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Extensions to Gene Set Enrichment

Zhen Jiang and Robert Gentleman

Abstract

Motivation: Gene Set Enrichment Analysis (GSEA) has been developed recently
to capture moderate but coordinated changes in the expression of sets of function-
ally related genes. We propose number of extensions to GSEA, which uses differ-
ent statistics to describe the association between genes and phenotype of interest.
We make use of dimension reduction procedures, such as principle component
analysis to identify gene sets containing coordinated genes. We also address the
problem of overlapping among gene sets in this paper.

Results: We applied our methods to the data come from a clinical trial in acute
lymphoblastic leukemia (ALL) [1]. We identified interesting gene sets using dif-
ferent statistics. We find that gender may have effects on the gene expression in
addition to the phenotype effects. Investigating overlap among interesting gene
sets indicate that overlapping could alter the interpretation of the significant re-
sults.
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1 Introduction

Gene set enrichment analysis (GSEA) is one of the more interesting tools to have been developed for the
analysis of microarray data. In this paper we first consider the approach from a slightly different perspective,
develop the appropriate notation and then provide a number of extensions of the methodology. These
extensions cover a number of different important areas of application and show how one can make use of
a wide variety of different statistics on each gene set, how to deconvolve the outputs when gene sets have
substantial overlap, and how to inspect gene sets that have been found to be interesting with respect to the
likely coordinated activity of the genes that have been identified.

The classical approach to DNA microarray analysis has been to treat genes as independent agents, to
apply some statistical test per gene and follow that up with some form of p-value correction method. Those
genes whose p-values cross some predetermined threshold are deemed interesting and are followed up by a
number of other procedures. Such an approach can be criticized on a number of grounds. There is the
arbitrariness of the cut-off, no matter how it is chosen, and in almost all experiments genes whose test
statistics yield p-values that differ by a tiny amount are treated completely differently. By design this
approach will find genes where the difference in mRNA abundance, between the conditions being studied is
large, but it will not detect a situation where the difference is small, but evidenced in a coordinated way in
a set of related genes.

GSEA was designed to directly addresses these points. There is no need to use a cut-off. All genes assayed
can be used in GSEA and only simple non-specific filtering, for variation across samples, is needed. GSEA
aggregates the per gene statistics across genes within a gene set, thus making it possible to detect situations
where all genes in a predefined set change in a small but coordinated way. Since it is likely that many relevant
phenotypic differences are manifested by small but consistent changes in a set of genes GSEA is reasonable
and seems likely to yield results. Furthermore, GSEA is likely to also detect the cases where the effect is due
to large changes in a relatively few genes. Examples of such analyses include Mootha et al. [2003] who used
GSEA approach to identify PGC-1α-responsive genes involved in oxidative phosphorylation, and Majumder
et al. [2004] who used the approach on prostate cancer to identify a seven member hypoxia-inducible factor
1 gene set.

In this paper we suggest some simple modifications to the approach, such as using different per gene set
statistics. We also discuss the use of a more general linear model approach that can be used to adjust for
other variables that are known to affect expression values, but which are often not of direct interest. We
consider the interpretation of gene sets and show how there is potential for misinterpretation when subsets
of genes are shared and finally we present some results regarding dimension reduction techniques applied on
a per gene set basis.

2 Materials and Methods

All methods are demonstrated on a large microarray data set that come from a clinical trial in acute lym-
phoblastic leukemia (ALL). We will focus our attention on the patients with B-cell derived ALL, and in
particular on comparing the group identified as having the BCR/ABL fusion gene (usually due to a t9;22
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translocation) to those samples with no observed cytogenetics abnormalities, NEG. We make use of data from
KEGG [Kanehisa and Goto, 2000] as our gene sets.

Our analysis procedures will aggregate information from different genes. Since expression values do not
directly reflect the true mRNA abundance, we standardized the data by gene before analyzing.

2.1 Background

Subramanian et al. [2005] and Mootha et al. [2003] presented GSEA as a method to identify predefined gene
sets that associate with the differences between phenotypes. First, they ranked all genes based on their
association with the phenotype of interest differences. Then, they assumed that if the genes in a gene set
have coordinated changes across phenotype, the distribution of the positions of these genes on the ranked
list will show non-randomness. They developed an enrichment score to measure the non-randomness. This
enrichment score combines the per gene association with the phenotype and the distribution of the genes
on the ranked list. A permutation test was used to access the significance of the enrichment scores (more
discussion in Section 2.1.1). As a result, gene sets will be deemed significant if most of its members have
moderate association with the phenotype and are clustered within the ranked gene list.

Tian et al. [2005] and Kim and Volsky [2005] proposed a similar approach but instead of using the
enrichment score, they used familiar two-sample statistics, such as the t-statistic. This approach can be
viewed as an extension of GSEA that makes its application both simpler and richer. The test statistic for
a gene set is an aggregate of the per gene test statistics of its members. A permutation test is also used to
assess the significance of the statistics. As we note, there is a parametric approximation that often works
well.

These two approaches follow a common idea of using combined information from individual genes, yet
each of them has unique features. The main difference between the two methods is in the way they treat the
genes that are not in the set. The approach of Subramanian et al. [2005], Tian et al. [2005] puts penalties on
the non-member genes that are ranked between the genes in a gene set, especially when the member genes
are clustered together, while the approach of Tian et al. [2005] ignores them. Our own approach is more
similar to that of Tian et al. [2005].

