if the new markers contribute nothing to the classification

rule, one would expect that conditional on p̂U0 = s, p̂{U0,V 0} is independent of Y 0. That is,

η
(1)
l (s) = ηl(s)× ξ(s), l = 1 · · · , L, (2.4)

where ξ(s) = pr(Y 0 = 1| p̂U0 = s) =
∑L

l=1 η
(1)
l (s). The differences

{Dl(s) = η
(1)
l (s)− ηl(s)ξ(s), l = 1, ..., L} (2.5)

also play important roles for quantifying the incremental value of the new markers for future

subjects in Ds. In fact, if the ratios, {η(1)
l (s)/ηl(s)}, increase in l, l = 1, · · · , L, this indicates that

the markers indeed provide extra information about risk classifications of these subjects.
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3. ESTIMATING η
(q)
l (s) WITH POSSIBLY CENSORED EVENT TIME

OBSERVATIONS

Oftentimes the binary response Y indicates that either the event time of interest is greater or

less than a specific time point via a long term follow-up study. To this end, Let T0 be the random

event time and t0 be a prespecified time point. Here, the binary variable Y = 1, if T0 < t0; 0,

otherwise. The “response” Y may not be observed directly due to censoring. That is, T0 may

be censored by a random variable C. Let G(·) be the survival function of C. In this article, we

assume that G(·) is independent of T0, U and V. For T0, one can only observe T = min(T0, C)

and ∆ = I(T0 ≤ C), where I(·) is the indicator function. Our data {(Ti, ∆i, Ui, Vi), i = 1, · · · , n}
consist of n independent copies of (T, ∆, U, V ). Note that if there is no censoring involved,

G(·) = 1 and {Yi, i = 1, · · · , n} can be observed completely.

To obtain the estimates p̂u and p̂{u,v}, one may assume proportional hazards working models

for T0 with U, and then for T0 with U and V. With the maximum partial likelihood estimates for

the regression coefficients and the estimates for the underlying cumulative hazard functions, we

can estimate p(u) and p(u, v). However, if a working proportional model is not correctly specified,

the regression coefficient estimator converge to a constant vector, as n →∞, which may depend

on the censoring distribution. Moreover, a good prediction model for short term survivors may

not work well for predicting long term survivors. In this article, instead of modeling the entire

hazard function of T0, we use the approach taken by Uno et al. (2007) to model the conditional

risks of experiencing an event by t0 directly via (2.1) and (2.2).

To estimate β in (2.1), we let the estimating function S1(β) be

n∑
i=1

ω̂iXi {I(Ti < t0)− g1(β
′Xi)} =

n∑
i=1

ω̂iXi {Yi − g1(β
′Xi)} , (3.1)

where the weighting ω̂i = ∆iI(Ti < t0)/Ĝ(Ti) + I(Ti ≥ t0)/Ĝ(t0), and Ĝ(·) is the Kaplan-

Meier estimator of G(·) Here, the weighting takes care of the problem due to censoring and

I(Ti < t0) = Yi when ω̂i 6= 0. It is shown in Uno et al. (2007) that as n → ∞, the resulting

estimator β̂ converges to a constant which is free of G(·) even when the model (2.1) is misspecified.
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Similarly, with additional V and Model (2.2), one can use the estimating function

S2(γ) =
n∑

i=1

ω̂iWi {Yi − g2(γ
′Wi)} (3.2)

to estimate γ.

Now, since η
(q)
l (s) is between 0 and 1, we use a non-parametric local logistic likelihood esti-

mation procedure to obtain consistent estimator η̂
(q)
l (s). Specifically, first consider a kernel-type

nonparametric functional estimator based on the local likelihood “score” function for the stan-

dard logistic regression which relates the binary response I{p̂{Ui,Vi} ∈ [νl−1, νl), Yi = q} to the

regressor Êi(s) = ψ(p̂Ui
)− ψ(s). Here, we choose a proper transformation ψ(p̂U) of p̂U to imple-

ment the smoothing, where ψ(·) is a known, non-decreasing function (Wand et al., 1991; Park

et al., 1997). For any given s, l and q, this results in a score function of the intercept parameter

a and slope parameter b:

n∑
i=1


 1

h−1Êi(s)


 Kh{Êi(s)}ω̂i

[
I
{
p̂{Ui,Vi} ∈ [νl−1, νl), Yi = q

}− g0

{
a + bÊi(s)

}]
, (3.3)

where g0(x) = exp(x)/{1 + exp(x)}, Kh(x) = K(x/h)/h, K(·) is a known smooth symmetric

kernel density function with a bounded support, and the bandwidth h > 0 is assumed to be

O(n−v), for 1/5 < v < 1/2. Let η̂
(q)
l = g0(â), where â is the resulting estimator of the intercept

by solving the equations: (3.3)=0, for q = 0, 1 and l = 1, · · · , L. Then ηl(s) and ξ(s) can be

estimated by η̂l(s) = η̂
(1)
l (s) + η̂

(0)
l (s) and ξ̂(s) =

∑L
l=1 η̂

(1)
l (s), respectively.

