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To operate effectively and safely, autonomous systems must be able

to navigate complex environments, precisely control their attitude, accurately

estimate their own states and make real-time decisions. A new adaptive con-

troller is designed for attitude tracking control of rigid spacecraft with inertia

uncertainties and full state feedback of attitude and angular rate. The con-

troller preserves the proportional-derivative plus feedforward (PD+) structure

but introduces time varying feedback gains, wherein the desired attitude state

is represented by quaternions. Stable asymptotic tracking of the desired refer-

ence trajectories is guaranteed without any further restrictions upon the initial

conditions, reference trajectories or any requirement for a priori availability of

bounds upon the inertia matrix. The onboard estimation of the angular ve-

locity of a spacecraft using Rate-integrating Gyroscopes (RIGs) is considered

next. RIGs provide measurements of angular displacement which need to a
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low pass filter or observer to obtain angular velocity of the system. A con-

tinuous time observer is proposed which estimates angular velocity using the

RIG measurements and achieves exponential convergence, while asymptotic

convergence is guaranteed for the adaptive inertia observer. Unlike conven-

tional certainty equivalence methods, a novel adaptation update law is pro-

posed with additional control knobs changing with the attitude states. The

final part of the dissertation deals with the Simultaneous Localization and

Mapping (SLAM) problem. Estimating the location of a robot along with the

position of the surrounding features on a map can be done onboard recursively

with a simple Extended Kalman Filter (EKF-SLAM), but has higher chances

of divergence and inconsistency. The robocentric SLAM method transforms

the map of features to a local reference frame centered at the robot’s position,

leading to reduced inconsistency due to lower linearization errors in the update

function. Improvements to the robocentric SLAM methods are suggested in

the form of addition of second order terms to the linear propagation step and

elimination of the composition step by transforming the feature maps before

every update step. These modifications provide better filter consistency and

prevent divergence in cases which were previously not possible.
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Chapter 1

Introduction

The development of autonomous systems has transformed the way we

live and work by revolutionizing many industries including transportation,

search and rescue, and agriculture. Robotic systems are widely used in indus-

trial applications to increase efficiency and speed of production, with robotic

arms playing a major role in automating manufacturing on the factory floor.

In the transportation sector, self-driving cars and delivery drones have seen

tremendous research focus and are now at the brink of real-world commercial

adoption. In the space domain too, with the increase in number of spacecraft

and satellite servicing missions, efforts to automate processes like docking, ren-

dezvous and close proximity operations are not just beneficial but also neces-

sary. To operate effectively and safely, these systems must be able to navigate

complex environments, avoid obstacles, and make decisions in real-time based

on changing conditions. All of these autonomous systems including drones,

spacecraft, robots, and self-driving vehicles require precise control over their

attitude, navigation, and mapping.

Usual operations for any mobile autonomous system involves knowing

where the system is, where it needs to be, and how to get there. For example,
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an autonomous car would require a destination which can be provided by the

passenger. It then needs to know where it is on a map with respect to the

destination and this process of determining its location is called localization.

A path planning algorithm has to calculate a route which can be followed

to reach the destination. To follow the provided route, the vehicle needs a

low level controller which keeps the vehicle on track to be able to reach the

destination. This dissertation aims at providing solutions for the ”where the

system is” and ”how to get there” parts of the pipeline in the form of an

attitude tracking controller, an observer for estimating angular velocity and a

novel algorithm for robotic localization and mapping. The knowledge of where

the system needs to be is assumed to be known and provided by a different

module or human operator.

Attitude control is the ability of a vehicle to maintain a specific orien-

tation in 3-dimensional space. Attitude stabilization is the process of main-

taining a vehicle’s orientation in any reference frame at zero while attitude

tracking is the process of following an orientation trajectory provided to the

system. Different attitude representations are used to determine and control

orientation of systems. The most common attitude kinematic representations

are Euler angles, quaternions, rotation matrices, Rodrigues parameters and

Modified Rodrigues parameters. Euler angles represent the orientation of an

object as a combination of three rotations around the x, y, and z-axes, while

quaternions represent the orientation with four parameters that obey a unit

norm constraint and avoid issues of singularities that can occur with Euler
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angles. They also have a more efficient computational representation com-

pared to rotation matrices. Rotation matrices represent the orientation as a

matrix that describes the transformation from the object’s body frame to the

reference frame. Each of these representations has its own advantages and

disadvantages, depending on the specific application and the requirements of

the system.

Nonlinear control theory provides tools and techniques to design con-

trollers that can stabilize, track, and regulate the behavior of systems whose

behavior cannot be modeled using linear differential equations. In this context,

the study of nonlinear control theory is essential for engineers and researchers

who wish to understand and design control systems for complex nonlinear sys-

tems. When a system’s output converges to a steady state at an exponential

rate, it is said to be exponentially stable which is an important result because

it ensures not only stability, but also efficiency, robustness, and good perfor-

mance in the presence of uncertainties and disturbances. Formally, for the

states x of a control system described by ẋ = f(t,x), the equilibrium point

x = 0 is exponentially stable if there exist finite positive constants c,k, and λ

such that for all t ≥ t0, we have

∥x(t)∥ ≤ k∥x(t0)∥ exp−λ(t−t0), ∀∥x(t0)∥ < c (1.1)

and globally exponentially stable if this condition is satisfied for any initial

state x(t0). The result is said to be uniform exponentially stable (UES) if the

preceding condition holds for any initial time t0 ∈ ℜ. If exponential stability
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cannot be guaranteed for a system, the next best form of stability is asymptotic

stability when the system state x is guaranteed to eventually converge to a

desired steady state.

Lyapunov theory provides a powerful tool for analyzing the stability of

nonlinear systems, which cannot be easily analyzed using traditional methods

based on linearization. A Lyapunov function is a positive-definite function that

assigns a scalar value to each state of the system, typically energy-like func-

tions for the states. Lyapunov theory states that if the function is chosen such

that its derivative along the system trajectories is negative-definite, the system

is stable. For the case of systems with complex nonlinear dynamics, it may

be difficult to design Lyapunov functions whose derivatives are strictly nega-

tive definite and LaSalle’s invariance principle provides a criteria for proving

asymptotic stability of an autonomous system using a function whose deriva-

tive is only negative semi-definite. Barbalat’s lemma and its corollary can be

used to show asymptotic stability of non-autonomous systems. More details

about Lyapunov theory and nonlinear stability analysis are presented in the

Appendix A.

The problem of controlling the attitude of systems like rigid-robots,

spacecraft and aircraft tends to have highly nonlinear dynamics, making their

control difficult to handle for simple linear PID (Proportional Integral Deriva-

tive) like controllers. However, in the attitude tracking case, adding a feed-

forward term to handle the non-linearity has been effective in practical im-

plementations and such attitude tracking controllers with the proportional
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derivative structure along with feed-forward terms, called the “PD+” con-

troller structure, have been extensively studied over the past several decades [5]

and are widely used. This control law does not require knowledge of any system

specific inertia parameters for the special case of set-point attitude stabilization

(regulation) once the feedback gains are selected by the user (self-reduction

property) and its simple structure enables its easy computation at any point

of time on even small computers. If the kinematics are represented through

the Modified Rodriguez parameters, the same PD+ controller was shown to

provide uniformly exponential convergence for the tracking error states [6].

Adaptive control is a control strategy that allows a system to auto-

matically adjust its control parameters in response to changing operating con-

ditions. The goal of adaptive control is to improve the performance and ro-

bustness of the control system in the face of uncertainties, disturbances, and

changes in the system dynamics. In chapter 2, the adaptive control problem for

attitude tracking is revisited for rigid spacecraft with inertia uncertainties. A

new adaptive controller is designed for this problem, that preserves the PD+

structure, wherein the desired attitude state is represented by quaternions

and full-state feedback (attitude and angular rate) is assumed. Considering a

system following Euler rotational dynamics, this new control law saliently pre-

serves the self-reduction property, i.e., the controller reduces to simply having

the linear PD feedback structure for the special case of set-point regulation

with no further dependence upon the inertia matrix. Unlike the vast majority

of prior results available in the literature for this adaptive control problem, a
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major feature of the new ‘PD+’ law is the introduction of time-varying feed-

back gains along with an adaptive estimate for the inertia matrix, guaranteeing

stable asymptotic tracking of the desired reference trajectories. No further re-

strictions are placed upon the initial conditions, reference trajectories or the

requirement for a priori availability of bounds upon the inertia matrix.

Gyroscopes are used in aerospace applications as primary sensors for de-

termining the attitude and velocity states of the system. Unlike traditional gy-

roscopes which measure angular velocity, Rate Integrating Gyroscopes (RIGs)

measure integrated angular rates or angular displacement, requiring an ob-

server or filter to provide full state feedback to the attitude controller. A

numerical differentiator that approximates the derivative of a function at a

point using a finite difference method is typically used to estimate this angu-

lar velocity. Such an approach does not utilize the knowledge of the dynamics

of the system and hence cannot provide any guarantees on convergence of the

estimates to the true value. In chapter 3, a nonlinear observer is presented

which using only continuous-time measurements from an RIG, estimates the

angular velocity of a rotating rigid body following Euler rotational dynamics.

Torque applied to the system is assumed to be known. When the inertia matrix

is accurately known, the provided observer achieves exponential convergence,

while an asymptotically converging adaptive observer is designed for cases

when the inertia is unknown. The non-adaptive observer is shown to be ro-

bust to bounded inaccuracies in the knowledge of inertia and external torque

acting upon the system. For the adaptive observer, conventional certainty
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equivalence methods require the angular rate states which are unavailable. To

overcome this problem a novel update rule with additional control knobs is

proposed which uses just the attitude states for inertia parameter adaptation.

The Kalman filter is optimal in the mean squared sense for estimating

the states of a linear system with additive white Gaussian process and mea-

surement noise. At each time step, the Kalman filter makes a prediction of

the system’s state based on the state model and then compares this prediction

to the actual measurement from the sensors to update its estimate of the sys-

tem’s state. The Kalman filter provides estimates of the state and the error

covariance which are best guesses of the system’s state and uncertainty, given

all available measurements. The Kalman filter assumes the system is linear

which is not the case in most real world applications. The Extended Kalman

Filter (EKF) is a variant of the Kalman Filter that addresses this limitation by

linearizing the non-linear models using a first-order Taylor expansion around

the current estimate. The linearized models are then used in the same way

as in the standard Kalman filter. The EKF assumes that the errors in the

state and measurement models are Gaussian and the Jacobian matrices are

computable.

The problem of simultaneously determining the position of the robot

while creating a map of it’s environment(Simultaneous Localization and Map-

ping - SLAM) is considered in Chapter 4. Simultaneous Localization and

Mapping (SLAM) using Extended Kalman Filters (EKF) provides some of

the simplest and computationally faster implementations of SLAM and can be
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used in many robotic systems for quick online navigation and mapping. This

simplicity comes at the cost of increased chances of divergence and inconsis-

tency of the filter. The robocentric approach was proposed in past literature

to improve the EKF-SLAM consistency at the cost of a slightly higher com-

putational load. At each time step, robocentric EKF-SLAM transforms the

map features’ coordinates to a frame centered at the robot’s position. In its

original implementation, robocentric EKF-SLAM reduces inconsistency and

divergence but situations arise when they still occur. In this work we propose

new steps to increase the robustness of robocentric EKF-SLAM by modifying

the propagation step of the filter to include second order terms of the Taylor

series expansion as well as transforming the feature states before each update

step. These modifications demonstrate much better filter consistency with

all data-sets tested, while not diverging even in a challenging counterexample

case.

The remainder of the thesis is organized as follows and presents the

main contributions of this dissertation:

• Chapter 2: An adaptive attitude tracking controller with dynamic feed-

back gains for systems with inertia uncertainties, preserving the self-

reduction property and the ’PD+’ controller structure.

• Chapter 3: A nonlinear observer for estimating angular velocity from

the measurements of a Rate-Integrating Gyroscope (RIG).

• Chapter 4: A modified EKF-based robocentric SLAM algorithm that

19



provides a more consistent and robust method of estimating the position

of a robot and mapping its surroundings.

Throughout this dissertation, uppercase letters are used to denote ma-

trices and bold faced variables denote vectors. The 2-norm for vectors and the

vector induced 2-norm for matrices are denoted by the ∥ operator. For any

symmetric matrix P , the notation λmin(P ) and λmax(P ) respectively denote

the minimum and maximum eigenvalues.

20



Chapter 2

Adaptive Attitude Tracking Control

Preserving the Self-Reduction Property

Attitude tracking control is frequently required for applications in-

volving spaceflight vehicles, aircraft and rigid robots. Among the simplest

controllers used for set-point regulation is the proportional-derivative (PD)

feedback controller, which is combined with feedforward terms (the so called

”PD+” structure) for reference trajectory tracking. The simple linear feed-

back structure of this controller makes it attractive from an implementation

standpoint and has thus been extensively studied over the past several decades.

For set-point regulation, the PD terms do not involve the inertia of the space-

craft (the so called self-reduction property), naturally providing a degree of

robust stability in face of inertia uncertainties, but in the case of tracking a

desired trajectory (like slew maneuvers), the feedforward terms in the PD+

controller require precise knowledge of the inertia matrix. In the context of

on-orbit assembly, repair and refilling missions, this perfect knowledge of the

inertia matrix is often not always available and therefore necessitates the use

of adaptive controllers that can deal with model parameter uncertainties. For

The research presented in this chapter was performed by the authors and previously
published in a peer reviewed journal [7]
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such settings, an adaptive controller retains the overall PD+ structure but

replaces the inertia matrix with its adaptively generated estimate (invoking

the certainty equivalence principle). This inertia estimate is usually driven by

an adaptive update law involving the tracking error states and eventually con-

verges to the true value of the inertia in the case that the reference trajectory

additionally satisfies certain persistent excitation conditions [8, Chapter 2].

Since the governing dynamics are nonlinear and time varying for the

attitude tracking control problem, a key technical difficulty is the fact that

the closed-loop stability for the control problem is established through energy-

type Lyapunov functions that are not strict, i.e., their time derivatives are

only negative semidefinite involving only the angular velocity error terms. In

this setting, technical arguments involving LaSalle invariance (for stabiliza-

tion or set-point regulation) and Barbalat’s lemma (for trajectory tracking)

are usually adopted for completing the closed-loop stability and convergence

analysis. The nonstrict nature of the underlying Lyapunov-like functions that

facilitate the stability analysis leads to the hurdle of the uniform detectability

obstacle whenever PD-based adaptive controllers are used in conjunction with

the certainty equivalence principle. The introduction of a strict Lyapunov-

like function [1] in terms of the quaternion parameterization of the attitude

helps preserve the PD-type feedback controller to ensure almost global closed-

loop stability thereby successfully circumventing the detectability obstacle.

However, construction of such strict Lyapunov functions usually requires an

additional user-chosen parameter, along with extra restrictions imposed upon
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the value of this parameter for ensuring closed-loop stability. This strictified

Lyapunov analysis approach to adaptive attitude tracking control and some of

its main limitations will be discussed in more detail in the following section.

Other adaptive control formulations in the literature sacrifice the ele-

gant PD+ structure by introducing additional nonlinear feedback terms within

the control law or by way of state augmentation through linear low-pass filters

(higher-dimensional controller), notably [9] - [10]. Seo and Akella [9] pursue

a non certainty equivalence approach to the adaptive control problem using a

linear filter for the regressor matrix. Schaub, Akella and Junkins [11] present a

nonlinear feedback control law while Egeland and Godhavn [12] use a passivity

theory based approach on a linear parameterization of the equation of motion.

Singh [13] describes a model reference adaptive control law while Ahmed,

Coppola and Bernstein [10] design a nonlinear controller which does not re-

quire any knowledge of the inertia matrix. Another problem of interest is the

attitude tracking controller without velocity measurements, an almost-global

non-adaptive solution for which is provided by Tayebi [14], while Dawson et

al. [15] provide a local adaptive controller for a system (high-gain action) with

inertia uncertainties, both using quaternions for their attitude representation.

This work aims at developing a linear PD+ adaptive controller for the

attitude tracking control problem, making no assumptions about availability

of information upon the inertia in any form (unlike [1]), through the use of

dynamic gains for the proportional and derivative feedback terms. The atti-

tude kinematics are represented by quaternions and perfect measurement of
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the full-state including the angular velocity is assumed. For the case when the

inertia matrix is perfectly determined, it is a well-documented fact from the

literature that the control law admits the classical PD+ structure [1],[16] - [17].

Moreover, if the kinematics are represented through the Modified Rodriguez

parameters, the same PD+ controller was recently shown to provide uniformly

exponential convergence for the tracking error states [6]. When there is uncer-

tainty in the inertia matrix, this work replaces the inertia matrix within the

control law with its adaptively generated estimate (certainty equivalence) [18,

Chapter 9] and guarantees the Lyapunov-like function involving the tracking

error states and the inertia estimation errors will monotonically decrease with

time. There is no assurance that the inertia estimates converge to the true

inertia matrix unless additional persistence of excitation conditions are im-

posed upon the reference trajectory. However, the tracking errors are shown

to asymptotically converge to zero irrespective of whether the underlying ref-

erence trajectory is persistently exciting.

