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Abstract
Objectives: Accurate measurement of lung nodules is pivotal to lung cancer detection and management. Nodule size forms the main basis of 
risk categorization in existing guidelines. However, measurements can be highly variable between manual readers. This article explores the 
impact of potentially improved nodule size measurement assisted by generic artificial intelligence (AI)-derived software on clinical management 
compared with manual measurement.
Methods: The simulation study created a baseline cohort of people with lung nodules, guided by nodule size distributions reported in the litera-
ture. Precision and accuracy were simulated to emulate measurement of nodule size by radiologists with and without the assistance of 
AI-derived software and by the software alone. Nodule growth was modelled over a 4-year time frame, allowing evaluation of management 
strategies based on existing clinical guidelines.
Results: Measurement assisted by AI-derived software increased cancer detection compared to an unassisted radiologist for a combined solid 
and sub-solid nodule population (62.5% vs 61.4%). AI-assisted measurement also correctly identified more benign nodules (95.8% vs 95.4%); 
however, it was associated with over an additional month of surveillance on average (5.12 vs 3.95 months). On average, with AI assistance 
people with cancer are diagnosed faster, and people without cancer are monitored longer.
Conclusions: In this simulation, the potential benefits of improved accuracy and precision associated with AI-based diameter measurement is 
associated with additional monitoring of non-cancerous nodules. AI may offer additional benefits not captured in this simulation, and it is 
important to generate data supporting these, and adjust guidelines as necessary.
Advances in knowledge: This article shows the effects of greater measurement accuracy associated with AI assistance compared with 
unassisted measurement.
Keywords: artificial intelligence; simulation; measurement accuracy; lung nodule; chest CT; precision; nodule growth. 

Introduction
Lung nodules are rounded opacities, well or poorly defined, 
measuring up to 3 cm in diameter.1 They are common findings 
in chest computed tomography (CT) scans. Approximately 95% 
of pulmonary nodules identified are benign,2 but the remaining 
are cancerous and require action. There is a strong correlation 
between both the size and the growth of lung nodules and their 
risk of being malignant, and the clinical management of lung 
nodules is largely determined by their size and rate of growth. 
Accurate measurement of the size and growth of lung nodules is, 
therefore, a crucial element of the current diagnostic and man-
agement pathways relating to lung nodules and lung cancer.

The Lung CT Screening Reporting and Data System (Lung- 
RADS) was established by the American College of Radiology 
to standardize the interpretation, reporting, and management 
recommendations for low-dose lung cancer screening CT 
images.3 Used in countries such as the United States and other 
parts of the world, Lung-RADS categorizes nodules based on 
their type, appearance, size/volume and growth, and makes rec-
ommendations for appropriate action.

In the United Kingdom, the pathways for the detection and 
management of lung nodules as specified in the British 
Thoracic Society (BTS) guidelines4 are determined similarly 
by nodule features and nodule growth. Lung nodules are 
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broadly classified as solid or sub-solid, depending on whether 
parts of the nodules have a different level of density on the 
CT scan.4 Solid nodules are more common than subsolid 
nodules; the latter carry a higher risk of cancer but are typi-
cally more indolent. Nodules with certain features such as 
calcification are unlikely to be malignant and are usually dis-
regarded. In addition to nodule types and features, the size 
and growth of nodules are key determinants of the risk strati-
fication which dictates subsequent clinical management.

Lung nodules are detected in different ways. Targeted 
screening of people deemed at higher risk (eg, based on smok-
ing history, age, and family history of lung cancer) aims to 
detect cancerous nodules when they are asymptomatic and at 
an early stage. Nodules may also be detected following symp-
tomatic presentation or following medical imaging performed 
for unrelated reasons.

