Supplementary Materials: Assessing the role of multi-protein complexes in determining phenotype

Nolwenn Le Meur and Robert Gentleman Fred Hutchinson Cancer Center Research, Program in Computational Biology, Division of Public Health Sciences, 1100 Fairview Avenue North -M2-B876, P.O. Box 19024, Seattle, WA 98109, USA

This document is the supplemental file for the manuscript entitled "Assessing the role of multi-protein complexes in determining phenotype" by Le Meur and Gentleman (submitted).

Data sources

Experimental phenotypic datasets

We made use of 5 different *Saccharomyces cerevisiae* phenotypic datasets. First, we used 2 lethal phenotype datasets published by Giaever *et al.* [1] and Dudley *et al.* [2], and presented in the main manuscript. Then, we investigated the environmental stress conditions tested by Giaever *et al.* [1] and Dudley *et al.* [2], as well as an other, but less well-known, gene deletion set by Kastenmayer *et al.* [3].

Cellular organizational units

S. cerevisiae multi-protein complex co-membership was determined from GO [4,5], MIPS [6], proteinprotein interactions data obtained from the IntAct database (http://www.ebi.ac.uk/intact/site) and estimates from tandem affinity purification-mass spectrometry experiments (AP-MS) [7–11]. This resulted in an estimated interactome of 398 curated multi-protein complexes from the online databases (GO, MIPS, IntAct), and 549 multi-protein complexes estimated from the AP-MS experiments [12]. The curated complexes are named by their database ID. The estimated multi-protein complexes are named using the prefix apComplex followed by the author and year of the experiment, and an arbitrary identification number [12].

Pathways were extracted from the Kyoto Encyclopedia of Genes and Genomes, KEGG [13]. KEGG contains 99 pathways specific to *S. cerevisiae* out of 918 referenced, corresponding to 1,205 unique genes in which 332 are essential and 94 are haploinsufficient.

Mappings between yeast genes, GO categories, and KEGG pathways were obtained from the R metadata package, YEAST, available from the Bioconductor Project (http://www.bioconductor.org).

Gene coverage

The genome of *S. cerevisiae* is not entirely annotated and only a small proportion of the genes are covered by our interactome or the KEGG pathways (Table S1). As mentioned above, we can divide our interactome in 2 subsets: the curated multi-protein complexes, *i.e.*, annotated in the GO, MIPS or IntAct databases, and the predicted multi-protein complexes, estimated from high throughput proteomic experiments using the Bioconductor package apComplex [12]. The curated interactome currently counts

1,629 genes and 398 multi-protein complexes. The whole interactome (curated and predicted multi-protein complexes) is now composed of 947 multi-protein complexes and 1,803 genes (including 695 essential genes and 100 haploinsufficient genes).

	Genes	KEGG pathways	Curated interactome	Curated and Predicted interactome
Total ORFs	6609	1205	1629	1803
Essential	1101	332	587	695
Haploinsufficient	184	94	84	100

Table S1: Genes coverage. The first row of the table presents the total number of ORFs in S. cerevisiae genome (charaterized, uncharaterized, and dubious) and their coverage in KEGG pathways and our protein interactome (curated and predicted multi-protein complexes databases). The 2 following rows show the representation of the essential, and haploinsufficient genes.

Protein complexes and phenotype

Lethal phenotypes

The following tables present the results of the Hypergeometric test applied on the essential genes (Table S2) and the haploin sufficient genes (Table S3) using the global interactome (*i.e.*, curated and predicted multi-protein complexes). We note that only the GO and MIPS complexes are annotated and have an description as the other are predicted complexes.

Complex	Observed	Expected	Size	Odds	P-value	Description
GO:0005732	42	21.59	56	5.03	1.98e - 08	small nucleolar ribo
GO:0005666	17	6.55	17	Inf	8.11e - 08	DNA-directed RNA pol
MIPS-410.30	16	6.17	16	Inf	$2.13e{-}07$	Pre-replication comp
apCompGavin2002: 228	18	7.32	19	29.43	$3.75 \mathrm{e}{-07}$	-
GO:0005656	15	5.78	15	Inf	$5.61\mathrm{e}{-07}$	pre-replicative comp
MIPS-360	28	13.88	36	5.77	1.50e - 06	Proteasome
MIPS-410.35	18	7.71	20	14.70	2.40e - 06	Replication complex
apCompGavin2002: 231	18	7.71	20	14.70	2.40e - 06	-
MIPS-510.120	13	5.01	13	Inf	3.87 e - 06	RNA polymerase III
apCompGavin2002: 224	14	5.78	15	22.76	1.43e - 05	-
GO:0046540	22	10.79	28	6.00	1.63 e - 05	$U4/U6 \ge U5 \text{ tri-snRNP}$
apCompGavin2002: 203	11	4.24	11	Inf	2.66e - 05	-
apCompGavin2002: 50	19	9.25	24	6.20	5.36e - 05	-
apCompGavin2002: 12	16	7.32	19	8.68	5.50 e - 05	-
GO:0000172	10	3.85	10	Inf	6.96e - 05	ribonuclease MRP com
GO:0005847	13	5.78	15	10.54	$1.70e{-}04$	mRNA cleavage and po
GO:0005669	13	5.78	15	10.54	$1.70e{-}04$	transcription factor
MIPS-360.10.10	13	5.78	15	10.54	$1.70e{-}04$	20S proteasome
apCompGavin2002: 43	13	5.78	15	10.54	$1.70e{-}04$	-
GO:0005849	9	3.47	9	Inf	1.82e - 04	mRNA cleavage factor
GO:0005655	9	3.47	9	Inf	1.82e - 04	nucleolar ribonuclea
apCompGavin2002: 205	9	3.47	9	Inf	$1.82\mathrm{e}{-04}$	-

Complex	Observed	Expected	Size	Odds	P-value	Description
GO:0005681	22	11.95	31	3.99	2.29e - 04	spliceosome
apCompGavin2002: 61	12	5.40	14	9.72	$3.88e{-}04$	-
apCompGavin2002: 229	12	5.40	14	9.72	$3.88e{-}04$	-
apCompKrogan2004: 39	12	5.40	14	9.72	$3.88e{-}04$	-
GO:0043614	8	3.08	8	Inf	$4.75e{-}04$	multi-eIF complex
GO:0000145	8	3.08	8	Inf	$4.75e{-}04$	exocyst
MIPS-130	8	3.08	8	Inf	$4.75e{-}04$	Chaperonine containi
MIPS-410.20	8	3.08	8	Inf	$4.75e{-}04$	Replication initiati
MIPS-440.12.20	8	3.08	8	Inf	$4.75e{-}04$	RNase MRP
apCompGavin2002: 71	8	3.08	8	Inf	4.75e - 04	-
apCompGavin2002: 73	8	3.08	8	Inf	4.75e - 04	-
apCompKrogan2004: 9	8	3.08	8	Inf	4.75e - 04	-
apCompKrogan2004: 13	8	3.08	8	Inf	4.75e - 04	-
apCompGavin2002: 250	10	4.24	11	16.16	5.00e - 04	_
GO:0000177	9	3.85	10	14.52	1.19e - 03	cytoplasmic exosome
GO:0005675	9	3.85	10	14.52	1.19e - 03	holo TFIIH complex
apCompGavin2002: 53	9	3.85	10	14.52	1.19e - 03	-
apCompGavin2002: 126	9	3.85	10	14.52	1.19e - 03	-
apCompHo2002: 86	9	3.85	10	14.52	1.19e - 03	-
GO:0019774	7	2.70	7	Inf	1.24e - 03	proteasome core comp
MIPS-160	7	2.70	7	Inf	1.24e - 03	Exocyst complex
MIPS-440.12.10	7	2.70	7	Inf	1.24e - 03	Exosome complex
apCompGavin2002: 52	7	2.70	7	Inf	1.24e - 03	-
apCompGavin2002: 202	7	2.70	7	Inf	1.24e - 03	_
apCompKrogan2004 14	7	2.10 2.70	7	Inf	1.24e - 03	_
apCompGavin2002: 14	12	5.78	15	6 47	1.26e - 03	_
GO:0005665	10	4 63	12	8.07	1.260 - 03 1.96e-03	DNA-directed BNA pol
apCompGavin2002: 200	10	4.63	12	8.07	1.96e - 03	-
apCompGavin2002: 200	10	4.63	12	8.07	1.96e - 03	
apCompKrogan2004: 2	10	4.05	12 12	8.07	1.900 03 1.96e - 03	
apCompKrogan2004: 2	10	4.00 5.40	14	5.02	2.670 - 03	-
apCompCovin2002: 181	11	10 41	14 97	0.92 3.95	2.07e - 03	-
MIDS 510 180 10 20	8	2 47	0	12.20	2.03e - 03	- NFF2 complex
apCompKrogan2004: 61	8	3.47	9	12.09	2.82e - 03	MEF5 complex
MCM2.7 hotorohovomor	0 6	0.47 0.21	9	12.69 Inf	2.82e - 03	-
Simpl pagemition particle	0	2.31	0	IIII Inf	3.24e - 03	-
CO.0000127	U C	∠.∂1 0.21	U G	IIII Imf	3.24e - 03	- the manufacture for the state
CO.0005664	0	∠.∂⊥ 9.21	0	IIII Inf	3.24e - 03	manscription factor
GO:0000004	U C	∠.∂1 0.21	U G	IIII Imf	3.24e - 03	nuclear origin of re
apCompGavin2002: 62	0	2.31 9.21	0	Inf Inf	3.24e-03	-
ap \bigcirc mpHo2002: 237	0 C	2.31 0.21	0 C	ini Luf	3.24e - 03	-
ap_ompKrogan2004: 56	0	2.31	0	int 4.05	3.24e - 03	-
apCompHo2002: 76	12	0.17	16	4.85	3.29e-03	-
apCompGavin2002: 158	13	6.94	18	4.20	3.79e-03	-
apCompGavin2002: 56	9	4.24	11	7.26	4.32e - 03	-
apCompGavin2002: 217	9	4.24	11	7.26	4.32e - 03	-

