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Abstract—Region-level prescription demand is closely in-
tertwined with the incidence of diseases within a given area.
However, conventional forecasting methods primarily rely on
historical data, and ignore the spatial correlation in prescrip-
tion data. In this study, we employ graph structures to capture
the interactions among drug demand in different regions. By
leveraging two popular graph neural network-based models,
our objective is to harness the power of spatial-temporal
correlation to enhance the accuracy of predictions. To assess
the effectiveness of the graph neural network-based model, we
conduct extensive experiments on a comprehensive real world
dataset. The results demonstrate that the performance of the
graph neural network consistently surpasses that of statistical
learning-based methods and traditional deep learning-based
methods.

Index Terms—Region-level prescription demand, spatial
temporal correlation, graph neural network

I. INTRODUCTION

In today’s fast-paced world, the integration of technology
into various aspects of our lives has become increasingly
prevalent. One such area is healthcare, where technology
plays a vital role in improving patient outcomes, optimizing
resource allocation, and enhancing decision-making pro-
cesses. Region-level prescription forecasting, in conjunction
with Ubiquitous Intelligence and Computing (UIC), has
emerged as a significant development, revolutionizing the
way healthcare systems operate.

The prescription demand in a region is closely cor-
related with the prevalence of diseases. An increase in
the demand for drugs signifies a rise in the number of
local patients seeking treatment. Anticipating prescription
demand in advance can serve multiple crucial purposes.
Firstly, it enables the prevention of the further spread
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and deterioration of diseases by ensuring a timely and
adequate supply of medications. Secondly, early prediction
of prescription demand facilitates the effective allocation
of limited medical resources by allowing the government
to plan and allocate resources in a more efficient manner.

While humans have recorded drug consumption data for
an extensive period, the amount used for each prescription
was systematically recorded and categorized until recent
years. However, most prescription data currently available
also presents many problems when used in prediction
models. One of the biggest challenges of using prescription
demand data is the frequent occurrence of incorrect or
missing data in the dataset, which will inevitably lead to
errors in the model output. Furthermore, prescription data
can be influenced by a variety of factors that are often
interrelated in consecutive time and locations. Focusing
solely on a single region or timeslot hampers the accurate
simulation of actual prescription demand. To overcome
these challenges, it is crucial to account for the spatial
and temporal correlation of the data in prediction. By
considering these correlations, we can obtain more precise
and reliable forecasts.

The current approach to forecasting prescription demand
relies heavily on expert opinion. However, hiring consul-
tants can be costly, and relying solely on expert opinion can
be less objective due to biases and personal experiences.
There are various predictive models available, many of
which have demonstrated their effectiveness in different
domains. However, few studies have applied these models
to prescription demand analysis. At present, predictive
models can be classified into distinct groups based on their
methods, all of which have demonstrated their effectiveness
in their respective fields, with graph neural networks being



particularly valuable in prescription demand prediction.
Graph neural networks have been shown to be more ef-
fective in extracting knowledge from graph-structured data
that is challenging for traditional neural networks. They are
effective in extracting latent spatio-temporal correlations in
the data, which aligns well with the needs of prescription
drug forecasting.

This paper aims to analyze regional populations health
status and apply regional prescription demand forecasting.
The primary objective is to assess the suitability of dif-
ferent forecasting models for prescription demand analysis.
Specifically, the study explores the spatio-temporal corre-
lation of prescription data and examines the feasibility of
multiple prediction models. The main contributions of this
article are as follows:

• Identify the problem of regional prescription demand
forecasting and modeling the spatial correlation be-
tween prescription data in different locations using a
graph structure.

• Analyze the feasibility of models including statisti-
cal learning models, deep learning models and graph
neural network models in the context of prescription
demand forecasting.

• We compare the performance of these models on a
real-world dataset, which shows that ASTGCN can
consistently outperform the other models.

