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ABSTRACT

Deteriorating water quality poses a substantial risk to human health, with billions at risk of waterborne diseases due to contamination. Insuffi-

cient water quality data augment risks as conventional monitoring methods lack comprehensive coverage. Technologies like the Internet of

Things and machine learning offer real-time water quality monitoring and classification. IoT nodes often provide point data insufficient for moni-

toring the quality of entire water bodies. Remote sensing, though useful, has limitations such as measuring only optically active parameters and

being affected by climate and resolution issues. To address these challenges, an unmanned surface vehicle named `AquaDrone’ has been devel-

oped. AquaDrone traverses water bodies, collecting data of four key parameters (pH, dissolved oxygen, electrical conductivity, and temperature)

along with GPS coordinates. The data is transmitted to a web portal via LoRa communication and Wi-Fi, where visualizations like data tables,

trendlines and color-coded heatmaps are generated. A multilayer perceptron classifies water quality into five categories, aiding in real-time

classification. A comparative analysis of various oversampling techniques has been conducted in the context of water quality classification.

The AquaDrone offers a feasible solution for monitoring quality of small to medium-sized water bodies, crucial for safeguarding public health.

Key words: human health, Internet of Things, machine learning, real-time, unmanned surface vehicle, water quality monitoring

HIGHLIGHTS

• AquaDrone measures four physicochemical parameters of water along with GPS coordinates to monitor water quality in real-time.

• A multilayer perceptron classifies water quality into five categories, with oversampling used to enhance model training.

• AquaDrone wirelessly transmits data to the web portal, where trendlines, data table and a color-coded heatmap are generated to visualize

water quality.

• This ensures effective real-time monitoring in small to medium-sized water bodies, protecting both water sources and human health.

INTRODUCTION

Water plays a pivotal role in the development and survival of all living organisms and in maintaining a healthy ecosystem. It is
an essential resource for industrial, agricultural, and domestic activities. Despite its importance, water quality is being

degraded continuously at an alarming rate due to urbanization, industrialization, and anthropogenic activities. Poor drinking
water quality is a major concern all over the world and exposes humans to health risks as it has been linked to the spread of
diseases such as cholera, typhoid, dysentery, polio, and hepatitis (WHO 2022). Approximately, 80% of untreated wastewater

is released into the environment, which negatively impacts human health (Lin et al. 2022). This wastewater contains harmful
pollutants and heavy metals such as arsenic, chromium, and cadmium (Chen et al. 2019), which are highly carcinogenic (Lin
et al. 2022). Sewage discharge and agricultural runoff contaminate water with pathogens (Parris 2011), resulting in a harmful

impact on human health (Malakar et al. 2019) and waterborne diseases like diarrhea (Zhang 2012; Lin et al. 2022). Pathogens
such as Escherichia coli (Weller et al. 2021) and Salmonella (Buyrukoğlu 2021) increase the likelihood of contamination and
pose substantial threats to surface water quality.
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In Pakistan, water quality is depleting at a startling speed, owing to overpopulation, rapid urbanization, and the disposal of

untreated wastewater, both industrial and domestic, into the rivers (Imran et al. 2022). Poor water quality and water shortages
have significantly affected the country’s agricultural and environmental systems and have made Pakistan a water-stressed
country (Zhang et al. 2020). Moreover, the lack of clean water availability is the root cause of 40% of all the fatalities in

Pakistan (Daud et al. 2017). Most of the water in rivers is affected by microbial contamination, with very high levels of
total coliforms and fecal coliforms in downstream rivers and tributaries (Imran et al. 2022). Notwithstanding the current situ-
ation, there is a dearth of water quality monitoring systems and water treatment plants in the country, which further impacts
deteriorating water quality. Therefore, there is a need to develop systems that can monitor and predict water quality in real

time, further helping relevant organizations and agencies to take timely preventive and remedial measures, as improved water
quality results in better health (Zhang 2012).