2.1 System Dynamics

Suppose the orientation of the body frame with respect to an inertial

frame is represented by the quaternion q and let the desired reference orien-

tation be denoted by the quaternion qr. We represent the error orientation

also through the quaternion s such that the direction cosine matrix mapping

the instantaneous rotational error between the body frame and the reference
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frame is given by

C(s) = C(q)CT (qr) (2.1)

The quaternion error kinematics for s =
[
s0, s

T
v

]T
, are described by

ṡ =
1

2
E(s)ωe (2.2)

E(s) =
[
sv s0I3×3 + s∗v

]T
(2.3)

where I3×3 is the size 3 × 3 identity matrix and s∗v is the skew-symmetric

matrix representing vector cross-product in three-dimensions such that s∗vη =

sv×η for any three-dimensional vector η. The angular velocity error ωe is the

difference between the angular velocity of the body ω expressed in the body

frame and the desired/reference velocity η = C(s)ωr (mapped into the body

frame). Thus,

ωe = ω − η (2.4)

Using Poisson differential equation for the rotational error kinematics

Ċ(s) = −ωe × C(s) (2.5)

and the Euler rotational dynamics equation,

Jω̇ = −ω∗Jω + u (2.6)

with J = JT being the inertia matrix with maximum and minimum eigenval-

ues Jmax and Jmin respectively, and u being the external torque vector (control
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signal). Thus, the angular velocity error satisfies

Jω̇e = Jω̇ − JC(s)ω̇r − JĊ(s)ωr

= Jω̇ − JC(s)ω̇r + Jω∗
eC(s)ωr

= −ω∗Jω + u− JC(s)ω̇r + Jω∗
eC(s)ωr + Jω∗

eη

= −(ωe + η)∗J(ωe + η) + u+ JC(s)ω̇r − Jη∗ωe

= −ω∗
eJωe − ω∗

eJη − η∗Jωe − η∗Jη − JC(s)ω̇r − Jη∗ωe + u

= −ω∗
eJωe − (η∗J + Jη∗)ωe − ω∗

eJη + [u− (η∗Jη + JC(s)ω̇r)]
(2.7)

Grouping the terms related to the input, let

Ωθ∗ = η∗Jη + JC(s)ω̇r (2.8)

where θ∗ = Vec(J), assumed to be unknown/uncertain for this problem. We

note that Vec(J) ∈ R6 includes the unique elements of the symmetric inertia

matrix j ∈ R3×3. The regressor matrix Ω is a bounded function of time,

dependent upon the quantities η,s and ω̇r. It can be readily recognized that

the matrix expression R = (η∗J + Jη∗) is skew-symmetric. Using these

compacted notations Eq. (2.7) can be expressed as,

Jω̇e = −ω∗
eJωe − ω∗

eJη −Rωe + u−Ωθ∗ (2.9)

Thus, if θ∗ is perfectly known, the PD+ control torque input used is

defined by

u = −kpsv − kvωe +Ωθ∗ (2.10)

where kp, kv (positive scalars) and θ∗ are respectively the proportional and

rate feedback gains and the inertia matrix expressed in vectorized form.
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2.2 Motivation

For the system dynamics described in the previous section, if ωr(t) ≡

0∀t ≥ 0 and the task is to simply stabilize the attitude of the spacecraft to

zero, the control input listed in Eq. 2.10 can be reduced to

u = −kpsv − kvωe (2.11)

Using a candidate Lyapunov-like function [1]

V00 = kp[(s0 − 1)2 + sTvsv] +
1

2
ωT

e Jωe (2.12)

and differentiating with time, we get by substituting the control input from

Eq.2.11

V̇00 = kps
T
vωe + ωT

e Jω̇e = ωT
e [u+ kpsv] = −kv∥ωe∥2 (2.13)

Since this derivative is non-positive, the value of the Lyapunov function V00 is

bounded, implying that sv and ωe are also bounded. Integrating both sides

of Eq. 2.13, we can prove ωe ∈ L2 and using the corollary to the Barbalat’s

Lemma, prove that limt→∞ωe(t) = 0. Using the dynamics from the above sec-

tion and the Barbalat’s Lemma itself, sv can also be shown to asymptotically

converge to zero. This concludes our analysis of the “PD” controller for the

attitude stabilization case.

Now in the case where there is a reference trajectory ωr to be tracked,

consider the candidate Lyapunov-like function where c > 0 is a user chosen

parameter [1]

V = (kp + ckv)[(s0 − 1)2 + sTvsv] +
1

2
ωeJωe + csTvJωe (2.14)
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If the inertia matrix is accurately known, for the control input in Eq.2.10, the

time derivative of Eq.2.14 satisfies the inequality

V̇ ≤ −ckp∥sv∥2 − kv∥ωe∥2 + cJmax∥ωe∥2 + 3cJmaxγd∥sv∥∥ωe∥ (2.15)

where γd = ∥ωr∥∞ represents the infinity norm of the desired angular velocity,

i.e. its maximum value, qualitatively speaking.

As can be seen from the above equations, for a small enough value of

the parameter c, the Lyapunov candidate function in Eq.2.14 is non-negative

and its derivative in Eq.2.15 is negative semi-definite. Using Barbalat’s lemma,

stable tracking along the reference trajectory can be demonstrated. The con-

ditions on c can be rewritten in matrix form as the following two matrices

being positive definite:

P =
1

2

[
2(kp + ckv) −cJmax

−cJmax Jmin

]
> 0 (2.16)

Q =
1

2

[
2ckp 3γdJmaxc

3γdJmaxc 2kv − 4cJmax

]
> 0 (2.17)

It is to be noted here that in the known inertia case, the parameter c

is only used in the Lyapunov analysis and is not implemented in the control

input (Eq. 2.10) and is thus not necessary to be known. In the stability

analysis for the non-adaptive case, c can even be chosen to be zero and would

still not impact the overall closed-loop stability and convergence result. For

the adaptive control case where the inertia matrix is not accurately known,

using the certainty equivalence principle, the inertia term θ∗ in the control
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input from Eq. 2.10 is replaced with its adaptively generated estimate θ̂ and

Eq.2.14 is modified to include an error in inertia (θ̃ ≜ θ̂ − θ∗) term:

V = (kp + ckv)[(s0 − 1)2 + sTvsv] +
1

2
ωeJωe + csTvJωe + θ̃TΓ−1θ̃ (2.18)

where Γ = ΓT > 0 is a user chosen learning rate matrix. Following standard

techniques outlined in [1], the time derivative of the Lyapunov candidate func-

tion in Eq. 2.18 can be shown to satisfy the inequality in Eq.2.15 by using the

update law

˙̂
θ = −ΓΩT (ωe + csv) (2.19)

Thus even with uncertain inertia knowledge, for a small enough value of c the

“PD+” control law with an inertia estimate following the adaptive update law

from Eq. 2.19 can be shown to asymptotically track the reference trajectory

following Barbalat’s lemma. However, the parameter c now shows up explicitly

as part of the update law, is implemented and thus needs to be some user

chosen known positive constant satisfying the conditions in Eq. 2.17. As shown

in matrices P and Q, the definition of “small enough” for c is however based on

the values of Jmax, Jmin and γd wherein Jmax and Jmin remain poorly determined

when the inertia is unknown. Thus the update law in Eq. 2.19 depends upon

poorly determined inertia bounds which is a risky endeavor from a closed-

loop stability perspective. If the parameter c is chosen to be higher than

the allowable upper bound for the particular values of inertia parameters,

the controller could potentially cause closed loop instability. The option of

choosing c = 0 also does not exist for the adaptive case since we run into the
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uniform detectibility obstacle and this was the motivation behind introducing

c in the first place within the update law in Eq. 2.19.

To further motivate the need for a new controller that mitigates this in-

stability risk, Fig. 2.1 illustrates how this upper bound on parameter c changes

as a function of the inertia parameters, reference trajectory and controller

gains. To make the illustration simpler and reduce the number of variable

design factors, we choose a “critically damped controller” with kp = ω2
n and

kv = 2ωn respectively as the proportional and derivative feedback gains within

Eq. 2.10, Fig. 2.1a shows the allowable upper bounds on c for different values

of γd for a fixed inertia matrix. Fig. 2.1b does the same for different values

of Jmax and fixed Jmin and reference trajectory. As can be seen in both fig-

ures, the bound for c increases with increasing values of the gains. On the

other hand, qualitatively speaking, smaller spacecraft with smaller Jmax and

Jmin inertia values can tolerate higher values for c. Similarly, higher values of

γd, that is, more rapidly changing reference trajectories, have lower values of

the bound for the c parameter. Thus, a randomly chosen, intuitively “small”

value of c = 0.1 for example, may stabilize a small spacecraft with large values

for the controller gains but it may fail for a spacecraft with larger inertia or

for smaller controller gains. Similarly, the same value of c which works for

a relatively slow changing trajectory may fail for a more aggressive reference

trajectory.

An example of the effect of choosing a larger c value is shown in Fig.

2.2 where c = 0.03 stabilizes the closed loop system according to the sufficient
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conditions in Eq. 2.17 but c = 0.04 does not for a simulation of the inertia

of the Cassini spacecraft [19], with Jmax = 8823kg.m2 and Jmin = 4520kg.m2.

The values of kp = 200 and kv = 100 were chosen such that the closed loop

response without adaptation has a settling time of 200s for the norm of the

angular rate errors to go below an error band of 0.1rad/s. This is consistent

with the general practice of choosing controller gains to satisfy performance

requirements before any adaptation algorithm is put in place. In this figure, we

only plot the norm of the Lyapunov function from Eq. 2.18 to show the values

of c at which the controller fails. For a smaller satellite, the safe values of c

would be lower and instability would result at c = 0.1. This demonstrates the

difficulty in choosing the value of this parameter given that it is so dependent

on the system inertia and deeply impacts controller performance.

It should be emphasized that the conditions for stability on c based on

matrices P and Q in Eq. 2.17 are sufficient but not necessary, which implies

that the upper bounds on c discussed above can be often conservative and the

actual value of c typically causing instability is usually higher than this bound.

For example, for a “medium sized spacecraft” with inertia eigenvalues in the

103kg.m2 range, the safe choice is in the range c < 10−7, which is much smaller

than the c = 0.01 value at which the simulation shown in Fig.2.2 presents con-

vergence issues. What makes the controller design from [1] to be fragile, is

the fact that the choice of this c parameter directly affects the convergence

rate of the tracking errors, and thus conservatively choosing an arbitrarily

small value would typically lead to sluggish closed-loop response. Since con-
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trol designers would choose c values lower than the conservative upper bound

for the particular system to ensure stability, performance of the controller is

inherently compromised, illustrating a Hobson’s choice for the designer. A

salient feature of the controller presented in this chapter is that it does not

require introduction of any preset parameter (such as c in [1]) or assumptions

upon availability of inertia matrix eigenvalues, thereby eliminating the risks

of compromised stability and performance.
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Figure 2.1: Upper bounds on the parameter c with changing controller gains

The major feature of this work is that, the so called “PD+” control law

from Eq. 2.10 using fixed values of kp > 0, kv > 0 and the inertia estimate is

modified to have dynamic gains for the proportional and derivative feedback

terms:

u = −k̂p(t)sv − k̂v(t)ωe +Ωθ̂ (2.20)

It is important to emphasize that the basic “PD+” structure of the con-

troller is retained and saliently, we will show that it naturally reduces to the
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Figure 2.2: Norm of the Lyapunov function from [1] controller for different c
values

pure PD controller in Eq. 2.11 for the set point regulation case, thus preserving

the self-reduction property. A new Lyapunov-like function is designed for the

stability analysis of the controller in Eq. 2.20, which provides us with update

laws for the estimates of inertia parameters θ̂(t) as well as the time-varying

proportional and rate-feedback gains (respectively denoted by scalars k̂p and

k̂v). These dynamic feedback gains allow us to design an adaptive controller

that permits tracking the reference trajectory in a stable fashion without the

requirement for any prior knowledge on the actual inertia of the system, as

is the case for [1]. The modified Lyapunov-like function (to be introduced

in the next section) blends the traditional energy-like terms from [1] along

with certain judiciously designed cross-terms. The time derivative of this new

Lyapunov-like function however has sign indefinite terms which are dominated

by certain other negative terms, requiring that the value of k̂p remains positive

33



for all times during the adaptation process. We thus implement a projection

scheme for the proportional gain k̂p signal, which ensures it stays above some

user chosen (arbitrary) positive constant. It has to be emphasized that the

value of this user chosen positive constant (lower bound for k̂p) does not af-

fect the overall stability result but only impacts the transient properties and

convergence rates for the resulting closed-loop solutions.

2.3 Controller Design

The controller design process for attitude tracking is started off with

the classical Lyapunov function for attitude control with quaternion param-

eterization. For any positive constant k∗
p (used only for analysis purposes),

the first Lyapunov-like function is slightly modified from Eq.2.12 based on the

classical literature [1] as

V0 = k∗
p

[
(s0 − 1)2 + sTvsv

]
+

1

2
ωT

e Jωe (2.21)

It should be noted that this analysis is particularly suited for the atti-

tude tracking case and the attitude stabilization case has already been solved

using the V00 analysis in the Motivation section. Next, a “cross-term” is in-

troduced as follows

N = sTvJωe (2.22)

For a valid for Lyapunov analysis, using the torque input defined in

Eq. 2.20, let us consider the conditions for the combination of these terms
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above to be non-negative, using completion of squares:

V0 +N = k∗
p

[
sTvsv + (s0 − 1)2

]
+

1

2
ωT

e Jωe + sTvJωe

≥ k∗
p∥sv∥2 +

Jmin

2
∥ωe∥2 − Jmax∥sv∥∥ωe∥

≥
k∗
p

2
∥sv∥2 +

[
Jmin

2
− J2

max

2k∗
p

]
∥ωe∥2

which will be non-negative if

k∗
p >

J2
max

Jmin

(2.23)

Differentiating with respect to time the function in Eq. 2.21, followed

by substituting Eq. 2.9 and the control law from Eq. 2.20 results in,

V̇0 = k∗
ps

T
vωe + ωT

e J ω̇e

= ωT
e

[
u+ k∗

psv −Ωθ∗]
= −kvm∥ωe∥2 + ωT

e

[
u+ k∗

psv + kvmωe −Ωθ∗]
= −kvm∥ωe∥2 − k̃pω

T
e sv − k̃v∥ωe∥2 + ωT

eΩθ̃ (2.24)

where kvm > 0 is a user chosen constant and

k̃p = k̂p − k∗
p (2.25)

k̃v = k̂v − kvm (2.26)
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while the time-derivative of the cross term N defined in Eq. 2.22 yields

Ṅ = ωT
e Jṡv + sTvJω̇e

=
1

2
ωT

e J (s0I3×3 + s∗v)ωe + sTv (−ω∗
eJωe − ω∗

eJη −Rωe + u−Ωθ∗)

=
1

2
s0ω

T
e Jωe +

1

2
ωT

e Js
∗
vωe − sTvω

∗
eJωe − svω

∗
eJη − sTvRωe

+ sTv (u−Ωθ∗)

=
1

2
s0ω

T
e Jωe −

1

2
ωT

e Js
∗
vωe − sTvRωe + sv (Jη)

∗ωe + sTv (u−Ωθ∗)

=
1

2
s0ω

T
e Jωe −

1

2
ωT

e Js
∗
vωe − sTv [R− (Jη)∗]ωe + sTv (u−Ωθ∗)

≤ Jmax∥ωe∥2 + ρ∥sv∥∥ωe∥ − k̂ps
T
vsv − k̂vs

T
vωe + sTvΩθ̃ (2.27)

where ρ represents an upper bound for the norm of the bounded function

R− (Jη)∗, i.e., supt≥0 ∥R− (Jη)∗∥ ≤ ρ < ∞.

Since k̂p multiplies the quadratic term in sv in Eq. 2.27, it needs to stay

positive at all times for purposes of the ongoing stability analysis. Thus, an

update law will be introduced in the sequel through projection techniques for

the dynamic gain k̂p(t) such that k̂p(t) ≥ kpm > 0 for all t ≥ 0, where kpm

is any user chosen (arbitrary) constant. Using this lower-bound for k̂p(t) in

Eq. 2.27 and completing squares, we have

Ṅ ≤ −kpm
2

∥sv∥2 − k̂vs
T
vωe +

(
Jmax +

ρ2

2kpm

)
∥ωe∥2 + sTvΩθ̃ (2.28)

Combining the initial Lyapunov function V0 with the cross term N and

a quadratic measure of the error in inertia estimate θ̃ = θ̂−θ∗, for a adaptive

inertia learning rate of Γ = ΓT > 0 (user chosen) we arrive at the second

36



Lyapunov-like function

V = V0 +N +
1

2
θ̃TΓ−1θ̃ (2.29)

Differentiating Eq. 2.29, and combining Eq. 2.24 and Eq. 2.27,

V̇ ≤ −kpm
2

∥sv∥2 − kvm∥ωe∥2 −
[
k̂v −

(
kvm + Jmax +

ρ2

2kpm

)]
∥ωe∥2

−
(
k̂p + k̂v − k∗

p

)
sTvωe + θ̃TΓ−1

[
˙̂
θ + ΓΩT (ωe + sv)

]
(2.30)

The θ̃ terms above can be eliminated by choosing

˙̂
θ = −ΓΩT (ωe + sv) (2.31)

which leaves

V̇ ≤ −kpm
2

∥sv∥2 − kvm∥ωe∥2 −
(
k̂v − k∗

v

)
∥ωe∥2

−
(
k̂p + k̂v − k∗

p

)
sTvωe

≤ −kpm
2

∥sv∥2 − kvm∥ωe∥2 −
(
k̂v − k∗

v

)
(∥ωe∥2 + sTvωe)

−
(
k̂p + k∗

v − k∗
p

)
sTvωe (2.32)

where in we introduce for convenience of notation

k∗
v = kvm + Jmax +

ρ2

2kpm
(2.33)

As stated already, the parameter k∗
p is not required for controller im-

plementation but is chosen to satisfy the condition

k∗
p > max

(
J2
max

Jmin

, kpm + k∗
v

)
(2.34)
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To lower bound the proportional gain k̂p by the constant kpm, a pro-

jection scheme is used through reparameterization via another variable ϕ̂ as

given by

k̂p = kpm + eϕ̂ (2.35)

The constant k∗
v from Eq. 2.33 is reparameterized too using a constant

ϕ∗,

k∗
p − k∗

v = kpm + eϕ
∗

(2.36)

Combining Eq. 2.35 and Eq. 2.36 yields,

k̂p + k∗
v − k∗

p = eϕ
∗
[
e(ϕ̂−ϕ∗) − 1

]
(2.37)

Using this projection scheme, the final Lyapunov-like function is defined

as

Ṽ = V +
1

2γ1
(k̂v − k∗

v)
2 +

eϕ
∗

γ2

[
e(ϕ̂−ϕ∗) − (ϕ̂− ϕ∗)

]
(2.38)

˙̃V = V̇ +
1

γ1
(k̂v − k∗

v)
˙̂
kv +

eϕ
∗

γ2

[
˙̂
ϕe(ϕ̂−ϕ∗) − ˙̂

ϕ
]

≤ −kpm
2

∥sv∥2 − kvm∥ωe∥2 + (k̂v − k∗
v)

(
˙̂
kv
γ1

− ∥ωe∥2 − sTvωe

)

+ eϕ
∗
[
e(ϕ̂−ϕ∗) − 1

] [ ˙̂
ϕ

γ2
− sTvωe

]
(2.39)

In its simple form, the feedback gains are dynamically updated even for

the attitude stabilization special case, where the reference trajectory is zero.

