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Our world is designed by humans, for humans. This makes humanoid

robots the most suitable general-purpose platform to automate repetitive or

dangerous tasks done by people. However, due to the complex dynamics and

high degrees-of-freedom of humanoid robots as well as the shortage of demon-

stration data, research in robot learning for humanoids is scarce. To address

these challenges, I present a VR interface named TRILL (TeleopeRation In-

terface for Learning Loco-manipulation) to collect human demonstrations for

humanoid robots in both simulation and reality. The demonstrations are then

used to train a baseline Imitation Learning algorithm that uses an underlying

controller to abstract away the complexity of whole-body control. I further

propose that by embedding this data collection mechanism in VR video games,

we can amass a large-scale dataset of high quality human demonstrations that

can drive the development of future autonomous humanoids. To illustrate the

feasibility of this idea, we collect a small dataset on toy tasks in simulation
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and real robot using the VR interface. We then show that the trained policy

can be deployed in simulation with a reasonable success rate. A video demo of

the VR teleoperation can be found here: https://youtu.be/PNZTwtcRhVU.
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Chapter 1

Introduction

Humanoid Robotics, Imitation Learning, and Virtual Reality (VR) are

some of the most exciting and rapidly developing fields in technology today.

Humanoid robots developed by Agility Robotics can be used for last-mile de-

livery. Imitation Learning shows great promise in robotics and autonomous

driving. VR is ushering in a new world called the "metaverse". While each

technology is important in its own right, we believe that the marriage of these

three technologies can also have far-reaching impacts. Using VR, humans can

control robots in an immersive simulation, or they can remotely teleoperate

robots to perform tasks in dangerous areas such as a nuclear plant. The tra-

jectories from the human demonstrations can then be used to train Imitation

Learning policies, which can enable robots to perform the same tasks au-

tonomously. While deep Reinforcement Learning methods have been success-

ful in teaching robot to learn from repeated interactions with an environment

given a reward function, the sample inefficiency, need for online interactions,

and intricacy of reward engineering make them difficult to implement in a

humanoid platform. On the other hand, imitation learning skips over the re-

quirement to create reward functions to shape a behavior and instead lets the

robot learn directly from offline demonstrations.
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Figure 1.1: The proposed interface can be used to teleoperate a simulation
environment (left) and a real robot (right).

However, due to the complexity of humanoid robots, the lack of large-

scale data for training, and the difficulty of creating an intuitive interface for

data collection, there has been no research on teaching humanoid robots to

perform locomotion and bi-manipulation tasks to our best knowledge. There

has been work to teach fixed-base robot arms through VR demonstrations [32],

but humanoid robots are significantly more difficult to train due to the need to

consider robot dynamics for balancing and walking. Also, although there is a

large body of work on teleoperating humanoids using VR and motion-capture

devices, there has been no attempt in literature to use the teleoperation data

to train a neural network policy to control the humanoid autonomously. Fur-

thermore, these "telepresence" systems are usually very complicated and re-

quire expensive hardware, which makes them unsuitable for scaling up data

collection in a distributed manner.

In this thesis, I present a simple VR interface that uses the common-

place Oculus Quest 2 headset. I believe that compared to other humanoid tele-

operation systems, the software architecture used in this project is uniquely
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positioned to be both adaptable to VR games and accessible to the public.

Although the interface is relatively simple, it is sufficient to teach a humanoid

robot to perform some simple tasks. In simulation, I hypothesize that this

setup can be incorporated in VR video games to massively scale up data

collection. VR games contain rich interactions with the virtual world, have

built-in rewards to label successes and failures, and integrate with powerful

physical simulation engines. As a result, they are perfect for collecting human

demonstrations to potentially teach humanoids to perform the same tasks in

the real world. For example, Cook-Out is a VR game that requires players to

cook in a kitchen, which is a valuable skill for humanoids to learn. In addition,

on the real-robot side, we could potentially distribute the data collection by

letting users with VR headsets control the robot remotely. This is similar to

the RoboTurk crowd-sourcing platform for fixed-base robot arms [20]. I hope

that by open-sourcing the teleoperation codebase later this summer, research

in humanoid robot learning can be made more accessible.

To show that we can use the collected demonstrations to train a hu-

manoid to perform simple tasks, we present a hierarchical approach that learns

a motion policy from teleoperation demonstrations with an underlying con-

troller. The policy outputs the desired poses of the hands, while the whole-

body controller takes care of balancing the robot and tracking the desired

trajectory. An overview of this design is presented in Figure 1.2, and a de-

scription is given below:

1. First, we take advantage of the similar kinematic structures between
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Figure 1.2: An overview of the hierarchical learning framework used in this
work. Diagram credit to Mingyo. First, we get the desired hand trajecto-
ries and walking commands from the demonstrator. Second, we send these
commands to the whole-body controller to produce joint-torque actions of the
robot. Third, a behavior cloning policy is trained to imitate the human demon-
strations.

the robot and demonstrators to collect demonstrations using immersive

VR. We only track the SE(3) poses of the hands and abstract away the

other joint configurations. This lets us retarget human motions to the

humanoid robot, which has fewer degrees of freedom in the arms. This

also makes it easier for learning, since the policy can delegate joint-space

controls to the underlying controller. Even though human’s 7-DOF arm

could produce motions that cause singularity issues at the robot’s 6-DOF

arm, this can be easily corrected by the demonstrator.

2. Then, we send the desired hand trajectories and walking commands to

the whole-body controller to produce joint-torque actions of the robot.

The controller prioritizes the robot’s stability while tracking the hand

and feet trajectories, so it may not track the trajectories perfectly. How-

ever, the human demonstrator can adapt to the tracking error by observ-
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ing the effects of their actions in the VR headset. The walking commands

are implemented with a sequence-based DCM gait planner, which allows

the user to take a step in one of the four directions or make a turn by

clicking a button. Since these commands are discrete, the locomotion is

not very fluid or precise.