Thereare severalmethods to assesswater quality, and themost commonlyusedonesare laboratoryandfield testing, Internet of

Things (IoT) nodes, and satellite imagery. Laboratory testing formonitoringwater quality is costly, cumbersome, and ineffective.
Much time is spenton thecollection, transportation, testing, and statistical analysis of samples (Ahmed et al.2019); consequently,
this method does not provide real-time data. Field testing is also costly in terms of time. Recently, IoT sensors have been widely

utilized toassesswater quality in real time, savinga great deal of timewhencompared tomanual laboratory techniques.However,
IoT nodes provide point data, which is insufficient to represent the water quality of a large water body (Khan et al. 2022).
In addition, difficult terrain makes certain data sites inaccessible, and the presence of certain bacteria in water may cause

health risks to those collecting samples (Koparan et al. 2018) or installing sensors. Satellite imagery is considered to be a feasible
technique to monitor the water quality of large water bodies, unaffected by the topography, but not without limitations.
For example, non-optically active parameters are difficult to measure directly using satellite imagery (Sagan et al. 2020), and
the acquisition of data is also limited by the revisit time of the satellite over a specific location.With a coarser spatial resolution,

monitoring of small andmedium inland lakes becomes difficult (Murray et al. 2022). Moreover, satellite imagery is also affected
by several environmental and climatic effects (Khan et al. 2022) such as cloud cover (Murray et al. 2022).

Keeping in view the drawbacks and limitations of the above techniques, this research combines IoT sensors with an

unmanned surface vehicle (USV) designed and developed to monitor and classify the water quality of an entire water
body in real time. The USV, named ‘AquaDrone’, is equipped with sensors that can monitor pH, dissolved oxygen (DO), elec-
trical conductivity (EC), and temperature. The AquaDrone travels on the surface of the water body to send the values of water

quality parameters to the onsite receiver using Long-Range (LoRa) communication and then to the database using Wi-Fi. A
machine learning model (multilayer perceptron, MLP) was trained using historical data from rivers in Hong Kong (1986–
2020) to classify the water quality ranging from Very Bad to Excellent. For comprehensive data visualizations, color-coded
heat maps and data tables were generated on the web portal. Typically, water quality data are gathered from the edges of

the water body, leading to the presence of class imbalance, which in turn can result in the underperformance of the machine
learning model. Therefore, a comparative analysis has also been conducted between several oversampling techniques, such as
Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic (ADASYN), SMOTEþ Tomek Links, and

SMOTEþENN (Edited Nearest Neighbor). For intelligent classification of water quality, a MLP was trained on the original
dataset as well as all the oversampled datasets for comparison. The development of the AquaDrone, the use of sensors, wire-
less communication, and machine learning model together with the development of a web portal for water quality assessment

differentiates the proposed system from existing systems.
The paper is organized as follows. The following section highlights the related work and research that has been conducted

in the domain of water quality monitoring thus far, using IoT, unmanned vehicles, remote sensing, and machine learning. In

the subsequent section, the proposed methodology for the design and development of the AquaDrone, including the devel-
opment and training of the deep learning model will be discussed. The findings of the research, including the accuracy
metrics for the deep learning model, the comparative analysis of the oversampling techniques, and the development of a
web portal for detailed and comprehensive data visualizations are given in the Results and discussion section. The last section

encapsulates the conclusion of the research.

RELATED WORK

Researchers are exploring methods and techniques to monitor water quality; typically this involves laboratory analysis, field
monitoring, and manual calculation methods. In recent years, the focus has turned to IoT-based solutions, remote sensing,
and machine learning methodologies to find automated and optimized solutions to the problem.
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Shafi et al. (2018) proposed an embedded prototype for monitoring of water quality parameters in real time. The research

further compared the performance of several machine learning models in binary classification of water quality. They found
that the deep neural network outperformed other algorithms with an accuracy of 93%. Koparan et al. (2018) developed an auton-
omous water sampling method. They deployed an unmanned aerial vehicle (UAV) equipped with floating attachments to navigate

to a specific location. In addition, they designed a water-capturing mechanism to collect water samples from this location. The
sample required further laboratory testing for measuring water quality parameters, which is the limitation of this approach.
Another study (Pasika & Gandla 2020) proposed a smart water quality monitoring system using a microcontroller and sensors
to measure pH, turbidity, temperature, water level, and humidity; and developed a mobile application to visualize the data.