Complex	Observed	Expected	Size	Odds	P-value	Description
GO:0000176	10	5.01	13	5.38	5.57e - 03	nuclear exosome (RNa
MIPS-510.40.10	10	5.01	13	5.38	$5.57\mathrm{e}{-03}$	RNA polymerase II
apCompGavin2002: 91	10	5.01	13	5.38	$5.57\mathrm{e}{-03}$	-
apCompGavin2002: 209	10	5.01	13	5.38	$5.57\mathrm{e}{-03}$	-
apCompHo2002: 21	11	5.78	15	4.44	6.55e - 03	-
GO:0030915	7	3.08	8	11.26	$6.60 \mathrm{e}{-03}$	Smc5-Smc6 complex
apCompKrogan2004: 55	7	3.08	8	11.26	$6.60 \mathrm{e}{-03}$	-
apCompGavin2002: 42	12	6.55	17	3.88	7.29e - 03	-
apCompGavin2002: 182	14	8.09	21	3.23	8.14e - 03	-
DNA replication factor C complex	5	1.93	5	Inf	8.44e - 03	-
GO:0000120	5	1.93	5	Inf	8.44e - 03	RNA polymerase I tra
GO:0000799	5	1.93	5	Inf	8.44e - 03	nuclear condensin co
GO:0042765	5	1.93	5	Inf	8.44e - 03	GPI-anchor transamid
GO:0032040	5	1.93	5	Inf	8.44e - 03	small subunit proces
MIPS-445.10	5	1.93	5	Inf	8.44e - 03	SCF-CDC4 complex
apCompGavin2002: 51	5	1.93	5	Inf	8.44e - 03	-
apCompGavin2002: 70	5	1.93	5	Inf	8.44e - 03	-
apCompGavin2002: 99	5	1.93	5	Inf	8.44e - 03	-
apCompGavin2002: 175	5	1.93	5	Inf	8.44e - 03	-
apCompGavin2002: 194	5	1.93	5	Inf	8.44e - 03	-
apCompGavin2002: 207	5	1.93	5	Inf	8.44e - 03	-
apCompHo2002: 34	5	1.93	5	Inf	8.44e - 03	-
арСотрНо2002: 166	5	1.93	5	Inf	8.44e - 03	-
apCompKrogan2004: 43	5	1.93	5	Inf	8.44e - 03	-
apCompKrogan2004: 52	5	1.93	5	Inf	8.44e - 03	-
apCompKrogan2004: 81	5	1.93	5	Inf	8.44e - 03	-
GO:0008541	8	3.85	10	6.44	9.34e - 03	proteasome regulator
apCompGavin2002: 155	8	3.85	10	6.44	9.34e - 03	-
apCompGavin2002: 196	8	3.85	10	6.44	9.34e - 03	-
apCompGavin2002: 199	8	3.85	10	6.44	9.34e - 03	-
apCompGavin2002: 204	8	3.85	10	6.44	9.34e - 03	-
apCompGavin2002: 221	8	3.85	10	6.44	9.34e - 03	-
apCompHo2002: 81	8	3.85	10	6.44	9.34e - 03	-
apCompKrogan2004: 30	8	3.85	10	6.44	9.34e - 03	-
apCompKrogan2004: 82	8	3.85	10	6.44	$9.34\mathrm{e}{-03}$	-

Table S2: Essentiality can be attributed to some multi-protein complexes. These complexes (curated and predicted) present an over-representation of essential genes(p-value<0.01). Observed: number of essential genes in the complex; Expected: expected number of essential genes in the complex; Size: total number of genes in the complex; Odds: odds ratios; P-value: p-value of the Hypergeometric test; Description: fullname. Note that when the multi-protein complex is entirely composed of essential genes (Observed = Size) the odds ratio are infinite (Inf).

	Observed	Expected	Size	Odds	P-value	Description
MIPS-130	7	0.44	8	128.11	1.01e - 08	Chaperonine containi
GO:0005732	16	3.11	56	7.92	1.62 e - 08	small nucleolar ribo
GO:0005832	7	0.61	11	31.97	$3.61 \mathrm{e}{-07}$	chaperonin-containin
GO:0005665	7	0.67	12	25.56	8.28 e - 07	DNA-directed RNA pol
MIPS-510.40.10	7	0.72	13	21.29	$1.71 \mathrm{e}{-06}$	RNA polymerase II
apCompGavin2002: 223	6	0.67	12	18.05	$1.77 e{-}05$	-
GO:0000176	6	0.72	13	15.47	$3.14e{-}05$	nuclear exosome (RNa
GO:0000177	5	0.55	10	17.87	$9.60 \mathrm{e}{-05}$	cytoplasmic exosome
apCompHo2002: 141	3	0.17	3	Inf	1.66e - 04	-
MIPS-440.12.10	4	0.39	7	23.61	2.74e - 04	Exosome complex
apCompGavin2002: 12	6	1.05	19	8.30	3.77e - 04	-
apCompKrogan2004: 5	5	0.72	13	11.15	4.29e - 04	-
MIPS-510.40	8	1.94	35	5.40	$4.57 e{-}04$	RNA polymerase II ho
apCompGavin2002: 181	7	1.50	27	6.33	4.64e - 04	-
apCompKrogan2004: 10	4	0.44	8	17.70	5.25e - 04	-
apCompKrogan2004: 22	4	0.44	8	17.70	5.25e - 04	-
apCompGavin2002: 143	3	0.22	4	52.64	6.36e - 04	-
apCompHo2002: 32	3	0.22	4	52.64	6.36e - 04	-
apCompGavin2002: 49	5	0.78	14	9.91	6.37 e - 04	-
apCompGavin2002: 14	5	0.83	15	8.91	9.14e - 04	-
apCompGavin2002: 79	5	0.83	15	8.91	9.14e - 04	-
apCompGavin2002: 175	3	0.28	5	26.30	1.53e - 03	-
apCompKrogan2004: 52	3	0.28	5	26.30	1.53e - 03	-
apCompGavin2002: 42	5	0.94	17	7.42	1.72e - 03	-
apCompKrogan2004: 2	4	0.67	12	8.83	3.13e - 03	-
apCompGavin2002: 41	5	1.11	20	5.92	3.78e - 03	-
MIPS-510.120	4	0.72	13	7.84	4.32e - 03	RNA polymerase III
apCompKrogan2004: 74	3	0.39	7	13.14	4.92e - 03	-
GO:0005736	4	0.78	14	7.05	5.80 e - 03	DNA-directed RNA pol
GO:0043614	3	0.44	8	10.50	7.56e - 03	multi-eIF complex
apCompKrogan2004: 13	3	0.44	8	10.50	7.56e - 03	-
apCompGavin2002: 50	5	1.33	24	4.66	8.68e - 03	-
GO:0005850	2	0.17	3	34.73	8.81e - 03	eukaryotic translati
GO:0000928	2	0.17	3	34.73	8.81e - 03	gamma-tubulin small
apCompGavin2002: 251	2	0.17	3	34.73	8.81e - 03	-
apCompHo2002: 44	2	0.17	3	34.73	8.81e - 03	-
apCompHo2002: 118	2	0.17	3	34.73	8.81e - 03	-
apCompHo2002: 205	2	0.17	3	34.73	$8.81 e{-}03$	-