Since we know that the inertia estimate does not update for the stabilization
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case, it would be convenient if our control input just reduced to the traditional

PD controller with constant gains. To achieve this, we scale the parameters

γ̄1 > 0 and γ̄2 > 0, which are the user chosen learning rates for the estimates

of the inertia matrix and feedback gains respectively, by the maximum norm

of the desired/reference velocity, γd = ∥ωr∥∞:

γ1 = γdγ̄1 (2.40)

γ2 = γdγ̄2 (2.41)

This scaling ensures that the gains do not change when the desired ve-

locity is just zero, hence preserving the self reduction property. It is important

to note that the preceding analysis is meant only for the reference trajectory

tracking case when γd ̸= 0 and hence involving the reciprocals of γ1 and γ2

within Eq. 2.38 is a valid operation. The analysis for the attitude stabilization

case does not require progressing beyond Eq.2.12 while this γd scaling ensures

there is no design switch necessary for the control inputs for the two cases.

Thus, choosing the update equations to be

˙̂
θ = −ΓΩT (ωe + sv) (2.42)

˙̂
kv = γ1∥ωe∥2 + γ1s

T
vωe (2.43)

˙̂
kp = γ2

(
k̂p − kpm

)
sTvωe (2.44)

results in the derivative of the Lyapunov function being negative semi-definite

˙̃V ≤ −kpm
2

∥sv∥2 − kvm∥ωe∥2 (2.45)
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Since the Lyapunov function in Eq. 2.39 is lower bounded and its deriva-

tive is negative semi-definite, Ṽ ∈ L∞, which implies sv ∈ L∞, ωe ∈ L∞ and

θ̃ ∈ L∞. Since ω̇e and ṡv are functions of these bounded variables, they are

bounded as well (ω̇e ∈ L∞ and ṡv ∈ L∞). Moreover, since Ṽ is monotonic

(non-increasing) and lower bounded, we have the existence of the limit

lim
t→∞

Ṽ (t) ≜ Ṽ∞ (2.46)

Thus, integrating both sides of Eq. 2.45, we can show that sv ∈ L2 and

ωe ∈ L2. Finally, using the corollary to the Barbalat’s lemma [18], we have,

lim
t→∞

[sv(t),ωe(t)] = 0 (2.47)

We note that Eq. 2.44 was obtained by substituting
˙̂
ϕ = γ2s

T
vωe into

Eq. 2.35. It is to be noted that ϕ̂ was used as part of the Lyapunov analysis

and helps ensuring the kp > kpm condition, but does not show up as part

of the implementation. Moreover, no projection scheme is imposed upon the

angular rate gain k̂v(t), leading to the rare yet distinct possibility that the

cross term in Eq. 2.43 be negative and dominate the first term, driving k̂v(t)

to negative values in the transient. This is an interesting attribute of the

proposed controller and does not affect any of the stability results provided.

It needs to be emphasized that the update laws and the control in-

put do not require any additional knowledge of parameters that rely upon the

inertia matrix. All the constants that are part of the adaptive controller imple-

mentation are user chosen (arbitrary) and closed-loop stability is guaranteed.
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The only impact of the user chosen values will be on the rate of convergence

(closed-loop performance) which can be tuned through judicious numerical ex-

periments. On the other hand in cases like Wen and Delgado [1], which use

constant feedback gains k̄p and k̄v unlike our dynamically changing gains, the

adaptation law for the inertia estimate involves an extra parameter c. As dis-

cussed already in the motivation section, for any given spacecraft, bounds on

c can be violated by changing the reference trajectory which also means that

a chosen set of controller parameters cannot be uniformly engaged for certain

reference trajectories even after having passed many test runs.

The controller formulation presented here applies only to rigid space-

craft where the inertia J is not accurately known but is still constant over

time. In the case of non-rigid spacecraft, while the inertia is still bounded,

there might be a non-negligible rate of change of the inertia θ̇, which will

need to be factored into the Lyapunov analysis through appropriate robust-

ness modifications from adaptive control [20, Chapter 9]. If the rate of change

of inertia is known and bounded, additional conditions can be placed on the

minimum value of kpm and kvm based on the upper bound θ̇max = max(∥θ̇∥)

to dominate the terms involving the rate of inertia change, as well as adding θ̇

to the adaptation in Eq. 2.31. A more detailed analysis of the applicability of

the proposed controller to non-rigid spacecraft falls outside the scope of this

work and can be considered for future studies.
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2.4 Simulation Results

The proposed adaptive controller was simulated using the inertia matrix

and initial error conditions from [9] corresponding to a persistently exciting

reference trajectory. The resulting closed-loop solutions of the error states and

control torque are shown in Fig. 2.3 and Fig. 2.4. For these simulations, the

unknown inertia matrix is represented by

θ∗ = [20, 1.2, 0.9, 17, 1.4, 15]T = Vec(J) (2.48)

and the initial error in the state

s(0) = [
√
1− 3× 0.18262, 0.1826, 0.1826, 0.1826]T (2.49)

The body is initially at rest and the reference angular velocity profile is

ωr(t) = [0.1 ∗ cos 2t+ 0.1, 0.5 cos t, 0.1 ∗ sin t+ 0.1]T (2.50)

The initial values chosen for the feedback gains were k̂p(0) = 50 and

k̂v(0) = 20, while the proportional gain was lower bounded through the pro-

jection scheme at kpm = 5. The learning rates were chosen as Γ = 10I6×6,

γ1 = 5 and γ2 = 10. Fig. 2.3 uses an initial estimate of the inertia with an

uncertainty of 5% and Fig. 2.4 has an uncertainty of 25%, which has an im-

pact on the time taken for the inertia estimates to converge to the true value

as seen in the time axis of Fig. 2.3e and Fig. 2.4e. Fig. 2.3f and Fig. 2.4f

show the norm of the control torque values, which are well within the range

of values reported from the controller in [9] that uses a completely different
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adaptive controller construction based upon state-augmentation approaches.

The attitude and angular rate states converge to track the reference trajec-

tory as shown in Figs. 2.3c,2.4c,2.3d,2.4d using the dynamic proportional and

derivative gains in Figs. 2.3a,2.4a,2.3b,2.4b.

As demonstrated by the example numerical simulations, the proposed

adaptive control law drives the system states to track the reference trajectory.

This was achieved without requiring any additional information concerning the

inertia matrix (such as an upper bound upon its norm) which is a novel result.

This performance is compared with the performance of the controller in Wen

and Delgado [1] in Fig. 2.5 for an initial inertia guess with 5% uncertainty of

the real inertia of the Cassini Spacecraft [19]. The values of the proportional

and differential gains for the proposed controller were initialized at kp = 50

and kv = 30 but are free to change according to our update laws in Eq. (2.44)

and Eq. (2.43), while the values for Wen and Delgado were chosen to stay

constant at k̄p = 50 and k̄v = 45 for a fair comparison, since our dynamic value

of kv settled at around 45. The update law parameter c was chosen to be 1,

which satisfied the condition of positive definiteness of P and Q matrices from

Eq. (2.17). As can be seen from Figs. 2.5a,2.5b, the error states in both the

cases are comparable while the torque too was in a similar range. The inertia

estimates in Fig.2.5c also converge to the true (unknown) value in a similar

time frame. These values will vary with the choice of controller parameters

like the gains and the constant c, but the performance was observed to be

similar. The transient for the proposed controller is seen to be slower than
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Figure 2.3: Closed-loop error trajectories resulting from application of the
proposed adaptive controller for a 5% error in the initial inertia estimate,
kp(0) = 50 and kv(0) = 30

44



0 50 100 150 200 250 300 350 400

t(sec)

49.5

50

50.5

51

51.5

52

52.5
k

p

0 1 2 3 4 5

50

50.5

51

51.5

52

(a) Proportional gain

0 50 100 150 200 250 300 350 400

t(sec)

20

25

30

35

40

45

50

k
v

0 1 2 3 4 5
20

30

40

50

(b) Derivative feedback gain

0 50 100 150 200 250 300 350 400

t(sec)

10-6

10-5

10-4

10-3

10-2

10-1

|s
v
|

(c) Quaternion vector norms

0 50 100 150 200 250 300 350 400

t(sec)

10-5

10-4

10-3

10-2

10-1

100

|
|(

ra
d
/s

)

(d) Angular velocity error norm

0 50 100 150 200 250 300 350 400

t(sec)

0

2

4

6

8

10

12

(e) Norm of inertia estimate

0 50 100 150 200 250 300 350 400

t(sec)

0

2

4

6

8

10

12

14

16

18

20

|u
|(

N
m

)

(f) Norm of the control torque

Figure 2.4: Closed-loop error trajectories resulting from application of the
proposed adaptive controller for a 25% error in the initial inertia estimate,
kp(0) = 50 and kv(0) = 30
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Figure 2.5: Comparison of the performance of the proposed controller (kp(0) =
500, kv(0) = 300) against Wen and Delgado [1] (k̄p = 500, k̄v = 450, c = 0.01)
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[1] in this simulation but this can be improved by increasing the value of the

learning rate Γ.

2.5 Conclusions

A novel method for attitude tracking control for rigid spacecraft with

inertia uncertainties was developed, which assumes no knowledge on the in-

ertia matrix or its bounds. This was achieved using dynamic feedback gains

while retaining the simple classical proportional differential control structure

with feed-forward terms (PD+), a previously unknown result for the linear

PD+ control law, made possible by a novel Lyapunov-like analysis and a pro-

jection scheme to lower limit the evolution of the proportional feedback gain.

The proposed controller preserves the self-reduction property and achieves

performance comparable to existing methods without requiring any additional

information about the eigenvalues (bounds) upon the inertia matrix. Future

work will focus on applying this novel idea of dynamic feedback gains for a

wider class of system dynamics.
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Chapter 3

Angular Velocity Estimation Using

Rate-Integrating Gyro Measurements

Inertial navigation is a critical component of aerospace control systems

as it is responsible for the calculation of position, velocity and orientation

using measurements from Inertial Measurement Units (IMUs). These systems

are usually comprised of accelerometers and gyroscopes and integrate forward

in time the initial state of the vehicle by replacing dynamic models with IMU

measurements. Inertial navigation systems have been used since the 1950s

and were part of the Apollo missions on the Saturn V rockets, as well as the

command module and the lunar module. In a strapdown inertial navigation

system [22], the IMU is rigidly mounted on the vehicle. Strapdown gyroscopes

have been used for many applications including spacecraft attitude estimation

[23], underwater vehicle navigation [24], manned navigation systems [25] and

robotic navigation [26].

The research presented in this chapter was performed by the authors and has been
accepted to be published in a peer reviewed journal [21]. Preliminary versions of this work
were also presented as paper AIAA-22-724 at the AAS/AIAA Astrodynamics Specialist
Conference, 2022 and as paper AAS 21-699 at the AAS/AIAA Astrodynamics Specialist
Conference, 2021
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One approach to attitude determination is to integrate Euler’s equa-

tion using models of the torques applied to the vehicle. Alternatively, inertial

navigation bypasses the need for these models by measuring angular velocity

directly (referred to as model replacement mode [27]). This methodology is

preferred when IMU information is more accurate than the available models

of rotational dynamics and torques. Moreover, model replacement is compu-

tationally simpler and hence ideal for real-time onboard applications.

Rate Integrating Gyroscopes (RIGs) do not directly measure the an-

gular rate but rather accumulate angular displacements by integrating the

feedback required to null internal gyroscope motions. They provide measure-

ments of the integrated rate and thus provide a direct measurement of neither

the attitude state nor the angular velocity. They are preferred in spacecraft ap-

plications compared to conventional rate gyroscopes for their low noise due to

degenerate mode operation and exceptional scale factor stability [28]. Modern

RIGs use micro-electromechanical system devices [29].

Attitude controllers for aerospace systems typically require full state

feedback, where the state consists of the attitude and angular rate signals.

However, since rate integrating gyroscopes do not provide angular rate mea-

surements, state feedback controllers require an observer to reconstruct the full

state using the RIG measurements. Kalman filters have been used in the liter-

ature to estimate this full state [30][31], but require accurate characterization

of the noise and do not provide any convergence guarantees. For gyroscopes

systems that measure angular velocity directly, nonlinear observers for attitude
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and gyro bias with exponential stability exist [32][33]. In many practical RIG

applications the angular velocity is obtained from a numerical differentiator

followed by a low pass filter to remove high frequency noise on the derivative

of the RIG measurements. This method does not provide guarantees that

the state provided by the differentiator converges to the true angular rates.

Moreover in this context, the low pass filter is applied on the derivative of the

measurements we receive from the RIG, which highly amplifies the noise in

the measurements. This poses an extra challenging situation in distinguishing

the signal from the noise as it passes through the low pass filter.

This work focuses on designing observers which use continuous mea-

surements from an RIG and provides estimates for the angular rate states.

We consider a rigid body governed by Euler rotational dynamics, the torque

applied to the system is assumed to be known and the angular rotational rate is

assumed to satisfy a known upper bound. We present two nonlinear observer

designs, for the known inertia and adaptive cases. The observer dynamics

are linear in the measurement term and involve a user chosen parameter that

controls the convergence rate. The estimates are guaranteed to converge to

the true values of the state exponentially fast when the inertia is known and

at least asymptotically when adapting for inertia. The angular velocity esti-

mates provided by this so called high gain observer can be used in controllers

for stabilizing the system or tracking desired reference trajectories. To the

best of our knowledge, no prior work exists in the literature on continuous

time observers for RIG systems. In contrast to the results provided by a nu-
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merical differentiator, this exponential convergence guarantee, or asymptotic

convergence when adaptation is used for inertia uncertainties, is the primary

advantage of using our observer over existing methods. RIGs are used for high

precision applications because they provide the entire history of the angular

velocity as its integrated value. The alternative of sampling the angular ve-

locity at discrete times is typically less accurate as information on how the

angular velocity varies in-between samples is lost. While we use continuous

time RIG measurements here, discretizing the output of a continuous observer

such as the one presented in this work will help in using this observer with

discrete time computer systems, while preserving the theoretical guarantees

presented for the observer and the inherent advantages of using RIGs [34].

Dabroom and Khalil [35] present different methods for converting con-

tinuous time high gain observers to a discrete time implementation and the

bilinear transformation method was shown to have the lowest transient and

steady state error when compared to other discretization methods. High gain

observers used along with the bi-linear transformation were also shown to deal

with measurement noises better than numerical differentiation methods. When

dealing with measurement noise, which is commonly the case with IMUs, the

parameters of the discretization method can be tuned according to the signal

to noise ratio of the sensor, making high gain observers better than numerical

differentiators at reducing state estimation errors [35]. The discrete time sam-

pled data from the continuous output of high gain observers was also shown to

be effective in closed loop performance when used as part of a control system
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[36]. Thus, high gain observers like the one proposed in this chapter, especially

when used with a well tuned discretization method, can provide guaranteed

convergence of the estimates to the true states and also handle sensor measure-

ment noise, especially low frequency time varying biases, better than typical

numerical methods. An in-depth study of discretization methods and their

effects are outside the scope of this work but interesting avenues for future

research.

When IMUs are used in space applications, in the context of on-orbit

assembly, repair and refilling missions, perfect knowledge of the inertia matrix

is often not always available and therefore necessitates the use of adaptive

observers that can deal with model parameter uncertainties. We present an

adaptive nonlinear observer design, which provides estimates of the angular

rate states while adapting for the inertia terms. Unlike the certainty equiva-

lence adaptive methods, the design of this observer, inspired by the Immersion

and Invariance (I & I) control method [37], includes two extra adaptation pa-

rameters which help compensate for the dynamics of the unmeasured terms.

In the adaptive case, the rate of change of the torque applied is also assumed

to be known as it is required in the parameter adaptation equations.