Harmful algal blooms are known to cause damage to the environment as well as human health (Berdalet et al. 2015); to
predict water quality and the presence of algal blooms, Lee & Lee (2018) employed MLP, recurrent neural networks, and
long short-term memory (LSTM) using chlorophyll-a as an indicator. They found that the LSTM model showed the best per-

formance among all the models used. Xu et al. (2020) compared four machine learning algorithms to monitor water quality by
predicting the presence of fecal indicator bacteria in water and used ADASYN oversampling, finding that MLP performed
most effectively. Weller et al. (2021) also compared several machine learning models to predict the levels of E. coli in agri-

cultural water finding that models incorporating turbidity and weather factors outperformed all other models, irrespective of
the algorithm.

Dunbabin et al. (2009) designed a 16 ft solar-powered catamaran for gathering water quality data, integrated with a floating

sensor network enabling remote mission control and data collection. The designed Autonomous Surface Vehicle (ASV) can
operate in diverse weather conditions and improves current manual monitoring by offering extensive and frequent water sto-
rage monitoring across large distances. Madeo et al. (2020) developed a USV for water quality monitoring, but their system
lacks an intelligent, machine learning-based, water quality classification and a web portal for data visualization. Cheng et al.
(2021) proposed another solution for water quality monitoring by designing a UAV with a floating structure and sensor array
to measure the pH, DO, ammonia, nitrogen, and temperature at the landing point only. The study also investigated and pre-
dicted trends in water quality using time series analysis. Bayusari et al. (2021) designed an autonomous underwater vehicle

(AUV) equipped with a camera, sonar, and depth sensor for self-navigation and IoT-based sensing of temperature, pH, and
DO; this includes non-real-time monitoring as data were retrieved when the AUV returned to the surface.

In another study, Khurshid et al. (2022) employed IoT and machine learning to make real-time bacterial predictions by

measuring five water quality parameters: pH, temperature, turbidity, total dissolved solids, and DO. Several classical machine
learning and deep learning models were trained, out of which Support Vector Machine (SVM) and Bayesian Regression out-
performed the others in bacterial predictions with mean squared errors of 0.356 and 0.396 and mean absolute errors of 30.76
and 31.25, respectively. Ahmed et al. (2019) conducted a comparative analysis of various supervised machine learning models

for efficient water quality classification and found that MLP performed the best in classifying water quality using four par-
ameters with an accuracy of 85%.

Researchers have also opted for a multisource approach to monitor and predict water quality. A recent study (Zubair et al.
2022) integrated three data modalities (Geographical Information System (GIS) satellite imagery, and IoT nodes) to predict
the water quality holistically using time series analysis. Khan et al. (2022) worked along the same lines and singled out a mul-
timodal approach to classify the water quality, acquiring data from IoT nodes and satellite imagery. The artificial neural

network (ANN) outperformed SVM and random forest with an accuracy of 97% in classifying water quality.
The latest research has mostly focused on the use of the IoT and satellite imagery for water quality monitoring along with

laboratory methods as conventional laboratory methods are expensive, time-consuming, and non-real-time. Both IoT nodes

and manual sampling provide point data, which are insufficient to represent the entire water body, and satellite imagery has
its own drawbacks other than its revisit time, as it can only measure optically active parameters (Sagan et al. 2020) and is
affected by climatic effects (Khan et al. 2022). The proposed methodology addresses the limitations of previous methods
and techniques and provides a holistic method to monitor water quality.