II. RELATED WORKS

A. Medication demand analysis

Scholars have shown considerable interest in studying the
trend of prescription demand. Björn et al. [1] developed a
linear regression model based on historical data to forecast
the growth rate of drug spending in Stockholm, Sweden.
However, regional drug consumption is often influenced by
multiple factors, and it is challenging for linear models to
precisely predict changes in drug consumption over time.

In order to improve prediction accuracy, scholars began
to introduce different statistical methods to process the
prescription demand data. In [2], trends of prescription de-
mand data have been analyzed using a variety of statistical
methods. It classifies and screens out drugs with a large
amount of use to capture the pattern of prescription con-
sumption. On the prescription consumption data collected
in household interviews, they used survey-weighted logistic
regression and join-point analyzes to reveal the average
annual percentage change of various types of drugs among
American adults.

As machine learning continue to evolve, AI models
have started to be used in the analysis of prescription
demand data. Bora et al. [3] combined the epidemiological
model and bidirectional LSTM to estimate the demand
for medicines required by the hospital. Compared with
the traditional ridge regression model, the bidirectional

LSTM model shows better performance. The paper [14]
proposes an illicit drug prediction method based on sales
data from darknet markets. On the basis of historical data,
it adds Wikipedia’s drug page views data, which effectively
improves the prediction accuracy. However, this approach
is only effective for new drugs.

B. Spatial-temporal analysis for population health

Population health data in a given area exhibits a strong
association with the corresponding prescription consump-
tion. Although the literature on the analysis of prescription
demand in specific regions is relatively limited, previous
studies have explored the spatial-temporal correlations of
population health data to identify underlying patterns. In
particular, several studies focused on understanding the
spatial-temporal variation of diseases, providing valuable
insights into factors that may affect prescription demand in
different regions.

In many instances, population health data for neighboring
regions and time steps are highly correlated. In order
to confirm and utilize the spatiotemporal correlation of
disease incidence data, the paper [4] proposes a compressive
population health method, which can infer the incidence
of chronic diseases in adjacent areas by using a small
amount of data. Convolutional neural networks and gener-
ative adversarial networks are employed in this method to
model the spatiotemporal correlations of incidence, thereby
greatly reducing the cost of data collection. Using data
on confirmed COVID-19 cases, deaths, and population
movements across the United States, the authors [5] propose
a multivariate predictive model. Due to the combination of
spatiotemporal correlations of diseases on traditional pop-
ulation migration data, it has a significant improvement in
accuracy compared to other prediction methods. Similarly,
the paper [6] employs graph neural networks to model
the spatial-temporal correlation contained in the COVID-19
infection data. With graph neural network, the relationships
between data can be further explored.

Considering the hysteresis of disease data statistics, the
paper [7] models both real-time data and updated data
separately, and constructed a POPNET system. This method
utilizes recurrent neural network and graph attention mech-
anism to extract the spatial and temporal correlation of
population health data. By adaptively updating the dataset
to optimize the model, it results in less prediction error in
real datasets.

III. DATASET AND PROBLEM FORMULATION

A. Dataset

The dataset we use in this paper is the England Practice
level prescribing data published by the NHS 1 . The number

1Practice Level Prescribing Data available at: https://digital.nhs.uk/data-
and-information/publications/statistical/practice-level-prescribing-data



of prescriptions filled in each practice from August 2010 to
December 2019 was collected in this dataset. Specifically,
this dataset contains the addresses and codes of practices,
number of prescriptions, prescription names and their cor-
responding ICF-10 codes.

During the course of a decade, some practices have
undergone relocations, resulting in incomplete data avail-
ability for certain periods. Additionally, the demand for
some prescriptions is close to 0 most of the time, which
is not conducive to prediction. However, for drugs that
treat chronic diseases, such as diabetes, the demand for
prescriptions exists throughout the time period. To ensure
the validity of the predictions, we extracted practices that
did not change geographically over the past ten years and
selected specific drugs for which there was a consistent
demand for experiments. After the dataset was processed,
we conduct the experiments with three drugs on a dataset
of 513 practices in London.