While the RIG measurements can be used directly to determine the

attitude state, the proposed observer also generates an estimate of the atti-

tude as part of its state for use within its update equations. These estimates

can be discarded but need to be kept bounded. A Lyapunov-like analysis is

used to prove that the attitude and angular velocity state estimates converge
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to the true values as long as the initial states are within a Region Of At-

traction (ROA), hence the result is semi-global. With adaptation, the inertia

terms can be estimated to the true value asymptotically if persistence of exci-

tation conditions are met. Further, the non-adaptive observer is shown to have

exponential convergence, to be robust to uncertainties in the inertia matrix

and the external torque, and its estimates converge to the true states within

a residual set as long as the errors in inertia and torque are bounded. These

results are demonstrated in numerical simulations.

Extending the observer to adapt for inertia uncertainties using con-

ventional adaptive observer methods is not straightforward since the available

measurements from the RIG are only of the angular displacement while the

inertia matrix is only part of the dynamics involving the angular velocity.

Methods inspired by Cho and Rajamani [38] require the measurement outputs

to have a strictly positive definite transfer function to the unknown inertia

parameters, which is not the case in this system as will be discussed in the

sequel. Moreover, the measurement here is the integrated angular rate vector

and hence Marino and Tomei’s [39] method of linearizing the system on the

basis of output injection and filtered transformations cannot be used, since

it requires the output to be a real valued scalar or linear with respect to the

unknown parameters. Observers for multi-output systems which are affine in

the unmeasured states [40] can also not be used since the dynamics are not

linear in the angular velocity states.

The formulation of two nonlinear observers, one for accurately known
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inertia and the second with adaptation for inertia uncertainties, which use

continuous time measurements of the integrated rate from an RIG and provide

angular rate estimates which converge to the true values exponentially and

asymptotically respectively, are the main contributions of this work.

3.1 Known Inertia

3.1.1 Dynamics

Consider Euler rotational dynamics for a system with inertia matrix

J = JT > 0 subject to bounded external torque τ given by

Jω̇ = −ω∗Jω + τ (3.1)

wherein ω(t) ∈ R3 has components in the body-fixed frame of reference. The

skew-symmetric matrix ω∗ represents the vector cross product. We also as-

sume:

• J is perfectly known

• τ is perfectly determined

• ω ∈ L∞ is a bounded signal and we know ωm ≜ supt≥0 ∥ω(t)∥

The assumption that an upper bound ωm is known is reasonable since any

spacecraft is physically designed to only be able to rotate or tumble below a

certain angular rate. The bound can be chosen beyond the design limits of

the spacecraft.
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3.1.2 Measurements

We have an RIG providing attitude measurements σ(t) ∈ R3 which are

the incremental accumulated values of the angular rate ω such that:

dσ

dt
= ω(t) (3.2)

where σ(t) is assumed to be measured perfectly.

3.1.3 Objective

Using perfect measurements of σ(t), the goal is to generate an estimate

ω̂(t) of the true angular rate ω(t) such that

lim
t→∞

∥ω̂(t)− ω(t)∥ = 0 (3.3)

keeping all signals bounded.

3.1.4 Observer Design

The following observer design is proposed for estimating the angular

rate:

˙̂σ = ω̂ − k(σ̂ − σ) for some k > 0 (3.4)

J ˙̂ω = −ω̂∗Jω̂ + τ − k2J(σ̂ − σ) (3.5)

We define the estimation errors

σe = σ̂ − σ (3.6)

ωe = ω̂ − ω (3.7)
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Using these definitions in (3.4)-(3.5) gives

σ̇e = ωe − kσe (3.8)

Jω̇e = − (ω̂∗Jω̂ − ω∗Jω)− k2Jσe (3.9)

Expanding the terms within the parenthesis on the right-hand side of

(3.9) gives

ω̂∗Jω̂ − ω∗Jω = ω∗
eJω + ω∗Jωe + ω∗

eJωe (3.10)

If we defineΨ ≜ − [ω∗Jωe + ω∗
eJω + ω∗

eJωe], Eq. 3.9 can be rewritten

as

ω̇e = −k2σe + J−1Ψ (3.11)

If we define the error states to be σe and ωe/k, using (3.4) and (3.11),

we have the dynamics for the error states as:[
σ̇e
ω̇e

k

]
= k

[
−I3×3 I3×3

−I3×3 O3×3

] [
σe
ωe

k

]
+

[
O3×1
J−1

k
Ψ

]
(3.12)

Renaming the states as

z1 = σe

z2 =
ωe

k

⇔ z ≜

[
z1

z2

]
∈ R6 (3.13)

allows us to express (3.12) as

ż = k

[
−I3×3 I3×3

−I3×3 O3×3

]
z +

[
O3×1
J−1

k
Ψ

]
(3.14)
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Since the inertia matrix is known, we can use its maximum and mini-

mum eigenvalues to express

JM = λmax(J) = ∥J∥ (3.15)

Jm = λmin(J) =
1

∥J−1∥
(3.16)

Define

α ≜ (JM/Jm) (3.17)

Revisiting the Ψ term introduced after Eq. 3.10, we have

Ψ = − (ω∗Jωe + ω∗
eJω + ω∗

eJωe) (3.18)

−J−1Ψ = J−1 (ω∗Jωe + ω∗
eJω) + J−1ω∗

eJωe (3.19)

Consider the norm of the first term

∥J−1 (ω∗Jωe + ω∗
eJω) ∥ ≤ 2JM

Jm
ωm∥ωe∥ = 2αωm∥ωe∥ (3.20)

Next,

∥J−1ω∗
eJωe∥ ≤ 1

Jm

√
JM(JM − Jm)∥ωe∥2 = k

√
α(α− 1)∥z2∥2 (3.21)

Thus, making use of the bounds calculated in Eq. 3.20 and 3.21 and

substituting them in Eq. 3.19 results in

∥J−1Ψ∥ ≤ 2αωm∥ωe∥+
√

α(α− 1)∥ωe∥2 (3.22)

which can be rewritten as

∥J
−1Ψ

k
∥ ≤ 2αωm∥z2∥+ k

√
α(α− 1)∥z2∥2 (3.23)
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3.1.5 Convergence Analysis

For stability and convergence analysis, consider a Lyapunov-like candi-

date function

V =
1

k

[
zT
1 z1 +

3

2
zT
2 z2 − zT

1 z2

]
=
[
z1 z2

] 1
k

[
I3×3 −1

2
I3×3

−1
2
I3×3

3
2
I3×3

]
︸ ︷︷ ︸

P∈R6×6

[
z1

z2

]

=
[
z1 z2

]
1

k

[
1 −1

2

−1
2

3
2

]
︸ ︷︷ ︸

R∈R2×2

⊗I3×3


[
z1

z2

]

(3.24)

where ⊗ denotes the Kronecker product.

We know the maximum and minimum eigenvalues of P and R are equal:

λmin(P ) = λmin(R) and ∥P∥ = λmax(P ) = λmax(R) which gives us

λmin(P ) =
5−

√
5

4k
= c1 (3.25)

and

λmax(P ) =
5 +

√
5

4k
= c2 (3.26)

Thus, V defined in Eq. (3.24) satisfies

c1∥z∥2 ≤ V = zTPz ≤ c2∥z∥2 (3.27)

Next, taking the time derivative of V in Eq. (3.24), followed by substi-
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tuting Eq. 3.14 and Eq. 3.19 results in

V̇ =
2

k
zT
1 ż1 +

3

k
zT
2 ż2 −

1

k
zT
1 ż2 −

1

k
zT
2 ż1

= −zT
1 z1 − zT

2 z2 +
3

k
zT
2

J−1Ψ

k
− 1

k
zT
1

J−1Ψ

k

≤ −∥z∥2 + 3

k
∥z2∥∥

J−1Ψ

k
∥+ 1

k
∥z1∥∥

J−1Ψ

k
∥

≤ −∥z∥2 + 4

k
∥z∥∥J

−1Ψ

k
∥ (3.28)

Next, using (3.20) and (3.21), we have

V̇ ≤ −∥z∥2 + 4

k
∥z∥

[
2αωm∥z∥+ k

√
α(α− 1)∥z∥2

]
= −

(
1− 8αωm

k

)
∥z∥2 + 4

√
α(α− 1)∥z∥3 (3.29)

To ensure the coefficient of the ∥z∥2 term is negative, we select k such

that 1− (8αωm)/k > 0, i.e.,

k > 8αωm (3.30)

Thus, we have

V̇ ≤ −
(
1− 8αωm

k

)
∥z∥2 + 4β∥z∥3

V̇ ≤ −∥z∥2
[(

1− 8αωm

k

)
− 4β∥z∥

]
≜ −W (z) (3.31)

where we introduce the notation β =
√

α(α− 1)

Define a scalar function ρ(k):

ρ(k) ≜
1

4β

(
1− 8αωm

k

)√
c1
c2

(3.32)
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which after substituting the values of c1 and c2 respectively from (3.25) and

(3.26) becomes

ρ(k) =
1

4β

(
1− 8αωm

k

)√
5−

√
5

5 +
√
5

(3.33)

Suppose we restrict initial conditions z(t0) at time t0 = 0, such that

∥z(t0)∥ ≤ ρ(k), then using Eq. 3.31,

W (z(0)) = ∥z(0)∥2
[(

1− 8αωm

k

)
− 4β∥z(0)∥

]
(3.34)

= 4β∥z(0)∥2
[
1

4β

(
1− 8αωm

k

)
− ∥z(0)∥

]
≥ 4β∥z(0)∥2

[
ρ(k)

√
c2
c1

− ρ(k)

]
≥ 0

since c2 > c1.

By definition of W (z) in Eq. 3.31, we know that V̇ (t) ≤ 0 whenever

W (z(t)) ≥ 0. Thus, having a region of attraction ∥z(0)∥ ≤ ρ(k) ensures

V̇ (t) ≤ 0 for all t ≥ 0, that is, V (t) is non-increasing with time. For more

details on ROA, the reader is referred to Khalil [41], Chapter 8. Substituting

this in (3.27) leads to

c1∥z(t)∥2 ≤ V (t) ≤ V (0) ≤ c2∥z(0)∥2 (3.35)

Thus,

∥z(t)∥ ≤
√

c2
c1
∥z(0)∥ (3.36)
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Also, using the definition of W (z) from (3.31),

W (z(t)) = ∥z(t)∥2
[(

1− 8αωm

k

)
− 4β∥z(t)∥

]
≥ ∥z(t)∥2

[(
1− 8αωm

k

)
− 4β

√
c2
c1
∥z(0)∥

]
Defining c3 to be the terms inside the square brackets,

c3 =

(
1− 8αωm

k

)
− 4β

√
c2
c1
∥z(0)∥ (3.37)

we have

−W (z(t)) ≤ −c3∥z(t)∥2 (3.38)

Thus we have V̇ (t) ≤ −W (z(t)) ≤ −c3∥z(t)∥2 or,

V̇ (t) ≤ −c3
c2
V (t)

V (t) ≤ exp

(
−c3t

c2

)
V (0) (3.39)

Using this result alongside the inequality from (3.27) results in

∥z(t)∥ ≤
√

c2
c1

exp

(
−c3t

2c2

)
∥z(0)∥ (3.40)

which proves exponential stability but is a local result for ∥z(0)∥ ≤ ρ(k).

3.1.6 Discussion

For choosing the value of k, from Eq. 3.30 we have a lower bound 8αωm.

From (3.25) and (3.26) we know, as k → ∞, both c1 → 0 and c2 → 0.
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However, the ratio √
c1
c2

=

√
5−

√
5

5 +
√
5

(3.41)

is independent of k. Hence, the upper bound on the initial value of ∥z(0)∥

given by Eq.3.32, in the limit becomes

lim
k→∞

ρ(k) = ρ∗ =
1

4β

√
c1
c2

=
1

4β

√
5−

√
5

5 +
√
5

(3.42)

Thus, the initial condition on the norm of the error states is upper bounded

by ρ∗ and also lower bounded due to the non-zero positive lower bound on k.

Note that local stability implies specifically our initial condition z(0) ∈

M where

M =

{
z ∈ R6 | ∥σe(0)∥2 +

∥ωe(0)∥2

k2
≤ ρ2(k)

}
(3.43)

which is the region of attraction. σe(0) is usually not a restriction because,

we can always select σ̂(0) = σ(0) ⇔ σe(0) = 0

On the other hand, ωe(0) can be arbitrarily large. However, we can

always choose large enough k such that irrespective of ωe(t), z(0) ∈ M. In this

context, it is crucial that irrespective of how much we increase k, the largest

region of attraction ρ∗ in Eq. 3.42 above is a finite constant. Hence, the result

is semi-global.
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3.1.7 Effect of measurement noise

In the presence of measurement noise, let us consider the measurement

to evolve as

σ̇(t) = ω(t) + n(t)

where n(t) is a zero mean white random process, known as angular random

walk (ARW), with power spectral density S which has units of rad2/s. With

the addition of measurement noise, the error dynamics of Eq.3.12 become[
σ̇e

ω̇e

]
=

[
−kI3×3 I3×3

−k2I3×3 O3×3

] [
σe

ωe

]
+

[
O3×1

J−1Ψ

]
+

[
n

O3×1

]
(3.44)

To analyze the error evolution, we will linearize the above equation about

σe(t) to obtain[
σ̇e

ω̇e

]
=̃

[
−kI3×3 I3×3

−k2I3×3 J−1 [(Jω̂(t))∗ − ω̂(t)∗J ]

] [
σe

ωe

]
+

[
n

O3×1

]
(3.45)

Let us start by considering the case when ω̂(t) is constant, so that[
σ̇e

ω̇e

]
=̃

[
−kI3×3 I3×3

−k2I3×3 C

] [
σe

ωe

]
+

[
n

O3×1

]
= A

[
σe

ωe

]
+

[
n

O3×1

]
(3.46)

where C ∈ R3×3 is a constant matrix since we have assumed ω̂ to be constant.

The corresponding estimation error covariance evolves as

Ṗ (t) = AP (t) + P (t)AT +Q (3.47)

where

P =

[
Pσσ Pσω

Pωσ Pωω

]
(3.48)
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and

Q =

[
S 0
0 0

]
(3.49)

The steady state estimation error covariance is given by Ṗ (t) = O6×6 resulting

in

O3×3 = −2kPσσ + Pσω + Pωσ + S (3.50)

O3×3 = −kPσω +CPσω + Pωω − k2Pσσ (3.51)

O3×3 = −k2Pσω − k2Pωσ + 2CPωω (3.52)

Considering Pσω = Pωσ and solving the above system of equations,

Pωσ =
k

2
C(C − kI3×3)

−2S (3.53)

Pσσ =
C

2
(C − kI3×3)

−2S +
S

2k
(3.54)

Pωω =
k3

2
(C − kI3×3)

−2S (3.55)

To gain valuable insights on the estimation performance of the observer,

let us consider the case when ω̂ is negligible. The steady state covariances in

this case become

Pωσ = O3×3 Pσσ =
1

2k
S Pωω =

k

2
S

So the steady-state estimation error covariance of the angular velocity observer

is Pωω = kS/2. The parameter k should be chosen as a compromise between

fast response (large values) and noise attenuation (small values).

Let us consider the alternative to using our proposed observer, which

is to use a numerical differentiator on the RIG measurements and then apply
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a low pass filter to obtain angular velocity estimates. For a sampling time

period of ∆t and measurements σ(t) at time t, a crude differentiator can be

defined as:

ωnd(tk) =
σ(tk)− σ(tk−1)

∆t
(3.56)

Using the mean value theorem, σ(tk) can be approximated as

σ(tk) = σ(tk−1) + ω(t∗k−1)∆t+∆n (3.57)

where tk−1 ≤ t∗k−1 ≤ tk and ∆n is the integrated ARW over the sampling time

∆t and has covariance matrix S∆t.

Substituting (3.57) into (3.56)

ωnd(tk) = ω(t∗k−1) +w(tk−1) (3.58)

The numerical differentiation introduces a delay ∆t∗k−1 = tk− t∗k−1 and a noise

w(tk−1) = ∆n/∆t. The noise has covariance matrix given by S/∆t, which

means small discretization steps result in very noisy estimates.

The noisy estimates obtained from numerical differentiation can be im-

proved with a low pass filter:

ωlp(tk) = klpωlp(tk−1) + (1− klp)ωnd(tk) (3.59)

The error dynamics of ωelp(tk) = ω(tk)− ωlp(tk) is given by

ωelp(tk) = ω(tk)− klpωlp(tk−1)− (1− klp)ωnd(tk)

= ω(tk)− klpωlp(tk−1)− (1− klp)
(
ω(t∗k−1) +w(tk−1)

)
=
(
ω(tk)− ω(t∗k−1)

)
+ klp

(
ω(t∗k−1)− ωlp(tk−1)

)
− (1− klp)w(tk−1)

(3.60)

65



Adding and subtracting klpωtk−1 we obtain, after some reshuffling

ωelp(tk) =
(
ω(tk)− ω(t∗k−1)

)
+ klp

(
ω(t∗k−1)− ω(tk−1)

)
+ klpωelp(tk−1)− (1− klp)w(tk−1) (3.61)

The term
(
ω(tk)−ω(t∗k−1)

)
is the latency introduced by numerical differenti-

ation while the term klp
(
ω(t∗k−1)−ω(tk−1)

)
is additional latency added by the

filtering process. For the filter to be stable it is required that 0 ≤ klp < 1. Once

again if we consider a static system and ignore the latencies, the noise-induced

steady-state estimation error is given by:

Pωlp
=

(1− klp)
2

1− k2
lp

S/∆t =
1− klp
1 + klp

S/∆t (3.62)

In a static system as assumed above, where the latency is not considered,

the low pass filter can be averaged over time to have no noise in the output.