Traditionally, nodule size is measured manually using an 
electronic callipers; for example, one-dimensional (1D) as the 
maximum nodule diameter, or two-dimensional (2D) mea-
suring the longest and perpendicular diameters in the trans-
verse plane.5 Accuracy and precision of these 1D and 2D 
methods are compromised by the underlying assumptions 
that nodules are spherical in shape and grow symmetrically.6

Measurement variability of electronic calliper-based diameter 
measurements is also caused by the fact that readers are typi-
cally required to select an axial section for which the nodule 
is estimated to be at its largest and then manually place cur-
sors at the boundaries of the nodule. Intra-reader and inter- 
reader agreement in nodules less than 2 cm is poor.7 Size 
changes <1.32 mm for the same reader and <1.73 mm be-
tween readers cannot be distinguished from measurement 
errors, and nodule growth can confidently be determined 
only beyond these limits, which can result in misclassification 
of lung nodules and lead to suboptimal clinical management. 
More recently, 3D segmentation software has been used to 
perform volume measurement of lung nodules using semi- 
automated or automated techniques; these methods can bet-
ter encapsulate the 3D nature of lung nodules, require less 
human interaction and, therefore, provide greater consistency 
in size measurement and resulting follow-up recommenda-
tions.8-10 In particular, software derived from artificial intelli-
gence (AI) has shown promise in improving the precision and 
accuracy of nodule measurement11 and subsequent risk 
categorization.12,13

Advancements in AI have the potential to standardize lung 
nodule size measurement, increase accuracy/detection and 
streamline clinical decision-making. Computer-aided diag-
nostic (CAD) techniques can be used as a first reader, second 
reader or concurrently with a radiologist. It can also allow 
radiologists to consider the volume of lung nodules in three 
dimensions rather than the 2D measurements of nodule di-
ameter, allowing measurements to be reproducible and less 
susceptible to intra- and inter-observer variability.14 A recent 
systematic review on AI assistance for lung nodule assessment 
in CT scans found that radiologists, with AI support, showed 
improved sensitivity and AUC in nodule detection, albeit 
with slightly reduced specificity. Additionally, AI assistance 
generally enhanced radiologists' sensitivity, specificity, and 
AUC in malignancy prediction.15 Further research also noted 
AI assistance significantly enhanced the detection rates of 
various sizes and types of lung nodules.16 Particularly note-
worthy was the substantial increase in detecting nodules 
smaller than 5 mm, a challenge traditionally encountered in 

AI prediction.17 When comparing nodule sizes, CAD agreed 
with the reference standard (a consensus by three radiolog-
ists) in 67% of cases. However, it often overestimated meas-
urements, sometimes due to errors like measuring adjacent 
arteries or selecting the wrong section.17

While improvement in precision (ie, reduced variability) as-
sociated with AI-assisted image analysis has been docu-
mented,18 how such improvement translates into changes in 
clinical management of patients is unclear. In addition, it has 
been shown that nodule measurement by AI-derived software 
tends to over-estimate nodule sizes compared with unassisted 
reading.19 This may affect the number of patients requiring 
CT surveillance, which could have implications on healthcare 
costs and patient anxiety. The overall impact of this potential 
change in measurement accuracy, in combination with the 
change in precision, therefore, requires further exploration. 
Our simulation study aims to address these questions through 
a simulation comparing manual measurement to AI-assisted 
measurement.

Methods
We constructed hypothetical cohorts of nodules, with each 
nodule representing the risk-dominant nodule for one person 
(for someone who has more than one lung nodule, the risk 
dominant nodule is the one [usually the largest] which is con-
sidered to have the highest risk of malignancy and on which 
clinical management decisions are based) using available data 
on the distribution of sizes and types of lung nodules from 
the literature. We then simulated nodule growth and detec-
tion for a screening population.

Nodule type
Lung nodules can be broadly classified into solid nodules or 
subsolid nodules depending on the level of density and other 
features in the CT image.4 We separately simulated 1 000 000 
solid and 1 000 000 subsolid nodules, and combined them 
into a single sample of 1 000 000 nodules containing 93.9% 
solid nodules (based on a large study evaluating a screening 
programme in Korea.20). This article focuses on the com-
bined population.