Table S3: Haploinsufficiency can be attributed to some multi-protein complexes. These complexes (curated and predicted) present an over-representation of haploinsufficient genes (p-value<0.01). Observed: number of haploinsufficient genes in the complex; Expected: expected number of haploinsufficient genes in the complex; Odds: odds ratios; P-value: p-value of the Hypergeometric test; Description: fullname. Note that when the multi-protein complex is entirely composed of haploinsufficient genes (Observed = Size) the odds ratio are infinite (Inf).

Kastenmayer *et al.* (2006) undertook the first functional studies of small open reading frames (sORFs), using *S. cerevisiae* as a model. Phenotypic analyses of the new gene-deletion strains identified 22 sORFs required for haploid growth, growth at high temperature, growth in the presence of a non-fermentable carbon source, or growth in the presence of DNA damage and replication-arrest agents. We looked if those 22 sORFs are randomly distributed among protein complexes or if they cluster within a set of them. We identified 11 critical complexes with an over-representation of sORFs (listed below). As observed by Kastenmayer *et al.* (2006), the sORFs are well conserved across species compare to the other genes that compose the protein complexes (Figure S1). We also note that 6 of the identified complexes were also found in our analysis of the essential genes.

-----Condition: sORF -----

G0:0046540 U4/U6 x U5 tri-snRNP complex
G0:0042729 DASH complex
G0:0005732 small nucleolar ribonucleoprotein complex
MIPS-270.20.30 Dam1 protein complex
G0:0000776 kinetochore
MIPS-270.20 Outer Kinetochor Protein Complex
G0:0005665 DNA-directed RNA polymerase II, core complex
MIPS-510.40.10 RNA polymerase II
MIPS-510.120 RNA polymerase III
G0:0005736 DNA-directed RNA polymerase I complex
G0:0005666 DNA-directed RNA polymerase III complex

Figure S1: sORFs from critical complexes are highly conserved across species. Each panel presents a comparison between *S. cerevisiae* and one other species (named in the panel strip). In each panel, each boxplot shows the distribution of the gene evolution distances between the 2 species, calculated using the RSD approach [14]. The 'S' boxplot represents the distribution of distances for the genes inducing a lethal phenotype (Sensitive) and the 'O' represents the other set of genes. In all cases the median distance and the spread (IQR) are smaller for the sORFs.

Environmental stress conditions and fitness growth defect phenotypes

While our approach focuses on understanding the functional roles that underly lethal phenotypes in rich media, these methods can also be used to investigate other environmental conditions or other phenotypic changes. As an example, using the curated subset of our interactome, we looked at phenotypic datasets by Giaever *et al.* [1] and Dudley *et al.* [2] where they measured fitness growth defects in various environmental stress conditions.

Giaever et al. (2002)

As a first intention, we used the same filtering parameters as described in Giaever *et al.* [1] to select genes that present a significant growth defect according to the condition and generation time under study.

Table S4 resumes our results and shows that some but not all experimental conditions give rise to phenotype that can be attributed to some multi-protein complexes. In reality, we can not rule out the fact the phenotype originated from the other experimental conditions are not associated to any multi-protein complexes as our view and coverage of the *S. cerevisae* interactome is incomplete.

	Giaever et al. (2002)	Interactome	p.value	Complexes
pH8g15	225	41	0	10
pH8g5	275	54	0.002	9
nystatin15	46	8	0.006	3
ypg15	30	3	0.009	1
nystatin5	171	37	0.016	-
minimalPlus15	93	14	0.034	-
ypg5	23	6	0.036	-
minimalC5	183	27	0.162	-
$\mathrm{trpM5}$	343	49	0.166	-
sorbitol15	59	6	0.21	-
NaCl15	334	47	0.269	-
sorbitol5	356	48	0.283	-
lysM5	304	36	0.286	-
NaCl5	175	22	0.345	-
minimalPlus5	262	33	0.86	-

Table S4: Some phenotypic changes induced in environmental stress conditions (Giaever et al. 2002) are tightly associated with multi-protein complexes. Each row corresponds to an environmental stress condition and different generation time (5, 15). The first column indicates the number of mutants with growth defect in Giaever's experiment. The second columns indicates the number of those deleted genes in the interactome. The third columns presents the p-value obtained by the graph theory test. A p-value < 0.01 indicates that those deleted genes are not randomly distributed in the multi-protein complexes of the interactome. The fourth column indicates the number of multi-protein complexes involved. The differents conditions are: ypg: yeast/peptone/galactose 5 gen. rep. a and b; sorbitol: 1.5M Sorbitol (sugar, osmotic stress); NaCl: 1M NaCl (salt, osmotic stress); lysM: lysine minus (lack of required AA); thM: threonine minus (lack of required AA); tripM: tritophanee minus (lack of required AA); minimalPlus: minimal + histidine/leuvine/uracile; minimalC: minimal complete; nystatin: Nystatin (antifungal drug); pH8: pH 8 (alkali stress).

The following list shows the different multi-protein complexes involved in the different experimental conditions.

```
-----Condition: nystatin15 -----
GO:0000813 ESCRT I complex
MIPS-260.70 Vps4p ATPase complex (Vps protein complex)
GD:0000815 ESCRT III complex
-----Condition: pH8g15 ------
MIPS-260.20 Clathrin-associated protein (AP) complex
GD:0030122 AP-2 adaptor complex
GO:0030121 AP-1 adaptor complex
GD:0005955 calcineurin complex
GD:0030123 AP-3 adaptor complex
MIPS-260.20.10 AP-1 complex
EBI-1249909 Calcineurin variant 1
GO:0048188 COMPASS complex
MIPS-140.30.30.30 Dynactin complex
GD:0005869 dynactin complex
-----Condition: pH8g5 -----
MIPS-260.20 Clathrin-associated protein (AP) complex
GO:0000812 SWR1 complex
GD:0005955 calcineurin complex
GD:0030123 AP-3 adaptor complex
GO:0030121 AP-1 adaptor complex
EBI-1249909 Calcineurin variant 1
GD:0016593 Cdc73/Paf1 complex
GD:0030122 AP-2 adaptor complex
MIPS-260.20.10 AP-1 complex
-----Condition: ypg15 -----
MIPS-510.190.80 GAL80 complex
```

Under nystatin condition, we identify or example the three ESCRT complexes or Endosomal Sorting Complexes Required for Transport (*GO:0000813, GO:0000814, GO:0000815*) as significantly related to the growth defect. At pH8, one of the interesting complex seems to be the Gene Ontology complex GO:0000812 or SWR1 complex, composed of 13 genes. It is a multi-subunit protein complex that is involved in chromatin remodeling. It is required for the incorporation of the histone variant H2AZ into chromatin. In *S. cerevisiae*, the complex contains Swr1p, a Swi2/Snf2-related ATPase, and 12 additional subunits.