3. Finally, a behaviorial cloning policy is trained to imitate the human

demonstrations. The policy needs to learn the state-action distribution

of whole-body control behaviors and adapt to it in a closed-loop manner

similar to the human. During deployment, the generated trajectories

are passed to whole-body control just like during demonstration. The

policy achieves reasonable success rate in simple simulation tasks, but it

has low success rate for more complex tasks involving loco-manipulation

(manipulation and locomotion at the same time) and precise motions.

Future research directions to improve the policy will be discussed in the

end.

In the below sections, more details about the motivations for this

project are described.

1.1 Humanoid Robots

Humanoid robots have gained a lot of attention in recent years. After

Boston Dynamic’s Atlas made headlines by jumping and dancing with human-

like dexterity [10], Tesla also entered the market by developing the cheap and
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mass-producible humanoid named Optimus. If the cost of the robot could

be kept below $20,000 like Elon Musk promised [27], we would be entering a

world where general purpose humanoids could replace humans for unsafe and

repetitive tasks. Many startups are also getting a lot of funding recently to

pursue humanoid robots. Apptronik is an Austin-based startup that aims to

create humanoids that can work alongside people. One of their prototypes,

DRACO 3, is the platform used for this thesis.

This interest in humanoids is justified by their versatility and social

capabilities. Humanoids can be used as personal assistants, companions for

the elderly, workers in factories, and first responders in disaster zones. The

morphology of humanoids enables them to easily adapt to the human-centered

world that we live in. Every tool, every building, and every task in our society

are designed for the human form. It wouldn’t make sense to redesign power

tools or get rid of stairs for the convenience of robots, so creating robots that

can take advantage of the existing infrastructure made for humans is extremely

valuable. Also, as humans, it’s easier to provide demonstrations to a robot that

has a similar form as us, rather than having to train our brain to adapt to the

morphology of the robot.

1.2 VR Teleoperation Interface

In order for imitation learning to succeed on robots, high-quality

demonstrations are essential. Using a VR interface is desirable since it closes

the observation and embodiment gap. Namely, instead of looking at the robot
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externally, the human will have the same viewpoint as the robot. Instead of

having to map the human body’s joints to the robot’s joints, the human is

directly controlling the robot’s joints. Because of the human brain’s impressive

capability to adapt, the demonstrator can quickly learn to treat the arms of

the robot as their own arms, and perform tasks intuitively as they do in their

own body. Indeed, there are various experiments that show that humans can

start to take ownership of their virtual body, even if the body is very different

from their own, if appropriate multisensory correlations are provided [15] [26].

In addition, since humanoid robots have to maintain balance while

following hand trajectories, the whole-body controller may fail to track the

hand trajectory perfectly. So, in order to move the robot hand to a desired

position, one needs to constantly observe the effects of their actions before

deciding where to move next. In experiments, we notice that humans are

great at adapting to the whole-body control’s tracking error in this closed-

loop manner. By using the VR interface, we are essentially borrowing the

human brain’s power to solve the embodiment mismatch issue and perform

closed-loop actions.

1.3 Scaling up Demonstration Dataset for Humanoids

Recently, we have seen the successes of training deep learning algo-

rithms on mind-blowingly huge datasets. For example, GPT-4 [21] is believed

to be trained on most texts on the internet, which enables its scalable trans-

former architecture to produce human-like texts. The ability of the transformer
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to scale can also impact the robot learning field, since many transformer ar-

chitectures for robotics have been proposed with impressive results [34] [14].

Notably, researchers at Google demonstrated that their transformer architec-

ture is able to absorb a large dataset of multi-task demonstrations from differ-

ent robots and even simulations, and the resulting model is able to generalize

to unseen tasks, environments, and objects in a zero-shot manner [11]. Im-

portantly, they demonstrated that by incorporating simulation data with the

real-robot data, not only was the real-robot policy not noticeably degraded,

but the generalization performance also improved significantly on objects only

seen in simulation. This shows that even if the simulation isn’t very realistic,

the model can still absorb useful information that helps with generalization.

The researchers stated that their dataset "consists of over 130k episodes, which

contain over 700 tasks, and was collected with a fleet of 13 robots over 17

months." The scale of this dataset is very impressive, but the collection proce-

dure seems very costly, and it is still small in scale compared to the billions of

images used to train today’s image generation models. In addition, the dataset

isn’t publicly available, and they are collected on single-arm wheeled robots

instead of humanoids.

So, how can we scale up humanoid demonstration collection in a cheaper

manner than investing manpower to collect demonstrations on the real robot?

One proposal is to learn from the plethora of YouTube videos online. For ex-

ample, [8] shows that by watching YouTube videos of house tours, an off-policy

Q-learning algorithm can learn the semantic cues in a human environment to
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improve navigation efficiency. To make it possible to learn dexterous manip-

ulation skills from YouTube videos, [25] trained a neural network to retarget

human finger poses from a video to a robotic hand.

Nevertheless, due to the difficulty of inferring 3D poses from video, the

lack of proprioceptive view from the eyes of the human, and the ignorance of

the demonstrator’s internal state such as their joint positions, the wealth of

information that online videos possess still remain out of reach for practical

applications of robot learning.

Between learning from YouTube videos and collecting demonstrations

on the real robot, taking advantage of the rich manipulation data from VR ap-

plications might just be practical enough to scale up humanoid data to satiate

the appetite of today’s deep learning methods. In VR, the human sees exactly

what the robot sees, the hand poses are measured precisely by the headset

and controllers, and the simulated robot provides full access to its internal

states. As realistic simulation games such as Microsoft Flight Simulator rise

up in popularity, we are presented with a valuable opportunity to collect high-

quality human hand trajectories at scale for robot-learning research. This

is not unreasonable since Meta is most likely already collecting information

about the users’ surroundings and actions for targeted ads [30].