However, in any dynamic system with non-zero velocity, a value of klp very

close to one will reduce the noise but will add the most latency and also have a

slow error decay response. Conversely, a value of klp close to zero represents no

filtering at all and will have no noise attenuation. The sampling time period

∆t tends to be small and thus the steady state value of the noise response

is inflated by faster sampling of the RIG measurements. The response of our

observer in Eq. 3.56 on the other hand is not impacted by the sampling rate

and will thus have a better noise response for the same values of latency. A

practical discussion of the effect of noise is presented in the simulations section.
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3.1.8 Convergence Rate

In (3.40), (−c3/2c2) is the rate of convergence. Note that

c3 =

(
1− 8αωm

k

)
− 4β

√
c2
c1
∥z(0)∥ (3.63)

Thus, as k → ∞, c3 → c∗3 where

c∗3 = 1− 4β

√
5 +

√
5

5−
√
5
∥z(0)∥ (3.64)

which is independent of k. Also recall that c2 → 0 as k → ∞. Thus, the rate

of convergence (c3/2c2) → ∞ as k → ∞. Thus selecting large k implies faster

convergence.

3.2 Robustness Analysis

We consider the robustness properties of the non-adaptive observer

from Eqs. 3.4 and 3.5 in two different scenarios:

• The external torque τ is unavailable but is bounded and an upper bound

is known i.e., τ ∈ L∞ and there exists some finite τM = supt≥0 ∥τ (t)∥.

Can the observer be ensured to converge to a residual set?

• The inertia matrix J is inaccurately modelled as J̄ = J̄T > 0 (nominal

inertia) and thus, there is an inertia error (J − J̄)? Can the observer

errors be bounded in this setting?

We provide positive answers to both these cases in the sequel.
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3.2.1 Unknown Torque

We assume some bounded unknown external torque τ acting upon the

spacecraft. The observer from Eq. 3.4 and Eq.3.5 is modified to:

˙̂σ = ω̂ − k(σ̂ − σ) (3.65)

J ˙̂ω = −ω̂∗Jω̂ − k2J(σ̂ − σ) (3.66)

This leads to the error dynamics Eq.3.12 being modified to

σ̇e = −kσe + k
(ωe

k

)
(3.67)

ω̇e

k
= −kσe +

J−1

k
Ψ− J−1

k
τ (3.68)

leading to

ż = k

[
−I I
−I 0

]
z +

[
0

J−1

k
Ψ

]
+

[
0

−J−1

k
τ

]
(3.69)

where the last term is defined as the disturbance

d ≜

[
0

−J−1

k
τ

]
(3.70)

For the case with known torque (d = 0), we already have from Eq. 3.38,

a Lyapunov function such that

c1∥z∥2 ≤ V (z) ≤ c2∥z∥2 (3.71)

V̇ ≜

(
∂V

∂z

)T

ż ≤ −c3∥z∥2 (3.72)

where the constants c1, c2, and c3 are defined in Eqs.3.25, 3.26 and 3.37 re-

spectively. Also recall from Eq.3.24

V (z) =
1

k

(
zT
1 z1 +

3

2
zT
2 z2 − zT

1 z2

)
= zTPz (3.73)
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Thus, ∂V
∂z

= 2Pz

⇔ ∥∂V
∂z

∥ ≤ 2λmax(P )∥z∥ = 2c2∥z∥ (3.74)

since ∥P∥ = λmax(P ) = c2 = (5 +
√
5)/4k.

From Eq.3.70,

∥d∥ ≤ τm
kJm

(3.75)

Based on the value of ρ(k), let us select some ζ ∈ (0, 1) which will make

the following inequality true:

τm
kJm

<
c3
2c2

√
c1
c2
ζρ(k) (3.76)

this implies that there exists k sufficiently large such that

τm <
c3
2c2

√
c1
c2
ζkJmρ(k) (3.77)

Then using Lemma 9.2 from Khalil [41], for all ∥z(0)∥ <
√
c1/c2ρ(k),

we have

∥z(t)∥ ≤
√

c2
c1

exp (−γ(t)) ∥z(0)∥ ∀ 0 ≤ t ≤ T (3.78)

and

∥z(t)∥ ≤ b for t ≥ T (3.79)

which is a residual set and a uniform ultimate bound for some finite T > 0,

where

γ =
(1− ζ)c3

2c2
(3.80)

and

b =
2c2
c3

√
c2
c1

τm
Jmkζ

(3.81)
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note that b → 0 as k → ∞. The choice of ζ affects both the rate of convergence

as well as the size of the residual set b. If the objective is to have a smaller

residual set, ζ ∈ (0, 1) can be chosen to be the largest value that still satisfies

Eq.3.76.

3.2.2 Inaccurate Inertia Model

If the inertia matrix J is poorly modeled, a nominal inertia J̄ is adopted

with maximum and minimum eigenvalues J̄M and J̄m respectively. We once

again modify the observer from Eq.3.4 and Eq.3.5 to be:

˙̂σ = ω̂ − k(σ̂ − σ) (3.82)

˙̂ω = −k2(σ̂ − σ)− J̄−1ω̂∗J̄ω̂ + J̄−1τ (3.83)

such that the disturbance term in Eq. 3.70 can be modified as follows

d̄ =

[
0

− 1
k
(J̄−1ω∗J̄ω − J−1ω∗Jω) + (J̄−1 − J−1)τ )

]
(3.84)

The nominal system, i.e., with d̄ = 0, provides us with the same be-

havior as the unknown torque case above, hence (3.78) and (3.79) hold with

the convergence rate in (3.80). However, the modified ratio of eigenvalues of

the inertia matrix, α is replaced by ᾱ = J̄M/J̄m and the residual set to which

the norm of the states converges to is now:

b =
2c2
c3

√
c2
c1

1

JmJ̄mkζ

[
τm(J̄m + Jm) + ω2

m(JM J̄m + J̄MJm)
]

(3.85)
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This proves that the proposed observer is robust to inaccuracies in

the inertia matrix and unknown external torques, with the angular velocity

estimates always converging to a local residual region surrounding the true

value of the state. However, this still only guarantees convergence to a residual

set, which will be compared to the performance of the adaptive controller in

the simulations section.

3.3 Adaptive Observer

In scenarios when the knowledge of the inertia is poorly characterized

such that the robust performance of the non-adaptive observer is still unsat-

isfactory, we propose an adaptive observer which adapts for the inertia terms.

The construction of this observer is described in this section.

3.3.1 Dynamics and Measurement

Rearranging the dynamics in Eq.3.1,

ω̇ = −J−1ω∗Jω + J−1τ

= Λ(ω)θ∗ +W (τ )ϕ∗ (3.86)

where Λ : R3 → R3×18 and W : R3 → R3×6 are regressor matrices which are

purely functions of the angular rate and torque respectively, θ∗ ∈ R18×1 and

ϕ∗ ∈ R6×1 are vectorized versions of functions of the inertia matrix J terms.

The separation of variables to obtain these regressor matrices is detailed in

Appendix B. Apart from the same assumptions on ω and τ as for the non-
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adaptive observer, we additionally assume τ̇ is perfectly determined. Moreover

we assume that some bounds on the maximum and minimum eigenvalues of

the inertia matrix are known, which can be highly conservative if the charac-

teristics of J are highly undefined. The measurements available are the same

as the known inertia case, following Eq.3.2.

3.3.2 Objective

The goal is to generate an estimate ω̂(t) of the true angular rate ω(t)

such that

lim
t→∞

∥ω̂(t)− ω(t)∥ = 0 (3.87)

without knowledge of the terms of the inertia matrix J and hence without θ∗

and ϕ∗, keeping all signals bounded.

3.3.3 Observer Design

The following observer design is proposed for estimating the angular

rate:

˙̂σ = ω̂ − k(σ̂ − σ) for some k > 0 (3.88)

˙̂ω = Λ(ω̂)(θ̂ + βθ) +W (τ )(ϕ̂+ βϕ)− k2(σ̂ − σ) (3.89)

where θ̂, ϕ̂, βθ and βϕ will be defined later. This observer is unique due to

the availability of an extra design parameter choice in the form of βθ and βϕ,

similar to Immersion and Invariance (I & I) methods [37]. However unlike the I

& I method, in this paper, we do not need to enforce the manifold attractivity
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condition. As mentioned in the introduction, the linearized transfer function

from the measurement σ to the unknown parameters θ∗ and ϕ∗ has two poles

at the origin, implying that the transfer function is not strictly positive definite,

leaving our problem incompatible with the method suggested by Cho and

Rajamani [38].

Using the same definition of z = [z1, z2]
T from Eq.3.13, gives us the

error dynamics:

ż = k

[
−I3×3 I3×3

−I3×3 O3×3

]
z +

1

k

[
O3×1

Λ(ω̂)(θ̂ + βθ)− Λ(ω)θ∗ +W (τ )(ϕ̂+ βϕ − ϕ∗)

]
(3.90)

The quantity (ϕ̂+βϕ−ϕ∗) takes the physical meaning of the parameter

estimation error. Consider the Lyapunov-like candidate function

V =
1

k

[
zT
1 z1 +

3

2
zT
2 z2 − zT

1 z2

]
+

1

2γ1k2
∥θ̂+βθ−θ∗∥2+ 1

2γ2k2
∥ϕ̂+βϕ−ϕ∗∥2

(3.91)

For the inertia terms, let us define error states

zθ =
θ̂ + βθ − θ∗

k
(3.92)

zϕ =
ϕ̂+ βϕ − ϕ∗

k
(3.93)

and combine these with z to form the concatenated state

Z =

[
σT

e

ωT
e

k
zT
θ zT

ϕ

]T
=
[
zT zT

θ zT
ϕ

]T
(3.94)

Using the constants c1 and c2 from Eqs. 3.25 and 3.26 respectively, we
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can bound the function in Eq.3.91 at any time t as follows:

c1∥z(t)∥2 ≤ V (t) ≤ c2∥z(t)∥2 +
1

γ1
∥zθ(t)∥2 +

1

γ2
∥zϕ(t)∥2 (3.95)

The derivative of Eq.3.91 can be simplified to

V̇ = −∥z1∥2 − ∥z2∥2 +
1

k2
(3z2 − z1)

T [Λ(ω̂)− Λ(ω)]θ∗

+
1

k2
(3z2 − z1)

T
[
Λ(ω̂)(θ̂ + βθ − θ∗) +W (τ )(ϕ̂+ βϕ − ϕ∗)

]
+

1

γ1k2
(θ̂ + βθ − θ∗)T (

˙̂
θ + β̇θ) +

1

γ2k2
(ϕ̂+ βϕ − ϕ∗)T (

˙̂
ϕ+ β̇ϕ) (3.96)

The first three terms of this equation do not involve the inertia esti-

mate error and can follow the same procedure as the non-adaptive case. Thus,

if we manage to make the adaptation terms equal zero, we can use the Bar-

balat’s lemma [41] to prove asymptotic convergence to zero of the error states.

However, if we did not have the choice of the control knobs βθ ∈ R18×1 and

βϕ ∈ R6×1, the update law
˙̂
θ would have to involve z2 which is not an available

error state, only z1 is available. This is what necessitates the inclusion of these

control knobs we shall now define as:

βθ =
−3γ1
k

Λ(ω̂)Tz1 (3.97)

βϕ =
−3γ2
k

W (τ )Tz1 (3.98)

The derivatives of these terms are:

β̇θ = 3γ1Λ(ω̂)Tz1 − 3γ1k
2Λ(ω̂)Tz2 −

3γ1
k

(
∂Λ

∂ω̂
˙̂ω

)T

z1 (3.99)
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β̇ϕ = 3γ2W (τ )Tz1 − 3γ2W (τ )Tz2 −
3γ1
k

(
∂W

∂τ
τ̇

)T

z1 (3.100)

The details of the partial derivatives are discussed in Appendix B.

Substituting these derivatives back into Eq.3.96, the z2 term cancels

out and for the rest of the inertia error terms, with learning rates γ1 and γ2,

we choose the following update rules:

˙̂
θ =

3γ1
k

(
∂Λ

∂ω̂
˙̂ω

)T

z1 − 2γ1Λ
T (ω̂)z1 (3.101)

and

˙̂
ϕ =

3γ2
k

(
∂W

∂τ
τ̇

)T

z1 − 2γ2W
T (τ )z1 (3.102)

Thus with these choices for the inertia estimate terms, we finally have

V̇ = −∥z1∥2 − ∥z2∥2 +
1

k2
(3z2 − z1)

T (Λ(ω̂)− Λ(ω))θ∗ (3.103)

We know that Λ(ω)θ∗ is just a different representation of J−1ω∗Jω.

Thus we can bound the last term in the equation above using Eq. 3.23:

1

k
(Λ(ω̂)− Λ(ω))θ∗ ≤

(
2αωm∥z2∥+ kβ∥z2∥2

)
(3.104)

Going back to Eq. 3.103,

V̇ ≤ −∥z∥2 + 1

k
(3∥z2∥+ ∥z1∥)

(
2αωm∥z2∥+ kβ∥z2∥2

)
≤ −∥z∥2 + 4

k
∥z∥2 (2αωm + kβ∥z∥)

= −
(
1− 8αωm

k

)
∥z∥2 + 4β∥z∥3 (3.105)
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where similar to the non-adaptive case, α = JM
Jm

is the ratio of the nominal

maximum and minimum eigenvalues JM and Jm of J and β =
√

α(α− 1). To

ensure the first term is negative, we can choose k such that

k > 8ωmα = 8ωm
JM
Jm

(3.106)

Since θ∗ is not known in this case, a conservative upper bound on the

largest eigenvalue JM and lower bound on the smallest eigenvalue Jm of the

inertia matrix can be used.

Now if we manage to restrict the initial conditions for the states that

will make V̇ (t) ≤ 0 for all time t ≥ 0, we can then have a non-increasing V ,

that is, V (t) ≤ V (0), ∀t > 0. If this condition is met, using Eq.3.95, we have

c1∥z(t)∥2 ≤ V (t) ≤ V (0) ≤ c2∥z(0)∥2 +
1

2γ1
∥zθ(0)∥2 +

1

2γ2
∥zϕ(0)∥2

which leads to ∥z(t)∥2 ≤ c2
c1
∥z(0)∥2 + 1

2c1γ1
∥zθ(0)∥2 +

1

2c1γ2
∥zϕ(0)∥2

(3.107)

Let us define a new constant

µ2
0 ≜ max

[
c2
c1
,

1

2c1γ1
,

1

2c1γ2

]
(3.108)

which always satisfies µ0 > 1 since c2 > c1.

Thus whenever V̇ (t) ≤ 0, we have

∥z(t)∥2 ≤ µ2
0

(
∥z(0)∥2 + ∥zθ(0)∥2 + ∥zϕ(0)∥2

)
leading to ∥z(t)∥ ≤ µ0∥Z(0)∥ (3.109)
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We can modify Eq.3.105 to

V̇ ≤ −
(
1− 8αωm

k

)
∥z∥2 + 4β∥z∥2µ0∥Z(0)∥

= −4βµ0∥z∥2
[

1

4µ0β

(
1− 8αωm

k

)
− ∥Z(0)∥

]
(3.110)

For an initial condition

∥Z(0)∥ ≤ 1

4µ0β

(
1− 8αωm

k

)
≜ ρa(k) (3.111)

we have

V̇ ≤ −4µ0µ1β∥z∥2 ≤ 0 (3.112)

Eq.3.111 defines ρa(k) as a condition on the initial error state which

differs from Eq.3.32 by a scaling constant µ0, instead of just
√

c2/c1, but

ρa(k) > 0 is still positive due to Eq.3.106, and

µ1 =
1

4µ0β

(
1− 8αωm

k

)
− ∥Z(0)∥ > 0 (3.113)

It is to be noted that unlike the non-adaptive case, this upper bound is now

on the full state Z(0) and not just on z(0), the implications of which will be

discussed later.

Similar to the non-adaptive scenario, if we select Z(t0) at time t0 = 0

without loss of generality such that ∥Z(0)∥ ≤ ρa(k) we can ensure V̇ (t) ≤

0, ∀t ≥ 0. For a small enough initial ∥Z(0)∥, V is non-increasing and thus

limt→∞ V (t) = V∞ exists, implying V ∈ L∞ and z ∈ L∞. Since V is bounded,

the terms
(
θ̂ + βθ − θ∗

)
and

(
ϕ̂+ βϕ − ϕ∗

)
are also bounded, leaving the

77



derivative of z to also be bounded using Eq. 3.111, i.e., ż ∈ L∞. Integrating

Eq.3.112 on both sides, ∫ ∞

0

V̇ dt ≤
∫ ∞

0

−4βµ0µ1∥z∥2dt

V∞ − V (0) ≤ −4βµ0µ1

∫ ∞

0

∥z∥2dt∫ ∞

0

∥z∥2dt ≤ V (0)− V∞

4βµ0µ1

(3.114)

which implies z ∈ L2. Using the corollary to the Barbalat’s lemma, since

z ∈ L2 ∩ L∞ and ż ∈ L∞, we have limt→∞ z(t) = 0, so the observer errors

in attitude and angular rate asymptotically converge to zero for the following

region of attraction Z(0) ∈ Ma where

Ma =

{
Z ∈ R30

∣∣∣∣∥σe(0)∥2 +
∥ωe(0)∥2

k2

+
∥θ̂(0) + βθ(0)− θ∗∥2

k2
+

∥ϕ̂(0) + βϕ(0)− ϕ∗∥2

k2
≤ ρ2a(k)

}
(3.115)

The errors in the estimates of the inertia terms zθ and zϕ will also

converge to zero subject to adequate persistence of excitation.