We adopt some of the notation from Tian et al. [2005]. Let i, j and k be the index of the genes, samples
and gene sets, with i = 1, . . . , B, j = 1, . . . , n, and k = 1, . . . ,K, respectively. The association between the
ith gene and the phenotype is represented by zi, and the association between the genes and the gene sets is
presented in an incidence matrix A,

A =

 a11 a12 · · · a1B

...
...

aK1 aK2 · · · aKB

 (2.1)

where

aki =
{

0 gi /∈ Ck

1 gi ∈ Ck.
(2.2)

and Ck denotes the set of genes in the kth gene set. There are situations where values other than 1 for
aki will be more appropriate. For example, one practical source of gene lists is other publications on the
same disease or phenotype. Those papers often give a set of genes that are up-regulated and a second set
that are down-regulated. Rather than treat these as two separate lists, all predictions can be accommodated
by using a −1 in the corresponding elements of A for genes that are down regulated, a 1 for those that are
up-regulated, and a zero for genes that were not in the list. In other cases it may be more appropriate to
use non-integer weights, perhaps based on some probability that a gene is differentially expressed, or the
strength of evidence from the published paper.

The association between the genes and the phenotype is summarized in a vector Z,

Z = (z1, · · · , zB)T , (2.3)
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where zi is the observed test statistic for gene i. We denote gene sets as Ck and let nk indicate the number
of genes in Ck.

We now modify the gene set statistics a little from the definition in Tian et al. [2005]. Instead of using
the average, we use the summation of the gene statistics as the per set statistic. Then, the vector of the gene
set statistics, X, is the inner product of the incidence matrix, A, and the vector of the gene statistics, Z.

X = A · Z (2.4)

The gene set statistic in Equation 2.4 has a general form. It is composed of two parts: the associa-
tion/membership between genes and the gene sets, A, and the association between genes and phenotype, Z.
Different realizations of them can give many variations of the method. Tian et al. [2005] proposed t-statistics,
but any other test statistic could be used for Z. In Section 2.2 we propose several modifications, including
using different univariate test statistics, a more general linear models approach and a Bayesian approach.

We also note that because of the form of the aggregation, essentially the summation of estimated effects,
it is important that those effects all be on essentially the same scale. This is one reason to use t-tests and in
other cases care must by taken.

2.1.1 Inference

It is straightforward both to state and interpret a null hypothesis of no association between the observed
phenotype and gene expression. This hypothesis can be tested in many different ways but for gene set
enrichment it has been typical to permute the phenotype labels on the samples to generate a reference
distribution. While some have proposed an approach that permutes the gene labels we do not advocate this
since it is difficult to interpret the corresponding null hypothesis. All permutation results reported here arise
from permuting the group or phenotype labels and comparing the observed value of the test statistic to the
empirical distribution of test statistics obtained from the permutations.

It is also possible to perform a parametric test of the hypothesis of no association. One advantage of
using a t-statistic is provided by considering the following heuristic argument, first described to us by Dr.
T. P. Speed. Under the null hypothesis that there is no difference between the two groups being compared
the t-statistics have a t distribution with degrees of freedom approximately n− 2 (the value depends slightly
on the form of the t-test used). If n is sufficiently large then these statistics have approximately a N(0, 1)
distribution, under the null hypothesis of no difference between the two groups. If the genes were independent
then summing these over a gene set with nk genes in it would yield a test statistic with a N(0, nk) distribution
and dividing that statistic by the square root of nk returns us to a N(0, 1) distribution. Hence, the per set
sums, divided by the square root of the gene set sizes can be compared to quantiles of the N(0, 1). In practice
this is both fast and reasonably reliable, but the assumption of independence of genes is not tenable.

2.2 Extensions

We now describe some extensions of the original concept of gene set enrichment. In some cases the extensions
are quite simple, but even for these examples the results are compelling. In other cases the extensions are
more substantial.

While most practitioners have used sums and averages to aggregate the test statistics per set this is not
the only approach that should be considered. We note that the average is not used universally in statistics
as a means of measuring the center, largely because it is known to be susceptible to outliers. Other per set
summarizations, such as the median, or a sign test can be easily accommodated within the GSEA framework.
The permutational method can be used to assess significance in these cases as well. We provide an example
in Section 3.3.

The two sample t-statistic can also be obtained by fitting a linear model for each gene. We let

Ygi = µg + βgXi + εgi (2.5)

where Ygi is the vector of gene expression for gene g and sample i and Xi is one or zero depending on the
phenotype of sample i and εgi are assumed to be independent mean zero random variables with variance σ2

g

3

Hosted by The Berkeley Electronic Press



(often assumed to have a Normal distribution). In this model µg represents the mean for the group with
phenotype corresponding to Xi = 0, while βg represents the difference in mean between that group and the
group represented by Xi = 1. The t-statistic can be obtained by testing the model parameter βg = 0 and is
equivalent to β̂g/sg, where sg is natural estimate of σ2

g . An natural extension is to adjust for other variables
that are likely to affect expression values,

Ygi = µg + β1gX1i + β2gX2i + εgi, (2.6)

where X2i denotes the value of the additional covariate in the model. The parameter β1g then represents
the mean difference in expression due to phenotype after adjustment for X2. We again make use of β̂1g/sβ1g

as our standardized estimate of the phenotypic effect and these values are used as Z in Equation 2.4.
The linear model is more flexible than the simple two-sample t-statistic. If the sample size is large enough,

the linear model could be very complex, including many variables and even high level interactions. Though
we lose some degrees of freedom, including all appropriate variables in the linear model will provide more
accurate estimates of the true effect due to the phenotype. It is important that the quantity being used as
a test statistic have a distribution that is the same for all genes, unless there is some reason to prefer to
work on a different scale. But typically, the observed values for gene expression data are not intrinsically
meaningful and hence standardized estimates are preferred.

