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Abstract: Respiratory diseases are among the leading causes of death, with many individuals in a
population frequently affected by various types of pulmonary disorders. Early diagnosis and patient
monitoring (traditionally involving lung auscultation) are essential for the effective management of
respiratory diseases. However, the interpretation of lung sounds is a subjective and labor-intensive
process that demands considerable medical expertise, and there is a good chance of misclassification.
To address this problem, we propose a hybrid deep learning technique that incorporates signal
processing techniques. Parallel transformation is applied to adventitious respiratory sounds, trans-
forming lung sound signals into two distinct time-frequency scalograms: the continuous wavelet
transform and the mel spectrogram. Furthermore, parallel convolutional autoencoders are employed
to extract features from scalograms, and the resulting latent space features are fused into a hybrid
feature pool. Finally, leveraging a long short-term memory model, a feature from the latent space
is used as input for classifying various types of respiratory diseases. Our work is evaluated using
the ICBHI-2017 lung sound dataset. The experimental findings indicate that our proposed method
achieves promising predictive performance, with average values for accuracy, sensitivity, specificity,
and F1-score of 94.16%, 89.56%, 99.10%, and 89.56%, respectively, for eight-class respiratory diseases;
79.61%, 78.55%, 92.49%, and 78.67%, respectively, for four-class diseases; and 85.61%, 83.44%, 83.44%,
and 84.21%, respectively, for binary-class (normal vs. abnormal) lung sounds.

Keywords: respiratory sounds; LSTM; mel spectrogram; convolutional autoencoder; artificial
intelligence; continuous wavelet transform; hybrid features; healthcare

1. Introduction

Globally, lung diseases are acknowledged as highly fatal and dangerous, affecting
millions of people every year. According to the Forum of International Respiratory Societies
(FIRS), respiratory disorders cause almost four million fatalities annually and are among the
leading causes of morbidity worldwide [1]. Furthermore, the World Health Organization
(WHO) reported that after cardiovascular diseases, respiratory diseases are the second
largest contributor to the global disease burden; approximately 10 million people lose their
lives to respiratory diseases every year [2]. The diagnostic procedures for respiratory dis-
eases primarily involve auscultation, wherein medical specialists listen with a stethoscope
to the sounds as air moves in and out of the lungs [3]. Lung auscultation is among the
traditional diagnostic techniques employed [4] by medical specialists to assess the status of
respiratory diseases. Crackles and wheezes are the two most frequently heard abnormal
lung sounds [5]. These sounds are identified based on their frequency, pitch, energy, in-
tensity, and duration. Wheezes are continuous, high-pitched noises typically occurring in
the 400–500 Hz range with a duration longer than 100 ms. Wheezes are generally heard in
individuals with asthma and chronic obstructive pulmonary disease [6]. Crackles are dis-
continuous sounds with a pitch ranging between 100 and 2000 Hz. Crackles are generally
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heard in patients suffering from heart failure, pneumonia, and bronchitis [7]. Auscultation
is cost-effective, easy to apply, and provides essential details about lung conditions and
symptoms for a quick diagnosis [8]. However, traditional auscultation with a stethoscope
is not infallible, because it depends on the clinician’s expertise and auditory sensitivity.
Sometimes, during an examination, this leads to misclassification, even when carried out
by an expert physician [9]. Research by Salvatore and Nieman [10] revealed that more than
half of the pulmonary sounds were incorrectly identified by medical trainee students in the
hospital. Since lung sounds are non-stationary, it is challenging to distinguish them through
traditional auscultation techniques. Therefore, there is a need to develop a respiratory
disease detection system to ensure more efficient clinical diagnoses.

The 2017 public respiratory sound dataset released by the International Conference on
Biomedical Health Informatics (ICBHI-2017) [11] has attracted significant interest among
research teams developing automated systems for distinguishing lung sounds. Deep
learning (DL) and conventional machine learning (ML) have been utilized in studies over
the last decade to address the classification task [12–14]. Several attempts have been made to
develop algorithms and methods for feature extraction aimed at automatically identifying
abnormal lung sounds. Among them, some common feature extraction techniques include
spectrograms [15], mel spectrograms [16], wavelet coefficients [17], and the mel-frequency
cepstral coefficient (MFCC) [18], as well as a wide range of DL and ML approaches.

Pham et al. [4] extracted various features, including the short-time Fourier transform
(STFT) and mel spectrogram. Gairola et al. [19] employed a convolutional neural network
(CNN), leveraging mel spectrograms to identify adventitious lung sounds. Bardou et al. [20]
utilized the MFCC and traditional ML features (such as local binary patterns) for feature
extraction, replacing the CNN model with fully connected layers to train these features,
and integrating the output of four CNN models with softmax activation. The authors
of [21] optimized an AlexNet pre-trained CNN model, utilizing scalograms to extract a
visual representation of the pixel values to accurately detect and classify lung sounds.
Tariq et al. [22] developed a model that concatenates three distinct features (a chromagram,
the MFCC, and a spectrogram) to classify lung audio samples using ideal CNN models.
Similarly, the study in [23] presented various feature extraction techniques to classify
different respiratory diseases such as COPD and asthma.