3.3.4 Discussion

The size of the region of attraction ρa for the initial state ∥Z(0)∥ which

guarantees asymptotic convergence of the error state ∥z∥ to zero, is impacted

by the value of the user chosen parameter k, the trajectory followed by the

system, the knowledge we have of α the ratio of the maximum and minimum

eigenvalues of the inertia matrix and by the fact that we are adapting for an

unknown inertia matrix.
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3.3.4.1 Choosing k

The discussion from the non-adaptive section holds, that we have the

option to choose the attitude error state σe(0) to be zero initially by selecting

σ̂(0) = σ(0) but ωe(0), (θ̂(0)+βθ(0)−θ∗) and (ϕ̂+βϕ−ϕ∗) can be arbitrarily

large. Selecting k large enough can accommodate for these large values since

higher k still leads to lower z2, zθ and zΦ. However, higher values of k should

also be accompanied by higher values of γ1 and γ2 since large k reduces c1 =

(5−
√
5)/4k and increases µ0 in Eq. 3.108 at low learning rates. Large values of

µ0 can in turn reduce ρa(k) from Eq. 3.111 and make the region of attraction

smaller.

3.3.4.2 The cost of adaptation

It is important to note that by choosing to adapt for the unknown iner-

tia matrix terms, we do sacrifice on the size of the initial region of attraction.

Eq. 3.111 is different from the non-adaptive case Eq. 3.32 since the adaptive

ROA is for the norm of the full state including the inertia error terms along

with the attitude and velocity states. For the sake of this discussion, let us

consider that the initial attitude error state z1 is zero, that is, σ̂(0) = σ(0).

This would make βθ(0) = βϕ(0) = 0. If there are good estimates available of

the largest and smallest eigenvalues of the inertia matrix, those estimates can

be used for the initial estimates θ̂ and ϕ̂. However, if no good estimates are

available, the initial estimates can just be set to zero, θ̂(0) = 0 and ϕ̂(0) = 0.

If we consider this to be the worst case scenario for the initial guess of the
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inertia parameters, we have zθ(0) = θ∗/k and zϕ(0) = ϕ∗/k and the condition

on the initial errors for convergence is

∥ωe(0)∥2

k2
+

∥θ∗∥2

k2
+

∥ϕ∗∥2

k2
≤ ρ2a(k)

∥ωe(0)∥2 + ∥θ∗∥2 + ∥ϕ∗∥2 ≤ k2

16β2µ2
0

(
1− 8αωm

k

)2

(3.116)

∥ωe(0)∥2 ≤
k2

16β2µ2
0

(
1− 8αωm

k

)2

− ∥θ∗∥2 − ∥ϕ∗∥2

(3.117)

If a better estimate of the inertia terms is available and an upper bound

on their errors is known, those upper bounds can be used in place of ∥θ∗∥ and

∥ϕ∗∥ in the above equations. The condition above is clearly smaller than the

region of attraction for ∥ωe(0)∥ in the non-adaptive scenario, which is the

price to pay for adaptation, along with sacrificing exponential convergence for

asymptotic convergence. However, we can choose k large enough to accommo-

date for any values of the initial rate error, since as k grows, the right hand side

of Eq. 3.116 increases. The value of µ0 is constant at
√
c2/c1 for small values of

k, but for larger values of k and small learning rates γ1 and γ2, the maximum

function in Eq. 3.108 switches to the second or third parameter. For the sake

of this discussion, let us consider a case when γ1 < γ2 and µ2
0 = 1/2c1γ1. In

this case, Eq. 3.116 becomes
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∥ωe(0)∥2 + ∥θ∗∥2 + ∥ϕ∗∥2 ≤ 2c1γ1k
2

16β2

(
1− 8αωm

k

)2

∥ωe(0)∥2 + ∥θ∗∥2 + ∥ϕ∗∥2 ≤ 2(5−
√
5)γ1k

2

64kβ2

(
1− 8αωm

k

)2

∥ωe(0)∥2 + ∥θ∗∥2 + ∥ϕ∗∥2 ≤ (5−
√
5)γ1

32kβ2
(k − 8αωm)

2 (3.118)

Clearly this inequality can be satisfied for any value of the initial errors in

rate and inertia terms by choosing a sufficiently large k and thus guarantee

the convergence results for the attitude and velocity states.

3.3.4.3 Semi-global result

The upper bound on ∥Z(0)∥ in Eq.3.111 in the limit is still finite:

lim
k→∞

ρa(k) =
1

4βµ0

(3.119)

This indicates that the result is once again semi-global since irrespective of

the choice of k, Eq. 3.119 gives the upper bound on the size of the region of

attraction for the full initial state ∥Z(0)∥. This upper bound is impacted by

our choice of α (since β =
√

α(α− 1)), which also directly impacts the lower

bound on our choice of k > 8αωm. In the adaptive case when the true value of

α is unknown, this demonstrates how being overly conservative and choosing

large values of α makes our region of attraction smaller for the initial state.

On the other hand if α is chosen smaller than the true value, the lower bound

on k from Eq. 3.106 could in turn be too small, leading to choices of k that

are too small to provide convergence of the observer to the true states.
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3.3.4.4 Persistence of Excitation

The estimates θ̂ + βθ and ϕ̂ + βϕ will converge to the true values of

θ∗ and ϕ∗ when we have an applied torque that is rich enough or persistently

exciting (PE). It is important to note that we still require the angular velocity

to be bounded. Moreover, while a PE torque helps with the estimation of

the inertia parameters, it is not required for the RIG observer estimates of

the attitude and angular velocity to converge to their true values, which is

guaranteed for any known and bounded torque with initial states satisfying

Eq. 3.111. There are also no PE requirements on any of the non-adaptive

results.

3.3.4.5 Zero torque case

A special case to be noted is when there is no torque acting on the

system. If τ is identically zero, we can avoid adapting for ϕ since W (τ ) = 0

in Eq.3.89 and can thus leave out the zϕ term from the Lyapunov function

in Eq.3.91. This also implies that ϕ̃ = 0 and we can have a bigger region of

attraction for the attitude and rate states in Eq.3.116 using the same Lyapunov

analysis as above without any of the terms involving zϕ and ρa(k), the ROA

for the full state, does not change:

∥z(0)∥2 ≤ ρ2a(k)− ∥zθ(0)∥2 (3.120)
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which in the case when the inertia terms and attitude error are initialized to

zero, θ̂(0) = 0 and σ̂(0) = σ(0), becomes

∥ωe(0)∥2 ≤ k2ρ2a(k)− ∥θ∗∥2 (3.121)

If the system is tumbling through a persistently exciting trajectory, the es-

timates of θ can still converge to the true value and the inertia terms be

recovered from the estimate even in this zero torque scenario.

3.4 Simulations

We perform numerical simulations for a spacecraft with an inertia ma-

trix:

J =

200 12 9
12 170 14
9 14 150

 kg/m2 (3.122)

starting from s(0) = [0, 0, 0]T rad and ω(0) = [0.1, 0.05, 0]T rad/sec.

Two different external torques are used:

τ1 =

 0.1 sin(t)
0.2 cos(2t)
0.3 cos(3t)

Nm (3.123)

and

τ2 =

0.1 cos(2t) + 0.2
0.5 cos(2t) + 0.4
0.1 sin(2t) + 0.2

Nm (3.124)

For the case when the inertia and torque are known accurately, all the

states estimates are initialized to be zero and the error in velocity is shown in

Fig. 3.1 for J , τ1 and k = 20. The estimate can clearly be seen to converge
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Figure 3.1: Angular velocity estimation error norm for non-adaptive known
torque and inertia

84



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

10-6

10-5

10-4

10-3

10-2

Proposed Observer

Numerical Differentiator

Figure 3.2: Angular velocity estimation error norm for 10 Monte Carlo runs
comparing the numerical differentiator and the proposed non-adaptive ob-
server
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Figure 3.3: Comparison of the latency properties of the numerical differentiator
with the proposed non-adaptive observer
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to the real values of the angular velocity and the errors go to zero, within the

tolerance limits of the simulator integration method. If we consider ωm = 0.5,

the region of attraction in this case would be ∥z(0)∥ ≤ 0.14 which was true

for our simulation, ∥z(0)∥ = ∥ωe(0)∥ = 0.11rad/sec.

The impacts of noise are more complicated to understand when the

system is not at rest since the value of the angular velocity states affects the

steady state noise value. Figs. 3.2 shows 10 Monte Carlo runs comparing

the effects of measurement noise on our proposed observer and a numerical

differentiator followed by a low pass filter, where the noise response of our

observer can clearly seen to be orders of magnitude better. Zero mean noise

affects the RIG measurements with an angular random walk of 0.15 deg /
√
hr

(spectral density S = 10−9I3×3rad
2/s) at a sampling time period of δt = 10−3s

(1000Hz frequency) for the same inertia and torque as Fig. 3.1 above. klp = 0.9

was chosen for Eq.3.59 since it presented the best experimental results while

k = 20 was chosen for our observer. Fig. 3.3 shows how the latency for the

proposed observer is lower than the numerical differentiator for the same level

of noise response. A torque of three times higher frequency as Eq.3.123 was

applied to the system with klp = 0.99 and k = 1000 so that the noise response

was of a similar level when tested on a system moving at constant velocity.

The numerical differentiator output waveform in Fig.3.3a visibly lags the true

value while our observer has a much lower latency. The velocity estimation

error is shown in Fig. 3.3b but the error in the numerical differentiator could

not be reduced below this level due to the latency in the output contributing
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to the error. Higher errors due to latency will arise as the system moves at a

higher velocity.

For demonstrating the robustness properties of the observer, we use the

system with inertia J from Eq.3.122 with the non-adaptive observer using an

inertia estimate of

J̄ =

170 22 19
22 180 24
19 24 160

 kg/m2 (3.125)

which represents approximately 5% error in the inertia parameter model. The

torque input from Eq. 3.123 was applied to the system but is unknown to the

observer. For the chosen value of k = 500, the system satisfied Eq.3.76 with

a high value of ζ = 0.99. The angular velocity and norm of the error states

are shown in Fig. 3.4, where once again, the estimate error norm remains

bounded, demonstrating the robustness of the observer to inertia and torque

inaccuracies.

To demonstrate the working of the adaptive observer, we use the same

inertia matrix J above with τ2. Fig.3.5a shows the norm of the angular velocity

error for an initial inertia guess of J̄ above acted upon by τ1, while Fig.3.5b

shows the same results for an initial inertia error of 20% of J with τ2. Both the

simulations were run with k = 300, γ1 = 105 and γ2 = 105. Fig.3.6 compares

the norm of the full error state for the non-adaptive and adaptive observers.

If we consider the parameter estimation error to be represented by

ϕ̃ = ∥ϕ̂+ βϕ − ϕ∗∥ (3.126)
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Figure 3.4: Simulation of the non-adaptive inaccurate inertia and unknown
torque case
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For J with a persistently exciting torque τ2, Fig. 3.7 shows that ϕ̃ converges

to zero. This demonstrates the convergence of the estimate ϕ̂+βϕ to the true

value of ϕ∗, representing the terms in the inverse of the inertia matrix. The

inertia matrix can be retrieved from the estimate ϕ̂+βϕ if required. The plots

for the error in estimating θ∗ follow a trend similar to Fig. 3.7 and have been

left out for brevity. All the time scales for the plots were chosen for the sake

of easier visualization and clarity.

3.5 Conclusions

A novel observer was designed for estimating the angular rate states

from the continuous measurements of a Rate Integrating Gyroscope (RIG),

along with an adaptation modification when the inertia of the system is not

accurately characterized. The construction involves a high-gain element. Such

high gain observers have been shown in the literature to perform better than

numerical differentiators in terms of convergence properties as well as their

response to measurement noise. The observer dynamics are linear in the mea-

surement term and involve a single user chosen parameter which controls the

convergence rate of the estimate and the region of attraction for the initial

value of the state. The non-adaptive observer exhibits robustness to an in-

accurately modeled inertia matrix as well as unknown torque inputs to the

system.
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(a) Adaptive angular velocity estimation error norm for τ1 and
J̄
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(b) Adaptive angular velocity estimation error norm for τ2 and
an initial guess of 0.8 ∗ J

Figure 3.5: Simulations for adaptive inertia and known torque
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Figure 3.6: Comparison of the norm of full error states - Adaptive vs non
adaptive
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Figure 3.7: Norm of the parameter estimation error for ϕ
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Chapter 4

Robocentric SLAM

The future of planetary exploration relies on autonomous rovers which

can navigate themselves in unknown environments [42]. The problem of Si-

multaneous Localization and Mapping (SLAM) for robotic systems has been

extensively studied for spatial exploration [43][44][45]. The idea of using a

robotic agent that combines the problem of building a map of a new space

along with locating the agent in the map being built is ideal for a rover explor-

ing a planet. The robot performing the exploration task is usually equipped

with some form of sensor, often visual, that helps the robot observe its sur-

roundings as well as some form of odometry that helps the robot measure its

own motion. Map building is often done in the form of features extracted from

sensor measurements of the surroundings, stored along with their locations in

a known frame of reference. Knowledge of the position of the rover at the

time of observation is required to place new features on the map or refine their

estimated position. The interlink between robot and feature positions leads to

correlations between their estimates; having both the position of the rover and

features in the filter’s state accounts for these correlations and helps reduce

The research presented in this chapter was performed by the authors and has been
submitted to the Journal of Guidance Control and Dynamics for publication
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errors in both. Planning of the rover’s path by the motion controller requires

the rovers current location relative to the environment. The SLAM objective

is to provide the motion controller with the position of the rover and the map

of features as needed.

The nonlinear SLAM problem is usually formulated as either a recur-

sive filter or via sparse optimization. Keyframe-based Bundle Adjustment

(BA) techniques [46][47] aggregate measurements at different times and use a

numerical optimizer to compute the SLAM solution. Alternatively, recursive

implementations only process the latest measurement and are typically based

on either the Extended Kalman Filter (EKF) or the particle filter. Particle

filters (unlike the EKF) are nonlinear estimators, and their implementations

for SLAM applications, such as FAST-SLAM [48], have their own strengths

and limitations in terms of complexity and consistency. In this chapter we fo-

cus on the EKF-SLAM approach and represent the state and the uncertainty

with an estimated mean and a covariance matrix. EKF-SLAM employs lin-

earization to apply the Kalman filter algorithm to the nonlinear propagation

and measurement functions. Linearization can affect the consistency of the

filter as situations arise when the linear approximation of the function is not

sufficiently accurate. This is particularly problematic because the SLAM sys-

tem is inherently nonlinear and unobservable, a combination known to cause

divergence in the EKF. This phenomenon led to extensive work to study the

consistency of the EKF-SLAM showing that the algorithm is eventually bound

to be inconsistent [49][50][51][2]. Divergence of the SLAM algorithm can be
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detrimental to any exploration task since it can lead to loss of localization

feedback for controlling the rover as well as map feature locations becoming

inconsistent since they are interlinked with the position.

The SLAM linearization approximation introduces apparent observabil-

ity to the unobservable subspace [52]. As a result, the covariance estimates of

the EKF undergo reduction in directions of the state-space where no informa-

tion is actually available, making the filter more confident than it should, thus

creating inconsistency and even divergence. A classic example to demonstrate

the divergence problems of EKF-SLAM is given in Ref.[2], where a stationary

robot with no process noise, observing a single stationary feature, eventu-

ally diverges. A relative measurement between the robot and the features (for

example a LIDAR returning range and bearing angles) is the only sensor avail-

able, and hence the absolute positions in the global frame are not observable,

and neither is the global heading angle.

A source of inconsistency is given by the linearization of the rover’s

heading error which affects the rotation transformation of the odometry; small

errors in heading can lead to large errors in position. In the robocentric ap-

proach [50][3], the global position of the robot is kept as a state in the EKF

together with position of the features relative to it. The robocentric features

positions are fully observable and the measurement model can be linearized

more accurately providing much better consistency characteristics for the EKF

algorithm. Ref.[3], in order to reduce the complexity of the propagation step,

does not propagate the change in robocentric position of the features due to
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the robot’s motion; rather, it appends all odometry values starting from the

latest measurement update step as components of the state vector. When

a new measurement is available from the LIDAR, the global robot position

is updated followed by the features positions, while the odometry states are

discarded. The robocentric mapping idea presented in Ref.[3] has much bet-

ter consistency properties as compared to the traditional EKF because the

odometry states have small uncertainty as they get reset often, but some of

the underlying observability issues are still present. Ref.[53] modifies this ap-

proach for visual-inertial odometry and reduces the computational complexity

by not mapping the features and thus reducing the size of the state-space, an

approach similar to Ref.[54] but including the robocentric idea. The robocen-

tric approach is readily applicable and an excellent choice of SLAM for relative

navigation problems where the objective is to navigate a robot to one or more

of the features being observed.