As described in the main manuscript, we completed our analysis by testing the conservation level of the genes inducing those phenotypes and over-represented in some, thus critical, multi-protein complexes. We tested whether in a protein complex, genes inducing the observed phenotype are more conserved than the other genes of the complex. Figure S2 shows that it might be the case in some of the environmental conditions.

Figure S2: Non-essential genes inducing fitness growth defect phenotype under the stress conditions studied by Giaever *et al.* (2002) and over-represented in some, thus critical, complexes seems well conserved across species. Each panel presents a comparison between *S. cerevisiae* and one other species (named in the panel strip). In each panel, each boxplot shows the distribution of the gene evolution distances between the 2 species, calculated using the RSD approach [14]. The 'S' boxplot represents the distribution of distances for the genes inducing a lethal or growth defect phenotype (Sensitive) and the 'O' represents the other set of genes. In many cases the median distance and the spread (IQR) are smaller for the sensitive genes.

Dudley et. al (2005)

Dudley *et al.* [2] created a collection of gene-deletion mutants to determine genes that contribute to a particular phenotype in 21 different environmental conditions. Table S6 shows the results of the graph theory approach and the Hypergeometric test applied to each of the condition. The first two columns indicates the number of genes that were identified as sensitive by Dudley *et al.* [2] and how many of those genes are actually present in our interactome. The *p*-value column correspond to the result of the graph theory approach. A *p*-value ≤ 0.01 in a row shows that in that condition the sensitive genes are not randomly distributed among multi-protein complexes. Finally, the number of complexes involved in the phenotypic changes are listed in the last column.

	Dudley et al (2005)	Interactome	p.value	Complexes
CaCl2	180	73	0	14
CAD	83	36	0	15
$\operatorname{cyclohex}$	164	62	0	20
FeLim	35	15	0	3
HU	87	46	0	11
MPA	11	5	0	5
Paraq	36	21	0	7
YPGal	41	15	0	7
YPGly	206	53	0	16
YPRaff	31	13	0	4
YPLac	159	33	0.001	8
UV	32	19	0.006	5
HygroB	264	85	0.007	16
lowPO4	34	6	0.015	-
pH3	16	4	0.016	-
rap	119	39	0.016	-
EtOH	75	43	0.018	-
NaCl	57	23	0.133	-
Caff	208	90	0.22	-
benomyl	34	15	0.465	-
Sorb	8	-	-	-

Table S5: Dudley et al. (2005) environmental stress conditions. Each row corresponds an environmental stress condition. The first column indicates the number of mutants with growth defect in Dudley's experiment. The second column indicates the number of those deleted genes in the interactome. The third column presents the p-value obtained by the graph theory test. A p-value ≤ 0.01 indicates that those deleted genes are not randomly distributed in the multi-protein complexes of the interactome. The fourth column indicates the number of multi-protein complexes involved. The 22 environmental conditions listed are: benomyl: 15ug/ml benomyl,microtubule function; CaCl2: 0.7M calcium chloride, divalent cation; CAD: 55uM Cadmium, heavy metal; Caff: 2mg/ml Caffeine; cyclohex: 0.18ug/ml cycloheximide, protein synthesis; DTT: unknown; EtOH YPD + 6% Ethanol; FeLim: irion limited,nutrient limited condition; HU: 11.4mg/ml Hudroxyurea, DNA replication and repair; HygroB: 50ug/ml hygromycin B, aminoglycosides; lowPO4: low phosphate, nutrient limited condition; MPA: 20ug/ml mycophenolic acid, transcriptional elongation; NaCl: 1.2M sodium chloride, general stress condition; Paraq: 1mM paraquat, oxidative stress; pH3: low pH, general stress condition; rap: 0.1ug/ml rapamycin, protein synthesis; Sorb: 1.2M sorbitol, general stress condition; UV: 100J/m2 ultra-violet, DNA replication and repair; YPGal 2% galactose, carbon source; YPGly 3% glycerol, carbon source; YPLac 2% lactate, carbon source; YPRaff 2% raffinose, carbon source.

-----Condition: CaCl2 -----MIPS-220 H+-transporting ATPase, vacuolar GO:0000815 ESCRT III complex GO:0000814 ESCRT II complex MIPS-260.70 Vps4p ATPase complex (Vps protein complex) GD:0016593 Cdc73/Paf1 complex GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain GD:0000938 GARP complex GD:0008023 transcription elongation factor complex GO:0030897 HOPS complex MIPS-90.20 Vacuolar assembly complex MIPS-90.30 ER assembly complex G0:0000220 vacuolar proton-transporting V-type ATPase, V0 domain MIPS-510.40 RNA polymerase II holoenzyme MIPS-510.190.50 SWI/SNF transcription activator complex -----Condition: CAD -----GD:0000815 ESCRT III complex MIPS-260.70 Vps4p ATPase complex (Vps protein complex) GO:0000938 GARP complex GD:0030904 retromer complex GO:0030897 HOPS complex MIPS-230.20.10 ADA complex MIPS-90.20 Vacuolar assembly complex MIPS-260.30.30.10 Vps35/Vps29/Vps26 complex EBI-1250344 GO:0005838 proteasome regulatory particle (sensu Eukaryota) GO:0005671 Ada2/Gcn5/Ada3 transcription activator complex GO:0046695 SLIK (SAGA-like) complex MIPS-230.20.20 SAGA complex GO:0033263 CORVET complex EBI-1251060 -----Condition: cyclohex -----MIPS-230.20.10 ADA complex GD:0000508 Rpd3L complex GD:0000119 mediator complex GO:0016593 Cdc73/Paf1 complex EBI-1250344 GO:0046695 SLIK (SAGA-like) complex MIPS-230.20.20 SAGA complex GD:0005671 Ada2/Gcn5/Ada3 transcription activator complex EBI-1251060 MIPS-510.40.20 Kornberg's mediator (SRB) complex MIPS-90.30 ER assembly complex MIPS-370 Protein N-acetyltransferase MIPS-510.40 RNA polymerase II holoenzyme GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain MIPS-220 H+-transporting ATPase, vacuolar GO:0031415 NatA complex MIPS-510.190.50 SWI/SNF transcription activator complex GO:0000445 THO complex part of transcription export complex GO:0005838 proteasome regulatory particle (sensu Eukaryota)

GD:0016514 SWI/SNF complex -----Condition: FeLim ------MIPS-220 H+-transporting ATPase, vacuolar GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain -----Condition: HU -----MIPS-510.40 RNA polymerase II holoenzyme GD:0000119 mediator complex MIPS-510.40.20 Kornberg's mediator (SRB) complex GD:0016593 Cdc73/Paf1 complex GO:0033062 Rhp55-Rhp57 complex MIPS-510.190.50 SWI/SNF transcription activator complex MIPS-260.70 Vps4p ATPase complex (Vps protein complex) GD:0016514 SWI/SNF complex GO:0000445 THO complex part of transcription export complex GO:0000815 ESCRT III complex GD:0031207 Sec62/Sec63 complex -----Condition: MPA -----MIPS-230.20.20 SAGA complex EBI-1251060 GD:0046695 SLIK (SAGA-like) complex MIPS-370 Protein N-acetyltransferase GO:0031415 NatA complex -----Condition: Parag -----MIPS-220 H+-transporting ATPase, vacuolar GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain GD:0000814 ESCRT II complex GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain MIPS-90.30 ER assembly complex GD:0000813 ESCRT I complex GD:0000815 ESCRT III complex -----Condition: YPGal -----MIPS-220 H+-transporting ATPase, vacuolar MIPS-510.190.80 GAL80 complex GD:0000119 mediator complex MIPS-510.40.20 Kornberg's mediator (SRB) complex GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain MIPS-510.40 RNA polymerase II holoenzyme -----Condition: YPGly -----MIPS-220 H+-transporting ATPase, vacuolar G0:0009353 mitochondrial oxoglutarate dehydrogenase complex GO:0016602 CCAAT-binding factor complex EBI-1225194 MIPS-420.50 FO/F1 ATP synthase (complex V) MIPS-230.20.10 ADA complex GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain GO:0005754 mitochondrial proton-transporting ATP synthase, catalytic core MIPS-90.30 ER assembly complex MIPS-440.40.10 mitochondrial 3'-to-5' exoribonuclease (mtEXO) GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain

MIPS-420.40 Cytochrome c oxidase (complex IV) GO:0005751 mitochondrial respiratory chain complex IV EBI-1250344 GO:0005671 Ada2/Gcn5/Ada3 transcription activator complex GO:0005967 mitochondrial pyruvate dehydrogenase complex -----Condition: YPRaff -----MIPS-220 H+-transporting ATPase, vacuolar GO:0000220 vacuolar proton-transporting V-type ATPase, V0 domain MIPS-90.30 ER assembly complex GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain -----Condition: YPLac ------GO:0009353 mitochondrial oxoglutarate dehydrogenase complex EBI-1225194 GO:0016602 CCAAT-binding factor complex MIPS-220 H+-transporting ATPase, vacuolar GO:0000220 vacuolar proton-transporting V-type ATPase, VO domain MIPS-420.50 FO/F1 ATP synthase (complex V) MIPS-440.40.10 mitochondrial 3'-to-5' exoribonuclease (mtEXO) EBI-1225074 -----Condition: UV -----MIPS-510.180.10 Nucleotide excision repairosome GO:0000110 nucleotide-excision repair factor 1 complex GO:0000445 THO complex part of transcription export complex GO:0000108 repairosome GO:0000502 proteasome complex (sensu Eukaryota) -----Condition: HygroB -----MIPS-260.20 Clathrin-associated protein (AP) complex GO:0000815 ESCRT III complex GD:0000814 ESCRT II complex MIPS-260.70 Vps4p ATPase complex (Vps protein complex) GO:0017119 Golgi transport complex GD:0000938 GARP complex GD:0031902 late endosome membrane GO:0000136 alpha-1,6-mannosyltransferase complex GO:0030897 HOPS complex GO:0031416 NatB complex MIPS-90.20 Vacuolar assembly complex MIPS-90.30 ER assembly complex GO:0000119 mediator complex GD:0016593 Cdc73/Paf1 complex GO:0031417 NatC complex GO:0043529 GET complex

We note that some of the multi-protein complexes involved in phenotypic changes induced by the anti-fungal drug Paraquat are similar to the one found for the anti-fungal drug Nystatin tested by Giaever *et al.* (2002).

Similar to the previous analysis, Figure S3 presents the results of the evolution analysis. According to those results, the genes inducing the phenotypes and over-represented in the critical complexes are not evolutionary different to the other genes of the complexes.

Figure S3: Non-essential genes inducing fitness growth defect phenotype under the stress conditions studied by Dudley *et al.* (2005) and over-represented in some, thus critical, complexes do not seem especially more conserved across species. Each panel presents a comparison between *S. cerevisiae* and one other species (named in the panel strip). In each panel, each boxplot shows the distribution of the gene evolution distances between the 2 species, calculated using the RSD approach [14]. The 'S' boxplot represents the distribution of distances for the genes inducing a fitness growth defect phenotype (Sensitive) and the 'O' represents the other set of genes.

Predicted multi-protein complexes

One way to assess the quality of the predicted multi-protein complexes is to search whether those complexes are involved in multiple phenotypic changes as we have shown that in the case of essentiality and haploinsufficiency several known complexes contribute to both phenotypes. Table S6 shows that indeed 17 predicted multi-protein complexes can be attributed to at least 2 phenotypes.

	cyclohex	FeLim	Paraq	YPRaff	HU	YPGal	MPA	YPGly	CaCl2	pH8g15	pH8g5	Ess	HI
PC1	Х						Х						
PC2	Х				Х								
PC3	Х			Х	Х	Х		Х	Х				
PC4	Х								Х		Х		
PC5	Х						Х						
PC6		Х	Х										
PC7										Х	Х		
PC8												Х	Х
PC9												Х	Х
PC10												Х	Х
PC11												Х	Х
PC12												Х	Х
PC13												Х	Х
PC14												Х	Х
PC15												Х	Х
PC16												Х	Х
PC17												Х	Х

Table S6: Predicted multi-protein complexes contributing to more than one phenotype. Rows are predicted multi-protein complexes and columns indicates the environmental conditions. The 'X' marks when a particular multi-protein complexes is involved. The first 9 conditions were studied by Dudley et al. (2005) (cyclohex: 0.18ug/ml cycloheximide, protein synthesis; FeLim: irion limited, nutrient limited condition; Paraq: 1mM paraquat, oxidative stress; YPRaff: 2HU: 11.4mg/ml Hudroxyurea, DNA replication and repair; YPGal: 2MPA: 20ug/ml mycophenolic acid, transcriptional elongation; YPGly 3CaCl2: 0.7M calcium chloride, divalent cation). The next two conditions were tested by Giaever et al. (2002) (pH8: pH 8 (alkali stress) after 5 and 15 generations; ESS: essentiality). The last column is an experiment by Deutschbauer et al. (2005), HI: haploinsufficiency.

Complex ID	Gene	Commun Name	Current Gene Annotation
	YDL040C	NAT1	Subunit of the N-terminal acetyltransfer
PC1 - apCompGavin2002: 5	YHR013C	ARD1	Subunit of the N-terminal acetyltransfer
	YMR116C	ASC1	G-beta protein for Gpa2p; involved in tr
	YDR378C	LSM6	Lsm (Like Sm) protein; part of heterohep
	YJL124C	LSM1	Lsm (Like Sm) protein; forms heterohepta
PC2 - apCompKrogan2004: 18	YGR054W		Eukaryotic initiation factor (eIF) 2A; a
	YCR077C	PAT1	Topoisomerase II-associated deadenylatio
	YGL173C	KEM1	Evolutionarily-conserved 5'-3' exonuclea
DC2 anCompHo2002, 21	YCR009C	RVS161	Amphiphysin-like lipid raft protein; sub
F C3 - apComp1102002. 31	YDR388W	RVS167	Actin-associated protein, subunit of a c
	YBR279W	PAF1	RNAP II-associated protein; defines larg
	YGL244W	RTF1	Subunit of the RNA polymerase II-associa
	YLR418C	CDC73	Constituent of Paf1 complex with RNA pol
PC4 - apCompKrogan2004: 1	YOL145C	CTR9	Component of the Paf1p complex, which is
	YOR123C	LEO1	Component of the Paf1 complex, which ass