9



Chapter 2

Background

In this chapter, the necessary background information for this work is

introduced. Then, existing literature that relates to our goal will be surveyed.

2.1 Imitation Learning

In Imitation Learning, a task is demonstrated by a human instruc-

tor multiple times until a robot can imitate the demonstrated behavior and

perform the task autonomously. There are many forms of Imitation Learning.

The simplest form is Behavioral Cloning, where the robot learns to imitate the

motion without inferring the actual goal. This becomes a supervised learning

problem with the inputs being the observations and the outputs being the

actions taken. This simple method is often effective [32], but it is prone to

covariant shift [23], in which the errors in actions accumulate and the state

deviates from the ones shown in demonstration. Another class of algorithms

is Inverse Reinforcement Learning, in which the agent tries to reverse-engineer

the reward function from the demonstrations. However, this is usually com-

putationally expensive due to the requirement to run reinforcement learning

as an inner-loop.
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The specific Imitation Learning algorithm used in our work is Behav-

ioral Cloning with Recurrent Neural Networks (RNN) and Gaussian Mixture

Models (GMM). RNN maintains information about the past and can be viewed

as injecting the inductive bias of sequentiality. Namely, it preserves time

translation invariance by using the same neural network weights at each time

step [6]. GMM uses a mixture of Gaussians with different means to approxi-

mate a multimodal distribution, such as the multiple ways that a human may

perform a specific task.

2.2 Whole-body Control (WBC)

Whole-body control is an algorithm that aims to control the entire

robot’s body, including its arms, legs, torso, and head, to achieve a desired

task. The specific form we are using is called implicit hierarchical whole-body

controller [1], which uses an implicit hierarchy of tasks to allow for different

prioritization of control depending on whether the robot is performing loco-

motion or manipulation. For example, we would like the robot to prioritize

foot motion over hand motion when the robot is walking.

Whole-body control can be formulated as finding the optimal joint ac-

celeration q̈∗ and contact forces f ∗
r to minimize a loss function

min
q̈,fr

n∑
i=1

wi∥Jiq̈ + J̇iq̇m − ẍd
i ∥2 + wfr∥fd

r − fr∥2 + λq∥q̈∥2 + λfr∥fr∥2

- subject to the constraints of robot dynamics, contact, maximum reaction

force, joint position limit, and torque limit. The first term in the loss function
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represents the task space error, or the deviation of the robot’s end-effectors’

position and orientation from the desired values. The second term represents

the contact force error. The third term regularizes the joint acceleration to

control the trade-off between task performance and joint motion smoothness.

The fourth term regularizes the contact force to prevent damage to the robot

or the environment.

2.3 Related Work
2.3.1 VR for Imitation Learning

The work that most closely relates to ours is [32], which also involves

using a consumer VR headset to teleoperate a robot. They show that by using

only half an hour of demonstrations collected in VR, an Imitation Learning al-

gorithm can be trained to perform simple manipulation tasks such as grabbing

a ball or pushing a block. However, their robot has a fixed base, so they can

directly use their robot’s built-in Jacobian-transpose-based controller instead

of a whole-body controller. Also, instead of streaming stereoscopic images

to the headset, they use Unity to render the colorized point cloud from the

robot’s 3D camera to allow the user to look around freely in the VR world.

They argue that since the robot’s head has low degrees of freedom and moves

slowly, controlling its movement using the headset’s movement will cause mo-

tion sickness. Indeed, we are faced with the same problem. However, instead

of using a point cloud that looks strange for the demonstrator, we simply dis-

allow movements of the head. This is sufficient for our tasks, and it does not

12



seem to impact immersion. For learning, they also use a Behavioral Cloning

algorithm. However, they are only controlling one arm of the robot, whereas

we are controlling both. They are also using the depth image as an input,

but we only provide stereoscopic images. Finally, we are using an RNN to

preserve information from previous time steps, while they only provide the 5

most recent end-effector poses and no image history.

Another work that utilizes VR for robot learning is [4], which uses the

hand-tracking capabilities of the Oculus Quest 2 headset to teach a robotic

hand dexterous manipulation skills. They first retarget the human hand joints

to a robotic hand with 4 fingers, then they use visual self-supervised learning

combined with a simple nearest neighbor algorithm to successfully manipulate

objects unseen during training. Although they are using a VR headset, they

are not using stereoscopic rendering to create depth perception. Instead, they

are rendering the robot’s camera as a 2D video in Unity. Similarly, there is a

senior thesis project teleoperating a small car in VR, and they also only use a

2D video displayed through Unity [17].

2.3.2 Demonstration Interface

There are multiple ways to collect demonstrations for imitation learning

in existing literature. First, a teleoperation input device with 6 degrees of

freedom such as the SpaceMouse can be used to control the position and

orientation of the robot’s end-effector [35]. However, it can be unintuitive for

people to translate a 3D motion into the push and turn of a button, especially
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if there is a need to control 2 arms at once. In addition, since SpaceMouse

controls the velocity instead of position, it requires training to perform actions

involving precision. Second, humans can directly hold the robot to move it

in a desired trajectory by applying force [2] [24]. This is called kinesthetic

teaching, but it requires the human to come into the frame to control the robot,

which becomes a problem when the policy is trained on vision data. To avoid

this, we can also build a replica of the robot and move the replica manually,

while the main robot follows its trajectory. For example, [33] used a low-

cost replica of their bi-manipulation robot to collect demonstrations for fine

manipulation tasks. To do so, a human demonstrator pushes the end-effectors

of the replica robot to backdrive its joints, and the resulting joint positions

are issued as commands for the actual robot to follow. While this method

achieved impressive results for the fixed-base robot, they cannot handle the

floating-base dynamics of humanoid platforms, which requires torque control

to account for the dynamics of the robot.