In the experiment, we divided the prescription demand
data into three parts for training, validation and testing. The
training set contains 73 months of prescription statistics
from August 2010 to August 2016. The validation set
contains prescription statistics for 20 months from October
2016 to month April 2018. The test set contains prescription
statistics for 20 months from May 2018 to December 2019.

B. Problem Formulation

1) Prescription network G: We formulate the prescrip-
tion demand prediction problem as an undirected graph
G = (V,E,A), where V represents a set of N nodes and E
is a set of edges. A is the adjacency matrix of the graph G,
which is generated from the connectivity between nodes. If
two nodes i and j are connected, Ai,j is 1. In this paper,
we define a threshold ε to compute the adjacency matrix
A:

Ai,j =

{
1, if exp

(
−d2

ij

σ2

)
≤ ω

0, otherwise
(1)

where dij is the euclidean distance between node i and
node j, and σ2 is the hyperparameter to control the sparsity
of the adjacency matrix A. If ω is fixed, a smaller σ2

results in a sparser A, and thus a simpler graph to construct.
However, when σ2 is too small, the correlation between
nodes cannot be accurately modeled. In this paper, we set
σ2 and ω to be 0.1 and 80, respectively.

2) Prescription statistics data X: We represent the col-
lected prescription data as a tensor X ∈ RN×T×K , where
N is the total number of nodes, T denotes the total number
of timeslots, and K is the number of prescription types. We
define the prescription demand of each node location n at
timeslot t as a matrix Xt =

(
x1
t , x

2
t , · · · , xN

t

)
∈ RN×K ,

and the prescription demand of each timeslot t at each
location n as a matrix Xn =

(
x1
n, x

2
n, · · · , xT

n

)
∈ RT×K .

3) Area-Level Prescription Demand Prediction: Given
the prescription statistics X on the prescription network G,
our task is to construct a multi-task prediction framework
F , so as to predict the demand of each node n for different
prescriptions at the future h steps of timeslots.

IV. MODELS FOR SPATIAL TEMPORAL DATA ANALYTIC

A. Approach overview

There are many models available for data processing,
which have their own advantages in dealing with different
kinds of data. In this paper, we have selected some repre-
sentative prediction models and classified them into three
categories: statistical models, sequential machine learning
models and graphical neural network models.

B. Statistical model

1) Historical Average: The historical average model is a
simple but useful model for time series forecasting, which
predicts the data trend by averaging the data over a time
period in the past. Due to its simplicity and high efficiency,
it is currently used as a baseline for evaluating the accuracy
and effectiveness of more complex forecasting models in
time series in various research fields.

2) ARIMA: The Autoregressive Integrated Moving Av-
erage (ARIMA) model was introduced by BOX and Jenkins
in 1970 [8]. The basic idea is to transform the original time
series into a stationary time series by taking the difference.
The differenced series are then fitted to make predictions for
future values. Because of its ability to model non-stationary
time series and to deal with variations in the feature, it
has become one of the most classic models in time series
forecasting models.

However, the performance of ARIMA is often unsatis-
factory for non-linear time series. Additionally, the model’s
tolerance to outliers is weak. Therefore, for accurate pre-
scription demand prediction, more advanced and effective
methods are needed.

C. Sequential machine learning models

1) XGBoost: XGBoost is an advanced version of the
Gradient Boosting Decision Tree (GBDT) model, originally
proposed by Tianqi Chen [9]. Compared with GBDT,
XGBoost can train models more efficiently, while achieving
high accuracy and speed in various regression and classifi-
cation tasks.

Unlike other models, the exceptional performance of
XGBoost is attributed to the ensemble training of multiple
decision trees. It uses the gradient boosting framework to
iteratively train each decision tree sub-model and combine
their predictions into a stronger overall model. The new
decision tree will be trained using the residuals from the
previous iteration, which is one of the keys to its speed



and efficiency. The objective function for defining the t-th
decision tree is as follows:

L(t) =
∑
i=1

l(yi, (ŷ
(t−1)
i + ft(xi))) + Ω(ft) (2)

where l(yi, ŷ
(t−1)
i ) represents the loss function related

to yi and ŷ
(t−1)
i , ŷ(t−1)

i represents the predicted value of
sample i by the first t− 1 decision trees, yi represents the
actual value of sample i, ft(xi) represents the predicted
value of sample i by the t − 1 decision tree, and Ω(ft)
represents the model complexity of the t-th tree.