Complex ID	Gene	Commun Name	Current Gene Annotation
	YGL207W	SPT16	Subunit of the heterodimeric FACT comple
	YML069W	POB3	Subunit of the heterodimeric FACT comple
	YGR090W	UTP22	Possible U3 snoRNP protein involved in m
PC5 - apCompGavin2002: 6	YHR013C	ARD1	Subunit of the N-terminal acetyltransfer
	YMR116C	ASC1	G-beta protein for Gpa2p; involved in tr
	YEL051W	VMA8	Subunit D of the eight-subunit V1 periph
	YGR020C	VMA7	Subunit F of the eight-subunit V1 periph
	YKL080W	VMA5	Subunit C of the eight-subunit V1 periph
PC6 - apCompGavin2002: 256	YOR332W	VMA4	Subunit E of the eight-subunit V1 periph
	YPR036W	VMA13	Subunit H of the eight-subunit V1 periph
	YKR001C	VPS1	Dynamin-like GTPase required for vacuola
	YBR288C	APM3	Mu3-like subunit of the clathrin associa
PC7 - apCompGavin2002: 3	YGR261C	APL6	Beta3-like subunit of the yeast AP-3 com
1 1	YPL195W	APL5	Delta adaptin-like subunit of the clathr
	YPR023C	EAF3	Esalp-associated factor, nonessential co
	YDL014W	NOP1	Nucleolar protein, component of the smal
	YDR324C	UTP4	Nucleolar protein, component of the smal
	YHR052W	CIC1	Essential protein that interacts with pr
	YBR095C	RXT2	Subunit of the histone deacetylase Rpd3L
	YGR134W	CAF130	Part of the evolutionarily-conserved CCR
	YLR002C	NOC3	Protein that forms a nuclear complex wit
	YNL030W	HHF2	One of two identical historie H4 proteins
	YLR249W	YEF3	Translational elongation factor 3 stimu
	YPL012W	RRP12	Protein required for export of the ribos
	YPR016C	TIF6	Constituent of 66S pre-ribosomal particl
	YKR081C	RPF2	Essential protein involved in the proces
PC8 - apCompGavin2002: 50	VNL110C	NOP15	Constituent of 66S pre-ribosomal particl
	VLR276C	DBP0	ATP-dependent RNA beliesse of the DEAD-b
	VCI 171W	BOK1	ATP dependent RNA holicase of the DEAD b
	VEL002C	SDB4	Putative ATP dependent RNA holicase nuc
	VFP006W	NUC1	CTPage that according with purplear 60S
	VCI 111W	NGA1	Constituent of 66S pro ribosomal partial
	VCP102W	NOP7	Nucleolar protein involved in rPNA proce
	VHP107W	DIV1	Ferential component of the Biv1 complex
	VI D106C	MDN1	Huge dynain related AAA type ATDece (mid
	I LAIUUC	MDN1 IDI9	Figure a set of the Dist compared and and a set of the Dist compared by
	YNL182C	IPI3 NOCO	Essential component of the Rix1 complex
	YNR055U VOD979W	NUGZ VTM1	Putative GIPase that associates with pre
	YOR272W	Y I MI	Constituent of 665 pre-ribosomal partici
	YGR158C	MTR3 NOD1	3 5° exoribonuclease, exosome subunit; n
	YDL014W	NOP1 UTD4	Nucleolar protein, component of the smal
	YDR324C	UTP4 CIC1	Nucleolar protein, component of the smal
PC9 - apCompGavin2002: 12	YHRU52W	UICI	Essential protein that interacts with pr
	YOR206W	NOC2	Protein that forms a nucleolar complex w
	YNL030W	HHF'2	One of two identical histone H4 proteins
	YLR074C	BUD20	Protein involved in bud-site selection;

Complex ID	Gene	Commun Name	Current Gene Annotation
	YPR016C	TIF6	Constituent of 66S pre-ribosomal particl
	YER126C	NSA2	Protein constituent of 66S pre-ribosomal
	YGR245C	SDA1	Highly conserved nuclear protein require
	YKR081C	RPF2	Essential protein involved in the proces
	YNL110C	NOP15	Constituent of 66S pre-ribosomal particl
	YGL171W	ROK1	ATP-dependent RNA helicase of the DEAD b
PC9 - apCompGavin2002: 12	YER006W	NUG1	GTPase that associates with nuclear 60S
	YGR103W	NOP7	Nucleolar protein involved in rRNA proce
	YHR197W	RIX1	Essential component of the Rix1 complex
	YLR106C	MDN1	Huge dynein-related AAA-type ATPase (mid
	YNL182C	IPI3	Essential component of the Rix1 complex
	YNR053C	NOG2	Putative GTPase that associates with pre
	YDR324C	UTP4	Nucleolar protein, component of the smal
	YDR398W	UTP5	Nucleolar protein, component of the smal
	YGR128C	UTP8	Nucleolar protein required for export of
	YHR196W	UTP9	Nucleolar protein, component of the smal
PC10 - apCompKrogan2004: 13	YJL109C	UTP10	Nucleolar protein, component of the smal
	YMR093W	UTP15	Nucleolar protein, component of the smal
	YPL126W	NAN1	U3 snoRNP protein, component of the smal
	YEL055C	POL5	DNA Polymerase phi; has sequence similar
	YGR158C	MTR3	3'5' exoribonuclease, exosome subunit; n
	YDL014W	NOP1	Nucleolar protein, component of the smal
	YDR324C	UTP4	Nucleolar protein, component of the smal
	YHR052W	CIC1	Essential protein that interacts with pr
	YLR074C	BUD20	Protein involved in bud-site selection;
	YPR016C	TIF6	Constituent of 66S pre-ribosomal particl
	YFR001W	LOC1	Nuclear protein involved in asymmetric l
PC11 - apCompGavin2002: 14	YGL171W	ROK1	ATP-dependent RNA helicase of the DEAD b
	YER006W	NUG1	GTP ase that associates with nuclear $60{\rm S}$
	YGR103W	NOP7	Nucleolar protein involved in rRNA proce
	YHR085W	IPI1	Essential component of the Rix1 complex
	YHR197W	RIX1	Essential component of the Rix1 complex
	YLR106C	MDN1	Huge dynein-related AAA-type ATPase (mid
	YNL182C	IPI3	Essential component of the Rix1 complex
	YNR053C	NOG2	Putative GTPase that associates with pre
	YBR154C	RPB5	RNA polymerase subunit ABC27, common to
	YOR224C	RPB8	RNA polymerase subunit ABC14.5, common t
	YPR187W	RPO26	RNA polymerase subunit ABC23, common to
	YMR146C	TIF34	Subunit of the core complex of translati
	YDR404C	RPB7	RNA polymerase II subunit B16; forms two
DC12 an Comp Covin 2002, 222	YGL070C	RPB9	RNA polymerase II subunit B12.6; contact
r 012 - ap00mpGavm2002: 223	YIL021W	RPB3	RNA polymerase II third largest subunit
	YJL140W	RPB4	RNA polymerase II subunit B32; forms two
	YOR151C	RPB2	RNA polymerase II second largest subunit
	YDR045C	RPC11	RNA polymerase III subunit C11; mediates

Complex ID	Gene	Commun Name	Current Gene Annotation
	YGR005C	TFG2	TFIIF (Transcription Factor II) middle s
	YDL166C	FAP7	Essential NTPase required for small ribo
	YCR052W	BSC6	Component of the BSC chromatin remodelin
	YDR303C	RSC3	Component of the BSC chromatin remodelin
	YFR037C	RSC8	Component of the BSC chromatin remodelin
	VIL126W	STH1	ATPase component of the BSC chromatin re
	VKR008W	BSC4	Component of the BSC chromatin remodelin
	VLR033W	RSC58	Component of the BSC chromatin remodelin
PC13 - apCompKrogan2004: 2	VLR321C	SFH1	Component of the BSC chromatin remodelin
	VLR357W	BSC2	Component of the BSC chromatin remodelin
	$\overline{VML197W}$	RSC9	Component of the BSC chromatin remodelin
	VMR033W	ABD0	Component of both the SWI/SNE and BSC ch
	$\overline{VMR001C}$	NPI 6	Component of the BSC chromatin remodelin
	VPR034W	ARD7	Component of both the SWI/SNE and BSC ch
	VOI 148C	SPT20	Subunit of the SACA transcriptional regu
	VHP060C		3' 5' overiboruelesse involved in rBNA p
	VDD022C		Faalp associated factor, nonescential co
	VOL 051W	CAL11	Subunit of the RNA polymorase II mediate
	VDL014W	GALII NOD1	Nucleolar protein, component of the small
	IDL014W	NOF1 UTD4	Nucleolar protein, component of the small
	IDR524U VII 020W	U1F4 FCM20	Nucleoiar protein, component of the smail
	I HLUSUW	EUM29 CIC1	Econtrol protein that interacts with pr
	I IIIU02W VCD124W		Essential protein that interacts with pr
	I GR154W	UAF 150 NOC2	Part of the evolutionarily-conserved CCR
	IUR200W	NOC2 NOC2	Protein that forms a nucleonar complex w
	I LR002C	NOC2	One of the identical bit and UA metains
	YINL030W	HHF2 VEE2	The of two identical historie H4 proteins
DC14 C C : 2002 101	YLR249W	YEF3 DUU1	C + L · DE D/UL L I · C + L
PC14 - apCompGavin2002: 181	YDL100C		Cytopiasmic DExD/H-box nelicase, stimula
	YNLU01W VED001C	NOP2	Probable RIVA m(5)C methyltransierase, es
	YKRU81C	RPF2 DDD0	ATD day a day t DNA believes of the DEAD h
	ILR270U	DDF9 NOC1	Dutative CTD age that aggs sister with free
	IPL095W VCI 171W	NOGI DOV1	ATD dependent DNA belieses of the DEAD h
	I GLITIW	RUKI SDD4	Dutative ATD dependent DNA belieses and
	IFL002C	SFD4 NUC1	CTDage that aggregister with pucker 60°
	YED120C	NUGI	G I Pase that associates with nuclear 605
	YERI39C	NTCLA 1	Putative protein of unknown function; YE
	YGLIIIW	NSA1 NOD7	Constituent of 665 pre-ribosomal partici
	YGR103W	NOP7	Nucleolar protein involved in rRNA proce
	YHR197W	RIAI	Essential component of the Rix1 complex
	YNR053C	NUG2 VTIM1	Putative GTPase that associates with pre
	YUR272W		Constituent of 005 pre-ribosomal particl
	YHKU52W	CIUI	Essential protein that interacts with pr
PC15 - apCompGavin2002: 42	YGRI34W	CAF130 MAK91	Part of the evolutionarily-conserved CCR
1 1	YDR060W	MAK21	Constituent of 66S pre-ribosomal particl
	YOR206W	NOC2	Protein that forms a nucleolar complex w