In Appendix A, we show that η̂
(q)
l (s) − η

(q)
l (s) → 0 in probability, uniformly in s ∈ Ωh ≡

[ψ−1(ρl + h), ψ−1(ρr − h)], where [ρl, ρr] is a subset of the support of ψ{g1(β
′
0X)} and β0 is the

limit of β̂. Furthermore, we show in Appendix B that for large n, the joint distribution of

{(nh)1/2{η̂(q)
l (s)− η

(q)
l (s)}, q = 0, 1; l = 1, · · · , L}

can be approximated by the conditional distribution of a mean-zero normal vector

{
n−1/2h1/2

n∑
i=1

Kh{Êi(s)}V̂(q)
li (s)Zi, q = 0, 1; l = 1, · · · , L

}
, (3.4)
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given the data, where

V̂(q)
li (s) =

ω̂i[I{p̂{Ui,Vi} ∈ [νl−1, νl), Yi = q} − η̂
(q)
l (s)]

τ̂{ψ(p̂Ui
)} ,

τ̂(s) =
∑n

i=1 Kh{Êi(s)}/n is the estimated density function of ψ(p̂U) and {Zi, i = 1, · · · , n}
is a random sample from the standard normal variable and is independent of the data. Note

that the {Zi, i = 1, · · · , n}, are the only random quantities in (3.4), whose distribution can be

approximated easily by simulating {Zi, i = 1, · · · , n} repeatedly. Confidence interval estimates

for {η(q)
l (s)} and {ηl(s)} can be constructed via this large sample approximation.

Lastly, we need to examine whether the above reclassifications are better than realizations

from a random allocation scheme. To this end, we test the hypothesis that Dl(s) = 0, l =

1, · · · , L, defined in (2.5). Since we are interested in an alternative hypothesis that the ratios

{η(1)
l (s)/ηl(s), l = 1, ..., L}, are non-decreasing in l, we consider a “trend” test statistic

D̂(s) =
L∑

l=1

w̃lD̂l(s), (3.5)

where w̃l is a set of pre-specified non-negative, increasing constants (Cochran, 1954; Armitage,

1955) and D̂l(s) = η̂
(1)
l (s) − η̂l(s) × ξ̂(s), for l = 1, · · · , L. Without loss of generality, we let

∑L
l=1 w̃l = 1. Under the null hypothesis, (nh)1/2D̂(s) is asymptotically equivalent to

(nh)1/2

L∑

l=1

w̃l

[
η̂

(1)
l (s)− η

(1)
l (s)−

1∑
q=0

{
η̂

(q)
l (s)− η

(q)
l (s)

}
ξ̂(s)

−
L∑

l′=1

{
η̂

(1)
l′ (s)− η

(1)
l′ (s)

}
η̂l(s)

]
. (3.6)

The null distribution of D̂(s) can be obtained by approximating all (nh)1/2{η̂(q)
l (s)− η

(q)
l (s)} in

(3.6) via (3.4). A large observed D̂(s) suggests a rejection of the null hypothesis. Note that

the choice of the cutoff point for the above test is based on controlling Type I error rate at this

specific value s.

To control the overall family-wise Type I error rate for s ∈ Ωh under the simultaneous

inference framework, one may consider the test statistic Ŝ = sups∈Ωh
D̂(s). Unfortunately,
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{D̂(s), s ∈ Ωh} does not converge in distribution as a process and Ŝ → ∞ in probability as

n → ∞. Therefore, we cannot use the standard large sample theory for stochastic processes

to obtain a finite sample approximation to the distribution of Ŝ. On the other hand, by the

strong approximation arguments and extreme value limit theorem (Bickel & Rosenblatt, 1973),

in Appendix C, we show that under the null hypothesis, a standardized version of Ŝ converges

in distribution to a proper random variable. In practice, for finite sample size n, one can ap-

proximate the null distribution of Ŝ by approximating (nh)1/2{η̂(q)
l (s) − η

(q)
l (s)} in (3.6) with

(3.4) as we did for the above pointwise large sample approximation, but using the same set of

perturbation variables {Zi, i = 1, · · · , n} for all s ∈ Ωh. For each realized set of {Zi}, we obtain

a realization of the approximation to the distribution of Ŝ. The one-sided p value can then be

calculated via the observed Ŝ and the empirical distribution of the above realizations obtained

by generating the set of {Zi} repeatedly.