2.2.1 Posterior probability

We now provide a detailed discussion of an extension of the methodology to deal with a more complicated
per-gene test statistic. We make use of the work of Newton et al. [2001] who developed a Bayesian approach
to detect differentially expressed genes. This approach assumes a gene can come from one of the two groups,
the equivalently expressed (EE) genes and the differentially expressed (DE) genes, with probabilities 1−p and
p, respectively. The gene expression from the two groups follows distributions f0(·) and f1(·), respectively.
By the Bayes’ rule, the posterior probability of a gene with expression x to come from the DE group is

pf1(x)
pf1(x) + (1 − p)f0(x)

(2.7)

Using the posterior probability as per gene statistic, the gene set statistic X has a nice interpretation as
the expected number of differentially expressed genes per set, and each component of x follows a binomial
distribution with parameters nk and pk, the later of which is unknown.

We are interested in finding gene sets having stronger associations with a phenotype of interest. The
null hypothesis is that all the gene sets have the same association. This association can be measured by
the estimated number of DE genes in a gene set. But this number is related to the size of the gene set and
we would naturally expect more DE genes in a larger set under the null hypothesis. Letting pk denote the
binomial probability parameter for gene set k, the null hypothesis can be written as:

H0 : p1 = p2 = · · · = pK = p, (2.8)

where K is the number of gene sets. The alternative hypothesis is one-sided, since we are looking for gene
sets with stronger association.

Ha : There exist at least one gene set, k, where pk 6= p. (2.9)

Under the null hypothesis, we estimate the parameter p as

p̂ =

(
N∑

g=1

ẑg

)
/N or (2.10)

p̂ =

(
m∑

k=1

p̂k

)
/m with p̂k =

∑
g∈Ck

ẑg

 /|Ck| (2.11)
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where ẑg is the estimated posterior probability of gene g being differentially expressed. Equation 2.10 is the
average of individual gene probabilities. It assumes that all the genes share the same probability of showing
differential expression, which is a stricter null hypothesis than that of Equation 2.8. Equation 2.11 is the
average of gene set probabilities, or it can be viewed as a weighted average of individual gene probabilities,
where the weight of gene i is

wi =

( ∑
k:i∈Ck

1
|Ck|

)
/m (2.12)

Using this estimation, a gene has more weight if it belongs to a smaller gene set, or if it belongs to larger
number of gene sets.

Under the null hypothesis, the expected number of DE genes in the kth gene set is

êDEk = |Ck|p̂ (2.13)

the observed number of DE genes in the same gene set is

oDEk =
∑

g∈Ck

ẑg (2.14)

and, the probability of observing oDEk or more DE genes is
|Ck|∑

s=oDEk

(
|Ck|
s

)
p̂s(1 − p̂)|Ck|−s (2.15)

If |Ck| is large enough and p̂ is not too small, the binomial distribution can be approximated by a Normal
distribution with parameters µk = |Ck| · p̂ = êDE and σk =

√
|Ck| · p̂(1 − p̂). The approximate p-value is

Φ

(
oDEk − êDE√
|Ck|p̂(1 − p̂)

)
(2.16)

One of the weaknesses of this approach is that the statistical algorithm detects differential expression
without regard to direction. But if our goal is to detect coordinated changes in expression we should check
to ensure that the estimated effects are in the same direction. For example, in a two sample comparison we
would be interested in gene sets with many differentially expressed genes provided those samples from one
phenotype or condition tended to have higher values than those from the other phenotype. So we propose
that for each significant gene set, we check the change in the gene expression of each gene with posterior
probability larger than the pre-selected cut-off.

2.3 Interpreting the Gene Sets

The approach of computing a single test statistic per gene suggests a belief that all of the information that is
contained in the gene set can be reduced first to a single number for each gene and then to a single number
for all genes in the gene set. As this is not always the case, we discuss some extensions that can be used to
help make more use of the available data.

We begin with the observation that there is often substantial overlap between different gene sets. For
example, if we use pathways, as defined by KEGG [Kanehisa and Goto, 2000], we find that the Leukocyte
transendothelial migration pathway and the Regulation of actin cytoskeleton pathway contain 49 and 79
genes respectively and there are 23 in both. Suppose that in an experiment there is an activation of the
Leukocyte transendothelial migration pathway, but not of the Regulation of actin cytoskeleton pathway, we
might still observe an extreme statistic for the Regulation of actin cytoskeleton pathway merely due to the
genes that are shared between them. If undetected such an observation may mislead an investigator. We
discuss approaches that can be used to better attribute the observed effect to the appropriate gene set.

There are several statistical methods that can be used to determine whether genes within a gene set show
coordinated expression. We suggest using visualization methods and dimension reduction techniques such
as principal component analysis (PCA), [Mardia et al., 1979, Johnson and Wichern, 1988].
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2.3.1 Shared genes and aliasing among gene sets

Whenever two gene sets contain at least one common gene there is the potential for problems in interpretation.
The most extreme case occurs when two, or more, gene sets are identical. In such a case we say that the gene
sets are aliased and the practical implication is that one cannot determine, from the available data, which
gene set is responsible for the effect. While complete aliasing is unlikely there are circumstances where it can
occur and partial overlap between gene sets is common and can cause similar problems in interpretation. In
particular, due to the structure of GO [The Gene Ontology Consortium, 2000] if GO classifications are used
to define gene sets there will always be nesting.