Complex ID	Gene	Commun Name	e Current Gene Annotation		
	YNL030W	HHF2	One of two identical histone H4 proteins		
	YDL160C	DHH1	Cytoplasmic DExD/H-box helicase, stimula		
	YPR016C	TIF6	Constituent of 66S pre-ribosomal particl		
	YMR049C	ERB1	Protein required for maturation of the 2		
	YNL061W	NOP2	Probable RNA $m(5)C$ methyltransferase, es		
	YHR066W	SSF1	Constituent of 66S pre-ribosomal particl		
PC15 - apCompGavin2002: 42	YKR081C	RPF2	Essential protein involved in the proces		
	YNL110C	NOP15	Constituent of 66S pre-ribosomal particl		
	YPL093W	NOG1	Putative GTPase that associates with fre		
	YGL171W	ROK1	ATP-dependent RNA helicase of the DEAD b		
	YGL111W	NSA1	Constituent of 66S pre-ribosomal particl		
	YGR103W	GR103W NOP7 Nucleolar protein involved in rRN			
	YOR272W	YTM1	Constituent of 66S pre-ribosomal particl		
	YCR035C	RRP43	Protein involved in rRNA processing; com		
	YGR095C	RRP46	Protein involved in rRNA processing; com		
PC16 - apCompGavin2002: 175	YGR195W	SKI6	3'-to-5' phosphorolytic exoribonuclease		
	YPR137W	RRP9	Protein involved in pre-rRNA processing,		
	YOR326W	MYO2	One of two type V myosin motors (along w		
	YCR057C	PWP2	Conserved 90S pre-ribosomal component es		
	YDR449C	UTP6	Nucleolar protein, component of the smal		
PC17 - apCompKrogan2004: 52	YJL069C	UTP18	Possible U3 snoRNP protein involved in m		
	YLR222C	UTP13	Nucleolar protein, component of the smal		
	YLR409C	UTP21	Possible U3 snoRNP protein involved in m		

Table S7: Predicted critical multi-protein complexes and associated genes related to more than one phenotype. Gene annotation was truncated for formatting purposes. Full annotation can be retrieve using the SGD database.

Critical multi-protein complex stability and robustness

Are sensitive genes more conserved?

We have seen in the various analysis about gene conservation that only the dataset by Giaever *et al.* (2002) and by Kastenmayer *et al.* (2006) seem different. Gene inducing a phenotype and overrepresented in some multi-protein complexes seem extremely well conserved across species. To assess the results of our graphical approach, we perform a two samples t-test for every comparisons. Our null hypothesis was that there is no difference between the mean evolutionary distances of the sensitive and non-sensitive genes. Table S8 presents the results. At *p*-value ≤ 0.05 , this analysis shows that only the essential genes [1] and the sORFs [3] are different and well conserved across species. The null hypothesis is true for the other experiments.

	S.bayanus	S.castellii	S.kluyveri	S.kudriavzevii	S.mikatae	S.paradoxus
essential	0.00	0.01	0.08	0.03	0.05	0.01
sORF	0.00	0.00	0.01	0.00	0.00	0.00
nystatin15	0.52	0.30	0.26	0.29	0.78	0.33
pH8g15	0.43	0.08	0.79	0.58	0.25	0.67
pH8g5	0.81	0.70	0.93	0.73	0.82	0.60
ypg15	0.33	0.53	0.33	0.30	0.87	0.22
CaCl2	0.60	0.45	0.40	0.41	0.20	0.46
cyclohex	0.34	0.80	0.82	0.53	0.40	0.23
FeLim	0.28	0.52	0.35	0.27	0.21	0.14
MPA	0.33	0.61	0.56	0.34	0.53	0.19
Paraq	0.29	0.49	0.21	0.51	0.21	0.11
YPGal	0.53	0.88	0.49	0.43	0.19	0.32
YPRaff	0.38	0.55	0.44	0.39	0.25	0.16
HU	0.48	0.76	0.87	0.45	0.61	0.56
YPGly	0.24	0.65	0.42	0.11	0.12	0.11
CAD	0.41	0.58	0.44	0.55	0.51	0.22
YPLac	0.25	0.70	0.42	0.20	0.20	0.11
UV	0.96	0.79	0.92	0.83	0.73	0.76
pH3	0.61	0.72	0.58	0.52	0.55	0.31

Table S8: Evolutionary distances not necessarily correlate with genes inducing a phenotype and their comembership in a protein complex. P-value of two sample t-tests between evolutionary distances of genes inducing a phenotype and co-member of a complex and the other member of genes of the complex. Each column represent the comparison between S. cerevisiae and the specified species. Each row is a different environmental condition. The first 2 rows are the lethal phenotypes studied by Kastenmayer et al. (2006) (sORF: small Open Reading Frames) and Giaever et al. (2002)(ESS: essentiality). The next 3 conditions were also tested by Giaever et al. (2002) (nystatin: Nystatin (antifungal drug) after 5 and 15 generations; pH8: pH 8 (alkali stress) after 5 and 15 generations; ypg15: yeast/peptone/galactose 15 gen.). The remaining rows report the experimental conditions studied by Dudley et al. (2005) (CaCl2: 0.7M calcium chloride, divalent cation; cyclohex: 0.18ug/ml cycloheximide, protein synthesis; FeLim: iron limited, nutrient limited condition; MPA: 20ug/ml mycophenolic acid, transcriptional elongation; Paraq: 1mM paraquat, oxidative stress; YPGal: 2YPRaff: 2HU: 11.4mg/ml Hudroxyurea, DNA replication and repair; YPGly: 3CAD: 55uM Cadmium, heavy metal; YPLac: 2UV: 100J/m2 ultra-violet, DNA replication and repair; pH3: low pH, general stress condition.)

Critical multi-protein complexes robustness

We proposed to make use of a synthetic lethal approach [15, 16] to further investigate the concept of essentiality. To that aims, we selected 14 critical complexes that have not been much studied and for which not all genes are essential (at least 2) (Table S9). We tested whether two or more deletions can effectively disrupt the functioning of the complex and hence refine the role of the complex. We found

that in those critical complexes

In vivo experiment

	gene1	gene2	score
	ARX1	BUD20	1
	ARX1	LHP1	1
anCompCovin2002, 14	ARX1	MRT4	0
apcompGavin2002. 14	BUD20	LHP1	1
	BUD20	MRT4	1
	LHP1	MRT4	1
	LOC1	PUF6	Е
apCompGavin2002: 49	MRT4	PUF6	Е
	LOC1	MRT4	1
	FPR4	PUF6	0
	PUF6	YER139C	1
apCompGavin2002: 181	ARX1	FPR4	0
	ARX1	YER139C	1
	FPR4	YER139C	0
	PUF6	TIF4632	1
apCompGavin2002: 22	GAR1	PUF6	1
	GAR1	TIF4632	0
apCompKrogan2004: 82	RPL8B	RPS8A	0
apCompGavin2002: 182	NOP12	PUF6	1
apCompGavin2002: 41	PUF6	SSF1	1
apCompGavin2002: 158	NOP12	SSF1	0
apCompGavin2002: 75	MRPL10	SEC28	1
apCompHo2002: 73	PRB1	SEC28	1
apCompGavin2002: 50	ARX1	PUF6	1
apCompHo2002: 87	MSS116	NOP6	0
apCompGavin2002: 157	BRR1	STO1	1
apCompHo2002: Ho174	CKA1	CKB2	0

Table S9: The 27 pairs of non-essential genes tested for synthetic lethality interaction in not well studied but probably essential protein complexes. The score column records the outcome of the experiment: 0 could not create diploid, 1 no growth defect, E experimental error.