Since we can manipulate a replica of the robot to create demonstrations,

why can’t we use our own body as this replica? After all, humanoids are de-

signed to mimic the morphology of humans. Indeed, we can directly record the

kinematics of human motions [7]. Using either a camera or a motion-capture

system, we can measure the angular displacement of the joints precisely, and

then we can map the values to the robot’s joints. However, robots can have

different mass distributions and degrees of freedom than humans. So, the ac-

tions that humans perform may be impossible for robots or cause them to
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lose balance. Therefore, learning a good mapping and using a whole-body

controller to maintain balance are crucial to the success of this method.

2.3.3 Learning for Humanoids

As mentioned in the introduction, there does not seem to be prior

work on training humanoid robots to perform manipulation tasks. Two works

that cut close are [5], which uses Hidden Markov models to imitate a human

demonstration, and [13], which uses motion planning to produce fluid tran-

sitions between locomotion, loco-manipulation, and manipulation. However,

both works only consider a simple simulation with only kinematics and no

dynamics, so their results are impossible to be applied to the real world.

Nonetheless, there are recent successes on learning humanoid locomo-

tion. [19] adapts the Rapid Motor Adaptation work [18] to bipedal robots.

It uses an adaptation module to enable the walking controller to adapt to a

changing environment in real-time. [22] uses RL in an IsaacGym simulation to

train a humanoid locomotion controller that responds to velocity commands

robustly. Their work seems to be a more robust version of [19] where instead

of explicitly adapting to the environment, the transformer implicitly infers the

environment through past actions rapidly in every time step.

2.3.4 Humanoid Teleoperation

There is a recent surge in interest to remotely teleoperate robots.

XPRIZE hosted the AVATAR competition in 2022, in which teams compete
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to develop telepresence technology that allows a human to control a robot

remotely to complete a set of tasks. Their overarching goal is for humans to

be able to see, hear, touch, and interact with the world in the body of a robot,

while the people themselves can be on the other side of the world. While most

robots in the competition don’t have legs, there are a few humanoids, and

most teams are using VR technology to create an immersive visual experience.

There is a recent survey on teleoperation of humanoids [9], some of

which competed in AVATAR. The authors also claim that humanoid teleoper-

ation is a new field with high resource demand, so not many labs are working

on it. The works they summarized include very complicated motion-capture

and feedback setups that track the movement of users’ feet and relay the sense

of touch to the users. The survey unifies the teleoperation systems into a

framework with 6 components. First, human measurements are taken. Then,

the measurements are retargeted to the robot. After a delayed communication

channel, the robot executes its controller to produce low-level commands. Fi-

nally, the robot’s sensory input is retargeted to human feedback, and human

teleperception such as the sense of touch is provided. This is similar to our

framework, but we only have vision feedback. For actions, we only have hand

trajectory, gripper control, and locomotion commands. They also mention

that streaming the camera images to VR can cause motion sickness during

locomotion, but this could be fixed by adopting digital image stabilization

techniques.

The cockpit interface for NASA’s Valkyrie humanoid is a good example
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of a sophisticated VR teleoperation system [12]. The interface has a complex

UI that allows the operator to directly specify where to place future footsteps.

There is a 3D model of the humanoid for visualization, and both a depth point

cloud and a 2D RGB footage of the environment are presented to the user.

These complex teleoperation systems make sense if the goal is to create

immersive telepresence or to perform critical missions in outer space. However,

if the goal is to teach robots common loco-manipulation skills, these systems

can be overkill. In order to scale up data collection and lower the barrier

of entry for humanoid research, I opted to use a single Oculus Quest 2 as

the interface. Although it is missing many components such as feet tracking

and tactile sensing, it is enough for simple tasks. In addition, VR is a rapidly

developing industry, so future household headsets will mostly likely incorporate

more sensors. For example, the recently-released Meta Quest Pro supports leg

tracking, which can be used to control the robot’s legs.
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Chapter 3

VR Interface

In this chapter, I’ll go into the implementation details of the VR inter-

face. The requirements for the interface are as follows:

1. It needs to report the 6-DOF poses of left and right hands as well as

additional buttons for locomotion and gripper control.

2. Stereoscopic images need to be streamed and displayed on the VR head-

set to create depth perception for the wearer.

3. It needs to connect to both the simulation codebase written in Python

and the real-robot controller written in C++.

4. The latency should be low and the computation speed should be fast so

that the wearer can provide demonstrations with ease. The computation

resource consumption should be low because the simulation and whole-

body controller are resource-intensive.

First, an overview of the architecture is given. Then, some of the design

decisions are justified. Finally, the performance of the system is analyzed.
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Figure 3.1: Architecture for the VR interface

3.1 Architecture

Figure 3.1 describes the software architecture. The VR interface code

written in C++ runs on a separate laptop, which is connected to either the

simulation desktop or the robot control station for the real robot. We use

OpenVR (implemented in SteamVR) and ALVR (Air Light VR) for the com-

munication between the laptop and the headset. OpenVR is a low-level API

designed to support a wide range of VR devices. ALVR is an open-source

project that allows streaming Steam VR games from the laptop to the headset

via Wi-Fi. It implements technologies such as Asynchronous Timewarp and

Fixed Foveated Rendering for a smoother experience. ZMQ is an asynchronous

messaging library that simplies message-passing between different programs or

devices.
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For the simulation, we use Mujoco [28] with Python binding for the

physical simulation and Robosuite [35] for the objects in the scene. We first

render the scene using a virtual stereoscopic camera that is adjusted to match

the interpupillary distance of the VR headset. Then, the rendered pixels are

copied from the GPU to CPU and sent to the VR interface using ZMQ and

ethernet. The interface code listens to the images and writes them into a GPU

texture used by OpenVR. Finally, SteamVR and ALVR transmit the images

through a router and displays them in the VR headset. At the same time,

the interface polls the VR headset for the poses of the headset and controllers

through OpenVR. It transforms the controller poses to the local frame of the

headset, and they are then mapped to the poses of the robot hands in the

robot’s local frame. The latter mapping involves aligning the rotation axes of

the controller with the axes used in the simulation. Specifically, let Rt be the

transformation between the VR axes and the simulation axes, Rvr be rotation

of the controller from its natural orientation, and Rsim be the desired rotation

to be applied to the robot hands. Their relation can be expressed as

Rsim = R−1
t RvrRt

The transformed hand poses are then published continuously using a ZMQ

pub socket. When the simulation needs a VR command, it pulls the most

recent command from the queue and sends it to the whole-body controller.