Base case simulations
A systematic review21 (reported separately) identified papers 
to provide the majority of model inputs. The review was un-
dertaken to inform a diagnostic technology appraisal by the 
UK National Institute for Health and Care Excellence and fo-
cused on AI-derived software which received regulatory ap-
proval (CE mark) by December 2021 or was anticipated to 
be commercially available in the United Kingdom by 2023. 
As no single AI software provided sufficient evidence re-
quired for our simulation, the model inputs were collated 
from best available data related to different AI software. As a 
result, our simulation represents a generic scenario of appli-
cation of AI-assistance rather than results for a specific 
AI software.

No meta-analysis was performed in the systematic review 
as the included studies and data were too heterogeneous. 
Data required for the simulation were available from only 
one study for many of the parameters. Where data were po-
tentially available from more than one study, they were se-
lected on the basis of their applicability to the UK screening 
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population, taking into account the sample sizes of the stud-
ies and risk of bias.

The parameters of the log-normal models used to sample 
the true initial nodule sizes were calculated by rearranging 
the formula for the quantiles of the log-normal distribution 
[eqn (1)] and then calculating SD based on the median and 
IQR, with nodules not exceeding 30 mm.

Equation 1: Formula used to calculate the standard devia-
tion used in the simulation from the log-normal distribution 

quantile ¼ exp μþ
ffiffiffiffiffiffiffiffi
2σ2
p

erf� 1 2x − 1ð Þ

� �

; for x in log Xð Þ

� Nðμ; σÞ

where μ is the mean, erf� 1 is the reciprocal of the error func-
tion, and σ is what is being calculated.

From the true nodule sizes (Reader 0), estimated measure-
ments for four different readers were simulated, which were all 
rounded to the nearest millimetre. The parameters used to rep-
resent the accuracy and precision of the consensus of radiolog-
ists (Reader 1), AI alone (Reader 2), AI-assisted radiologist 
(Reader 3), and lone radiologist (Reader 4) are presented in  
Table 1, alongside other inputs used in the simulations. Further 
details on the simulated readers are presented in Appendix S1. 
Simulations were performed in RStudio 4.1.0.30

Nodule growth assumptions
We used the true nodule sizes as the baseline nodule diameter 
and applied growth curves to simulate how cancerous nod-
ules grew over 24 months for surveillance of solid nodules, 
and 48 months for surveillance of sub-solid nodules, in line 
with the 2015 BTS guidelines.4 Additional details are pro-
vided in Appendix S1. Benign nodules did not grow.

Nodule management following detection
Once a lung nodule is detected, its management depends pri-
marily on its size and morphology. The nodule stratification 
in our simulation is a simplification of the 2015 BTS guide-
lines,4 utilizing elements that could be modelled on avail-
able data:

Solid nodules with a diameter measured under 5 mm do 
not require any further action and are discharged. 10% of 
nodules ≥ 5 mm at baseline are estimated to show clear be-
nign features and are immediately discharged.23-26

Remaining nodules measuring 5-6 mm are assigned to a CT 
scan 1-year post-baseline. Nodules with diameter ≥ 6 mm are 
assigned to 3-month post-baseline CT scan. At later scans, 
volume doubling time (VDT) was calculated using each read-
er’s estimated diameter and assuming spherical form. If VDT 
was > 400 days at the 3-month scan, then it is assigned to 
1-year CT. If estimated VDT ≤ 400 days at any scan, that 
person is assigned to definitive management (DM). A VDT 
between 400 and 600 days at year one led to a second 
CT scan at year two. Nodules were discharged if VDT 
> 600 days at 1 year, or > 400 days at 2 years. Cancerous 
nodules measuring ≥ 8 mm at baseline had a 91.8% chance 
of being referred for DM (due to Herder malignancy risk 
≥ 10%), with a 17.1% chance for non-cancerous nodules of 
the same size.31

Sub-solid nodules measured under 5 mm are discharged. 
Again, 10% of nodules ≥ 5 mm show clearly benign features 
and are discharged.23-26 Remaining sub-solid nodules are 
subject to repeat CT scans at three months, and years one, 

two and four. Nodules are determined likely to be cancerous 
if an increase in diameter > 2 mm since the previous assess-
ment is detected, otherwise are monitored until discharge at 
4 years.