METHODOLOGY

Design of the AquaDrone

A USV, AquaDrone, was designed and developed using a powerful brushless DC (BLDC) motor and an electronic speed con-
troller (ESC) to provide the required thrust combined with a high-power servo motor and a rudder for steering. The
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mechanical system runs on electric power supplied by a rechargeable Li-Po battery. A 30A ESC has been used to control the

speed of the BLDC motor. The speed of the propeller and the position of the rudder are regulated by a remote control
(2.4 GHz ISM, 6 Channels). The design of the AquaDrone is focused on reducing drag and resistance to enhance its maneu-
verability in the water. The streamlined shape from the front makes AquaDrone more hydrodynamically efficient and able to

maintain its speed for longer distances, as depicted in Figure 1. The AquaDrone is a lightweight USV that is easily transport-
able. However, in wavy and turbulent water conditions, its small form factor and light weight influence the movement making
it unstable.

Water quality parameters

Four water quality parameters were chosen for this research: temperature, pH, DO, and EC. Temperature is an important

water quality parameter, which influences other water quality parameters and aquatic life. DO is another important par-
ameter and is significantly affected by temperature (Zhi et al. 2023) since it is the amount of free oxygen available in the
water that supports aquatic life; low DO can cause aquatic life to suffocate (Bayusari et al. 2021). pH is a measure of acidity
or alkalinity with a safe environmental range of 6.5–8.5 (Cheng et al. 2021). EC is the ability of water to conduct an electric

current and is an indication of the concentration of dissolved salts. Human activities raise dissolved solids entering the
waters, elevating conductivity. Higher conductivity may correlate with other indicators of alteration in water quality.

Development of water quality monitoring sensor network

The AquaDrone is housed with a microcontroller (Arduino UNO), global positioning system (GPS) sensor, and sensors to
measure four physicochemical parameters of water (pH, temperature, EC, and DO). Vernier water quality sensor probes

are used, which provide 0–5 V output and are connected to the analog pins of the Arduino UNO board using Vernier Arduino
Interface Shields. For wireless communication, AquaDrone is equipped with a LoRa communication module and acts as a
transmitter node, enabling long-range transmission with low power consumption. The microcontroller is programmed to

send data packets after an interval of 5 s using LoRa WAN, and each data packet contains information about AquaDrone’s

Figure 1 | Three-dimensional renders of the waterproofed AquaDrone illustrating the design of the hull, positioning of the water quality
sensor probes, propeller, and rudder.
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location (GPS coordinates) and the four water quality parameters. The onsite receiver node consists of a Node-MCU ESP32

connected to the LoRa module. The ESP32 and LoRa are programmed to receive data packets based on receiving interrupts
(Figure 2).

Firebase Realtime Database (RTDB) is a cloud-hosted platform that stores data received from the client and allows the

server to fetch it in real-time. The ESP32 connects to the Firebase RTDB using Wi-Fi and sends the received data packets
from AquaDrone to the RTDB.

Deep learning model for water quality classification

The dataset that the deep learning model has been trained on was obtained from the Environment Protection Department
(EPD), Hong Kong, containing more than 31,000 data points, and spanning more than 30 years from 1986 to 2020. Six

water quality parameters (temperature, pH, DO, EC, nitrates, and turbidity) were chosen for labeling the dataset. The dataset
of the six above-mentioned parameters was normalized to bring the data to a common range (0–100). The Water Quality
Index (WQI) was calculated using the weighted averages method in which each parameter was assigned a weight. The

WQI is derived by the multiplication of normalized parameters with their respective weights and subsequent aggregation
of the weighted values. This resultant sum was divided by the cumulative sum of weights assigned (Ahmed et al. 2019).
The calculated WQI was used to classify the data points into five classes based on the ranges as given in Table 1.