Since genes can be in many gene sets, the level of overlap can be quite substantial with many gene sets
being involved. We studied the extent of overlap for KEGG pathways of genes on the Affymetrix HGU-95Av2
chip. (Table 1 of supplimentary material). Among 2989 genes that with KEGG pathway annotation, about
half of them involve in multiple pathways. In this report we restrict our attention to pairwise comparisons
of gene sets, but note that there can be higher level interactions.

Table 1: The frequency table for the number of KEGG pathways the genes on the HGU-95av2 gene chip
belong to.

Sets Genes Sets Genes Sets Genes Sets Genes
1 1 1541 5 95 9 18 13 3
2 2 687 6 46 10 9 14 9
3 3 349 7 31 11 5 15 11
4 4 159 8 10 12 14 18 2

When trying to assess whether two gene sets are aliased we must consider the gene set restricted to the
data being analyzed rather than the whole gene set. Thus, even though two gene sets are not themselves
aliased, if a number of genes have been excluded from the analysis then the gene sets, restricted to the genes
being analyzed can be aliased. The effect is essentially the same. It is not possible to determine from the
available data which of the two (or more) gene sets is responsible for the observed effect.

In cases where two gene sets have common genes, we use the following methods. For each pair of gene
sets we can decompose the genes involved into three disjoint parts: the genes unique to the first gene set, the
genes unique to the second gene set, and the genes found in both gene sets. These three parts can also be
viewed as gene sets and hence can be analyzed via GSEA. To illustrate the different situations we present two
examples. In the first example, Section 3.4.1, we find that only one of the gene sets seems to be implicated
in the differences between the phenotypes, the other is significant only due to those genes shared with the
first gene set. In the second example, Section 3.4.2, there seems to be no interpretation issue.

2.3.2 Dimension reduction per gene set

We consider the problem from the perspective of the samples. For each of the n samples and gene set Ck

there are |Ck| = nk genes whose expression values we want to model. We can consider each sample to be
represented by a point in nk dimensional space. If the genes in gene set Ck show coordinated patterns of
expression then the points in the space should display a pattern that reflects this observation. Gene sets
which can be reduced to two or three dimensions indicate situations where the constituent genes are likely
to be co-regulated.

Principle component analysis (PCA) [Mardia et al., 1979, Johnson and Wichern, 1988] is one of the
popular tools for dimension reduction. We use it as an example to show how dimension reduction can help
us finding interesting gene sets. Genes will be standardized (the median subtracted and divided by the
MAD) prior to the application of PCA.

We followed two approaches using principle components (PCs). First, we found the number of PCs
needed to explain a certain percentage of the variation among data. For example, we chose 70%. Second,
we applied the isotropic test (Chapter 8.4, Mardia et al. [1979]), on the expression data. The isotropic test
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identifies a value k such that the null hypothesis: the last n − k PCs are equally important, is rejected for
k − 1 but not for k. Then the number k is the suggested number of PCs to keep. The gene sets generally
have different sizes and this must be accounted for. We then checked the ratio between the number and the
gene set size. The smaller this ratio is, the better the reduction is.

3 Applications

We will apply the methods discussed in the previous section to ALL data.

3.1 Data Processing

Before applying the methods discussed in the previous section to the ALL data, it must be processed and
filtered to some extent. We describe our choices but emphasize that users can substitute virtually any other
methods they prefer. We make use of these as we have found that they often provide a sound basis for
analyses.

There are 37 samples for the BCR/ABL group and 42 samples for the NEG group. We first filtered the
probes base on their expression variation. The probes with very little or no variation (IQR < 0.5) were
filtered out, leaving 4149 probes. In some cases multiple probes map to a single gene, we retained the one
with the largest t-test statistic between phenotype. Our reason for this approach is that we are looking
for the best evidence we can find of gene set involvement. Since not all genes are accurately annotated, or
arrayed, it seems reasonable to use the microarray probe for a gene with the best evidence for differences
in phenotype. After this step, we were left with 3446 genes/probes. Among them, there are 1138 genes are
annotated as members of one or more KEGG pathways.

Another practical issue that we need to deal with is the size of a gene set, or what might be termed the
effective size of a gene set. This is a parameter and must be chosen by the user. In some cases it will be of
interest to retain relatively small gene sets, but in most cases one will be interested in general descriptions
and therefore larger gene sets are more helpful. We do emphasize that this size is not the size of the gene
set that has been curated, but rather the size of the gene set when restricted to the genes that are going to
be used in the analysis. For our analyses we keep only the pathways with at least 10 genes. In the end, we
have 1036 genes, 79 samples, and 76 pathways.

3.2 Simple Analyses

Computing the two group t-statistic of the gene expression for each gene. Permutation is used to access the
significance of a pathway, using sum or mean are equivalent. We computed the mean of the t-statistic of the
genes in each pathway. Using a permutation test with 5000 permutations, we obtained the p-values for each
pathway. There were 14 significant pathways with a one-sided p-value less than 0.01. They are reported in
Table 2 in supplimentary material. These pathways have higher gene expression levels in BCR/ABL versus
NEG at the significant level of 0.01.

3.3 Median and sign test

We looked at using median and sign test of per gene statistics within a gene set as a per set statistic and
compared with the results from using mean. Table 2 and Figure 1(a) show the comparison. The majority
of findings for the mean and median are the same, except that 3 pathways are found by mean but not by
median and 2 pathways are found by median but not by mean. The pathways reported differently by mean
and median may suggest influential genes in these pathways.