In addition to lung sound analysis, other research has utilized methods such as the
wavelet transform and the spectrogram [24], or empirical mode decomposition (EMD) and
bandpass filtering for scale selection, as well as processing continuous wavelet transform
(CWT)-based scalogram representations with a lightweight CNN for classification of var-
ious respiratory diseases. Recent advancements in noninvasive monitoring have led to
significant progress in deriving respiratory signals from ECG data. thereby enhancing
traditional respiratory sound analysis. Yi and Park [25] demonstrated the derivation of
respiratory signals using wavelet transforms directly from the ECG, establishing a foun-
dation for reliable respiratory monitoring without the subject’s awareness. O’Brien and
Heneghan [26] presented a comparative examination of methods for extracting respiratory
signal extraction approaches from the ECG, highlighting the accuracy and robustness
of these techniques across various body postures during sleep. Furthermore, Campolo
et al. [27] introduced a novel technique employing EMD to derive respiratory signals from
the ECG, showcasing its superior performance in accurately reconstructing respiratory
waveforms. This approach offers a dual-modality method that enhances diagnostic ca-
pabilities by simultaneously analyzing cardiac and respiratory data. In [28], the authors
classified electroencephalogram (EEG) signals using CWT and a long short-term memory
(LSTM) model, similar to the study in [29], in which a dual scalogram comprising the
Stockwell transform and a CWT scalogram was employed for fault diagnosis in centrifugal
pumps. Furthermore, recent studies have explored different ML and DL techniques for
binary-class (normal vs. abnormal) classification and multi-class classification of respiratory
diseases [30].
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In order to achieve improved performance for multi-class and binary classification
tasks, Nguyen and Pernkopf [31] developed approaches that include sample padding,
feature splitting, an ensemble of CNNs, and a focal loss objective. Acharya and Basu [15]
introduced a deep hybrid-based CNN and a recurrent neural network (RNN) framework
for detecting respiratory sounds utilizing mel spectrograms. Concurrently, Demir et al. [32]
identified four different lung sounds by combining deep CNN features with a linear
discriminant analysis and random subspace ensemble classifier. Additionally, to resolve
imbalances in the training data, Petmezas et al. [33] employed a model combining a CNN
with LSTM networks that include the focal loss function. The respiratory sound cycle was
transformed into a time-frequency representation and processed using the CNN.

In this study, we propose a hybrid DL technique with signal processing techniques for
detecting various lung disorders. We introduce parallel transformation for rich features
using a parallel convolutional autoencoder (CAE). Initially, the auscultation recordings
undergo preprocessing through segmentation of respiratory cycles, followed by a padding
technique to modify the length of each respiratory cycle to a fixed size. The respiratory
cycle audio signal is transformed into a time-frequency representation using CWT and a
mel spectrogram. Two parallel CAEs extract rich features from scalograms, concatenate
features in a hybrid pool, and subsequently feed them into an LSTM model that indicates
different respiratory diseases.

Our principal contributions are as follows:

(1) We present a novel method that combines deep learning and signal processing for
enhanced lung auscultation analysis and classification. This approach addresses the
limitations of traditional techniques utilized for lung auscultation.

(2) This approach utilizes parallel transformation using both CWT and a mel scalogram.
A parallel CAE is utilized to extract rich features from the scalograms transformed by
CWT and mel at latent spaces.

(3) A hybrid feature pool is created by fusing the features collected from both the CWT
and mel scalograms using CAE latent spaces. These latent spaces provide an extensive
and enriched representation of lung sound features, enhancing the analysis and
classification approach.

(4) An LSTM network is employed to classify various lung sounds, leveraging its pro-
ficiency in handling time-series data. Lung sounds are sequential, and LSTM is
particularly suited to recognizing complex patterns and handling sequential informa-
tion in time-dependent data.

The rest of this paper is organized as follows. Section 2 provides background in-
formation on the dataset and comprehensive details of the proposed model. Section 3
describes the experimentation and the model’s performance. Finally, Section 4 summarizes
the proposed study along with future expansion and enhancement planned for this work.

2. Materials and Methods

The framework of the proposed study for lung sound classification utilizes a hybrid
model that combines an autoencoder with a recurrent neural network, specifically the
LSTM variant, as illustrated in Figure 1. Initially, all lung sounds are preprocessed to
segment the respiratory cycles, ranging from 0.2 s to 16 s, with an average duration of
2.7 s. The respiratory cycles in the dataset are not equal in length, so to address this issue,
a padding technique is utilized. Each cycle is preprocessed until the total length equals
six seconds. Following this, the cycles are transformed into a dual time-frequency domain
using CWT and the mel spectrogram to provide distinct representations of each cycle.
Subsequently, these time-frequency spectrogram images are fed into parallel CAEs for
feature extraction, and the resulting latent spaces of the parallel CAEs are fused into a
hybrid feature pool. Finally, the resulting features from the latent spaces are used as input
for the LSTM model to classify various types of respiratory diseases.
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Figure 1. Framework of the proposed method.