Having labeled the dataset based on six parameters and keeping only the four parameters which AquaDrone can measure

(temperature, DO, EC, pH), the data was split into training and test sets (80 and 20% respectively). The visualization in
Figure 3 shows that there is a class imbalance in the dataset. Class imbalance typically leads to misclassification of instances
from the minority class more often than instances from the majority class, even with high accuracy (Johnson & Khoshgoftaar

2019). One approach to address an imbalanced dataset is to oversample the minority class, where synthetic data instances are
synthesized from the existing data instances. Two oversampling techniques SMOTE and ADASYN, and two hybridization
approaches SMOTEþ Tomek Links and SMOTEþENN were used. Hybridization combined both undersampling and over-

sampling techniques.

Synthetic minority oversampling technique

In SMOTE, synthetic samples are generated for the minority class (Chawla et al. 2002). It focuses on the feature space to
create new instances by using interpolation between the instances that are near each other.

Figure 2 | System architecture showing the main components of the proposed system.

Table 1 | WQI ranges

WQI range Class

0–25 Very Bad

25–50 Bad

50–70 Medium

70–90 Good

90–100 Excellent
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ADASYN sampling

ADASYN employs a weighted distribution for various instances of the minority class, depending on their learning difficulty.
This approach generates more synthetic data for minority class instances that are difficult to learn while producing relatively

fewer synthetic data for those minority instances that are easier to learn (He et al. 2008).

SMOTEþþþþþ Tomek links

This hybridization technique synergistically integrates the capabilities of SMOTE, which generates synthetic data for the min-
ority class, and Tomek links, which eliminates data from the majority class recognized as Tomek links (Batista et al. 2003).
Tomek links identify data samples from the majority class that are in close proximity to the minority class data.

SMOTEþþþþþ ENN

SMOTEþENN combines SMOTE’s ability of synthetic data generation for the minority class together with the ENN’s ability
to omit some observations from both classes that are identified as having different class between the observation’s class and
its K-nearest neighbor majority class (Batista et al. 2004).

After applying these techniques, the resulting dataset distributions were substantially adjusted, allowing for a more equi-
table representation of all five water quality classes. Table 2 presents a detailed comparison of class distribution in the

water quality dataset before and after the application of oversampling techniques. The values describe the instance counts
within each class, revealing the notable changes accomplished through the implementation of oversampling techniques.

For the purposes of water quality classification, a MLP is employed. MLP is a classical ANN, predominantly employed for
classification problems. The model used for the research comprises of three hidden layers. An excessively large learning rate

Table 2 | Class distribution comparison before and after oversampling techniques

Classes Before oversampling

After oversampling

SMOTE ADASYN SMOTEþþþþþ Tomek links SMOTEþþþþþ ENN

Very Bad 329 16,911 16,924 16,902 16,728

Bad 3,140 16,911 16,834 16,746 15,265

Medium 7,151 16,911 16,989 16,016 11,406

Good 21,117 16,911 16,911 16,121 11,344

Excellent 128 16,911 16,920 16,890 16,719

Figure 3 | Class imbalance in the dataset.
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might result in performance that explodes or oscillates throughout training epochs and lowers overall performance, whereas

an extremely small learning rate will lead to very slow learning or possibly the inability to learn at all. For our model, the
learning rate of 0.001 is an optimum value facilitating stable and efficient convergence. Moreover, the Adam optimizer
has been used due to its faster convergence and robustness. The model has been trained on both the original dataset and

four oversampled datasets. To reduce the risk of overfitting, which is prevalent when training deep learning models, we
employed the early stopping technique, setting the patience parameter to 5. Early stopping is a well-known technique used
in neural network training to track the model’s performance on a different validation dataset. To avoid the model from over-
fitting to the training data, this strategy stops the training process when the model’s performance on the validation set does

not improve for a certain number of consecutive epochs.

RESULTS AND DISCUSSION

In this section, a detailed analysis is presented discussing the performance of AquaDrone, a thorough comparison of machine
learning model performances on both the original and oversampled datasets, and the data visualizations depicting the findings.