We assumed any nodules that are estimated to have shrunk 
by a reader were discharged.

Results
Summary of simulated nodule sizes
Our final dataset contained 1 000 000 simulated scans of 
risk-dominant nodules with true size at baseline between 3 
and 30 mm in diameter, of which 93.9% were solid nodules.

The median [IQR] starting diameter for solid nodules is 
3.27 mm (3.03 mm, 5.13 mm), with mean 5.5 mm. For subsolid 
nodules, the median was 8.03 mm (5.07 mm, 12.84 mm), with 
mean 9.81 mm. Figure 1 is a violin plot showing the resulting 
log-normal distributions of the simulated solid and sub-solid 
nodule diameters for the screening population with correspond-
ing boxplots showing how the medians and IQRs differ.

Nodule growth results
Figure 2 provides a visual representation of nodule growth in our 
simulation. Solid nodules followed a curved Gompertz growth 
function, and sub-solid nodules a linear growth function. Sub- 
solid growth was on average slower than solid growth.

Assignment of nodules to different management 
options based on different readers
Table 2 reports the simulated number of patients assigned to 
DM, discharge or CT surveillance over the four-year simula-
tion period for the different readers.

At the end of the four-year period and applying the classifi-
cation algorithm to the estimated nodule sizes, the different 
readers (R0-R4) perform similarly with �60% of cancerous 
nodules referred on for DM and 95% of benign nodules be-
ing discharged.

Differences between the readers are more clear within the 
first 12 months following the initial CT scan. Following the 
first scan, the AI-related readers (R2 and R3) discharged 
fewer cancerous nodules (24.0% and 24.9%, respectively) 
than an unassisted radiologist (R4; 28.2%) and referred more 
for DM (55.9% and 56.0% vs 52.0%). These absolute differ-
ences reduce over time as further scans are taken for people 
recommended for further CT surveillance, however, there is 
additional benefit for those whose disease is detected earlier.

For people with non-cancerous nodules, at baseline the AI- 
related readers (R2 and R3) results in fewer discharges 
(64.6% and 67.2%) compared to manual measurement (R4; 
74.5%), and considerably more are referred for additional 
CT monitoring (33.1% and 30.5% vs 23.4%). Again, this 
difference reduces over time, however, there is obvious bene-
fit for those rightfully discharged earlier without incurring 
additional CT scans and associated anxiety.

Table 3 shows the comparison of the sensitivity and specif-
icity for each reader across the solid, sub-solid and combined 
populations, where the sensitivity is for the correct referral of 
a cancerous nodule and the specificity is for the correct dis-
charge of a benign nodule. It also gives the mean follow-up 
time for people with nodules under the direction of each 
reader. Radiologist measurement assisted by AI-derived soft-
ware increased the proportion of patients with malignant 
nodules being referred to DM compared to manual 
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measurement in a population with solid and sub-solid nod-
ules (62.5% vs 61.4%). AI-assisted radiologist also dis-
charged slightly more people with benign solid nodules 
(95.8% vs 95.4%). Across all populations, manual measure-
ment is associated with the lowest mean follow-up time, with 
the AI-related readers having the highest. The difference is 
most noticeable in the sub-solid population. Detection of 
sub-solid cancers appeared positively correlated with the 
magnitude of bias and variance associated with a reader, 
however, this was also associated with a lower specificity.

Exploratory analyses showed that the sensitivity of all 
readers was affected by the initial nodule size. Alternative 
sources of reader accuracy information showed consistency, 
except for Reader 4 where relative sensitivity was superior to 

other readers, but specificity was inferior. Removing original 
reader bias and maintaining their respective deviation 
showed benefit of AI readers in terms of reaching the correct 
outcome sooner, without sacrificing long term specificity.