The setup for the real robot is similar. However, since the robot has

a lot more components to manage, it will be described in more details in the

next chapter.
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3.2 Technical Details

Some design decisions were made to satisfy the requirements defined

above. They are explained in this section in hopes of providing documentation

and guidance for others working on similar systems.

3.2.1 OpenVR

Initially, a website was created based on WebXR and JavaScript to

stream controller poses over the internet. I wanted to improve the latency

by keeping the connection within a local network, but I encountered difficulty

in setting up HTTPS certificates in the campus lab. After getting tired of

tunneling the connection over the internet, I decided to pursue a more low-

level approach. The native Oculus SDK could work, but it would limit the

option to change VR systems in the future. Unity is a good option for cross-

platform compatibility, but since there’s only a need to stream images and

controller poses, a game engine is an overkill. I also don’t believe that Unity

exposes the low-level functionality to directly show the stereoscopic images in

the headset. Since Unity uses the low-level OpenVR API, I decided to use it

directly. Although a newer API called OpenXR is gaining steam, I feel that

the performance benefits of OpenXR doesn’t justify its complexity compared

to OpenVR.

Using OpenVR has several advantages. First, it has great performance

since it is used by VR games and has direct support from VR headset manu-

facturers. The fact that all SteamVR games use it also makes it suitable for my
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proposal to embed the demonstration collection system in video games. Sec-

ond, it delegates the work of video streaming to existing technologies. Many

VR headsets support direct HDMI connection from the computer’s graphics

card, which OpenVR can take full advantage of since it takes input images

from OpenGL. Even though the Quest doesn’t have an HDMI cable, it is still

possible to use the Oculus Link (over an USB cable) or Oculus Air Link (over

a local network) with OpenVR. These are sophisticated streaming technologies

that predict the user’s movements and streaming latency to render ahead of

time, and they encode the frames as slices in H.264 [3]. ALVR is an open-

source alternative that implements similar technologies with the added benefit

of having experimental support for Linux. Using these technologies is much

more performant and scalable than hand-coding an image streaming pipeline,

as done by [4]. Finally, OpenVR works on a variety of Operating Systems and

targets many VR headsets.

3.2.2 Image Transfer from GPU to CPU

Since our interface script is written in C++ (since the Python OpenVR

binding doesn’t work well) and the simulation is in Python, we need a way

to transfer the rendered images between processes. First, we can use memory

sharing or pybind to transfer the Mujoco simulation state. Using the simula-

tion states, the C++ code can directly render the scene using Mujoco and pass

the result directly to OpenVR within the GPU. However, since Mujoco allo-

cates simulation data structure dynamically, it’s difficult to do inter-process
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memory sharing. Second, we could hypothetically share the GPU buffer ren-

dered by the python script with the C++ script, but OpenGL contexts don’t

seem to allow inter-process sharing. Third, we can lose some performance and

transfer the images from GPU to CPU. Once the images are in memory, we

can send them over using ZMQ.

The last approach was chosen to make the design more adaptable to the

real robot, where the images are always coming from memory. The rendered

images have a resolution of 1096 × 2 by 1176, where the width is multiplied

by 2 to account for both eyes. The rendering of an image takes .3 milliseconds

on the RTX3090 GPU, copying it to the CPU consumes 3 milliseconds, and

sending it through ZMQ uses .6 milliseconds. Overall, this number is negligible

compared to the simulation and whole-body control times, so this performance

is acceptable.

3.2.3 Asynchronous Message Passing

The simulation uses a ZMQ sub socket to get actions from the pub

socket in the interface script. Usually this is done synchronously, meaning that

the simulation waits for the interface to provide a response after requesting.

However, this approach usually takes 70 milliseconds for the message round-

trip. This delay can be reduced to .1 milliseconds by using an asynchronous

approach. In this case, the sender and receiver simply run at their own pace,

and the ZMQ threads in the background takes care of getting the messages

ready. When the simulation requests an action, the ZMQ simply gets the most
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recently received message in its queue and returns it. Since the interface runs

at a higher frequency than the simulation, there will never be a case where

no action is available. Also, by setting the "conflate" option in ZMQ, we can

reduce the need of a queue by only keeping the most recent message.

3.2.4 Separate Computer for VR Interface

At first, the simulation and interface scripts ran on the same desktop

computer. However, we noticed that the scripts were competing for resources,

causing performance degradation. We chose ALVR since it’s the only option on

Linux to connect to VR, and its wireless design enables remote teleoperation.

However, encoding the stream in real time consumes CPU power needed for

the whole-body controller. When running, the simulation and whole-body

controller takes up 1500% of the CPU, while ALVR and SteamVR consume

around 200%. After decoupling the VR interface to a separate laptop, we

noticed a performance improvement of around 10%.