2.1. Dataset

In this study, the publicly available ICBHI-2017 respiratory sound dataset from the
International Conference on Biomedical Health Informatics [11] was utilized. The dataset
was collected at two different hospitals in Greece and Portugal by teams of experts. The data
were acquired using digital stethoscopes (the AKG-C417 L Microphone, the 3M Littmann
Classic II SE, the 3M Littmann 3200, and the Welch Allyn Meditron Master Elite), which have
different sampling frequency ranges of 4, 10, and 44.1 kHz. The dataset comprises annotated
respiratory cycle recordings totaling 5.5 h. In total, 920 audio samples were collected at
various anatomical locations from 126 individuals [34]. The recordings were obtained from
healthy individuals and others with a range of pathological conditions, including seven
lung diseases: pneumonia, a lower respiratory tract infection (LRTI), asthma, bronchiectasis,
an upper respiratory tract infection (URTI), bronchiolitis, and COPD. Furthermore, all the
respiratory cycles were annotated based on the presence of crackles and/or wheezes [35].
Wheezes are a type of abnormal, continuous, high-pitched breathing sound primarily
associated with chronic disease. In contrast, crackles are discontinuous lung sounds of
shorter duration, heard during both the inspiratory and expiratory phases. The duration
is notably shorter in the total respiratory cycle and is mainly associated with non-chronic
diseases [36].

2.2. Preprocessing and Data Augmentation

Each respiratory cycle was annotated by an expert as belonging to one of four classes:
normal (N), crackle (C), wheeze (W), and both crackle and wheeze (B). The start times,
end times, number of crackles, and number of wheezes are shown in Table 1. The source
database contains 6898 respiratory cycles, including 1864 with crackles, 886 with wheezes,
3642 with no labels (i.e., from healthy individuals), and 506 with both crackles and wheezes,
as shown in Table 2. The duration of the respiratory cycles is not fixed. Although training
DL models is possible by utilizing adaptive average pooling, this approach performs poorly
in comparison with a fixed-size signal [19]. The length of the audio signals in the dataset
varies, so zero padding was employed to achieve a fixed duration of six seconds. Padded
samples of respiratory cycles are shown in Figure 2. Data augmentation techniques were
utilized to artificially expand the unbalanced dataset by modifying the audio samples,
resulting in several modified versions of the dataset, as shown in Table 3.
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Table 1. Description of the dataset.

Cycle Start Time (s) End Time (s) Crackles Wheezes

01 1.018 3.411 1 0
02 3.411 5.827 1 0
03 5.827 8.339 1 1
04 8.339 10.923 1 0
05 10.923 13.292 0 1
06 13.292 16.018 1 0
07 16.018 18.482 1 0
08 18.482 19.542 1 0

Table 2. Respiratory cycles of lung sounds from ICBHI-2017.

Sound Original Augmented

Crackle 1864 4150
Wheeze 886 3544
No label 3642 5666

Both sounds 506 2024

Total 6898 15,384

Figure 2. Sample signals of lung sounds.

Table 3. Respiratory cycles of lung sounds from ICBHI-2017 for distinct lung diseases.

Disease Original Augmented

Asthma 06 24
Bronchiectasis 104 416
Bronchiolitis 160 640

COPD 3642 5746
Healthy 322 1288

LRTI 32 128
Pneumonia 285 1140

URTI 243 972

Total 6898 10,354

The time-domain audio data augmentation approaches employed to enlarge our audio
samples were as follows:

(1) Time Stretching: This technique involves either increasing or decreasing the sample
speed by specific factors [37]. In this work, we augmented the minority class by
stretching the respiratory audio signals along with their temporal variations at a
stretching rate of 1.2. The length of an audio signal was adjusted based on this
rate, calculated by multiplying the original length of the audio by the stretching rate.
The time stretching method is useful for modifying the audio’s temporal properties
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without altering its pitch, which makes it effective for enhancing datasets that have
a low representation of particular class samples. A more balanced dataset with
improved temporal diversity in the audio signals is the anticipated outcome.

(2) Pitch Shifting: This technique involves modifying the lung sound signal by increasing
or decreasing the pitch while keeping the audio signal duration constant. In [38],
the significance of the pitch-shifting process was investigated for CNN-based sound
classification. To enlarge minority classes in the dataset, we employed pitch shifting
by randomly shifting the audio signals along the time axis by a maximum percentage
value of 0.2. Pitch shifting changes the audio’s frequency content, adding additional
variances that enhance the model’s ability to generalize. An expanded range of
pitch-modified samples is anticipated, which will strengthen and balance the train-
ing dataset.

(3) Adding Noise: To further augment the dataset, noise was added to the recordings to
increase the sample sizes of minority classes. Noise was introduced from within the
function, and a noise vector was generated using a Gaussian distribution of zero mean
and unit variance with a length matching the input audio signal. By scaling this noise
vector by a factor of 0.005, the amplitude of the noise could be controlled to achieve the
desired augmentation. The scaled noise vector was then added element-wise to the
original signals, resulting in augmented samples. Using this noise-adding technique
effectively enhances the model’s resistance to noise and other fluctuations found in
real-world recordings.

2.3. Transformation of Lung Sounds

During preprocessing, time-frequency analysis is performed to transform the audio
sample into a parallel scalogram. Instead of directly feeding the audio signals into the
classification model, we first transform them into a spectrogram from the time-series do-
main to the time-frequency domain. Transformation is a crucial technique for transforming
the audio lung samples into a time-frequency domain, specifically into parallel spectro-
grams. STFT is applied to the time-domain signal, S(τ), to compute the spectrogram using
Equations (1) and (2), where t denotes the time localization and W(τ − t) is the window
function that cuts and filters the signal [22]. The angular frequency is denoted by ω, and
j is the imaginary unit, defined as the square root of −1. This process facilitates detailed
analysis of lung sound signals, providing a comprehensive feature set for the subsequent
classification task.