Performance of AquaDrone

The AquaDrone was controlled remotely and had a sail time of approximately 10–15 min at full speed and maximum battery

capacity. With a tested operational range of approximately 500 m (0.5 km), the AquaDrone offers a significant coverage area
for water bodies. The AquaDrone was designed to have optimal efficiency in still water bodies (see Figure 4(a)) since in flow-
ing water (see Figure 4(b)), its stability and movement were affected by the movement of water.

Performance of the deep learning model

The performance of a machine/deep learning model is typically measured through various accuracy metrics that assess its
predictive accuracy. The metrics utilized for evaluating the performance of the implemented algorithm include accuracy, pre-
cision, recall, and F1 score.

i. Accuracy:

Accuracy is the count of correct classifications made by the model across all observed values (Ahmed et al. 2019) and
measured using Equation (1) (Deng et al. 2021).

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

: (1)

ii. Precision:

Precision is the ratio of accurately classified instances belonging to a specific positive class, relative to the total instances

classified as that class (Ahmed et al. 2019), as shown in Equation (2) (Deng et al. 2021).

Precision ¼ TP
TPþ FP

: (2)

iii. Recall:

Recall quantifies the model’s ability to correctly identify all relevant instances of a specific class (Ahmed et al. 2019) and
measured using Equation (3) (Deng et al. 2021).

Recall ¼ TP
TPþ FN

: (3)

iv. F1 score:

The F1 score is the harmonic mean of precision and recall (Ahmed et al. 2019), as shown in Equation (4) (Deng et al. 2021),
providing a balanced measure of a model’s precision and recall.

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

: (4)
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True positive (TP) and true negative (TN) refer to the count of accurately classified samples. False positive (FP) and false

negative (FN) represent the count of samples that are incorrectly categorized into different water quality classes.
The MLP was trained on the original as well as the oversampled datasets. To assess the performance of the model, several

metrics were observed such as accuracy, precision, recall, and F1 score. The model was used to classify the water quality
based on measured pH, temperature, DO, and EC. The accuracy metrics displayed in Table 3 demonstrate performance of

the model across all the training datasets. The model performance is nearly the same when trained on the original dataset
and the oversampled dataset using SMOTE, both with an accuracy of approximately 81%. However, the latter has the
best F1 score among all the models. Overall, the model performed the best when trained on the oversampled dataset

using SMOTE. As this technique oversamples the minority class by generating synthetic examples, this in consequence
leads to better representation of the minority class. Furthermore, neural networks are data hungry. Therefore, more data
are likely to improve the performance of our MLP model. However, the performance of the oversampling techniques is

Figure 4 | Testing of AquaDrone.
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contingent upon the classifiers used and the performance metrics employed to evaluate the respective models (Chakravarthy
et al. 2019). Because oversampling can result in overlapping ranges for the input variables for various classes, oversampling

may not always produce the best results. This means that the values of the variables for one class could be similar to those of
another. This makes it difficult for the model to determine which class a specific input instance belongs to based only on the
input variables, which results in confusion and misclassification. In these instances, the model might have challenges to cor-
rectly classify data, which would lead to poorer overall performance metrics.

The weighted average method is a widely used technique for water quality classification. This method was used to label the
dataset based on six water quality parameters (temperature, DO, pH, EC, nitrates, and turbidity). However, the model was
trained only using the parameters for which the sensors have been installed on the AquaDrone, which are temperature,

EC, DO, and pH. The parameters selected for training are the fundamental parameters of water quality. While training
based on four parameters is restrictive, the model can learn the underlying relationships among the water quality parameters.
This approach reduces the risk of overfitting while improving the generalizability of the developed model.