For example, Figure 1(b) shows the t-test statistics for genes in the mTOR signaling pathway. This
pathway is significant using mean but not using median. The t-statistic for the gene PRKAA1 (shown as a
black triangle) is much higher than all the others, suggesting that the median test is more reliable in this
case.
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Table 2: Significant pathways reported by different statistics. The columns pMn, pMd, and pST show
the p-values using mean, median or sign test,respectively, to compute the gene set statistic from per gene
associations with phenotypic differences. The rows are divided into six sections. In each section are the
pathways reported by all, two of the three, or only one of the three methods. If a pathway is reported
significant by a method, the p-value is listed in the table. Otherwise the corresponding element is blank.

ID PW Name pMn pMd pST Size
1 04514 Cell adhesio... 0.0000 0.0000 0.0008 38
2 04940 Type I diabe... 0.0018 0.0020 0.0013 20
3 04060 Cytokine-cyt... 0.0030 0.0050 0.0001 54
4 04610 Complement a... 0.0000 0.0004 14
5 04512 ECM-receptor... 0.0000 0.0004 15
6 04530 Tight juncti... 0.0000 0.0020 40
7 04520 Adherens jun... 0.0000 0.0034 34
8 04670 Leukocyte tr... 0.0002 0.0010 49
9 04080 Neuroactive ... 0.0002 0.0012 20
10 04510 Focal adhesi... 0.0006 0.0028 73
11 01430 Cell Communi... 0.0014 0.0004 12
12 03010 Ribosome 0.0080 0.0000 23
13 04360 Axon guidanc... 0.0004 38
14 04810 Regulation o... 0.0066 79
15 04210 Apoptosis 0.0096 46
16 04640 Hematopoieti... 0.0008 38
17 00190 Oxidative ph... 0.0001 59
18 00620 Pyruvate met... 0.0003 16
19 00230 Purine metab... 0.0027 58
20 04110 Cell cycle 0.0046 66
21 00310 Lysine degra... 0.0065 14
22 00071 Fatty acid m... 0.0065 14
23 00010 Glycolysis /... 0.0085 22
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Figure 1: (a) Comparison of using mean or median as gene set statistic. (b) The t-statistic of genes in the
mTOR signaling pathway. Most genes have t-statistic between -2 and 2, except one gene, PRKAA1 has
t-statistic greater than 3.5 (shown in black).

The results from the sign test are much different from those of mean and median. We think this is because
the mean and median are using the actual value of t-statistics whereas the sign test is using logical value.
All the genes with higher t-statistics are treated the same whether they are higher by a small amount or a
large amount.

If the mean is used, then our previous argument (Section 2.1.1) says a qq-plot can be used to graphically
identify significant gene sets. We generate the qq-plot of our data in Figure 2(a). The pathway statistics are
quite close to the 45 degree line. We identify 3 pathways that are further away from the 45 degree line than
others.

3.3.1 Linear Modeling

For the ALL data, we fitted the model in Equation 2.6, with X2i being the sex of the individual. We use
the t-statistic β̂1g/SE(β̂1g) as gene statistic in GSEA. Table 3 reports all pathways significant at 0.01 level.
The t-statistic adjusted for gender identified more significant pathways besides the ones that are reported
by the un-adjusted t-statistic, suggesting that there may be important gender differences.

The qq-plots for the un-adjusted t-statistic and the t-statistic adjusted for gender of the pathways (Fig-
ure 2) identified the same pathways, such as, the Cell adhesion molecules (CAMs) pathway, the Adherens
junction pathway, and the Lysine degradation pathway.

3.3.2 Posterior probability as gene statistic

For each gene, we estimated the probability of being differentially expressed using the EBarrays package.
Then we calculated the expected number of DE genes and the observed number of DE genes as in equation
(2.13) and (2.14). To get p-values for the pathways, we used two different methods: estimate p̂ by averaging
over all genes (Equation 2.10) and estimate p̂ by averaging over all gene sets (Equation 2.11). Table 4
lists the results from the two methods. The Cytokine-cytokine receptor interaction pathway is found by
both approaches and the Adherens junction pathway and the Axon guidance pathway are found only by the
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Table 3: Significant pathways and p-values reported using the adjusted t-statistic,padj.t, and the un-adjusted
t-statistic, pt. The differences suggest that the gender has influence on the gene expression profile.

ID PW Name padj.t pt Size
1 04510 Focal adhesi... 0.0000 0.0006 73
2 04512 ECM-receptor... 0.0000 0.0000 15
3 04514 Cell adhesio... 0.0000 0.0000 38
4 04630 Jak-STAT sig... 0.0000 57
5 04520 Adherens jun... 0.0000 0.0000 34
6 04530 Tight juncti... 0.0000 0.0000 40
7 04650 Natural kill... 0.0000 61
8 03010 Ribosome 0.0000 23
9 04060 Cytokine-cyt... 0.0000 0.0030 54
10 04660 T cell recep... 0.0000 51
11 04810 Regulation o... 0.0000 0.0066 79
12 04670 Leukocyte tr... 0.0000 0.0002 49
13 04940 Type I diabe... 0.0000 0.0018 20
14 04350 TGF-beta sig... 0.0000 35
15 04010 MAPK signali... 0.0000 109
16 04610 Complement a... 0.0000 0.0000 14
17 04612 Antigen proc... 0.0000 41
18 04360 Axon guidanc... 0.0000 0.0004 38
19 04210 Apoptosis 0.0010 0.0096 46
20 04080 Neuroactive ... 0.0010 0.0002 20
21 04620 Toll-like re... 0.0020 35
22 05120 Epithelial c... 0.0020 23
23 00310 Lysine degra... 0.0020 14
24 00230 Purine metab... 0.0020 58
25 04330 Notch signal... 0.0030 14
26 00071 Fatty acid m... 0.0030 14
27 00190 Oxidative ph... 0.0030 59
28 00240 Pyrimidine m... 0.0050 39
29 04310 Wnt signalin... 0.0060 52
30 00620 Pyruvate met... 0.0060 16
31 04020 Calcium sign... 0.0070 46
32 00010 Glycolysis /... 0.0090 22