Spectrogram(t, w) = |STFT(t, w)|2 (1)

STFT(t, w) =
∫ ∞

−∞
S(τ).W(τ − t).e−jωτdτ (2)

2.3.1. Mel Scalogram

The mel spectrogram, the human auditory system, and scientific research on speech
processing are the sources of inspiration for the mel scale. The human ear is more sensitive
to variations in lower frequencies than in higher ones and perceives loudness on a loga-
rithmic scale as opposed to a linear one. Transforming the lung sound sample using STFT
converts the signal from the time domain to the frequency domain at a sampled frequency
of 4000 Hz. A two-dimensional (2D) image is generated, where columns represent time
(windows) and rows represent frequencies in the mel scale. Each value in the image cor-
responds to the signal’s log amplitude for a specific frequency and set of time windows.
The time domain is transformed into the frequency domain via STFT. Then, the frequency
is mapped to the mel scale and the color dimension to the amplitude [39]. Equation (3) is
used for calculating the mel scale, where f represents the frequency:

M = 2595log(1 + f /700) (3)
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We obtain the log mel spectrogram after computing the logarithm values to condense
the dynamic range. The mel spectrogram provides an intricate representation of the power
spectrum, showing the energy distribution across frequencies over time. The log value of
the energy is expanded in the time domain to generate the mel spectrogram. Figure 3a, b,
respectively, illustrate the respiratory cycle sound signal and the mel spectrogram of a
respiratory cycle.

Figure 3. (a) The respiratory audio signal, and (b) the mel spectrogram respiratory audio signal.

2.3.2. CWT Scalogram

CWT is an effective technique for signal processing and is used for analyzing non-
stationary signals, including audio signals. Within the context of respiratory sound analysis,
CWT provides a robust method for extracting relevant features that capture variations in
frequency content over time. Respiratory sounds are recorded using various stethoscopes,
producing non-stationary signals. The wavelet transform preserves temporal resolution
and computationally analyzes non-stationary signals by decomposing them into different
frequency components. The wavelet transform utilizes fundamental operations known
as wavelets, enabling simultaneous analysis in both frequency and time domains. The
mathematical expression for the wavelet transform is shown in Equation (4):

WT(s, t) =
1√
|s|

∫ ∞

−∞
f (τ)ψ∗

(
τ − t

s

)
dτ (4)

where f (τ) represents the time-frequency domain of the input signal, ψ∗(·) is the conjugate
of the wavelet function scaled by factor s, and the translation factor correlating with the time
adjustments is denoted by t, where the scale factor s > 0. The multi-resolution capabilities
of CWT are particularly advantageous for deciphering time-frequency signals since various
physiological events may manifest at various scales. The mathematical representation of
the CWT details the relationship between the wavelet ψ(t) and function ψ(t), as shown in
Equation (5).

CWTf (s, t) =
∫ ∞

−∞
f (τ)ψ∗

s,t(τ)dτ (5)

A complex Morlet wavelet is employed as a mother wavelet, ψ(t), in Equation (6):

ψs,t(τ) =
1√
|s|

ψ

(
τ − t

s

)
dτ (6)

where s is the scaling factor and t is the translation factor that adjusts the function in time,
determining whether it is stretched or compressed, depending on whether s > 1 or 0 < s < 1.
The normalizing term, 1√

|s|
, ensures that the wavelet energy remains constant across all

scales. Equations (4) and (5) are utilized to translate and scale the original mother wavelet,
τ, for analysis of a signal at various frequencies and time positions. CWT converts the lung
audio signal into images using the Morlet wavelet.

In fact, a complex sinusoid with Gaussian windows forms the complex Morlet wavelet,
and the wavelet transform’s best time localization is achieved via its second-order ex-
ponential decay. Moreover, the complex Morlet wavelet function is particularly suited
to capturing coherence between harmonic frequencies, providing information on both
amplitude and phase. CWT with the Morlet wavelet as the mother wavelet allows for the
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extraction of detailed images of the lung sound wave spectrum, demonstrating temporal
resolutions. Figure 4a and b, respectively, show the respiratory cycle audio signal and a
CWT image of the respiratory cycle.

Figure 4. (a) The respiratory audio signal, and (b) the CWT spectrogram of the respiratory
audio signal.

2.4. Convolutional Autoencoders

CAEs have garnered significant attention in recent years owing to their ability to
learn hierarchical representations of data, particularly in image processing tasks. Initially
introduced by Theis et al. [40] and Ballé et al. [41], CAEs are specialized neural networks
designed to encode and decode spatially hierarchical inputs such as images. CAEs use
convolutional layers to leverage spatial locations in data, making them particularly adept
at processing images. The primary goal of a CAE is to approximate an identity function
while abiding by particular limitations, such as hidden layers having a certain number of
neurons. In a CAE, the encoder functions as a funnel, mapping the input, x ∈ Rn, to a
latent space. The input consists of n feature maps, x ∈ Rn×l×l , originating from the first
layer, where each feature map covers l × l pixels, and the output layer contains m feature
maps involving convolutional kernels. The dimensions of the convolutional kernel are
d × d with d ≤ 1.