In this work, we propose two key modifications to the robocentric map-

ping idea. First, the odometry measurements are used to propagate both the

robot’s position and the robocentric features’ positions, with all relevant cor-

relation terms accounted for. Second, we include second order terms of the

Taylor series expansion of the heading error during the propagation step to

greatly improving the consistency of the filter over time. The only minor dis-

advantage to this method is the increased computational complexity in roto-

translating the map features positions during the propagation step whereas

they are stationary in the classic EKF-SLAM formulation. In the counter ex-
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ample proposed by Julier and Uhlmann [2], with a stationary robot and no

process noise, our proposed algorithm never diverges, but neither does the orig-

inal robocentric approach [3]. However, when we make a slight modification to

the counter example in Ref.[2] and add process noise to the propagation step,

the algorithm in Ref.[3] diverges, while the method proposed in this chapter

does not. Moreover, the proposed algorithm is more consistent than existing

methods in the presented simulated scenarios involving a moving robot ob-

serving features using a Lidar. The effectiveness of the method is tested in

a 2D simulation as well as in experiments on a ground rover and compared

against Ref.[3].

The contributions of this chapter are: analysis of the observability of

the states of the EKF in the global and robocentric frame for a better under-

standing of how the transformation impacts the filter, and introduction of the

above-mentioned modifications to the existing robocentric SLAM algorithm to

improve its consistency and robustness.

4.1 EKF-SLAM Algorithm

Consider a rover navigating in a 2D environment, equipped with odom-

etry and a LIDAR. The path taken by the rover is assumed prescribed and

the localization and mapping module does not receive feedback inputs from

the motion controller. We assume a feature detection technique identifies and

extracts points of interest in the measurement data from the LIDAR. The

data used by EKF-SLAM are the range and angle measurements from the
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rover to these features. The odometer is providing measurements of linear

translational and rotational velocity, which can be integrated over time to

obtain the distance moved and change in heading of the robot since the last

odometer reading. We also assume Gaussian random noise with known covari-

ance matrices Q and R corrupting the odometry and LIDAR measurements

respectively.

4.1.1 Classical EKF-SLAM

Standard SLAM applications use the position of the robot

rG
r =

[
xG
r , y

G
r , θ

R
G

]T
and the landmark features

rG
fi
= [xG

fi
, yGfi ]

T

where i = 1, 2, .... uniquely identify the features. The superscript G indicates

the quantity is expressed in a fixed global frame of reference {G} and the quan-

tity θRG is the angle from the global to a robot-fixed robot-centered frame {R}.

Since the center and orientation of the global reference frame is unobservable,

it is typically chosen to be the initial location of the robot setting the initial

uncertainty to zero, which was shown to produce better filter consistency than

choosing any other fixed global frame with non-zero initial uncertainty in the

robot position [3]. The state estimates at any time tk are given by

x̂G
k =

[
r̂G
r (k)

T , r̂G
f1
(k)T , r̂G

f2
(k)T ...

]T
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The propagation step for the classical EKF-SLAM algorithm adds the

odometry uR
k = [δxR

k , δy
R
k , δθ

R
k ]

T to the robot position states. The odometry

measurement is obtained in a robocentric frame of reference {R}.x̄G
r (k + 1)

ȳGr (k + 1)
θ̄G(k + 1)

 =

x̂G
r (k)

ŷGr (k)

θ̂G(k)

+

 T
(
θ̂RG(k)

)T 0
0

0 0 1

uR
k (4.1)

where

T
(
α
)
=

[
cosα sinα
− sinα cosα

]
so that T

(
θ̂RG(k)

)
is the Direction Cosines Matrix to change coordinates from

the global frame to the robocentric frame. The features’ positions remain the

same across the time propagation phase of the filter.

PG is the covariance of the state xG
k given by:

PG =

[
PG
rr PG

rf

PG
fr PG

ff

]
where we have divided the state covariance into the cross covariance of the

robot position and feature positions and their auto-covariances. The propaga-

tion of the covariance is given by

P̄G
rr(k + 1) =

[
∂r̄Gr (k + 1)

∂r̂Gr (k)

]T
P̂G
rr(k)

[
∂r̄Gr (k + 1)

∂r̂Gr (k)

]
+

[
∂r̄Gr (k + 1)

∂u

]T
Q

[
∂r̄Gr (k + 1)

∂u

]
(4.2)

P̄G
rf (k + 1) =

[
∂r̄Gr (k + 1)

∂r̂Gr (k)

]T
P̂G
rf (k) (4.3)

P̄G
ff (k + 1) = P̂G

ff (k) (4.4)
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The noisy measurement from the LIDAR at true robot position [xG
r , y

G
r , θ

R
G]

T

to the n-th landmark feature at true global position [xG
f,n, y

G
f,n]

T in the global

frame is given by

z̃n = zn +

[
wr

wϕ

]
(4.5)

where [wr, wϕ] are the noise corrupting the range and bearing respectively,

with covariance matrix R, and

zn =

[
rn
ϕn

]
=

[ √
(xG

f,n − xG
r )

2 + (yGf,n − yGr )
2

tan−1
(
(yGf,n − yGr )/(x

G
f,n − xG

r )
)
− θRG

]
(4.6)

The filter’s predicted measurement is given by

z̄n =

[
r̄n
ϕ̄n

]
=

[ √
(x̄G

f,n − x̄G
r )

2 + (ȳGf,n − ȳGr )
2

tan−1
(
(ȳGf,n − ȳGr )/(x̄

G
f,n − x̄G

r )
)
− θ̄RG

]
(4.7)

The Jacobian of the measurement equation is

HG
n =

[
HG

r,n HG
f1,n

HG
f2,n

. . .
]

(4.8)

where

HG
r,n =

∂zn

∂rG
r

(4.9)

and

HG
fj ,n

=

{
∂zn
∂rG

fj

if n = j

0 if n ̸= j
(4.10)

The measurement residual is given by

yn = z̃n − z̄n (4.11)

and the innovation covariance matrix is

S = HG
n P̄

G(HG
n )

T +R (4.12)
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The Kalman gain is given by

K = P̄G(HG
n )

TS−1 (4.13)

The updated state and covariance matrix are

x̂ = x̄+Kyn (4.14)

P̂ = P̄ −KHnP̄ (4.15)

4.1.2 Robocentric EKF-SLAM

To handle the well-documented inconsistencies in the above described

classic EKF-SLAM, Ref.[3] proposes the use of a robocentric frame of reference

in which the features locations are stored with respect to a moving frame

attached to the robot. Often times the relative position of the robot with

respect to specific features and locations is all that is needed to accomplish

mission objectives; for example obstacle avoidance, rendezvous with another

robot, searching for a specific feature, or close proximity operations for in-orbit

satellite repair. In those scenarios the global position of neither the robot nor

features is of importance. Thus, in these applications, robocentric SLAM

algorithms provide a more stable method to calculate the needed information.

The state vector of the robocentric EKF includes the position of the robot

in the global frame {G} (which can also be removed when purely relative

information is needed) rG
r =

[
xG
r , y

G
r , θ

R
G

]T
, and the positions of the features

rR
fi
= [xR

fi,
yRf,i]

T expressed in the robocentric frame {R}. The state estimate
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at any time tk is given by

x̂R
k =

[
r̂G
r (k)

T , r̂R
f1
(k)T , r̂R

f2
(k)T ...

]T
(4.16)

The global position of the features can be retrieved as needed.

In Ref.[3] the odometry data are added to the state vector during the

time propagation step, increasing the state dimension. The measurement up-

date step uses this augmented state to correct for the global position of the

robot, the robot-relative positions of the features, and the odometry measure-

ment added to the state. A third filter step is then introduced, the composition

step, which transforms the feature positions to the current robocentric frame

using the updated odometry data and then discards the odometry components

of the state estimate.

In the classic EKF-SLAM approach, the global positions of the robot

and of the features are individually not observable, but their difference is.

Therefore neither uncertainty collapses but relative measurements build cor-

relation between the two. The filter updates the different state components

based on the relative uncertainty between the robot’s position and the fea-

ture’s. If the robot’s position was known exactly, for example, its estimate

would not change when a LIDAR measurement is processed but only the esti-

mate of the feature’s position would change. Larger uncertainty also results in

the measurement Jacobian being potentially evaluated at an estimated state

value far from the truth.

Ref.[3] effectively introduces a new global frame after each measure-

103



ment update, so that the odometry states and the features are individually

unobservable, but their difference is. This method performs better than the

classic EKF-SLAM in terms of consistency because the uncertainty associated

with the odometry states is much smaller than the typical uncertainty asso-

ciated with the robot’s position, hence the filter “knows” where to apply the

measurement update. Yet, under challenging scenarios (for example a long

measurement drop-off or very noisy odometry) the original robocentric EKF-

SLAM can still diverge. The stationary robot observing a stationary feature

counter example [2] is an example where EKF-SLAM diverges and switching

to a robocentric frame helps with filter consistency. However, if process noise

is added to this same example scenario, the robocentric approach in Ref.[3]

does diverge after extended periods of time. To mitigate this behavior, we

introduce a new robocentric EKF-SLAM formulation.

4.2 Modified Robocentric EKF-SLAM

In the proposed algorithm, we recommend the use of the robocentric

frame but eliminate the process of appending the odometry data to the state.

Instead, we use odometry in the time propagation step to move the estimated

position of the robot and at the same time transform the estimated feature

positions to the new robocentric frame, removing the need for the composition

step of Refs.[3] [53]. The propagation and update steps are described next.
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4.2.1 Propagation

Like before, the true position of the robot is rG
r =

[
xG
r , y

G
r , θ

R
G

]T
and

the odometry measurement is modeled as

uR
k =

 T
(
θRG(k)

) [xG
r (k + 1)− xG

r (k)
yGr (k + 1)− yGr (k)

]
θRG(k + 1)− θRG(k)

+ vk (4.17)

the heading angle θRG is counted positive from G to R so that T
(
θRG(k)

)
is

the DCM to transform coordinates from G to R. The odometry noise vk is

assumed white, zero-mean, with covariance matrix Q.

The odometry measurements uR
k = [δrR

r (k)
T , δθRk ]

T = [δxR
k , δy

R
k , δθ

R
k ]

T

are used to propagate the estimated state as:

r̄G
r (k + 1) = r̂G

r (k) +

[
T
(
θ̂RG(k)

)T
δrR

r (k)
δθRk

]
(4.18)

This equation is obtained linearizing all the errors and then taking the expected

value. Starting from

T
(
θRG(k)

)
= T

(
eθ(k)

)
T
(
θ̂RG(k)

)
(4.19)

where the heading angle estimation error is given by eθ(k) = θRG(k) − θ̂RG(k)

and taking the expected value of the right-hand side of Eq. (4.19) we obtain

E
{
T
(
eθ(k)

)
T
(
θ̂RG(k)

)}
= E

{
T
(
eθ(k)

)}
T
(
θ̂RG(k)

)
(4.20)

E
{
T
(
eθ(k)

)}
= E

{[
cos(eθ(k)) sin(eθ(k))
− sin(eθ(k)) cos(eθ(k))

]}
≈ E

{[
1 eθ(k)

−eθ(k) 1

]}
=

[
1 0
0 1

]
(4.21)
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this approximation leads to equation (4.18); so long as both eθ(k) and δrR
r (k)

are small, it produces satisfactory results.

Since the rover roto-translates, the robocentric coordinates of the j-th

landmark feature roto-translate in the opposite direction

r̄R
fj
(k + 1) = T (δθRk )

(
r̂R
fj
(k)− δrR

r (k)
)

(4.22)

Similar to the discussion above, Eq. (4.22) is accurate so long as the uncertainty

associated with eθ(k) and the value rR
fj
(k) + δrR

r (k) are small. In our analysis

we found this not to be always true which leads to filter divergence. Our

proposed approach is to include key second order terms:

E
{
T
(
eθ(k)

)}
≈ E

{[
1− eθ(k)

2/2 eθ(k)
−eθ(k) 1− eθ(k)

2/2

]}
=

[
1−Q(3, 3)/2 0

0 1−Q(3, 3)/2

]
(4.23)

where Q(3, 3) is the variance of δθRk . By adding the second order terms,

Eq. (4.22) is replaced by

r̄R
fj
(k + 1) = T (δθRk )

(
r̂R
fj
(k)− δrR

r (k)
)
− 1

2
T (δθRk )

(
r̂R
fj
(k)− δrR

r (k)
)
Q(3, 3)

(4.24)

For the covariance time propagation, we define the matrices

F =


Fxx 03×2 . . . 03×2

02×3 T
(
δθRk
)

. . . 02×2
...

. . .
...

...
. . . T

(
δθRk
)
 (4.25)

where

Fxx =

[
I2×2 dT

(
θ̂RG(k)

)T
δrR

r (k)
01×2 1

]
(4.26)
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and

B =


T
(
θ̂RG(k)

)T 0
0

0 0 1
T (δθRk ) dT (δθRk )

(
r̂R
f1
(k)− δrR

r (k)
)

T (δθRk ) dT (δθRk )
(
r̂R
f2
(k)− δrR

r (k)
)

...
...

...


(4.27)

where

dT (α) =

[
− sin(α) cos(α)
− cos(α) − sin(α)

]
(4.28)

The classic EKF first order covariance propagation is given by

P̄k+1 = FPkF
T +BQBT (4.29)

The covariance of the landmark features is further increased to include the

second order terms

P̄fi,fj(k + 1) ⇐P̄fi,fj(k + 1) +
1

2
T (δθRk )AijT (δθ

R
k )

TQ(3, 3)2 (4.30)

for all i and j, where Pfi,fj are the 2× 2 components of the covariance matrix

whose row corresponds to the i-th landmark and whose column corresponds

to the j-th landmark, and where

Aij =
(
r̂R
fi
(k)− δrR

r (k)
)(
r̂R
fj
(k)− δrR

r (k)
)T

(4.31)

Two unique features about our algorithm are worth mentioning. First,

this propagation step converts the features coordinates from robocentric frame

at time tk to the robocentric frame at time tk+1 fully accounting for the com-

mon process noise terms corrupting the propagation of both the robot position
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and the features positions. Second, we include selected second order terms to

aid the consistency of the filter. While the second order terms we chose to

include are sufficient to insure consistency in all of the test performed, it

is possible that different scenarios might necessitate additional second order

terms, or perhaps even higher than second order terms. The extreme condi-

tions that might require the extra terms however, seem unlikely for practical

situations.

In all examples and experiments performed, the second order compo-

nents associated with the term T
(
θRG(k)

)T
δrR

r (k) in the robot’s position prop-

agation were negligible because the odometry term δrR
r (k) is small. It is

plausible, however, that long propagation steps due to measurement blackouts

would cause this term to be needed.

4.2.2 Update

The predicted measurement for the ith landmark is given by

z̄i =

[√
(x̄R

fi
)2 + (ȳRfi)

2

tan−1
(
ȳRfi/x̄

R
fi

) ] (4.32)

while the measurement Jacobian is given by

HR =
[
02×3 . . . HR

fi
. . .
]

(4.33)

where

HR
fi
=

 x̄R
fi

z̄i(1)

ȳRfi
z̄i(1)

−ȳRfi
z̄i(1)2

x̄R
fi

z̄i(1)2

 (4.34)
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Matrix HR above is linearized along the estimated relative position between

the robot and the features. The global position or heading of the robot are

not used in evaluating this derivative and hence their uncertainties do not

contribute to errors in the Jacobian’s evaluation. The update equations follow

the conventional Kalman filter approach shown in Eqs. 4.11 - 4.15.

4.2.3 New Features

When a feature that is not yet part of the state is detected by the LI-

DAR, the new measurement is used to initialize the feature’s estimate rather

than to update the state. Moreover, the state covariance matrix is also aug-

mented to include the uncertainty in the position of the feature as seen by the

robot’s current frame. If the measurements received for this new feature are

given by the range and heading [ri, ϕi]
T , the state is augmented as:

x̄k+1 ⇐
[
x̄T
k+1, ri cosϕi, ri sinϕi

]T
(4.35)

and covariance as:

P̄k+1 ⇐
[
P̄k+1 0
0 HziRHT

zi

]
(4.36)

where R is the measurement noise covariance matrix and

Hzi =

[
cosϕi −r sinϕi

sinϕi r cosϕi

]
(4.37)

Once again, the global position of the robot does not play a role in the

addition of new features to the state, since all position estimates for the filter

are stored in the robocentric frame of reference.
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4.3 Observability Analysis

It is well known that the global frame and azimuth are unobservable

for terrestrial SLAM problems. The classical EKF-SLAM parameterizes the

state with the global position of both the robot and the features, and with

this parameterization the difference between the two is observable, while a

global roto-translation of both is unobservable. With the proposed robocen-

tric formulation, the state vector is naturally divided into its observable and

unobservable components: the robocentric features are observable and the

global robot position is not. That is to say, the initial global uncertainty of

the robot’s location and heading cannot be improved upon using odometry and

lidar measurements only. This is one of the reasons many SLAM algorithms

define an arbitrary global frame to coincide with the robot’s initial pose, hence

the initial covariance associated with the robot’s state is set to zero.

Perfect odometry (or zero process noise) would keep the robot’s and

the features’ uncertainty completely uncorrelated. Under this hypothetical

scenario the robot’s azimuth uncertainty would remain constant, and it’s lo-

cation uncertainty will grow linearly with slope determined by the initial az-

imuth uncertainty. In the absence of process noise, the robocentric feature’s

uncertainty will monotonically decrease to zero while they are observed. The

counter example from Ref. [2] is a stationary robot problem observing a single

feature and showed that EKF-SLAM is inevitably doomed to diverge. The di-

vergence is due to the combined effect of the non-linearity of the system which

is also unobservable. The robocentric approach however does not suffer from
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this divergence, because the observable and unobservable states are separated

and hence the filter “knows” where to apply the measurement update.