Table 4: Significant pathways reported using posterior probability as gene statistic. The columns p1 and
p2 are the p-values by using the average over all gene probabilities or using the average over all gene set
probabilities as null hypothesis parameter. The columns B↓ and B↑ show the number of genes that are higher
or lower in BCR/ABL, respectively, among the genes with posterior probability at least 0.01

ID PW Name p1 p2 Size B↑ B↓
1 04060 Cytokine-cyt... 0.0080 0.0018 54 25 8
2 04520 Adherens jun... 0.0041 34 15 7
3 04360 Axon guidanc... 0.0092 38 15 5
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Figure 2: qq-plots of the pathway statistics for the ALL data. (a) Two-sample t-statistic. (b) The t-statistic
from linear model, with an adjustment for sex.

second approach.
We checked the direction of expression changes from BCR/ABL to NEG for the genes with posterior prob-

ability higher than 0.01 in these pathways. In all cases more than two thirds of the genes are larger in one
phenotype. The Adherens junction pathway has about two thirds of interesting genes showed higher ex-
pression in BCR/ABL phenotype. The Cytokine-cytokine receptor interaction pathway and the Axon guidance
pathway have about three quarters of interesting genes showing higher expression in BCR/ABL phenotype.

3.3.3 Modifying the incidence matrix

We make use of the analysis reported in Yeoh et al. [2002]. Although their study was on pediatric patients,
the type of cancer, ALL, was the same. We obtained a gene list from Yeoh et al. [2002] that was used to
classify the BCR/ABL ALL subtype from other ALL subtypes by t-statistic (Table 13 in the supplemental
material of Yeoh et al. [2002] at http://www.stjuderesearch.org/data/ALL1).

Yeoh et al. [2002] used the same gene chip as ours. Among the 40 genes they reported, 30 are higher in
BCR/ABL and 10 are lower in BCR/ABL. After filtering genes for variance (Section 3.1), we were left with 10
genes from their list, 9 with higher values in BCR/ABL and 1 with a lower value. We put these genes in a
gene set and used 1 for the up-regulated genes and −1 for the down-regulated genes. The resulting p-value
is less than 10−4, indicating a very strong concordance between our data and that of Yeoh et al. [2002].

3.4 Aliasing

Pathways have a fairly large amount of overlap and there are many different pathways that share a large
number of genes with other pathways (Table 1). In this section, we emphasize the idea of dealing with
aliasing and partially overlapping gene sets to understand the relationship among gene sets.

3.4.1 Example of largely overlapping gene sets

We consider the two pathways, the Leukocyte transendothelial migration pathway and the Regulation of actin
cytoskeleton pathway. Both pathways were found significant by t-test (Table 2). This pair of pathways has
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Figure 3: Mean plots for (a) the Leukocyte transendothelial migration pathway. (b) the Regulation of actin
cytoskeleton pathway.

Table 5: Results for the subsets in pathway pair of Leukocyte transendothelial migration and Regulation of
actin cytoskeleton

Name Size Test Statistic p-value
1 Common 23 19.0716 0.0042
2 Leukocyte tr... 26 25.6994 8e-04
3 Regulation o... 56 29.1866 0.0174

23 genes in common.
In Figure 3(a) and Figure 3(b), we present a graphical display of the two pathways. Each point represents

a gene and the position on the x-axis is the mean expression value for that gene over all samples in the BCR/ABL
group, while the value on the y-axis represents the mean expression value for that gene in the NEG group.
Points that lie above the 45-degree line have higher expression values in the NEG group while those that lie
below the 45-degree line have larger values in the BCR/ABL group. Genes that are found in both pathways
are colored orange while genes unique to one of the two pathways are dark blue.

We would like to make a few observations based on the content of these figures before proceeding with
the discussion. First, those genes that are found in both pathways (colored orange) tend to have larger
values in the BCR/ABL group and hence are mainly found below the 45-degree line. Those genes found only
in the Leukocyte transendothelial migration pathway also tend to be below the 45-degree line, while those
genes found only in the Regulation of actin cytoskeleton pathway tend to be scattered above and below the
line, with no apparent preference. Since GSEA detects the accumulated effect of genes within a gene set we
suspect that the sub-group of genes unique to Regulation of actin cytoskeleton will not be significant since
the observed effects seem to cancel each other out.

We divided these two pathways into three gene sets, one set for the genes unique to each pathway and
one set for the shared genes and then carried out GSEA on the three gene sets. The analysis was based
on the permutation of sample labels, and the test results are summarized in Table 5. Genes unique to
the Leukocyte transendothelial migration pathway exhibit a significant effect, as do those that are shared
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Figure 4: Mean plots for (a) the Apoptosis pathway. (b) the Focal adhesion pathway.

Table 6: Results for the subsets in pathway pair of the Apoptosis pathway and the Focal adhesion pathway
Name Size Test Statistic p-value

1 Common 14 3.3012 0.2318
2 Apoptosis 32 21.7289 0.0066
3 Focal adhesi... 59 51.4231 4e-04

and most importantly the direction of the effect in both groups is the same. But for genes unique to the
Regulation of actin cytoskeleton pathway there seems to be no effect. This observation strongly suggests
that the effect observed is due to the Leukocyte transendothelial migration pathway activation and not to
the Regulation of actin cytoskeleton pathway activation.