The process begins by encoding the input image, which is segmented into d × d pixel
patches, labeled as xi, where i = 1, 2, 3,. . . , p. For each patch, the input image is extracted,
and convolution operations are carried out using weight wj of the jth convolution kernel,
resulting in neuron values oij for j = 1, 2, 3, . . . , m in the output layer:

oij = f (xi) = σ(wj · xi + b) (7)

The nonlinear activation function is represented by the symbol σ. In this study, the
rectified linear unit (ReLU) activation function is used:

ReLU(x) =

{
x if x ≥ 0
0 if x < 0

(8)

After convolutional decoder output oij is processed through encoding, xi is recon-
structed using oij to obtain x̂i:

xi = f ′(oij) = φ(wi · oij + b̂) (9)

The CAE layer is optimized through the iterative refinement of weights and errors
using stochastic gradient descent. These optimized parameters are used to create the
feature maps. For every instance, x̂i is formed after convolutional encoding and decoding.
The reconstruction process involves patches p, each with a size of d × d, and the mean
square error between the reconstructed patch, x̂i, and the original input picture patch, xi,
where i = 1, 2, 3, . . . , p. Equation (10) presents the cost function in its unique form, while
Equation (11) elaborates on the reconstruction error [42].

JC(θ) =
1
p

p

∑
i=1

L[xi, x̂i] (10)
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LC[xi, x̂i] = ∥xi − x̂i∥2 = ∥xi − φ(σ(xi))∥2 (11)

In the proposed model, optimization techniques like backpropagation are used to
minimize loss when a multiple-layer encoder and decoder are employed to train a CAE.
The classification model takes the scalogram as input and passes it through a series of
convolutional layers. These layers isolate key features by gradually reducing the dimen-
sionality of the image. Following encoding, the model undergoes a decoding stage to
reconstruct the image into its original state. Table 4 outlines the CAE layers, along with
their respective input and output dimensions, as applied in this study. The efficiency of the
CAE is shown by high peak signal-to-noise ratio values for CWT and mel at 56.66 dB and
71.01 dB, respectively, indicating accurate image reconstruction. The layers of the working
architecture are depicted in Figure 5.

Table 4. The convolutional autoencoder layers.

Encoder Decoder

Layer Output Layer Output

Conv2D 128 × 128 × 1 Dense 2048
Conv2D 64 × 64 × 16 Reshape 4 × 4 × 128
Conv2D 32 × 32 × 32 Conv2DTranspose 8 × 8 × 128
Conv2D 16 × 16 × 64 Conv2DTranspose 16 × 16 × 64
Conv2D 8 × 8 × 128 Conv2DTranspose 32 × 32 × 32
Conv2D 4 × 4 × 128 Conv2DTranspose 64 × 64 × 16
Flatten 2048 Conv2DTranspose 128 × 128 × 1

Trainable parameters: 147,842
Non-trainable parameters: 0

Total parameters: 147,842

Figure 5. The convolutional autoencoder model architecture.

2.5. Long Short-Term Memory

LSTM was first proposed in 1997 by Hochreiter and Schmid Huber, and the improved
RNN model has gained substantial interest for time-series data owing to its specialized
cellular architecture [43].

Typically, an LSTM architecture consists of an input gate, an output gate, a forget gate,
and a memory cell. The forget gate initially determines which informational segments the
cell states should discard, and it is expressed mathematically as follows:

ft = σ(W f × [ht−1, xt] + b f ) (12)

where xt is the current input; ht−1 is the previous hidden layer output; W and b represent
the weight matrix and bias, respectively; and σ is the sigmoid activation. The input gate
subsequently controls the retention of data in the cell state by dividing them into two
parts, determining which data need to be updated, and configuring the updated state. The
following are the mathematical expressions:

it = σ(Wi × [ht−1, xt] + bi) (13)
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C̃t = tanh(Wc × [ht−1, xt] + bc) (14)

The output gate plays a crucial role in deciding the final output. The segments of the
cell state for the output are determined by the sigmoid function, followed by pointwise
multiplication with the output of the tanh function:

ot = σ(Wo × [ht−1, xt] + bo) (15)

ht = ot × tanh(Ct) (16)

In the field of biomedicine, LSTMs have shown the capability to recognize time-based
patterns, which is particularly useful for the diagnosis of respiratory diseases characterized
by detailed time-based patterns. In this study, the LSTM model employs 64 units to process
the time-based patterns of the respiratory sound data. Subsequently, the data pass through
a dense layer that utilizes a softmax activation function to categorize the LSTM output
into specific categories. The model is optimized for best categorization results using the
categorical cross-entropy loss function and the “Adam” optimizer. The LSTM architecture
employed in this research is detailed in Table 5.

Table 5. The LSTM architecture.