As for any nonparametric functional estimation problem, the choice of the smooth parameter

h is crucial for making inferences about η
(q)
l (s), ηl(s) and Dl(s). Here, we propose to use the

standard K-fold cross validation procedure to obtain an “optimal” h. Specifically, we randomly

split the data into K disjoint subsets of about equal sizes denoted by {Jk, k = 1, · · · , K}. For

each k, we use all observations which are not in Jk to estimate p(u) and p(u, v) by fitting the

working models (2.1) and (2.2) and then with a given h, to estimate η
(q)
l (s). Let the resulting

estimators be denoted by p̂(k)u, p̂(k){u,v} and η̂
(q)
l(k)(s). We then use the observations from Jk to

calculate the prediction error

PE(q)(k, l) =
∑
j∈Jk

ω̂j

[
I{p̂(k){Uj ,Vj} ∈ [νl−1, νl), Yj = q} − η̂

(q)
l(k){p̂(k)Uj

}
]2

. (3.7)

Lastly we sum (3.7) over k = 1, · · · , K, and then choose h by minimizing this sum of K prediction

errors. Note that the optimal smooth parameter value may only work for this specific (l, q) of

η̂
(q)
l (s). Alternatively, one may obtain a uniform bandwidth, which minimizes the sum of (3.7) over

k, but also over q = 0, 1, and l = 1, · · · , L. The order of such a bandwidth estimator is expected to

be n−1/5 (Wand & Jones, 1995; Fan & Gijbels, 1996) and thus the final bandwidth for estimation
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can be obtained by multiplying the estimated bandwidth by n−d0 , for some d0 ∈ (0, 3/10).

4. EXAMPLE

We apply the proposed procedures to analyze the data from female participants in the Cardio-

vascular Health Study (CHS) with respect to the risk classification rule recommended by AHS.

There are two different ways to define the binary response variable Y. First, a study subject

died before her ten-year follow-up from a non-CHD cause, we let Y = 0 (no CHD event). If the

subject had experienced a CHD event (non-fatal MI, angina or CHD-related death), let Y = 1.

There are no loss-to-follow-ups for these endpoints, therefore, we observe all Y ’s in this analysis.

For the second analysis, we let the time to death of other causes be an independent censoring

variable C for the time to the CHD event.

For both analyses, we consider an additive model (2.1) with g1(·) being the anti-logit function.

The vector X consists of the usage of hypertensive medication and all variables used in the model

for deriving the FRS given in Wilson et al (1998). Specifically, the FRS model includes various

dummy variables indicating levels of blood pressure, total cholesterol, and HDL, as well as age,

age2, present smoking status and diabetic status. Next, we fit the data using an additive model

(2.2) with g2(·) being the anti-logit function and W being the above risk factors/markers X and

the log-transformed CRP variable. For estimating functions (3.1) and (3.2), the estimator Ĝ(·)
is the standard K-M estimator with all death and CHD event times as censored observation for

censoring variable C. For the nonparametric function estimation, we let K(·) be the Epanechnikov

kernel, and ψ(·) = g−1
1 (·). The smoothing parameter h = 0.13 was obtained through the 10-fold

cross validation scheme. Specifically, we let h be the minimizer of
∑3

l=1

∑10
k=1

∑1
q=0 PE(q)(k, l) in

(3.7) for both η̂
(0)
l (s) and η̂

(1)
l (s) multiplied by a normalizing constant n−1/20. To approximate

the distributions of these estimators, we used the resampling method (3.4) with 500 independent

realized samples of {Zi, i = 1, · · · , n}.
For the case that there is no censoring involved, we present the results of our analysis in

Figure 1. Part (a) of the Figure is a smoothed density estimate for p̂U , which provides useful
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information regarding the relative size of the subgroup Ds of subjects such that p̂U0 = s. Here,

we choose the 1th and 99th percentiles of the empirical distribution of {β̂′Xi, i = 1, · · · , n}
as the boundary points ρl and ρr, respectively. Therefore, the results presented here are for

p̂U = s ∈ [0.074, 0.46]. Part (b) of the Figure gives the estimated re-classification rates over

p̂U . The green, blue and red curves are for the risk categories C1, C2 and C3, respectively. It

appears that there are substantial re-allocations with the CRP around the boundary points for

the risk classification rule. The solid green curve in Part (c) gives the estimates η̂
(1)
1 (s). Each

estimate is the proportion of subjects in Ds, who were reclassified to C1 and had CHD events.

The dotted green curve is the corresponding set of their “expected” estimates η̂l(s)× ξ̂(s) when

the re-categorizations are simply generated via a random allocation process. It appears that the

differences between these two curves are rather small. Parts (d) and (e) of the Figure are the

corresponding estimates for the risk categories C2 and C3. Part (f) is the curve of the p-values

based on the test statistic D̂(s) in (3.5) with weight w̃l = l/6. Part (f) suggests that from the

statistical point of view the subjects with conventional risk estimates p̂U ∈ [0.099, 0.107] and

p̂U ∈ [0.161, 0.215] may benefit from having CRP measurement at the (pointwise) significance

level of 0.05. For simultaneous inference, in Part (f) we also present the p-value curve using

Ŝ proposed in Section 3. With an overall Type I error rate of 0.05, there is no subgroup of

individuals who would benefit from the additional CRP information. That is, we cannot claim

that the reclassifications to risk categories by the new marker are not generated from a random

allocation process.