KEGG pathways and phenotype

As described in the article, we computed the two omnibus tests to evaluate whether there is an overabundance of KEGG pathways with low or high proportions of genes associated with essentiality [1] and haploinsuffiency [17]. The smoothed density estimates are shown in Figure S4 for essential genes, Panel (a), and for haploinsufficient genes, Panel (b). These figures suggest that there are many more pathways with zero genes in them than should be observed under the null hypothesis, suggesting that the null hypothesis is not tenable for either the haploinsufficient genes or the essential genes.

Figure S4: Essential and haploinsufficient genes not well represented in KEGG pathways. Smoothed histograms of the proportion of genes per KEGG pathway that are associated to a phenotype. The dark line represents the observed data and the light curves represent the permuted data. Only the first 50 simulated density estimates out of 1000 permutations are displayed for visualization efficiency. Panel (a) corresponds to the essential genes and Panel (b) to the haploinsufficient genes.

Using the graph theory approach [18], we observed the permutation results shown in Figure S5. Panel (a) presents the results for essentiality and Panel (b) presents the results for haploinsufficiency. In both cases the observed number of edges in the intersection is far larger than any value from the permutations and hence the permutational *p*-value is less that 1 in 1,000 providing some evidence against the null hypothesis and indicating that there is an association between the genes associated with a particular phenotype and the KEGG pathways used in our analysis.

Figure S5: Associations exist between KEGG pathways and the genes associated to essentiality and haploinsufficiency. The distribution of the number of edges, under the null distribution of genes randomly distributed (1,000 permutations), grey histogram, in KEGG pathways compared to the number of observed edges, dashed red line. Panel (a) shows the results for the essential genes; Panel (b) for the haploinsufficient genes.

Since the overall tests provided some evidence against the null hypothesis the second part of the analysis was performed and Hypergeometric tests were used to identify specific pathways that had an over abundance of genes for each of the different phenotypes. Tables S10 and S11 present the KEGG pathways having an overabundance of essential genes and haploinsufficient genes (*p*-value ≤ 0.01), respectively.

	Observed	Expected	Size	Odds	P.value	Description
sce03050	28	8	32	20.01	$1.02e{-}12$	Proteasome
sce00563	20	5	21	55.90	$6.53 \mathrm{e}{-11}$	Gly cosylphosphatidy linositol (GPI)-anchor biosynthesis
sce03022	21	6	23	29.41	$1.55\mathrm{e}{-10}$	Basal transcription factors
sce03020	23	7	29	10.76	$6.33\mathrm{e}{-09}$	RNA polymerase
sce04111	56	30	109	3.14	$2.61\mathrm{e}{-08}$	Cell cycle - yeast
sce01031	18	5	21	16.62	$3.33\mathrm{e}{-08}$	Glycan structures - biosynthesis 2
sce00240	37	19	70	3.19	$3.45\mathrm{e}{-06}$	Pyrimidine metabolism
sce00970	21	10	37	3.62	$1.39\mathrm{e}{-04}$	Aminoacyl-tRNA biosynthesis
sce04120	17	8	30	3.57	$6.40 \mathrm{e}{-04}$	Ubiquitin mediated proteolysis
sce03060	7	2	9	9.38	$2.41\mathrm{e}{-03}$	Protein export
sce00100	12	5	21	3.60	$3.82e{-}03$	Biosynthesis of steroids
sce00230	36	24	89	1.88	$4.28\mathrm{e}{-03}$	Purine metabolism

Table S10: KEGG pathways associated with Essentiality. KEGG and essential genes. KEGG identification number; Observed: number of essential genes in the pathway; Expected: number of essential expected to be in the pathway; Odds: odds ratio; Size: total number of genes in the pathway; P-value: *p*-value of Hypergeometric test that was used to identify whether or not some pathways have a significant number of essential genes; Description: annotation given to the pathway.

	Observed	Expected	Size	Odds	P-value	Description
sce03010	73	11	148	48.02	$1.33\mathrm{e}{-55}$	Ribosome
sce03020	7	2	29	3.98	$5.28\mathrm{e}{-03}$	RNA polymerase

Table S11: KEGG pathways associated with Haploinsufficiency. KEGG in the interactome (all the genes). KEGG identification number; Observed: number of haploinsufficient genes in the pathway; Expected: number of haploinsufficient genes expected to be in the pathway; Odds: odds ratio; Size: total number of genes in the pathway; P-value: *p*-value of Hypergeometric test that was used to identify whether or not some pathways have a significant number of haploinsufficient genes; Description: annotation given to the pathway.

References

- Giaever G, et al.: Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002, 418(6896):387– 391.
- [2] Dudley A, Janse D, Tanay A, Shamir R, Church GM: A global view of pleiotropy and phenotypically derived gene function in yeast. *Molecular Systems Biology* 2005, 1:E1–E11.
- [3] Kastenmayer J, Ni L, Chu A, Kitchen L, Au W, Yang H, Carter C, Wheeler D, Davis R, Boeke J, Snyder M, Basrai M: Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Research 2006, 16(3):365–373.

- [4] The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology. Nature Genetics 2000, 25:25–29.
- [5] Camon E, Magrane M, Barrell D, et al.: The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 2004, 32(Database issue):D262–D266.
- [6] Guldener U, Munsterkotter M, Kastenmuller G, Strack N, van Helden J, Lemer C, Richelles J, Wodak S, Garcia-Martinez J, Perez-Ortin J, et al.: CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Research 2005, 33(Database Issue):D364.
- [7] Gavin AC, Aloy P, Grandi P, et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 2006.
- [8] Krogan N, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis A, et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. *Nature* 2006, 440:637–643.
- [9] Gavin A, Boesche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J, Michon A, Cruciat C, et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415(6868):141-147.
- [10] Krogan N, Peng W, Cagney G, Robinson M, Haw R, Zhong G, Guo X, Zhang X, Canadien V, Richards D, et al.: High-definition macromolecular composition of yeast RNA-processing complexes. Mol. Cell 2004, 13:225–239.
- [11] Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S, Millar A, Taylor P, Bennett K, Boutilier K, et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. *Nature* 2002, 415(6868):180–183.
- [12] Scholtens D, Gentleman R: Making Sense of High throughput Protein-Protein Interaction Data. Statistical Applications in Genetics and Molecular Biology 2004, 3:39.
- [13] Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 2000, 28:27–30.
- [14] Wall D, Fraser H, Hirsh A: Detecting putative orthologs. Bioinformatics 2003, 19(13):1710–1711.
- [15] Tong AH, Evangelista M, Parsons AB, et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001, 294(5550):2364–2368.
- [16] Pan X, Yuan DS, Xiang D, Wang X, Sookhai-Mahadeo S, Bader JS, Hieter P, Spencer F, Boeke JD: A robust toolkit for functional profiling of the yeast genome. *Mol Cell* 2004, 16(3):487–496.
- [17] Deutschbauer A, Jaramillo D, Proctor M, et al.: Mechanisms of Haploinsufficiency Revealed by Genome-Wide Profiling in Yeast. Genetics 2005, 169:1915–1925.
- [18] Balasubramanian R, LaFramboise T, Scholtens D, Gentleman R: A graph-theoretic approach to testing associations between disparate sources of functional genomics data. *Bioinformatics* 2004, 20(18):3353–3362.