Layer Type Output Shape Parameters

lstm (LSTM) (None, 64) 147,712
dense 4 (dense) (None, 2) 130

Total parameters: 147,842
Trainable parameters: 147,842
Non-trainable parameters: 0

3. Results and Discussion

In this study, a publicly available dataset of respiratory sounds was chosen to evaluate
the performance of the proposed framework [11]. The proposed DL framework was devel-
oped and implemented in Python 3.9.18, leveraging TensorFlow 2.15.0 as the foundation for
the Keras library. All experiments were conducted using a desktop computer with an AMD
Ryzen 9 5900X 12-Core 3.70 GHz CPU, 64 GB of RAM, and an NVIDIA GeForce RTX 3080
GPU with 64 GB of memory. The respiratory sound dataset encompasses four sub-tasks,
which include a binary-class problem distinguishing between normal (N) and abnormal
(Ab) samples. Three-class and four-class tasks categorize respiratory cycles into one of
four classes (W, C, N, and B). Eight-class categorization is also performed, where classifica-
tions include healthy samples and seven distinct lung diseases: pneumonia, LRTI, asthma,
bronchiectasis, URTI, bronchiolitis, and COPD. The dataset was split, allocating 80% for
training and 20% for testing. After evaluating the proposed model for the binary-class
problem, the experimentation was extended to the three-class, four-class, and eight-class
problems. We used several metrics to evaluate the performance of respiratory sound classi-
fication: accuracy, F1-score, precision, and sensitivity. These metrics collectively provide
a nuanced view of the model’s ability to correctly identify and differentiate between the
various respiratory diseases. In the classification framework, true positive (TP) is when an
instance was accurately identified as positive, and true negative (TN) means an instance
was accurately identified as negative. A false positive (FP) is an instance incorrectly iden-
tified as positive, and a false negative (FN) is a positive instance incorrectly labeled as
negative. The following equations are used to calculate these metrics:
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Accuracy =
TP + TN

TP + TN + FP + FN
(17)

F1-score =
2 × (precision × recall)

precision + recall
(18)

Precision =
TP

TP + FP
(19)

Sensitivity =
TP

TP + FN
(20)

In this study, the proposed model, based on a hybrid approach involving digital
signal processing and DL, was evaluated using various classification tasks to assess its
effectiveness in distinguishing various respiratory diseases. This evaluation was conducted
across multiple classification tasks ranging from simple binary classification problems to
three-class, four-class, and eight-class problems. The following are the specific scenarios
for each classification problem:

• Binary-class problems: N-Ab, C-W, B-C, B-W, C-N, C-W, and W-N.
• Three-class problems: B-C-W, and C-N-W.
• Four-class problems: C, W, N, and B.
• Eight-class problems: Healthy (H), pneumonia (P), LRTI (L), asthma (A), bronchiectasis

(B1), URTI (U), bronchiolitis (B2), and COPD (C).

3.1. Binary Classification

In the binary classification problems, the proposed model demonstrated remarkable
accuracy in identifying crucial respiratory sounds. Our model exhibited remarkable perfor-
mance in differentiating between C, W, N, and B. Several experiments were conducted on
both the official and the augmented datasets to validate the effectiveness of our proposed
model. For the N-Ab problem, our model achieved an average accuracy of 85.61%, an
F1-score of 84.21%, a precision of 85.36%, and a sensitivity of 83.44%. Similarly, for the B-C
problem, the results were 94.41%, 93.65%, 93.57%, and 93.74% for accuracy, F1-score, preci-
sion, and sensitivity, respectively. For the C-W problem, the results were 93.57%, 93.51%,
93.50%, and 93.53%, respectively. The results for the remaining binary-class problems are
shown in Table 6. Figure 6 depicts the confusion matrices, showing the predicted versus
the true labels for different binary-class problems.

Table 6. Performance metrics for binary-class problems.

Class Accuracy F1-Score Precision Sensitivity

Non-augmented dataset

C-W ≈81% ≈78% ≈78% ≈78%
B-C ≈81% ≈68% ≈69% ≈67%
B-W ≈69% ≈67% ≈67% ≈68%
C-N ≈78% ≈75% ≈75% ≈74%
W-N ≈85% ≈73% ≈76% ≈72%
N-Ab ≈67% ≈67% ≈67% ≈67%

Augmented dataset

C-W ≈94% ≈94% ≈94% ≈94%
B-C ≈94% ≈94% ≈94% ≈94%
B-W ≈94% ≈94% ≈93% ≈94%
C-N ≈86% ≈88% ≈86% ≈85%
W-N ≈90% ≈89% ≈89% ≈99%
N-Ab ≈86% ≈84% ≈85% ≈84%
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(a) (b) (c)

(d) (e) (f)

Figure 6. Confusion matrices for binary-class problems: (a) B-C, (b) B-W, (c) C-N, (d) C-W, (e) N-W,
and (f) N-Ab.

3.2. Three-Class Classification

After achieving promising results for the binary-class problems, we extended our
evaluation to three-class classification problems. We further examined and compared the
internal relationships and variations for the B-C-W and C-N-W problems. On the official
and augmented datasets, our proposed model achieved an average accuracy of 89.45%,
an F1-score of 88.41%, a precision of 88.68%, and a sensitivity of 88.16% for the B-C-W
problem. For the C-N-W problem, the results were 82.04%, 82.15%, 81.94%, and 82.41%,
respectively, as shown in Table 7. Figure 7 presents the confusion matrices for the B-C-W
and C-N-W three-class problems.

Table 7. Performance metrics for three-class problems.

Class Accuracy F1-Score Precision Sensitivity

Non-Augmented dataset

B-C-W ≈71% ≈63% ≈64% ≈62%
C-N-W ≈67% ≈60% ≈61% ≈53%

Augmented dataset

B-C-W ≈90% ≈89% ≈89% ≈88%
C-N-W ≈82% ≈82% ≈82% ≈83%
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(a) (b)

Figure 7. Confusion matrices for three-class problems: (a) C-N-W, and (b) B-C-W.