In Table 1(a), we present the results in details with s = 0.11, 0.18, 0.21 at which the pointwise

p-values based on the test D̂(s) are less than 0.05. Specifically, for each s, we provide the estimates

η̂l(s), η̂
(1)
l (s) and η̂

(0)
l (s), along with their sampling standard errors. For example, the subjects

with p̂U = 0.11 would be classified into the intermediate risk category based on the conventional

risk factors/markers. By including the additional CRP information, these subjects are further

stratified into the two risk categories: 37.9% (s.e. = 2.5%) down to the low risk category and

62.1% (s.e. = 2.5%) remaining in the intermediate risk category. As discussed in Section 2, not

12
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all reclassifications are correct. For the present case, 34.9% of the subjects in Ds are accurately

reclassified downward since these subjects would not develop an event within 10 years.

For the second set of analysis by treating non-CHD death as censoring, 18.8% of subjects are

censored with respect to the CHD events of interest. For this case, the smoothing parameter

is 0.2 via the 10-fold cross validation by minimizing
∑3

l=1

∑10
k=1

∑1
q=0 PE(q)(k, l) in (3.7) with

normalizing constant n−1/20. We present the results in Figure 2 and Table 1(b) for p̂U = s ∈
[0.079, 0.63] under the same settings as in Figure 1 and Table 1(a). The regions for which the

CRP may be helpful are similar to those from the first set of analysis with the additional possible

region near p̂U = 0.30. However, the magnitude of gain is rather minimal near p̂U = 0.30 given

the small reclassification rate. Again, after controlling for the overall family-wise type I error

rate of 0.05, there does not appear to be a region with significant gain from CRP.

5. REMARKS

In this article, we present a systematic approach to quantify the added value from new risk

markers for classifying subjects into pre-specified risk categories. At each estimated conventional

risk level, we provide point and interval estimates for the reclassification rates along with the

corresponding proportions of accurate re-assignment for this subgroup of individuals. These

quantities play vital roles for cost-benefit analysis even when the cost of measuring the new

markers is not an issue or the re-categorization via the new markers is not generated from a

random allocation process. In general, if the new markers improve the risk prediction and change

the risk estimates drastically, one may expect the new marker to be helpful in risk reclassification

for the entire population. However, in most practical settings, we expect that subjects whose

conventional risk estimates are not around the risk threshold values would not benefit much from

the new markers with respect to a better assignment of risk category. This is indeed confirmed

with the results from extensive analysis of the data from the Cardiovascular Health Study. Thus,

to optimize the usage of the new markers for risk classification, one may consider ascertaining the

new markers only for subjects with conventional risk estimates in a certain range. Our proposed

13
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procedure provides a systematic approach to identifying the subgroups for which the new marker

improves risk classification.
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Appendix

Throughout, unless noted otherwise, we use the notation ' to denote equivalence up to op(1)

uniformly in s, . to denote being bounded above up to a universal constant, and Ḟ(x) to denote

dF(x)/dx for any function F . We use Pn and P to denote expectation with respect to the

empirical probability measure of {(Ti, ∆i, Xi, Wi), i = 1, · · · , n} and the probability measure of

(T, ∆, X, W ), respectively. Similarly Gn = n
1
2 (Pn − P).

Let β0 and γ0 denote the solution to the equations E[Xi{I(T0i < t0) − g1(β
′Xi)}] = 0 and

E[Wi{I(T0i < t0) − g2(γ
′Wi)}] = 0, respectively. Let p̄U = g1(β

′
0X). We assume that τ(·), the

density function of ψ(p̄U), is continuously differentiable with bounded derivatives and bounded

away from zero on the interval [ψ−1(ρl), ψ
−1(ρu)] ⊂ (0, 1). We also assume that the marker

values are bounded, (β′0, γ
′
0)
′ belongs to a compact set Ω. For the bandwidth h, we assume that

h = O(n−v), 1/5 < v < 1/2.

We first note that from Uno et al. (2007), we have

|β̂ − β0|+ |γ̂ − γ0| = Op(n
− 1

2 ).

It follows that |η(q)
l (s)− η̄

(q)
l (s)| = Op(1), where

η
(q)
l (s) = E(M̂

(q)
li | p̂U = s), M̂

(q)
li = I{p̂{Ui,Vi} ∈ [ν0, ν1), Yi = q},

η̄
(q)
l (s) = E(M

(q)
li |p̄U = s), M

(q)
li = I{p̄{Ui,Vi} ∈ [ν0, ν1), Yi = q}, p̄{U,V } = g2(γ

′
0W ).