3.4.2 A second example

In this section, we compare the Apoptosis pathway and the Focal adhesion pathway with 46 and 73 genes,
respectively. There are 14 genes common to both pathways. We follow the same procedure described above
and split the genes into three gene sets.

We generated the mean plots of the genes in these two pathways in Figure 4. Unlike our previous sample,
we do not see any obvious patterns in these two plots. The permutation test results in Table 6 indicate that
those genes that are common to the two pathways are not significant. The gene sets based on genes unique
to each of the two pathway remain significant.

There is some rationale for believing this to be a more common situation. Genes which are shared among
different pathways are likely to be regulated differently than those that are unique to a pathway. Genes
that play a number of different roles will need to be expressed and translated when any of their associated
functions are required, and hence are likely to be regulated by other mechanisms.

As illustrated in these two examples, modeling the genes shared between two pathways can improve
our understanding and interpretation of the test results. In our first example we believe that the data are
consistent with an activation or up-regulation of the Leukocyte transendothelial migration pathway in patients
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with BCR/ABL and that there is little evidence of the Regulation of actin cytoskeleton pathway involvement.
In the second example, the two pathways are likely to be independently activated in patients with BCR/ABL.

3.5 Principle component analysis (PCA) per gene set

We applied the PCA to the gene expression of each pathway. The expression values were standardized by
subtracting the median and dividing by the median absolute deviation (MAD).

Following the approach mentioned in section 2.3.2, we obtained the number of PCs needed to explain
70% of the variation and separately, the number of PCs that identified by the isotropic test. Table 7 reports
the gene sets which need at most 4 components to keep at least 70% of variation. We report the number k,
the ratio of k to pathway size, and the proportion of variation for the first three PCs of these pathways.

Then, we applied the isotropic test to the pathways. The value of k identified by the isotropic test were
quite large for all pathways. The reason could be that isotropic test is testing whether the last n − k PCs
are of the same importance, where n is the number of samples, and k is the number of PCs that were kept.
In our data, it seems that although the last n − k PCs are not important, they still cannot be considered
equally important. For example, in Figure 5 except the first component, all the other components are not
very important. But the isotropic test suggested keeping 13 PCs.
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Figure 5: The eigenvalues of the genes in Ribosome pathway, the genes on the Y chromosome are excluded.

The Ribosome pathway appears to be very interesting. The first two components explain almost 80% of
total variation of the gene set. The other components explain much lower percentage of the variation. The
ratio between the number of PCs needed for 70% of variation to the pathway size is also very low. We know
that some genes in the Ribosome pathway are sex related (for example, PRKY is on the Y chromosome). The
results of the PCA analysis of this pathway (Figure 6) are mostly the gender differences (first component)
and the between subject variation (second component). We believe there are four subjects with gender
annotation mistakes. Two of them are recorded as females with data indicated as males and two of them
are recorded as males with data indicated as females. We made corresponding corrections.

We removed all the genes on the Y chromosome and repeated the PCA analysis on the remaining genes.
The results (Table 7) did not change except for the Ribosome pathway. The plots of the new PCs for the
Ribosome pathway are shown in Figure 7. The first PC is no longer dominated by one gene. The plot of
the loadings of the first PC, without genes on the Y chromosome, against the loadings of the second PC
with Y genes (Figure 7(b)) showed that the new first PC is the old second PC plus a small gene effects. All
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Figure 6: The PCA results for the Ribosome pathway. (a) Boxplots of the loadings for the first three
components of Ribosome pathway. The first component is dominated by one gene, ribosomal protein S4,
Y-linked 1, which is a Y chromosome gene. (b) Biplot of the first two PCs of the Ribosome pathway. The
points in orange and blue represent samples with BCR/ABL and NEG phenotypes, respectively. The star and
bullet symbols represents male and female, respectively. There is one sample with missing sex annotation,
represented by a triangle. (We predict it to be a sample from a male subject.)
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the female samples are below the −45 degree line and all the male samples are above the −45 degree line.
Removing the genes on the Y chromosome is not enough to eliminate the gender difference in data, but it
now is not the most important source of variation in the data.

Another way to reduce the variation from gender differences is to adopt the ideas in Section 3.3.1 and
fit a linear model of gene expression on gender. The residuals from this model should be free of gender
differences and the PCA techniques can be applied to the residuals.

16

http://biostats.bepress.com/bioconductor/paper12



ID
P

W
N

am
e

Si
ze

k
R

at
io

P
C

1
P

C
2

P
C

3
kY

R
at

io
Y

P
C

1Y
P

C
2Y

P
C

3Y

1
03

01
0

R
ib

os
om

e
*

23
2

0.
08

7
0.

47
6

0.
30

9
0.

04
3

3
0.

13
0

0.
58

7
0.

08
1

0.
06

3
2

04
32

0
D

or
so

-v
en

tr
a.

..
12

3
0.

25
0

0.
31

6
0.

26
2

0.
12

8
3

0.
25

0
0.

31
6

0.
26

2
0.

12
8

3
00

65
0

B
ut

an
oa

te
m

e.
..

14
3

0.
21

4
0.

37
6

0.
25

2
0.

09
0

3
0.

21
4

0.
37

6
0.

25
2

0.
09

0
4

00
07

1
Fa

tt
y

ac
id

m
...

*
14

3
0.

21
4

0.
45

8
0.

13
9

0.
10

3
3

0.
21

4
0.

45
8

0.
13

9
0.

10
3

5
00

25
1

G
lu

ta
m

at
e

m
e.