3.3. Four-Class Classification

To evaluate the model’s ability to identify four-class respiratory sound problems, both
datasets were used to compare the C, W, N, and B categories. The model demonstrated
promising performance across all scenarios, as illustrated by the confusion matrix in
Figure 8a. The proposed model achieved an average accuracy of 79.61%, an F1-score of
78.67%, a precision of 78.86%, and a sensitivity of 89.56% on the augmented dataset, as
shown in Table 8.

(a) (b)

Figure 8. Confusion matrices for (a) four-class problems, and (b) eight-class problems.

Table 8. Performance metrics for four-class problems.

Class Dataset Accuracy F1-Score Precision Sensitivity

Four-Class Non-augmented ≈64% ≈54% ≈55% ≈53%
Four-Class Augmented ≈80% ≈79% ≈79% ≈79%

3.4. Eight-Class Classification

Finally, the evaluation of the proposed framework for eight-class problems included
healthy samples and seven distinct lung diseases (P, L, A, B1, U, B2, and C), as shown in
Table 9. The confusion matrix in Figure 8b illustrates that the model yielded an overall
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accuracy of 94.16%, a sensitivity of 89.56%, an F1-score of 89.56%, and a precision of
89.87%. In summary, these findings demonstrate the proposed model’s robust and reliable
performance across various respiratory sound classification scenarios. including binary-
class, three-class, four-class, and eight-class problems, even on unbalanced datasets.

Table 9. Performance metrics for eight-class problems.

Class Dataset Accuracy F1-Score Precision Sensitivity

Eight-Class Non-augmented ≈93% ≈61% ≈61% ≈63%
Eight-Class Augmented ≈94% ≈90% ≈90% ≈90%

3.5. Discussion

We proposed a novel approach to evaluating various adventitious lung sounds by
employing a hybrid model that combines parallel CAEs and an LSTM network. The model’s
performance was evaluated across multiple classification problems: binary-class, three-
class, and four-class problems, as well as eight-class problems involving healthy samples
and seven distinct diseases. In this study, lung sound signals were not directly fed into the
classification model—all lung sound signals were transformed into the frequency domain
as spectrograms. For feature extraction, dual CWT and mel transformations were fed into
parallel CAEs, and the features extracted from CAE latent spaces were concatenated to
create a hybrid feature pool. This parallel transformation allows for more precise extraction
of rich features, while fusion improves data classification by efficiently capturing diverse
signal characteristics. The sequential nature of LSTM is utilized for the classification of
various diseases. To assess the impact of hybrid features from the CAE latent space features
from both CWT and the mel spectrogram, we conducted an ablation study using an eight-
class classification framework. The results of training the LSTM network with various
feature sets are shown in Table 10. When solely CAE latent space features of CWT were
used, the LSTM model achieved an average accuracy of 78.50%, an F1-score of 82.14% ,
a precision of 85.34%, and a sensitivity of 80.42%. In contrast, training with only latent
space features from the mel spectrogram resulted in an average accuracy of 90.83%, an
F1-score of 85.7%, a precision of 88.31%, and a sensitivity of 84.59%. However, the model’s
performance significantly improved when combining both the CAE latent space features,
with the accuracy rising to 94.69%, F1-score to 90.69%, precision to 91.89%, and sensitivity
to 89.78%. This shows that the fusion of both CAE latent space features significantly
improves the LSTM network’s capacity to classify and detect various respiratory disorders
in multi-class problems. Table 11 illustrates the overall performance of our proposed model
in multiple-class tasks using a publicly available respiratory disease dataset

Table 10. Ablation experiment.

Features Accuracy % F1-Score % Precision % Sensitivity %

CWT latent space features 87.78 82.14 85.34 80.42
Mel latent space features 90.83 85.72 88.31 84.59

Combined features 94.69 90.68 91.89 89.78

Table 11. Comparison between the proposed model and already established works.

Performance %

Study Class Method Accuracy Sensitivity Specificity F1-Score

Demir et al. [32] 4 CNN, LDA ≈71 ≈61 ≈86 ≈65
Lie et al. [44] 4 ARCS-NET - ≈41 ≈67 ≈57

2 ≈80 ≈81 ≈80 -
Petmezas et al. [33] 4 CNN-LSTM ≈76 ≈53 ≈85 ≈69
Demir et al. [45] 4 VGG-16, SVM ≈66 ≈53 ≈83 ≈55
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Table 11. Cont.