It is also important to note that E{ωs(T0, X,W )} = E{s(T0, X,W )} for any function s(·, ·, ·),
where ω = I(T ≤ t0)∆/G(T ) + I(T > t0)/G(t0).

We next derive the asymptotic theory for η̂
(q)
l (·) when l = 1 and q = 1, but note that the

same arguments can be used to establish the asymptotic theory for other quantities. For the

ease of notation, in Appendix A and B, we suppress the subscript l and supscript (q) from M̂
(q)
li

and M
(q)
li .
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A Uniform Consistency of η̂
(1)
1 (·)

At any given s, let {â(s), b̂(s)}′ be the root of the estimating equation

n∑
i=1


 1

h−1Êi(s)


 Kh{Êi(s)}ω̂i

[
M̂i − g0{a + bÊi(s)}

]
= 0,

a(s) = g−1
0 {η(1)

1 (s)}, b(s) = d[g−1
0 {η(1)

1 (s)}]/ds = η̇
(1)
1 (s)/ġ0{a(s)}, and

d̂(s) =


 d̂a(s)

d̂b(s)


 =


 â(s)− a(s)

h−1{b̂(s)− b(s)}


 .

Our objective is to show that d̂(s) → 0 in probability as n →∞. To this end, we note that for

any given s, d̂(s) is the solution to the estimating equation Ŝ(d, s) = 0, where d = (da, db)
′,

Ŝ(d, s) =


Ŝ1(d; s)

Ŝ2(d; s)


 = n−1

n∑
i=1


 1

h−1Êi(s)


 Kh{Êi(s)}ωi

[
M̂i − G{d, s; ψ(p̂Ui

), h}
]
,

and

G(d, s; y, h) = g0[a(s) + b(s){y − ψ(s)}+ da + dbh
−1{y − ψ(s)}].

The first step is to show that Ŝ(d; s) is uniformly consistent for

S(d; s) =


S1(d; s)

S2(d; s)


 = τ{ψ(s)}


η

(1)
1 (s)− ∫

K(t)g0{a(s) + da + dbt}dt

− ∫
tK(t)g0{a(s) + da + dbt}dt




We first show that

sup
s

∣∣∣∣∣n
−1

n∑
i=1

Kh{Êi(s)}ω̂iM̂i − τ{ψ(s)}η(1)
1 (s)

∣∣∣∣∣
and

sup
d,s

∣∣∣∣ n−1

n∑
i=1

Kh{Êi(s)}ω̂iG{d, s; ψ(p̂Ui
), h} − τ{ψ(s)}

∫
K(t)g0{a(s) + da + dbt}dt

∣∣∣∣

are both Op{(nh)−
1
2 log(n)}. To this end, we note that since

sup
u
|Ĝ(u)−G(u)| = Op(n

− 1
2 ) (A·1)
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(Kalbfleisch & Prentice, 2002) and |β̂ − β0| = Op(n
− 1

2 ),

∣∣∣∣∣n
−1

n∑
i=1

(ω̂i − ωi)Kh{Êi(s)}G{d, s; ψ(p̂Ui
), h}

∣∣∣∣∣ ≤ n−1

n∑
i=1

|ω̂i − ωi|Kh{Êi(s)} = Op(n
− 1

2 ).

This, together with the convergence of n
1
2 (β̂ − β0), implies that

∣∣∣∣ n−1

n∑
i=1

Kh{Êi(s)}ω̂iG{d, s; ψ(p̂Ui
), h} − τ{ψ(s)}

∫
K(t)g0{a(s) + da + dbt}dt

∣∣∣∣

≤
∣∣∣∣ n−

1
2

∫
Kh{y − ψ(s)}G(d, s; y, h)dGn [ωI{ψ(p̂U) ≤ y} − ωI{ψ(p̄U) ≤ y}]

∣∣∣∣

+

∣∣∣∣
∫

Kh{y − ψ(s)}G(d, s; y, h)dP [ωI{ψ(p̂U) ≤ y}]− τ{ψ(s)}
∫

K(t)g0{a(s) + da + dbt}dt

∣∣∣∣

+

∣∣∣∣ n−
1
2

∫
Kh{y − ψ(s)}dGn [ωG{d, s; ψ(p̄U), h}I{ψ(p̄U) ≤ y}]

∣∣∣∣ +Op(n
− 1

2 )

. n−
1
2 h−1‖Gn‖Hδ

+

∣∣∣∣ n−
1
2

∫
Kh{y − ψ(s)}dGn [ωG{d, s; ψ(p̄U), h}I{ψ(p̄U) ≤ y}]

∣∣∣∣ +Op(n
− 1

2 + h2)

where Hδ = {ωI[ψ{g1(β
′x)} ≤ c]− ωI[ψ{g1(β

′
0x)} ≤ c] : ‖β − β0‖ ≤ δ, y} is a class of functions

indexed by β and c. Furthermore, Hδ is uniformly bounded by an envelop function in the order

of δ
1
2 with respect to L2 norm. By the maximum inequality of Van der vaart and Wellner (1996),

we have

E‖Gn‖Hδ
. δ

1
2 (| log(δ)|+ | log(h)|)

(
1 +

δ
1
2 (| log(δ)|+ | log(h)|)

δn
1
2

)
.