3.3 Performance Analysis

The performance of the VR Interface is acceptable. Using asynchronous

message passing and a separate laptop for VR interface, receiving images and

sending commands are both sub-millisecond operations. The biggest contribu-

tor to latency is ALVR, which adds about 70 milliseconds of latency. However,

this is nothing compared to the latency introduced by the slow simulation. In

the simulation loop, for every rendering and communication with the inter-
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Figure 3.2: The robot hands takes time to reach the desired controller poses
(represented by the floating red and blue arrows).

face, we run 25 simulation steps and 5 whole-body control computations. In

comparison, on the hardware, the whole-body control code is run 20 times be-

tween every two action inputs. This means that in simulation, the whole-body

control code may not have reached the desired action before a new action is

given. Indeed, the slow tracking speed of the whole-body control introduces

a large delay between the movement of the controller and the robot’s hands

reaching the desired poses. We qualitatively assessed this by rendering the

desired poses as arrows in simulation as seen in Figure 3.2, and we found that

for fast motions, the robot can take up to a second to reach the desired state.

Another big issue with the current setup is speed. The current simula-

tion loop can only achieve around 10 fps in the contact-rich kitchen environ-

ment on a Linux machine with Intel i9-10900KF CPU and RTX 3090 GPU.

This is also the reason we can’t simply increase whole-body control compu-
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tation frequency - it will just make the frame rate worse. Since a humanoid

robot capable of walking requires an accurate physical simulation, we are using

Mujoco with the RK4 integrator and PGS numerical solver at 50 iterations

per time step, where the time step is set at 2 milliseconds. We have also

tried running the numerical solver at 10 iterations per time step, sacrificing

some precision for speed. For debugging, we tried rendering the images using

OpenCV instead of sending them to the VR headset. The performance num-

bers from these different setups are shown in Table 3.3. Since the quickest loop

time is 70 milliseconds, there is no hope that our setup can reach 60 fps. From

the table, we see that using OpenCV to display images takes quite a lot of time,

whereas sending the images to VR is faster. When walking is not involved, the

whole-body controller time is reduced drastically, while manipulation tasks in-

volving contact slows down Mujoco. Overall, Mujoco and whole-body control

are the biggest culprits for performance issues, but the rendering performance

with the copy from GPU to CPU can also be improved.

However, this is not the end of the story for potentially embedding

our setup in a video game. As mentioned, our simulation codebase is written

in Python. When the C++ codebase from the hardware team is used, each

WBC computation is reduced from 5 to .45 milliseconds. In fact, the hardware

team has their own simple simulation in PyBullet for debugging purposes. As

mentioned before, they run 20 simulation steps and 20 WBC calls per loop. On

the same machine that runs the simulation code, their loop is able to execute

40 times per second with the VR interface (so the WBC and simulation execute
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Table 3.1: Simulation performance numbers. The left column denotes whether
OpenCV or the VR headset is used to display the image and the number of
PGS iterations per time step. The last row shows a manipulation task without
locomotion. In each loop, Mujoco runs 25 times, WBC runs 5 times, and
rendering runs once. The first three columns measure the time taken in each
run, the fourth column shows the total time taken by each loop, while the last
three columns show their percent contribution to total loop time.

Mujoco (ms) Render (ms) WBC (ms) Total (ms) Mujoco Render WBC
CV, 50 1.72 30 7.7 120 35% 27% 31%
CV, 10 .8 30 7.7 100 21% 33% 39 %
VR, 50 1.72 8 6 92 48% 8% 34%
VR, 10 .92 8 6 70 33% 11% 44%
VR, 50

no walking 2.12 8 5 90 57% 8% 25%

at 800 hz). Needless to say, one of our current tasks is to substitute our Python

code with their C++ code.
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Chapter 4

Real-Robot Experiments

In this chapter, the details of how our experiments are conducted on the

real robot are introduced. However, due to the complexity of the robot system,

the infrastructure built for collecting demonstrations and deploying the neural

network policy will be described first. Specifically, a real-time system was

built to integrate the camera, grippers, the whole-body controller, and the

VR headset. Then, the data collection and neural network policy evaluation

results (or lack of thereof) are discussed.

4.1 Infrastructure

Figure 4.1 shows the infrastructure for collecting demonstrations and

deploying trained policies on the real robot. The VR Interface script is the

same as before, but more components are added to interface with the grippers,

camera, and the robot-control desktop. The whole-body controller running on

the desktop is a modified version of PnC [1], named RPC (Robot Planning

and Control), created by the hardware team.

When collecting demonstrations, the camera footage is streamed from

the robot’s stereo camera to the VR headset. Both RPC and the gripper
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Figure 4.1: The infrastructure used to collect demonstraions and deploy policy
on the real robot. Original diagram by Mingyo.

interface subscribe to VR commands to execute desired actions. The data

collection script then pulls robot states from RPC and camera footage from the

camera script and saves the resulting data into an HDF5 file. The saved data is

then post-processed and used to train the neural network. During deployment,

the observations (robot states and camera footage) are processed in real-time

and fed into the neural network. The processing involves converting hands

and feet poses to local frame of the robot and normalizing and resizing images.

Then, the neural network inference is performed on the GPU laptop, and the

output commands are issued to the grippers and robot. To protect the robot,

the output commands are restricted by a 3D bounding box, and the maximum

arm movement speed is restricted.
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4.1.1 Image Streaming From Camera to VR

Unlike simulation, the parameters of the camera on the robot cannot

be easily adjusted. This means that the interpupillary distance and FOV of

the camera does not match those of the human eyes, causing dizziness in the

demonstrator [31]. Although cropping the images helps with adjusting the

convergence distance of the cameras, the difference in interpupillary distance

cannot be completely fixed. In addition, there is only RGB data from the

left camera, whereas the right camera only has grayscale images. Instead of

colorizing the right image from the left image using computer vision techniques,

which can produce artifacts that are easily noticeable by the human, we opted

to only display grayscale images in the headset. Although the experience isn’t

very smooth, the depth perception provided by stereoscopic images is still

enough to complete many manipulation tasks.