Performance %

Study Class Method Acc. Sen. Spe. F1-Score

Ma et al. [46] 4 Bi-ResNet ≈53 ≈31 ≈69 ≈50
2 - ≈48 ≈69 ≈49

Chambres et al. [47] 4 HMM, NLSp ≈50 ≈21 ≈78 ≈50
2 - ≈33 ≈78 ≈56

Rocha et al. [48] 4 LDA ≈61 ≈52 ≈66 ≈59
Acharya and Basu [15] 4 CNN, RNN - ≈49 ≈84 ≈67
Mang et al. [49] 4 Cochleagram, CNN ≈63 ≈53 ≈69 ≈61
Wanasinghe et al. [50] 6 Mel, MFCC, CNN ≈93 ≈92 ≈98 ≈93
Choi et al. [51] 10 Mel, CNN ≈90 - - -
Li et al. [52] 4 TQWT, STFT - ≈37 ≈72 ≈54

2 - ≈52 ≈72 ≈62

Proposed Model

A-B1-C-U-L-B-P-H ≈94 ≈90 ≈99 ≈90
C-W-N-B ≈80 ≈79 ≈93 ≈79

B-C-W ≈90 ≈88 ≈95 ≈89
ICBHI dataset C-N-W CAE, LSTM ≈82 ≈83 ≈91 ≈82

N-AB ≈86 ≈84 ≈84 ≈85
C-W ≈94 ≈95 ≈94 ≈94
B-C ≈95 ≈94 ≈94 ≈94

SJTU dataset C-F-N-R-S-W-B CAE, LSTM ≈82 ≈39 ≈92 ≈41
N-AB ≈84 ≈75 ≈75 ≈76

The overall accuracy, sensitivity, specificity, and F1-score for the eight-class problems
were 94.16%, 89.56%, 99.10%, and 89.5%, respectively. Similarly, for the four-class problems,
the overall results were 79.61%, 78.55%, 92.49%, and 78.67%, respectively, and for the three-
class problems, the overall results were 89.45%, 88.16%, 94.54%, and 88.41%, respectively.
Meanwhile, for the binary-class problems, the overall results for normal vs. abnormal
were 85.61%, 83.44%, 83.44%, and 84.21% for accuracy, sensitivity, specificity, and F1-
score, respectively, and for crackles and wheezes, they were 84.21%, 93.57%, 93.53%,
and 93.15%, respectively. To further validate the robustness of our framework, we also
conducted experiments using another public dataset, the SJTU Paediatric dataset [53], for
various respiratory diseases, including healthy samples and seven distinct lung diseases:
coarse crackle (C), fine crackle (F), rhonchi (R), stridor (S), wheeze (W), and both wheeze
and crackle (B). The results, presented in Table 11, demonstrate that our findings are
not only applicable to a single dataset but also generalize well across different datasets.
This additional validation underscores the generalizability of our model, reinforcing its
effectiveness on diverse datasets. The variations in the error rates are associated with the
imbalanced nature of the dataset, where some classes are over-represented, influencing
the model’s learning bias. Furthermore, the inherent acoustic similarities across various
respiratory disorders make it more complex for the model to correctly identify the lung
sound. For example, high-pitched sounds like crackles and wheezes provide a special
problem since their slight acoustic variances are hidden behind similar spectral sequences.

Several experiments were performed to optimize the proposed model. Specifically,
performance was evaluated while varying the learning rate and the number of epochs.
Figure 9 shows the classification accuracies across different learning rates ranging from
0.00001 to 0.01 over 200 epochs. The results indicate that for the binary-class problems, the
accuracy remained high as the learning rate increased from 0.00001 to 0.001. For the three-
class problems, a slight decline in accuracy was observed as the learning rate increased.
For the four-class problems, increasing the learning rate noticeably reduced the model’s
accuracy after the initial increase, and for the eight-class problems, increasing the learning
rate to 0.001 gradually increased the accuracy. Figure 9 indicates that a learning rate of
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0.001 over 200 epochs achieved the highest scores across all classification problems. The
hybrid approach, combining DL with digital signal processing techniques such as parallel
CAEs and dual scalograms, achieved promising results, even on imbalanced datasets.

Figure 9. Impact of the learning rate on accuracy.

4. Conclusions and Future Work

Our study introduced an advanced, intelligent, lung sound recognition framework for
detecting respiratory diseases. We applied dual transformation using mel scalograms and
continuous wavelet transform to generate detailed time-frequency scalograms. Parallel
convolutional autoencoders were trained to extract essential features from CWT and mel
samples. This framework integrates parallel convolutional autoencoders and an LSTM
network, reducing the possibility of misclassifying significant features while extracting
rich features. The features extracted from both latent spaces are concatenated into a hybrid
feature pool and processed through the LSTM model, addressing multiple-class problems.
We evaluated our method on the ICBHI 2017 dataset, and the experimental results showed
that our proposed model achieved promising results across multiple classification prob-
lems. For eight-class problems involving healthy samples and seven distinct lung diseases
(asthma, bronchiectasis, bronchiolitis, COPD, LRTI, pneumonia, and URTI), the proposed
model achieved an average accuracy of 94.16%, an average sensitivity of 89.56%, an average
specificity of 99.10%, and an average F1-score of 89.56%. For the four-class problems,
including crackles, wheezes, no label, and both crackles and wheezes, the model achieved
an average accuracy of 79.61%, an average sensitivity of 78.55%, an average specificity of
92.49%, and an average F1-score of 78.67%. The results for the three-class problems were
an average accuracy of 89.45%, an average sensitivity of 88.16%, an average specificity of
94.54%, and an average F1-score of 88.41%. Finally, for the normal vs. abnormal binary-class
problems, the model achieved an average accuracy of 85.61%, an average sensitivity of
83.44%, an average specificity of 83.44%, and an average F1-score of 84.21%, outperforming
all other research. In future work, we will deploy the proposed framework in a clinical
setting. Additionally, we plan to enhance the robustness of the framework by increasing
the number of sound samples through the integration of multiple datasets.
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