Discussion
In this simulation study, we performed a comprehensive 
analysis of lung nodule size measurements by different read-
ers (AI-derived software alone, radiologist assisted by 
AI-derived software, and unassisted radiologist) based on em-
pirical evidence reported in the literature. We estimated the 
potential impact of differential nodule size measurements 
between the readers on subsequent management of lung 

Table 1. Model inputs for the nodule size and growth simulations of the screening population.

Input name Input value Source/assumption

Number of nodules simulated 1 000 000 Assumption
Solid nodules
Distribution of baseline 
nodule diameter

Log-normal (meanlog¼−0.51, sdlog¼1.972) þ 3 Based on Hwang et al. (2021)20

Percentage that are solid 93.9% Hwang et al. (2021)20

Diameter (mm) Median¼ 3.6; IQR¼ 1.9 Hwang et al. (2021)20

Actual diameter after exclusion of 
nodules >30mm

Median¼ 3.3, mean¼5.5 Recalculation of data by Hwang et al. (2021)20

Growth curve distribution Gompertz Treskova (2017)22

% of nodules with clear features 
of being benign for nodules 
>¼ 5 mm

10% Kozuka et al. 202023

Veronesi et al. (2008)24

Rinaldi et al. (2010)25

Lancaster et al. (2021)26

% of malignant nodules at the 
start of the simulation

≥3 mm and <6 mm: 0.9% 
≥6 mm and <8 mm: 1.1% 
≥8 mm and ≤30 mm: 9.4%

Horeweg et al. (2014)27

% of cancerous nodules measured 
≥ 8 mm referred at initial CT

91.8% Al-Ameri et al. (2015)4

% of non-cancerous nodules 
measured ≥ 8 mm referred at ini-
tial CT

17.1% Al-Ameri et al. (2015)4

Sub-solid nodules
Distribution of baseline nod-
ule diameter

Log-normal 
(Part-solid: meanlog¼ 2.19, sdlog¼ 0.872 

Non-solid: meanlog¼1.03, sdlog¼1.132) þ 3

Based on Hwang et al. (2021)20

Percentage that are sub-solid 6.1% Hwang et al. (2021)20

Diameter (mm) 4:5 ratio combination of: 
Part-solid: Median¼11.9; IQR¼11.1 
Non-solid: 5.8; IQR¼ 4.7

Hwang et al. (2021)20

Growth curve distribution Linear Assumption, using Kakinuma et al.28

% of nodules with clear features 
of being benign for nodules 
≥ 5 mm

10% Kozuka et al. (2020)23

Veronesi et al. (2008)24

Rinaldi et al. (2010)25

Lancaster et al. (2021)26

% of malignant nodules at the 
start of the simulation

< 5 mm: 0.4% 
≥ 5 mm and ≤ 30 mm: 3.6%

Horeweg et al. (2014)27

Accuracy of AI and Radiologists in measuring diameter for both nodule types
Consensus of radiologists 
(Reader 1)

m ¼ 0 mm 
SD¼ 0.1 mm

Assumption

AI alone (Reader 2) Overmeasure nodules: 
m ¼ þ 0.234 mm 
SD¼ 0.771 mm

Martins Jarnalo et al. (2021)19

AI-assisted radiologist (Reader 3) Overmeasure nodules: 
m ¼ þ 0.182 mm 
SD¼ 0.639 mm

Martins Jarnalo et al. (2021)19

Manual measurement (Reader 4) Undermeasure nodules: 
m ¼ −0.770 mm 
SD¼ 0.959 mma