The camera is the MultiSense S7 model from Carnegie Robotics. It

comes with a low-level driver library with minimal documentation. RGB image

streaming is achieved by executing callback handlers for luma and chroma

images on separate threads and merging them together into RGB. Similarly,

left and right luma images are streamed in separate threads, which are then

synchronized and stitched together to form stereoscopic images. This multi-

threaded C++ code is designed to incur minimal image-copying and is thus

very efficient.
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Figure 4.2: 150 demonstrations of a simple pick-and-place task are collected.
The egocentric view for 36 of the episodes are shown.

4.2 Neural Network Training and Evaluation

Our Neural Network takes in the following inputs: stereoscopic images

resized to 800×200, positions and velocities of the 26 joints in sin and cos form,

the SE(3) poses of the hands and feet in local frame, and the current state

machine of the robot, such as balancing or walking forward. A Resnet is trained

to extract the image features, and an RNN is used to process the features

as well as other inputs to produce an output distribution. The continuous

outputs such as hand trajectories are fed into a GMM to produce manipulation

commands, while discrete outputs such as locomotion commands and grippers

are rounded to either 0 or 1.

To train the network, 150 demonstrations are collected on a simple pick-

and-place task involving grabbing a temperature gun and dropping it in a box,
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Figure 4.3: During evaluation, the robot usually knocks over the temperature
gun before grasping it.

as shown in Figure 4.2. Since the hardware team is working on replacing the

force-torque sensors in the robot’s ankles, the robot cannot walk yet. Instead,

the task only involves the robot balancing on two feet and doing manipulation

with its hands.

However, the evaluation of the trained policy is not very successful.

Out of 20 evaluations, the robot is only able to pick up the temperature gun

in 1 episode. As shown in Figure 4.3, the robot fails to locate the object and

often knocks it over.

We hypothesize that the tracking error of the whole-body controller is

partially responsible for the difficulty to learn precise manipulation. Figure 4.4

shows whole-body control’s tracking error of the right hand during deployment.

The red line is the desired pose, and the blue line is the actual pose. Each

bump corresponds to a new episode, and the large spikes on the orientation are

due to resetting the robot after a failed episode. Since the blue line changes as

32



Figure 4.4: Plotting the desired (red) vs actual (blue) position and orientation
of the right hand during deployment. For each grid, the top row is position
and the bottom row is velocity.
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soon as the red line changes, we know that the tracking is very fast, unlike what

we have in simulation. However, the steady-state error is quite large. In the

y direction, there can be an up to 10 centimeters error for the hand position.

Steady-state error is caused by the lower weight assigned to the hand-tracking

task in comparison to the center-of-mass task. In order to maintain balance,

the whole-body controller refuses to extend the arm too far forward. This can

be fixed by assigning a higher weight to the hand task, but this would trade

off the stability of the robot.

Nonetheless, the policy should learn to compensate for the tracking

error, as it has done in simulation. We have also noticed that the policy

doesn’t vary its actions when the object is placed in different places. We

are currently still working on debugging the neural network deployment, but

unfortunately, due to the frequent need to repair the robot, we are not able to

solve it by the thesis due date. However, the difficulty of performing real-robot

experiments on a humanoid platform is the very reason we started out with

simulation. Indeed, our method achieves much better results in simulation.
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Chapter 5

Simulation Experiments

Knowing that real-robot experiments are expensive and error-prone,

we developed a simulation in Mujoco as a test bed for our algorithms. In

simulation, we can also access data that is not accessible in the real world,

scale up demonstrations quickly, and have a controlled environment with re-

producibility to test new methods. In the following sections, the tasks used

for evaluation are introduced, and the results are presented and discussed.

5.1 Tasks

The first environment is a door in a hallway. It contains two tasks:

opening the door and walking through the door. For the first task, the robot

needs to grab the handle, turn it, and push the door open. Partial success is

defined by the robot grasping the handle. This is a relatively easy task involing

single-arm manipulation. The second task is a loco-manipulation task, where

the robot needs to walk forward while pushing the door open. Partial success

is given if the robot opens the door but doesn’t walk through it. The initial

pose of the robot is randomized based on a normal distribution for both tasks,

with a standard deviation of 2 centimeters for the position and .07 radians for
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the orientation.

The second environment is a kitchen with two tasks: moving a pot and

placing a lid. The first task is a loco-manipulation task requiring the robot

to lift up a pot with two hands, walk a step towards a stove, and put the pot

on the stove. Partial success is granted for lifting the pot. For the second

task, the robot should grab the lid next to the pot and put it on the pot.

Grasping the lid constitutes a partial success. This task requires precision.

The positions of the pot, stove, and lid are randomized along with the initial

pose of the robot. The stove’s position is uniformly distributed from -5 to 5

centimeters, while the pot and lid are placed from -3 to 3 centimeters away

from the stove. The pot and lid are made to be light since the robot dynamic

model currently does not consider external forces.

We collected 200 demonstrations for each of the 4 tasks. The neural

network architecture and training are identical to those introduced in Chapter

4.

5.2 Results

The evaluation results for each task are presented in Table 5.1. Image

sequences of successful episodes are presented in Figure 5.1.

A common failure mode for the pot task is the robot falling down when

moving the pot. When the robot is side-stepping, the robot’s arms tend to

swing sideways to maintain balance. However, if the robot is holding the pot
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Success Partial success Fail
Open door 80% 13 % 7%

Walk through door 74 % 13% 13%
Moving pot 8 % 53 % 40%
Move lid 8 % 53 % 40 %

Table 5.1: The evaluation success rates on the 4 simulation tasks.

with two hands, the frictions on the pot handle constrain the arm motion.

After lifting the pot, if the hands are not kept steady during side-stepping, the

robot can easily fall.