Adding process noise (odometry uncertainty) correlates the robot’s

global position to the features robocentric position. This allows for some of

the uncertainty added to the robot’s position from process noise to be scaled

back with a lidar measurement update. The robot’s pose is still unobservable

(only uncertainty added during propagation can be removed with measurement

updates, the initial uncertainty of the global frame remains).

When adding process noise to the counter example in Ref. [2] the robo-

centric approach diverges when the second order components are omitted.

The proposed addition of the second order components (Eqs. 4.22 and 4.30)

compensate for the nonlinearities that cause this divergence and the proposed

solution is able to handle this very challenging scenario. The process noise

enters the system nonlinearly and causes the correlation between robot states

and landmark features. The feature’s uncertainty and this correlation are

then “used” by the filter to distribute the measurement update between the

robot states and the feature. Adding the second order contributions allows for

correctly accounting for the uncertainty and hence correctly distributing the

measurement update and avoiding divergence.

4.4 Experiments

The performance of the proposed algorithm is tested in simulation in

a 2D SLAM environment as well as on the dataset from Ref. [4]. A ground
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robot equipped with an odometer and a lidar is considered. We assume the

odometry data provides distance moved by the robot in the forward direction

(X axis in the robot frame) and the change in heading angle of the robot

(angular velocity). The Lidar can recognize features in the environment at up

to a distance of 100m from the robot and at an angle of within 15 degrees in

either direction of the robot’s heading. The odometer measurement error has

standard deviation of 2cm/sec in linear velocity and 0.1 deg/sec in angular

velocity, uncorrelated with each other. The range and bearing measurement

are assumed to also be uncorrelated, with an error standard deviation of 1cm

in range and 0.05 degrees in bearing for each measurement.

The counterexample from Ref. [2] consists of a static robot (which

knows it is static, hence odometry is not needed) observing a single feature.

From Ref. [2] it is known that the classic EKF-SLAM diverges in this scenario

while both our proposed approach and the robocentric SLAM from Ref. [3]

perform well. The first test case shown is a variation of the counterexample

from Ref. [2] in which the robot is stationary but it does not know it is. Hence,

odometry is used by the robot and the odometry error corrupts the estimate.

Figs. 4.1 and 4.2 show the performance of both our proposed algorithm and

the robocentric SLAM from Ref. [3]. It can be seen that while our algorithm

performs correctly the robocentric approach from Ref. [3] diverges.

In the second test case the robot follows the circular path surrounded

by features, shown in Fig. 4.3. Figs. 4.4 and 4.5 shows the performance of

the proposed algorithm while Figs. 4.6 and 4.7 shows the performance of the
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robocentric algorithm from Ref.[3]. The results show that our algorithm is

able to estimate both the robot’s position and the features locations, while

the algorithm from Ref. [3] is only able to correctly estimate the features.

Monte Carlo simulation runs(zoomed in on the time scale for better visibility)

for the second test case are shown in Figs. 4.8, 4.9, 4.10 and 4.11.

The third test case shown is the real-world data-set from Ref. [4]. The

data-set was collected using a set of robots equipped with wheel odometry

which provides forward translational and angular velocity, a camera providing

range and bearing measurements to features which are barcodes in the envi-

ronment and the true locations of the robot and the features using a motion

capture system. The noise characteristics of the odometer and camera system

are provided in the paper [4]. Figs. 4.12 and 4.13 shows the performance of the

proposed algorithm for this data-set which can be seen to perform correctly in

estimating both the robot’s state and the features’ location.

The fourth and last test case is on a real 4-wheeled robot with linear and

angular odometry and a camera detecting QR codes for features (Fig. 4.14)

providing range and bearing measurements. The setup and robot are shown in

Fig. 4.15. Figs. 4.17 and 4.18 shows the performance of the proposed algorithm

for the experimental setup with the robot following the trajectory shown in

Fig. 4.16. The odometer error standard deviation is 2cm/sec in linear velocity

and 0.01 deg/sec in angular velocity, while the LIDAR measurements have 5

cm in range and 5 degrees in bearing.
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4.5 Conclusions

The problem of planetary exploration by a ground rover performing Si-

multaneous Localization and Mapping (SLAM) was considered in this chapter.

A novel robocentric Extended Kalman Filter (EKF) based SLAM algorithm

was proposed which uses a second order linearization for the propagation func-

tion and transforms the full feature state to a frame with its origin at the

robots position before every update step. This idea improves upon existing

robocentric EKF-SLAM algorithms in the literature and prevents divergence

in challenging scenarios where existing methodologies failed. The proposed al-

gorithm also performed consistently in the stationary robot with process noise

scenario which was previously not possible. The algorithm is tested in sim-

ulation, with a real world data-set, and on a physical robot; and performed

successfully in all the scenarios including those where existing EKF-SLAM

algorithms failed.
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Figure 4.1: Robot and Feature position from the proposed algorithm for the
stationary robot case from Ref. [2]
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Figure 4.2: Robot and Feature position from Ref. [3] for the stationary robot
case from Ref. [2]
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Figure 4.4: Global Robot Position of the proposed algorithm in test case 2
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(a) Local Features

(b) Global Features

Figure 4.5: Performance of the proposed algorithm in test case 2
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Figure 4.6: Robot Position in Global Frame for Ref. [3] in test case 2
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(b) Global Features for Ref. [3]

Figure 4.7: Performance of the robocentric algorithm from Ref. [3] in test case
2
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Figure 4.8: Monte Carlo Robot Position for the proposed algorithm in test
case 2
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(a) Local Features

(b) Global Features

Figure 4.9: Monte Carlo Performance of the proposed algorithm in test case 2
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Figure 4.10: Monte Carlo Global Robot Position Frame for Ref. [3] in test case
2
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(a) Local Features for Ref. [3]

(b) Global Features for Ref. [3]

Figure 4.11: Monte Carlo Performance of the robocentric algorithm from
Ref. [3] in test case 2
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Figure 4.12: Global Robot Position of the proposed algorithm using the data-
set from Ref [4]
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(a) Local Features

(b) Global Features

Figure 4.13: Performance of the proposed algorithm using the data-set from
Ref [4]
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Figure 4.14: Features used in the experiments
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Figure 4.15: Robot used for experiments
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Figure 4.16: Trajectory followed in the Experimental Setup
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Figure 4.17: Global Robot Position of the proposed algorithm (test case 4)
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Figure 4.18: Experimental performance of the proposed algorithm (test case
4)
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Chapter 5

Conclusions

Onboard control, tracking and navigation is a crucial part of the de-

velopment of autonomous systems for safe and efficient transportation and

space exploration. While mission planning and high level decisions on system

behavior can be made beforehand or remotely, low level control and state esti-

mation for most vehicles has to be performed onboard, requiring more efficient

and better performing algorithms for these tasks. This dissertation presents

novel methods of precise control, estimation and mapping for space systems

and autonomous robots. When a trajectory is given to a spacecraft, a low

level controller is required for tracking the attitude suggested by the trajec-

tory. The first contribution of this dissertation provides such a controller for

attitude tracking of a spacecraft with inertia uncertainties. The idea of using

dynamic gains can be further applied to different systems with a wide class of

system dynamics, which can be the focus of future works. A limitation of this

adaptive controller is that it assumes the inertia of the system is constant and

non-rigid spacecrafts with time varying inertia matrices were not considered.

The estimation and state tracking part of the dissertation focuses on

angular velocity estimation using measurements from Rate-Integrating Gyro-
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scopes (RIGs). While Kalman filters are often used to estimate the velocity

states, unlike the proposed observer they require knowledge of the charac-

teristics of the noise affecting the system. An in-depth study comparing the

proposed observer with Kalman filters can prove useful in understanding the

applicability of the observer in different scenarios. Moreover, the observer was

designed in a continuous time setting but would need to be implemented in

discrete time. The discretization process and its impact on the observer con-

vergence properties as well as its response to measurement noise are scope for

future work. The adaptive observer once again assumes constant inertia and

knowledge of the upper and lower bounds on the norm of the inertia matrix.

The final part of this dissertation considers Simultaneous Localization

and Mapping (SLAM) for robots and spacecraft required in planetary explo-

ration, close-proximity operations, rendezvous and docking operations. This

modified robocentric SLAM algorithm could contribute to the success of future

autonomous space navigation and planetary exploration missions by providing

long term consistent localization and map estimates, especially if further de-

veloped for the 3-dimensional scenario. The transformation of the features to

the robocentric frame after every propagation step could be computationally

expensive for some platforms, especially when the number of features increases,

making the state space and covariance matrices too large. The focus of this

work is limited to estimation and does not consider different sensing modal-

ities, feature extraction methods and data association. Moreover, a study

of the time and memory complexity of this algorithm when compared with
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other Kalman filter based methods as well as optimization based methods can

provide a compelling argument for the adoption of the proposed method. Ap-

plicability of the algorithm to different system and measurement models as

well as their impact on the consistency of the filter need to be studied. Apply-

ing the solutions from this dissertation to more complex dynamical systems

as well as improvements in all the modules along the estimation and control

pipeline for autonomous systems provide necessary and interesting avenues for

future work leading to a more autonomous world of the future.
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Appendix A

Nonlinear Stability Analysis

We review the following classical definitions [55, section 4] here:

1. Exponential Stability: The equilibrium point x = 0 of ẋ = f(t,x) is

exponentially stable if there exist finite positive constants c,k, and λ

such that for all t ≥ t0, we have

∥x(t)∥ ≤ k∥x(t0)∥ exp−λ(t−t0), ∀∥x(t0)∥ < c

and globally exponentially stable if this condition is satisfied for any

initial state x(t0). The result is said to be uniform exponentially stable

(UES) if the preceding condition holds for any initial time t0 ∈ ℜ.

2. Asymptotic Stability: The equilibrium point x = 0 of ẋ = f(t,x) is

asymptotically stable if there exist finite positive constant c such that

we have

lim
t→∞

∥x(t)∥ = 0, ∀∥x(t0)∥ < c

and globally asymptotically stable if this condition is satisfied for any

initial state x(t0).

3. Class K function: A continuous function ϕ : [0,∞) → ℜ+ with ϕ(0) = 0

and strictly increasing on [0,∞)
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4. Class KR function: ϕ ∈ K with lim
r→∞

ϕ(r) = ∞

5. Same order of magnitude: Two functions ϕ1, ϕ2 ∈ K on [0,∞) are said

to be of same order of magnitude if ∃ positive constants k1 and k2 such

that k1ϕ1(r1) ≤ ϕ2(r2) ≤ k2ϕ1(r1) ∀r1 ∈ [0,∞)

6. Positive Definite function: A function V (t,x) : ℜ+ ×Br → ℜ with Br =

{x ∈ ℜn ∋ ∥x∥ < r} for some r > 0 and V (t, 0) = 0 ∀t ∈ ℜ+ is said to

be positive definite if there exists a continuous function ϕ ∈ K such that

V (t,x) ≥ ϕ(∥x∥) ∀t ∈ ℜ+,x ∈ BR

7. Decrescent function: A function V (t,x) : ℜ+ ×Br → ℜ with Br = {x ∈

ℜn ∋ ∥x∥ < r} for some r > 0 and V (t, 0) = 0 ∀t ∈ ℜ+ is said to be

decrescent if ∃ a function ϕ ∈ K such that |V (t,x)| ≤ ϕ(∥x∥) ∀t ∈ ℜ+

and ∀x ∈ Br.

8. Radially unbounded function: A function V (t,x) : ℜ+ × ℜn → ℜ with

V (t, 0) = 0 ∀t ∈ ℜ+ is said to be radially unbounded if ∃ a function

ϕ ∈ KR such that |V (t,x)| ≥ ϕ(∥x∥) ∀t ∈ ℜ+ and ∀x ∈ ℜn.

9. Lyapunov stability theorem [55, pp. 154]: Suppose there exists a de-

crescent and radially unbounded function V (t,x) : ℜ+ × ℜn → ℜ+

with continuous first order partial derivatives with respect to t and

x and V (t, 0) = 0 ∀t ∈ ℜ+. If there exist ϕ1, ϕ2, ϕ3 ∈ KR of the

same order of magnitude such that ϕ1(∥x∥) ≤ V (t,x) ≤ ϕ2(∥x∥) and

V̇ (t,x) ≤ −ϕ3(∥x∥) then the equilibrium point x = 0 of ẋ = f(t,x) is

global UES.
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10. Positively Invariant set: A set M is said to be an invariant set for a

system ẋ = f(x) if

x(0) ∈ M =⇒ x(t) ∈ M,∀t ≥ 0

11. LaSalle’s Invariance Principle: Let Ω ⊂ D be a compact set that is

positively invariant with respect to ẋ = f(x). Let V : D → R be a

continuously differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be

the set of all points in Ω where V̇ (x) = 0. Let M be the largest invariant

set in E. Then every solution starting in Ω approaches M as t → ∞.

12. Barbalat’s Lemma: If f(t) has a finite limit as t → ∞ and ḟ(t) is a

uniformly continuous function, then

lim
t→∞

ḟ(t) = 0
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Appendix B

Rate Integrating Gyroscope Observer

B.1 Regressor Matrix θ∗

Consider the dynamics from Eq.3.1 rearranged as Eq.3.86

ω̇ = −J−1ω∗Jω + J−1τ (B.1)

Let the symmetric inertia matrix have components

J =

J11 J12 J13
J12 J22 J23
J13 J23 J33

 (B.2)

Using the eigenvectors v1, v2 and v3 of J , there exists an orthogonal matrix R:

R =

 ↑ ↑ ↑
v1 v2 v3
↓ ↓ ↓

 (B.3)

which converts the inertia to the principal axis frame as matrix D which has

all its off-diagonal terms to be zero such that:

J = RDRT (B.4)

and

J−1 = RD−1RT (B.5)
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whereD = diag[D1, D2, D3], and RTR = I3×3. However, since J is now known,

we do not know the matrices D or R, which are functions of the terms of the

inertia matrix.

Now consider the term J−1ω∗Jω. Substituting for the value of J ,

J−1ω∗Jω = RD−1RTω∗RDRTω

= RD−1
(
RTω

)∗
RTRDRTω

= RD−1η∗Dη (B.6)

where η = [η1, η2, η3]
T = RTω.

Since D is a diagonal matrix, we also have

η∗Dη =

D2 −D3 0 0
0 D3 −D1 0
0 0 D1 −D2

η2η3η3η1
η1η2

 = S

η2η3η3η1
η1η2

 (B.7)

Using the vector Kronecker product,

η ⊗ η =
[
η21, η1η2, η1η3, η2η1, η

2
2, η2η3, η3η1, η3η2, η

2
3

]T
(B.8)

we haveη2η3η3η1
η1η2

 =

0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

η ⊗ η = M(η ⊗ η) (B.9)

Also

η ⊗ η = RTω ⊗RTω = (RT ⊗RT )(ω ⊗ ω) (B.10)

Thus

J−1ω∗Jω = RD−1SM(RT ⊗RT )(ω ⊗ ω) (B.11)
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Since ω⊗ω has duplicate entries, we can reduce redundancies by using

ω ⊗ ω =



ω2
1

ω1ω2

ω1ω3

ω2ω1

ω2
2

ω2ω3

ω3ω1

ω3ω2

ω2
3


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




ω2
1

ω1ω2

ω1ω3

ω2
2

ω2ω3

ω2
3

 ≜ NΩ (B.12)

Hence

J−1ω∗Jω = RD−1SM(RT ⊗RT )NΩ

= Λ(ω)vec
(
RD−1SM(RT ⊗RT )N

)
= Λ(ω)θ∗ (B.13)

where vec is the vectorization operation along the row and using Ω

from Eq.B.12,

Λ(ω) =

ΩT 0 0
0 ΩT 0
0 0 ΩT

 (B.14)

and

θ∗ = vec
(
RD−1SM(RT ⊗RT )N

)
(B.15)

Thus we have managed to separate the components of ω from the cross

product term and consolidated all the unknown inertia component into one

vector which can be estimated using the adaptive control method proposed in

this paper.
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For the time derivative of Λ(ω) which is required in Eq.3.99, we can

first differentiate Ω:

Ω̇ =


2ω1ω̇1

ω1ω̇2 + ω2ω̇1

ω1ω̇3 + ω3ω̇1

2ω2ω̇2

ω2ω̇3 + ω3ω̇2

2ω3ω̇3

 (B.16)

which leads to

dΛ(ω)

dt
=

∂Λ

∂ω

dω

dt
=

Ω̇T 0 0

0 Ω̇T 0

0 0 Ω̇T

 (B.17)

B.2 Regressor Matrix ϕ∗

Similar to the previous section, consider next the term J−1τ . By per-

forming symbolic multiplication and then partial differentiation with respect

to the torque terms, we have

J−1τ =

τ1 0 0 τ2 −τ3 0
0 τ2 0 τ1 0 τ3
0 0 τ3 0 −τ1 τ2




J22J33 − J2
23

J11J33 − J2
13

J11J22 − J2
12

J13J23 − J12J33
J22J13 − J12J23
J12J13 − J11J23

 /det(J) = W (τ )ϕ∗

(B.18)

where det is the determinant of the matrix and ϕ∗ has all the inertia terms.

Moreover, the time derivative of W as required in Eq.3.100 can be
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computed as

dW

dt
=

∂W

∂τ

dτ

dt
=

τ̇1 0 0 τ̇2 −τ̇3 0
0 τ̇2 0 τ̇1 0 τ̇3
0 0 τ̇3 0 −τ̇1 τ̇2

 = W (τ̇ ) (B.19)
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