Xie et al. (2013)29

aSD was not reported in Xie et al. (2013),29 assumed to be 1.5 times the SD of Reader 3.
Abbreviations: AI ¼ artificial intelligence; IQR ¼ interquartile range; SD ¼ standard deviation.
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nodules according to simplified 2015 BTS guidelines and on 
the sensitivity and specificity for lung cancer detection. This 
was achieved by incorporating modelling of the growth of 
malignant nodules into our simulation. Our results suggest 
that AI-assisted reading results in the detection of additional 
cancerous nodules but at the cost of additional monitoring of 
patients with non-cancerous nodules compared with manual 
measurement which was driven by an overestimation of nod-
ule size, which persisted across various sensitivity analyses. 
The impact suggested by our simulation results is consistent 
in direction and magnitude with findings from two previous 
multiple-case multiple-reader studies. According to Park 
et al., AI-based software use increased the sensitivity of a 
whole read for the detection of lung cancer from 85.2% to 
91.6% (average, þ6.4%), but decreased specificity from 
81.9% to 76.3% (average, -5.6%).13 With AI-based software 
use, the readers tended to upstage (average, 12.3%) rather 
than downstage Lung-RADS categories (average, 4.4%) com-
pared to manual reading, with 34.2% classed as screen- 
positive (Lung-RADS ≥3) with compared to 28.5% without 
software use.13 Jacobs et al. found that the proportion of 
scans with positive screening results (Lung-RADS category 
≥3) increased from 53% to 66%.12 The non-cancerous 

population is much larger and on a population level it is a 
tricky trade-off between better and earlier cancer detection vs 
additional patient stress and healthcare resource use incurred 
from the additional monitoring. For sub-solid nodules, con-
current AI detected fewer cancerous cases, potentially an ar-
tefact of algorithm limitations.

One potential advantage of measurement of nodule size by 
software is the ability to directly measure the 3D nodule vol-
ume instead of manual measurement of nodule diameter on a 
2D plane. The latter provides a good estimation of nodule 
volume if a nodule is perfectly spherical in shape; however, 
use of diameter measurement to estimate nodule volume is 
more susceptible to measurement error if a nodule has an ir-
regular shape, as the measured diameter varies depending on 
which cross-sectional plane of the CT images is used. This 
potential advantage of volumetry assessment is reflected in 
the 2015 BTS guidelines4: solid nodules are discharged after 
the 12-month CT scan if they are stable based on volumetry, 
but are assigned to a further 24-month CT scan if they are 
stable based on diameter measurement alone. However, as 
volumetry assessment is not a feature unique to AI-derived 
software (ie, there exists software which is capable of carry-
ing out semi-automated volumetry in the process of manual 
assessment of the nodule, but which does not involve an AI- 
derived algorithm), and as our focus was to estimate the ad-
vantage specifically afforded by AI-derived software, we 
made a simplifying assumption that the readers would each 
measure nodule diameter at every scan, and have respective 
volumetric estimates on the assumption of spherical form.

However, accuracy of AI-assisted measurement might vary 
between software packages and even software versions, char-
acteristics of lesions and CT acquisition parameters.14,32,33

Thus, it is important to verify the performance in one own’s 
clinical setting and, wherever possible, to use the same soft-
ware, version, CT scanner and CT acquisition parameters for 
nodule surveillance. The core technology for AI-based nodule 
measurement is nodule segmentation. A recent systematic re-
view21 found that nodule segmentation might fail or is 
rejected by the reader in up to 57% of nodules (8 studies) and 
failure rates seem to be higher in pure ground glass nodules 
(34%) and part-solid nodules (19.7%) compared to solid 
nodules (7%) (1 study). Manual modifications of the segmen-
tation were required in 29% to 59% of nodules (2 studies). 
Therefore, even after implementation of AI-based size mea-
surement, visual verification of the nodule segmentation by 
human readers should be recommended.

The use of AI for nodule detection and measurement raises 
a number of ethical considerations. Whenever there is a dis-
crepancy between the radiologist and AI reads, the radiolo-
gist is required to dismiss or accept the AI output. In this 
case, two scenarios deserve special consideration. The first is 
when the AI detects a nodule and the radiologist dismisses it 
as insignificant but the nodule subsequently turns out to be 
malignant. The patient may then justifiably question why the 
AI was overridden and may feel they have been unfairly dis-
advantaged. The second scenario is when the AI either deter-
mines the nodule has falsely grown or is falsely stable due to 
measurement error. The determination of false growth may 
lead to overdiagnosis and unnecessary/invasive investigations 
such as biopsy/resection whilst the determination of false sta-
bility may lead to delayed diagnosis. In either of these instan-
ces the patient may question why an inaccurate AI read has 
caused potential harm. Another ethical consideration with 

Figure 1. Violin plot showing the differences in distributions of simulated 
nodule diameters at baseline.