Data visualization

The web portal, with an interactive user interface, displays the values of water quality parameters, GPS coordinates, and WQI

in the form of various visualizations. A color scheme is used to represent different levels of water quality. Red is used to indi-
cate ‘Very Bad’ water quality, while orange represents ‘Bad’ water quality. Yellow is designated to indicate a ‘Medium’ level of
water quality, while light green and dark green are employed to depict ‘Good’ and ‘Excellent’ levels of water quality, respect-

ively. The data fetched from the Firebase RTDB are presented in the form of a data table (see Figure 5). The deep learning

Table 3 | Accuracy metrics of model for All training datasets

Dataset
Training dataset Validation dataset

Test dataset

accuracy accuracy Accuracy Precision Recall F1 score

Original 0.8124 0.8133 0.8146 0.6101 0.4373 0.4535

SMOTE 0.8404 0.8409 0.8145 0.6025 0.8109 0.6554

ADASYN 0.7936 0.7877 0.7393 0.4933 0.7241 0.5441

SMOTEþ Tomek links 0.8429 0.8406 0.7908 0.5690 0.8122 0.6157

SMOTEþENN 0.8934 0.8960 0.7814 0.5778 0.7994 0.6328

Figure 5 | Data table showing the data fetched from Firebase RTDB, which includes values of EC, DO, temperature, pH, GPS coordinates, and
the calculated WQI.
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model was trained and deployed to classify water quality, which is further used together with GPS coordinates to generate a
color-coded heatmap layer of the tested water body overlaid on the satellite view map as shown in Figure 6. The study site was

a tributary of the Korang River located in Islamabad. The AquaDrone was controlled to traverse a specific area within this
water body, with the resulting heatmap displayed in Figure 6.

The research introduces an alternative approach for real-time water quality monitoring that overcomes the constraints

associated with the previous water quality monitoring methods, namely, laboratory techniques, IoT nodes, and satellite ima-
gery. It addresses the issue of accessing inaccessible data sites, which has posed a major challenge when dealing with manual
laboratory methods and IoT-based solutions. The proposed solution, AquaDrone, is capable of accessing unreachable data

sites providing an ample number of data instances to effectively represent the complete water body. The solution can help
determine the regions afflicted by water pollution by means of detailed visualizations presented on the web portal.

CONCLUSION

The availability of clean drinking water is decreasing across the globe due to deteriorating water quality in our water bodies.
Consequently, a significant portion of the population lacks access to potable water and is subject to increased health risks and

outbreaks of waterborne diseases. Conventional laboratory techniques are commonly used to monitor water quality but are
time-consuming and expensive. IoT nodes are helpful in monitoring water quality, but they provide point data, which is insuf-
ficient to adequately represent the whole water body. Satellite imagery is also used but the acquired data is not real-time, and

varying atmospheric conditions may affect the accuracy of obtained data. The proposed solution, AquaDrone, is a USV with
sensors that can perform real-time measurements of various water quality parameters of the entire water body. Real-time data
are sent to the web portal along with the GPS coordinates, where the color-coded heatmap is generated to visualize and rep-
resent the water quality of the entire site, classified using a deep learning model. In addition, the dataset has been

oversampled using SMOTE, ADASYN, SMOTEþ Tomek Links, and SMOTEþENN techniques. Subsequently, the model
has been trained on all five datasets including the original and four oversampled variations. The model trained on the over-
sampled dataset using SMOTE achieved the highest performance, with an accuracy of approximately 81%.

The future scope of this research will focus on refining the design to ensure that the AquaDrone’s stability and movement
remain minimally influenced by the flow of water. Due to limited resources, the system has been developed with just four
fundamental parameters. However, expanding the sensor array to include measurements for additional water quality

Figure 6 | Generated heatmap from Korang River tributary testing.
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parameters like turbidity, total dissolved solids, phosphates, and nitrates could enhance the AquaDrone’s capabilities and

accuracy of water quality analysis significantly. Moreover, the AquaDrone can also be made autonomous instead of being
controlled remotely.

The project is associated with the United Nations Sustainable Development Goal 6 – ‘Clean Water and Sanitation’.
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