The low success rate for moving the lid can be explained by the precision

needed to grasp the lid’s handle, which requires inserting the robot’s gripper

below the handle and above that lid. Also, when the lid is being put on the

pot, occlusion occurs since the robot’s arm is blocking the view of the pot.

When the robot’s arms are made invisible, we found that the success rate is

10% higher.

Similar to the hardware experiments, we hypothesize that the whole-

body controller tracking error is partially responsible for the imprecise manip-

ulation. It’s also not clear if the model is able to successfully extract depth

information from the stereoscopic images. SimNet [16] demonstrates that this

is indeed possible, but they’re using a stereo matching neural network crafted

specifically for the purpose of extracting depth information, whereas we are

simply training a ResNet in an end-to-end manner directly on the downstream

task.
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Figure 5.1: A successful episode from each simulation task. From top to
bottom, we have opening the door, pushing the door, moving the pot, and
placing the lid. The 2× 5 image sequences are read from left to right and top
to bottom. Note that the robot swings laterally when performing locomotion.
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Chapter 6

Conclusion

In the introduction, we hypothesized that VR can be used as an in-

tuitive interface to teach loco-manipulation skills to humanoids, and that the

data collection can be massively scaled up by collecting demonstrations from

video games. How are these hypotheses holding up against the data?

In the experiments, we found that VR is indeed a natural interface for

teleoperating humanoid robots. We were able to easily collect hundreds of

loco-manipulation demonstrations in simulation and on the real robot. We

also confirmed that by using a whole-body controller to abstract away the

low-level joint-torque controls, it is feasible for a baseline behavioral cloning

algorithm to learn the high-level commands to perform simple tasks in sim-

ulation. However, the policy struggles to compensate for the tracking error

produced by whole-body control when precise motion is required. Also, we

have not yet successfully deployed the policy on the real robot. Nevertheless,

this is the first attempt in literature to teach humanoids loco-manipulation

tasks, and we believe that the next few iterations of our method can achieve

greater success.

The performance of our Python-based simulation is very far away from
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providing a smooth experience that video games demand. However, by switch-

ing to the C++ implementation of whole-body control, using a headset that

directly connects to a computer’s GPU, and optimizing our Mujoco simu-

lation, we are confident that we can achieve a smooth simulation experience.

Another option is to get rid of the whole-body control and simulated robot all-

together and simply record the player’s motions and observations. I believe

that demonstrations collected this way can still be invaluable to humanoid

loco-manipulation research in the future.
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Chapter 7

Future Work

We spent most of the year building up the infrastructure for conducting

humanoid research, but the actual research is just getting started. I plan to

spend the summer to continue working on this project. Here are the items

currently on my list - besides open-sourcing the interface code and speeding

up the simulation.

We have several hypotheses for why the baseline method isn’t perform-

ing well, and we plan to conduct experiments to verify them. First, we want

to verify if providing depth information instead of stereoscopic images helps

with the performance. If so, we could either provide the depth information

using the depth camera on the robot or pre-train the Resnet to predict depth

information before solving the downstream task. Second, we don’t know if

the neural network is able to infer ground-truth object positions. If the ob-

ject positions are known and the WBC error is nonexistent, then the task can

be solved trivially. Therefore, if we eliminate the difficulty caused by under-

standing the positions of objects, then we can see how difficult it is to learn

the WBC dynamics. If the performance of the policy improves dramatically

when the objects’ ground-truth positions are provided, then we can train a
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module such as SimNet [16] to provide this information to the policy. Finally,

most tasks only require engaging one hand at a time. Since the policy doesn’t

understand that the other hand is useless, it might overfit to the random mo-

tions of the useless hand. We can verify this by manually reducing the loss of

the idle hand.

Learning the WBC’s tracking error is one of the main challenges of

our hierarchical approach. We can further tune the WBC hyperparameters

to reduce the steady-state tracking error. We can also restrict the bounding

box to prevent commands from going outside the reachable range. These

methods can improve the tracking performance, but they won’t completely

eliminate the issue. Since we are providing positions and velocities of each

joint to the model, it’s very possible for the policy to overfit to the WBC’s

behavior on specific joint configurations during the 200 demonstrations. Since

WBC is highly non-linear, it may not be possible to learn its behavior fully

using imitation learning. Therefore, we can try to train a neural network to

predict the WBC’s behavior using a self-supervised approach, where the robot

generates random hand motions and measure the WBC’s behavior, which could

provide sufficient data for generalization.

There are also many things from related work that we should try.

In HoloDex [4], the authors used self-supervised learning to learn a low-

dimensional embedding from high-dimensional images. By using data aug-

mentation, the image encoder can be trained to recognize only the important

features of the image. Since our data from the real robot is small in scale, it’s
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very possible for our image encoder to overfit to the lighting in the room and

irrelevant objects in the background, which can be solved by data augmenta-

tion. Also, we currently have to re-train the encoder for every new experiment,

whereas their representation learning approach allows us to re-use the image

encoder to save computational resources. Their k-nearest neighbors imple-

mentation for the downstream task is also worth trying as a baseline.

Finally, the recent work on learning locomotion of humanoids [22] with

RL has numerous implications on our project. First, the fact that their trans-

former is able to learn the robot kinematics and dynamics purely from past

observations means that it can easily learn the whole-body control behavior.

We are currently implementing a transformer architecture to replace our RNN.

Second, we plan to use RL to fine-tune our policy. After all, the policy can

only do so well by imitating the human behavior while being completely igno-

rant of the task objective and environment interactions. The reward functions

in their paper - which takes a whole page to enumerate - account for almost all

the scenarios that can be dangerous to deploy on the real-robot, which is why

they were able to perform sim-to-real. If we optimize our simulation perfor-

mance and take inspirations from their reward functions, we could harness the

power of combining RL and IL, which is a popular research area recently [29].
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