Figure 2. Nodule growth over time for 20 solid and 20 sub-solid 
cancerous nodules (solid nodules ¼ blue; sub-solid nodules ¼
orange-dash).
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the use of AI in lung nodule detection and measurement is the 
potential for unsuspected coding errors which lead to inaccu-
racies and systematic under or over-measurement that may 
only become evident after many scans have already been 
read, potentially causing patient harm. More sinister is the 
potential for AI algorithms (which often now reside on 
cloud-based servers) to be maliciously hacked in order to gen-
erate false results. Therefore, quality control/algorithm test-
ing is essential (particularly after software updates) and cyber 
security is also paramount.

There are several strengths and limitations to the approach 
taken in this article. This article uses empirical data to simu-
late the baseline nodule diameter measurements by different 
readers that would be seen in practice. This enhances the clin-
ical relevance of our simulation and sets a benchmark against 
which further evaluation can be compared when more empir-
ical evidence becomes available in the future. This approach 
provides a valuable insight into the potential impact of inte-
grating AI into radiological practice, highlighting the trade- 
off between potential benefits and drawbacks.

While the simulation itself provides valuable insights, by 
nature it simplifies the complexities of real-world clinical sce-
narios, which means it would not account for every aspect of 
actual cases. For example, we did not model the possibility of 
“vanishing nodules” where abnormalities mistaken for nod-
ules were initially detected and would not appear on future 
scans. The generalizability of the inputs to UK population 
and care may be limited as most studies informing model 
parameters were conducted in other countries.

The assumptions made in the simulations may not fully 
capture the complexities of the disease or clinical decision 
making and could, therefore, impact on the generalizability 
of the findings to clinical settings. The benefits of AI assis-
tance may be underestimated as AI-derived software may of-
fer benefit independent of diametric measurement precision, 
for example, improved nodule detection, vessel suppression, 
or more accurate estimations of volume due to avoiding reli-
ance on assumptions of spherical form made with diameter- 
based readings. AI assistance may also reduce the turnaround 
time for reporting abnormal CT scan readings by automating 
the identification and measurement of lung nodules,34 but 

could increase reading time by detecting more lung nodules 
that need to be assessed.35 The performance of AI-derived 
software may further improve over time, and, therefore, pro-
vide additional benefit to that demonstrated in this study. 
The relatively low prevalence of cancerous nodules highlights 
the need for a dual focus in future image analysis—although 
studies are typically focussed on identifying cancerous nod-
ules, it is also important to identify non-cancerous cases rap-
idly and correctly. Getting this right will enhance the 
adoption of AI by healthcare systems. It is also vital to gener-
ate additional real-world evidence of relative efficacy to sup-
port studies like ours that inform health technology 
assessment decision making. It is possible that existing nodule 
management guidelines, such as the BTS guidelines, may need 
to be revised in the light of the improved precision of AI.

Using AI-based software for lung cancer nodule measure-
ments may offer benefits such as greater accuracy and consis-
tency, volumetric measurement, quicker assessment, earlier 
detection, and objective quantitative analysis.

Studies have shown that use of AI as a concurrent reader 
can decrease the time taken to read a scan when compared 
with a stand-alone radiologist.36,37 However, these studies 
focus largely on the use of AI for nodule detection. In com-
parison, there is a lack of studies looking at improvements in 
reading time that solely compare automated nodule size mea-
surement vs manual measurement with electronic callipers. 
This is perhaps because it is self-evident that an automated 
measurement that is pre-embedded onto the scan images (typ-
ically as an image overlay) will be quicker than a radiologist 
having to manually select and place a calliper; although the 
relatively small marginal time gain from automating this task 
will clearly be magnified the more nodules that a patient has. 
The most important gain in efficiency is the speed with which 
changes in nodule size between scans, and, therefore, growth, 
can be assessed using AI, and the rapidity with which this can 
be translated into clinically relevant predictors of malignancy 
such as the Brock score, which is heavily influenced by nod-
ule size.