This, coupled with the fact that |β̂ − β0| = Op(n
− 1

2 ), implies that

n−
1
2 h−1‖Gn‖Hδ

. Op{(nh)−
1
2 (nh2)−

1
4 log(n)}.

Secondly, with the standard arguments used in Bickel & Rosenblatt (1973), it can be shown

that

∣∣∣∣n−
1
2

∫
Kh{x− ψ(s)}dGn [ωG{d, s; ψ(p̄U), h}I{ψ(p̄U) ≤ x}]

∣∣∣∣= Op{(nh)−
1
2 log(n)}.

Therefore, for h = n−v, 1/5 < v < 1/2,

sup
d,s

∣∣∣∣ n−1

n∑
i=1

Kh{Êi(s)}ω̂iG{d, s; ψ(p̂Ui
), h} − τ{ψ(s)}

∫
K(t)g0{a(s) + da + dbt}dt

∣∣∣∣
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is Op{(nh)−
1
2 log(n)}. Following from (A·1), |γ̂− γ0| = Op(n

− 1
2 ), and similar arguments as given

above, we have

sup
s

∣∣∣∣∣n
−1

n∑
i=1

Kh{Êi(s)}ω̂iM̂i − τ{ψ(s)}η(1)
1 (s)

∣∣∣∣∣ = Op{(nh)−
1
2 log(n)},

and hence supd,s |Ŝ1(d, s) − S1(d, s)| = Op{(nh)−
1
2 log(n)} = op(1). It follows from the same

arguments as given above that supd,s |Ŝ2(d, s) − S2(d, s)| = Op{(nh)−
1
2 log(n) + h} = op(1).

Therefore supd,s |Ŝ(d, s)−S(d, s)| = op(1). This uniform convergence, coupled with the fact that

0 is the unique solution to the equation S(d, s) = 0 with respect to d and all the eigenvalues of

A(s) = −∂S(d; s)/∂d′|d=0 = τ{ψ(s)}ġ0{a(s)}diag{1, ∫ v2K(v)dv} are uniformly bounded above

zero, suggests that sups |d̂(s)| = Op{(nh)−
1
2 log(n) + h} = op(1), which implies the consistency

of η̂
(1)
1 (s) = g0{â(s)}.

B Asymptotic distribution of η̂
(1)
1 (·)

It follows from a Taylor series expansion that

(nh)
1
2 d̂a(s) = (nh)

1
2{â(s)− a(s)} = Â1(s)

′(nh)
1
2 Ŝ(0; s) + Op

{
(nh)

1
2 (|d̂a(s)|2 + |d̂b(s)|2)

}
,

where Â1(s) is the first row of Â(s) = −{∂Ŝ(d; s)/∂d′}−1|d=0. Using the similar arguments in the

previous section, one can show that Â1(s) converges to A1(s), the first row of A(s), uniformly in

s. Furthermore, with the convergence rate of Ŝ(d, s), it is not difficult to show that the remainder

term is bounded by Op

{
(nh)−

1
2 log(n)2 + (nh)

1
2 h2

}
uniformly in s. It follows that

(nh)
1
2 d̂a(s) = A1(s)

′(nh)
1
2 Ŝ(0; s) + Op

{
(nh)−

1
2 log(n)2 + (nh)

1
2 h2

}
)

=
(nh)

1
2 Ŝ10; s)

τ{ψ(s)}ġ0{a(s)} + Op

{
(nh)−

1
2 log(n)2 + (nh)

1
2 h2

}
.

This, together with the convergence rate of Ŝ1(0; s), implies sups |d̂a(s)| = Op{(nh)−
1
2 log(n)}.