..
11

4
0.

36
4

0.
36

7
0.

20
1

0.
12

2
4

0.
36

4
0.

36
7

0.
20

1
0.

12
2

6
00

05
1

Fr
uc

to
se

an
d.

..
15

4
0.

26
7

0.
31

1
0.

17
0

0.
13

7
4

0.
26

7
0.

31
1

0.
17

0
0.

13
7

7
00

31
0

L
ys

in
e

de
gr

a.
..

14
4

0.
28

6
0.

42
9

0.
15

3
0.

09
1

4
0.

28
6

0.
42

9
0.

15
3

0.
09

1
8

05
04

0
H

un
ti
ng

to
n’

s.
..

*
16

4
0.

25
0

0.
43

5
0.

15
5

0.
08

9
4

0.
25

0
0.

43
5

0.
15

5
0.

08
9

9
01

03
1

G
ly

ca
n

st
ru

c.
..

*
11

4
0.

36
4

0.
26

5
0.

18
5

0.
15

7
4

0.
36

4
0.

26
5

0.
18

5
0.

15
7

10
00

79
0

Fo
la

te
bi

os
y.

..
*

12
4

0.
33

3
0.

27
6

0.
23

3
0.

11
9

4
0.

33
3

0.
27

6
0.

23
3

0.
11

9
11

00
56

4
G

ly
ce

ro
ph

os
p.

..
*

14
4

0.
28

6
0.

32
9

0.
17

4
0.

12
0

4
0.

28
6

0.
32

9
0.

17
4

0.
12

0
12

00
34

0
H

is
ti
di

ne
m

e.
..

*
12

4
0.

33
3

0.
25

5
0.

24
0

0.
13

1
4

0.
33

3
0.

25
5

0.
24

0
0.

13
1

13
00

71
0

C
ar

bo
n

fix
at

...
*

11
4

0.
36

4
0.

31
7

0.
20

9
0.

12
1

4
0.

36
4

0.
31

7
0.

20
9

0.
12

1
14

00
35

0
T

yr
os

in
e

m
et

...
*

15
4

0.
26

7
0.

32
3

0.
20

3
0.

11
2

4
0.

26
7

0.
32

3
0.

20
3

0.
11

2

T
ab

le
7:

P
at

hw
ay

s
fo

r
w

hi
ch

fo
ur

or
fe

w
er

P
C

’s
ex

pl
ai

n
at

le
as

t
70

%
of

th
e

va
ri

ab
ili

ty
.

P
at

hw
ay

s
ar

e
so

rt
ed

by
th

e
nu

m
be

r
of

pr
in

ci
pl

e
co

m
po

ne
nt

s
(k

).
R

at
io

is
k/

si
ze

,a
nd

P
C

ii
s

th
e

pr
op

or
ti
on

of
th

e
va

ri
an

ce
ex

pl
ai

ne
d

by
th

e
it

h
P

C
.T

he
co

lu
m

ns
w

it
h

su
pe

rs
cr

ip
t

”Y
”

ar
e

th
e

P
C

A
an

al
ys

is
re

su
lt
s

af
te

r
re

m
ov

in
g

th
e

ge
ne

s
on

th
e

Y
ch

ro
m

os
om

e.
T

ho
se

la
be

le
d

w
it
h

a
*

ar
e

si
gn

ifi
ca

nt
by

pe
rm

ut
at

io
n

te
st

.

17

Hosted by The Berkeley Electronic Press



●

●

●

1 2 3

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Principle components

Lo
ad

in
gs

a) Ribosome

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
4

−
2

0
2

pcaRibosome$x[, 2]

pc
aR

ib
os

om
eY

$x
[, 

1]
Figure 7: The PCA results for the Ribosome pathway after removing the Y chromosome genes. The gender
annotation has been corrected. (a) Boxplots of the loadings for the first three principle components. (b)
Biplot of the first two PCs.

A permutation test could also be applied. In this case, we permute the labels of the genes in the data.
We realize that this is contrary to our advice in Section 2.1.1, but for this analysis permutation of the sample
labels has no effect, and the only way in which to generate a permutational distribution is to permute the
labels on the genes. For each permutation we performed PCA on the new gene sets to estimate the null
distribution of k, the number of PCs needed to explain 70% of the variation in the gene set. We used 1000
permutations and obtained 53 pathways with p-values less than 0.01, including 9 out of the 14 pathways in
Table 7 (marked with star).

4 Discussion

GSEA, as presented in Subramanian et al. [2005] and Tian et al. [2005], provides a valuable and useful tool
for the analysis of genomic data. In this report we have discussed a number of extensions of the original
proposal, we have shown that any per category summary statistic can be used and that the usual use of a
t-test can easily be extended to any linear modeling situation, where standardized estimates of the effects
can be employed in computing the per category measure of change.

In addition we have shown how to address issues of aliasing, where two or more gene sets overlap. In our
experience this is not merely an academic exercise, almost all experiments we have analyzed suffer from some
form of aliasing. We have specifically addressed pair-wise overlap, mainly because it is directly interpretable,
higher order interactions and overlaps are both harder to model, and to interpret.

Finally, we have considered a simple method of examining the amount of collinearity among the gene sets
using PCA. Again, in our examples, the application of these methods was very fruitful. It helped to identify
some potential underlying problems and to identify gene sets where there does appear to be coordinated
behavior of the constituent genes.

We also remark that while GSEA approach has largely been applied to microarrays, there is nothing
special about microarray data and could just as easily be applied to any other high throughput data streams
where the variables can be grouped in relevant ways a priori.
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