By reducing subjectivity and integrating data, AI assists 
radiologists to make informed diagnoses and treatment plans. 
AI technology also aids in research, standardizes care across 

Table 3. Accuracy for detection of cancerous nodules (base case and separately for solid and sub-solid nodules) at the end of 48-month follow-up.

Analysis Sensitivity Specificity Mean (SD) surveillance 
time (months)

Combined solid and sub-solid nodules
Reader 0 (True size) 0.599 0.980 4.21 (10.21)
Reader 1 (Consensus) 0.608 0.975 4.72 (10.60)
Reader 2 (AI alone) 0.629 0.952 5.35 (10.84)
Reader 3 (Concurrent AI) 0.625 0.958 5.12 (10.86)
Reader 4 (Manual measurement) 0.614 0.954 3.95 (9.88)

Solid nodules onlya

Reader 0 (True size) 0.635 0.978 2.37 (4.79)
Reader 1 (Consensus) 0.648 0.974 2.74 (5.12)
Reader 2 (AI alone) 0.661 0.952 3.37 (5.77)
Reader 3 (Concurrent AI) 0.661 0.956 3.10 (5.61)
Reader 4 (Manual measurement) 0.636 0.934 2.29 (5.01)

Sub-solid nodules only
Reader 0 (True size) 0.168 1.000 32.65 (22.37)
Reader 1 (Consensus) 0.123 1.000 35.36 (21.13)
Reader 2 (AI alone) 0.249 0.962 35.94 (20.52)
Reader 3 (Concurrent AI) 0.195 0.988 36.31 (20.49)
Reader 4 (Manual measurement) 0.323 0.913 29.61 (22.73)

aFollow-up of solid nodules ends at 24 months.
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institutions, and enhances efficiency. Collaboration between 
radiologists and AI developers remains crucial for effective 
integration into clinical practice.

While the collaboration between AI and radiologists in-
creased the number of cancerous nodules correctly identified, 
it also led to a decrease in the discharge of non-cancerous 
nodules. This raises questions about the balance between sen-
sitivity and specificity in AI-assisted diagnosis. While AI may 
be more proficient at detecting potential cancerous nodules, 
it may also lead to increased false positives, potentially caus-
ing unnecessary stress for patients and subjecting them to 
prolonged surveillance.

To address these questions and refine AI-assisted lung nod-
ule assessment, future studies should focus on collecting data 
that assess not only the accuracy of detection but also the 
timing of detection and quantifying other potential benefits. 
This could help determine whether AI detects cancerous nod-
ules earlier than traditional methods, potentially improving 
patient outcomes. Greater information on the relevance of 
nodule characteristics would allow the execution of a simula-
tion study more representative of real-world use. AI may 
identify new characteristics that are not yet known. 
Additionally, studies should investigate the psychological and 
emotional impact of prolonged surveillance on patients to 
gauge the extent of any additional stress caused by AI- 
enhanced diagnosis. Those implementing AI in clinical 
settings should carefully consider the trade-off between sensi-
tivity and specificity and cost-effectiveness, emphasizing the 
importance of comprehensive training and collaboration be-
tween AI systems and healthcare professionals to optimize 
their performance while minimizing potential overdiagnosis 
and patient anxiety. Guidelines for classifying patients may 
need to be redesigned with the additional features and im-
proved accuracy of AI in mind. Cut-offs generated specifi-
cally for AI have the potential to improve sensitivity and 
specificity.

Conclusion
This simulation study is the first to show the extended impact 
of the potential improved accuracy and precision of generic 
AI-assisted measurement methods on patients with either 
cancerous or benign nodules. AI may detect cancerous nod-
ules faster and more frequently, but that this is at the expense 
of longer monitoring of those with benign nodules. Careful 
consideration of this balance is vital to the implementation of 
AI and the quest to improve our healthcare systems.

Supplementary material
Supplementary material is available at BJRjArtificial 
Intelligence online. 
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