It follows that (nh)
1
2 d̂a(s) is asymptotically equivalent to

(nh)
1
2Pn

(
Kh{Ê(s)}ω

[
M̂ − G0{s, ψ(p̂U)}

])

τ{ψ(s)}ġ0{a(s)} .
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where G0(s, y) = g0[a(s) + b(s){y − ψ(s)}]. We next show that (nh)
1
2 d̂a(s) is asymptotically

equivalent to

(nh)
1
2 d̃a(s) =

(nh)
1
2Pn (Kh{E(s)}ω [M − G0{s, ψ(pU)}])

τ{ψ(s)}ġ0{a(s)} ,

i.e., p̂U and p̂{U,V } can be replaced by their respective p̄U and p̄{U,V } in d̂a(s), where E(s) =

ψ(p̄U) − ψ(s). To this end, noticing the fact that τ{ψ(s)}ġ0{a(s)} is bounded away from zero

uniformly in s, we have

(nh)
1
2

∣∣∣d̂a(s)− d̃a(s)
∣∣∣ . h

1
2

∣∣∣∣
∫

Kh{x− ψ(s)}dGn

[
ωM̂I{ψ(p̂U) ≤ x} − ωMI{ψ(p̄U) ≤ x}

]∣∣∣∣

+ h
1
2

∣∣∣∣
∫

Kh{x− ψ(s)}G0(s, x)dGn [ωI{ψ(p̂U) ≤ x} − ωI{ψ(p̄U) ≤ x}]
∣∣∣∣

+

∣∣∣∣(nh)
1
2

∫
Kh{x− ψ(s)}dP

[
ω{M̂ − G0(s, p̂U)}I{ψ(p̂U) ≤ x}

]∣∣∣∣

. h−
1
2‖Gn‖Fδ

+ h−
1
2‖Gn‖Hδ

+ Op{(nh)
1
2 |β̂ − β0|+ |γ̂ − γ0|+ h2}

where Fδ =
{
ωyI{g2(γ

′w) ∈ [ν0, ν1)}I[ψ{g1(β
′x)} ≤ c]−ωyI{g2(γ

′
0w) ∈ [ν0, ν1)}I[ψ{g1(β

′
0x)} ≤

c]
}

: |γ−γ0|+ |β−β0| ≤ δ, c} is the class of functions indexed by γ, β and c. By the maximum in-

equality and the fact that |β̂−β0|+|γ̂−γ0| = Op(n
− 1

2 ), we have h−
1
2‖Gn‖Fδ

= Op{h− 1
2 n−

1
4 log(n)}.

It follows that (nh)
1
2 d̂a(s)−(nh)

1
2 d̃a(s) is asymptotic op(1) uniformly in s. This, together with the

standard arguments for local linear regression fitting, implies that (nh)
1
2{â(s)− a(s)} converges

to a normal with mean 0 and variance σ2(s)ġ0{a(s)}−2, where m2 =
∫

K(s)2ds and

σ2(s) =
m2

τ 2{ψ(s)}E

[
{M − η

(1)
1 (s)}2

G(T0 ∧ t0)

∣∣∣∣ p̄U = s

]

It follows from the delta method that (nh)
1
2{η̂(1)

1 (s) − η
(1)
1 (s)} is asymptotically normal with

mean 0 and variance σ2(s). To justify the resampling method, we note that conditional on the

data the random variable

(nh)
1
2Pn

[
Kh{Ê(s)}ω̂

{
M̂ − η̂

(1)
1 (s)

}
Z

]

τ̂{ψ(s)}
is asymptotical normally distributed with mean zero and variance

σ̂2(s) =

hPn

[
Kh{Ê(s)}2ω̂2

{
M̂ − η̂

(1)
1 (s)

}2
]

τ̂ 2{ψ(s)} .
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It follows from the arguments given in Appendix A to show that which converges to σ2(s), as

n →∞.

C Asymptotic null distribution of D̂(s)

From Appendix A, sups |D̂(s)−∑L
l=1 w̃l{η(1)

l (s)− ηl(s)ξ(s)}| → 0 in probability as n →∞. Fur-

thermore, as n →∞, (nh)
1
2 [D̂(s)−∑L

l=1 w̃l{η(1)
l (s)− ηl(s)ξ(s)}] can be uniformly approximated

by

(nh)
1
2

L∑

l=1

w̃l

[
{η̂(1)

l (s)− η
(1)
l (s)} −

1∑
q=0

{η̂(q)
l (s)− η

(q)
l (s)}ξ(s)−

L∑

l′=1

{η̂(1)
l′ (s)− η

(1)
l′ (s)}ηl(s)

]

≈(nh)
1
2Pn [Kh{E(s)}A(s)] ≈ (nh)

1
2Pn [Kh{E(s)}A(p̄U)]

where

A(s) = ω

L∑

l=1

1∑
q=0

κ
(q)
l (s)

[
M

(q)
l − g0{a(q)

l (s) + b
(q)
l (s)E(s)}

]
,

κ
(q)
l (s) = q {w̃l − ηl(s)} − ξ(s)w̃l, a

(q)
l (s) = g−1

0 {η(q)
l (s)}, b

(q)
l (s) =

η̇
(q)
l (s)

ġ0{a(q)
l (s)}

,

Under the null hypothesis, η
(1)
l (s) = ηl(s)ξ(s), l = 1, · · · , L and

(nh)
1
2 D̂(s) ≈ (nh)

1
2Pn [Kh{E(s)}A(p̄U)] .

Let r(s) = m2E{A(p̄U)2|p̄U = s}dt, and

D̂(s) =
(nh)

1
2

[r(s)τ{ψ(s)}] 1
2

Pn[A(p̄U)Kh{E(s)}].

By Lemma 1 of Fan and Zhang (1998), we have

pr

[
rn

{
sup

s∈[ρl,ρr]

∣∣∣D̂(s)
∣∣∣− dn

}
< x

]
→ 1 + exp(−2e−x)

2
,

as n →∞, where

rn = [2 log{(ρr − ρl)/h}] 1
2 , and dn = rn + r−1

n log

{
(4πm2)

−1

∫ 1

−1

K̇(t)2dt

}
.
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This implies that under the null hypothesis,

pr

[
rn

{
sup

s∈[ρl,ρr]

∣∣∣∣∣
(nh)

1
2 D̂(s)

r(s)τ{ψ(s)}

∣∣∣∣∣− dn

}
< x

]
→ 1 + exp(−2e−x)

2
,

as n →∞. To justify the resampling method for approximating the null distribution, we let

D̂∗(s) = Pn

{
Kh{Ê(s)}

L∑

l=1

w̃l

(
V̂(1)

l −
1∑

q=0

V̂(q)
l ξ(s)−

L∑

l′=1

V̂(1)
l′ ηl(s)

)
Z

}

and r̂(s) = var{D̂∗(s)|O} and O = {(Yi, ∆i, Ui, Vi), i = 1, · · · , n)}. It follows the same arguments

as given above that

pr

[
rn

{
sup
s∈Ωh

∣∣∣∣∣
(nh)

1
2 D∗(s)

r̂(s)τ̂{ψ(s)}

∣∣∣∣∣− dn

}
< x

∣∣∣∣ O
]
→ 1 + exp(−2e−x)

2
,

as the sample size goes to infinity. Therefore, we can use the conditional distribution of

sup
s∈Ωh

(nh)
1
2 D̂∗(s)

r̂(s)τ̂{ψ(s)}

to approximate the null distribution of

sup
s∈Ωh

(nh)
1
2 D̂(s)

r(s)τ{ψ(s)} .
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Figure 1: Evaluating CRP incremental values for female participants from Cardiovascular Heath
Study by treating non-CHD death as non-event; (a) Density function estimate of the conventional

risk estimate; (b) Reclassification rate estimates; (c)-(e) η̂
(1)
l (·), l = 1, 2, 3, and corresponding

expected values under the null; (f) Point- and simultaneous-p-value curves
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Figure 2: Evaluating CRP incremental values for female participants from Cardiovascular Heath
Study by treating non-CHD death as censoring event; (a) Density function estimate of the

conventional risk estimate; (b) Reclassification rate estimates; (c)-(e) η̂
(1)
l (·), l = 1, 2, 3, and

corresponding expected values under the null; (f) Point- and simultaneous-p-value curves
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Table 1: Estimates for η̂l, η̂
(0)
l and η̂

(1)
l for female participants from the Cardiovascular Health

Study with various conventional risk estimates (shown in the parenthesis are corresponding
standard error estimates).

(a) Treating non-CHD death as non-event

s η̂l(s) η̂
(1)
l (s) η̂

(0)
l (s)

l=1 0.379(0.025) 0.027(0.009) 0.349(0.025)
0.11 l=2 0.621(0.025) 0.072(0.014) 0.543(0.025)

l=3 0.000(0.000) 0.000(0.000) 0.000(0.000)
l=1 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.18 l=2 0.798(0.017) 0.127(0.014) 0.664(0.020)
l=3 0.202(0.017) 0.050(0.009) 0.150(0.015)
l=1 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.21 l=2 0.407(0.021) 0.052(0.010) 0.349(0.020)
l=3 0.593(0.021) 0.108(0.014) 0.476(0.022)

(b) Treating non-CHD death as censoring event

s η̂l(s) η̂
(1)
l (s) η̂

(0)
l (s)

l=1 0.587(0.023) 0.040(0.015) 0.540(0.024)
0.10 l=2 0.413(0.023) 0.055(0.014) 0.352(0.022)

l=3 0.000(0.001) 0.000(0.000) 0.000(0.001)
l=1 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.21 l=2 0.429(0.021) 0.061(0.015) 0.356(0.019)
l=3 0.571(0.021) 0.130(0.017) 0.426(0.020)
l=1 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.30 l=2 0.009(0.004) 0.000(0.001) 0.009(0.004)
l=3 0.991(0.004) 0.346(0.026) 0.642(0.026)
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