It is worth noting that all decision trees in XGBoost are
trained in parallel to increase training speed. Furthermore,
in order to reduce model complexity and improve general-
ization, XGBoost also uses pruning techniques to remove
unnecessary branches from the decision tree.

2) GRU: In most of the network, the temporal correla-
tion is extracted through Recurrent Neural Network (RNN)-
based models-based models. As one of the most well-
known structures in RNN-based models, Gate Recurrent
Unit (GRU) is widely used with its simple structure and
well performance.

One of the essential features of a GRU is its gating
mechanism., which allows a model to selectively update
and reset its hidden state based on the input and previous
hidden states. This selective gating mechanism is critical
for the model’s ability to learn long-term dependencies in
the input sequence and helps to overcome the vanishing
gradient problem that traditional RNNs suffer from.

The GRU model consists of three gates that control
information flow, including update gate, reset gate and
output gate. The update gate is used to control the number
of hidden states updated at the current time step, the reset
gate determines the number of hidden states to be forgotten,
and the output gate controls the number of current hidden
states used for output at the current time step. Through the
combined use of update gates and reset gates, the GRU
model can effectively capture the long-term dependencies
in the input sequence, thereby improving the model perfor-
mance.

D. Graph neural network models

1) GCN: Graph Convolutional Network (GCN) is a
deep learning model based on graph structured data. It
extends the concept of convolutional operations to graphs,
enabling the extraction of features from neighboring nodes
associated with a given node. By continuously cascading
the output of each layer, GCN can perform higher-level
feature extraction. Compared to traditional convolutional
neural networks, GCN can extract more information from
graph data and thus better handle the relationships and

interactions between nodes. The information propagation
method between layers of GCN is:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(3)

where Ã = A + I , D̃ is the degree matrix of Ã, H
represents the feature of each layer, and σ is the nonlinear
activation function.

GCN is a flexible and powerful deep learning model
that can effectively handle graphically structured data. It
demonstrates powerful modeling capabilities, making it
one of the most popular options for spatiotemporal data
analysis. In this paper, we have selected two of the most
representative GCN model frameworks for spatiotemporal
data analysis applications to study.

2) STGCN: STGCN was initially used to solve the traffic
flow prediction problem. As previous models modeled the
data by gridding it, usually only local features could be
extracted, ignoring the connectivity and global nature of the
whole traffic network. Yu et al. [10] proposed the STGCN
model to extract higher-order features from graph-structured
data in space. The main advantage of STGCN is its ability
to process spatial-temporal features from the data in a more
holistic and comprehensive way.

STGCN consists of two main components: spatial do-
main convolution and temporal domain convolution. Spa-
tial domain convolution is mainly used to process spatial
information in graph structures, while temporal domain
convolution is responsible for processing time series data.
By combining these two components, STGCN is able to
perform high-order feature extraction on graph-structured
spatial-temporal data.

3) ASTGCN: The traditional GCN can only handle
graphs with fixed topology, and considers the information
of the node itself and its immediate neighbor nodes when
updating the node features. ASTGCN [11] improves the
expressiveness and prediction performance of the model
by introducing gating and attention mechanisms, while
handling graphs with variable topology more effectively.

ASTGCN divides the input time series into three dif-
ferent time intervals, which are fed into three components
with the same network structure for prediction. Each of
these components contains multiple temporal convolution
modules. In the time-domain convolution, ASTGCN also
introduces a gating mechanism to control the flow of
information, allowing the model to better capture long-
term dependencies in the spatio-temporal data. The final
prediction is obtained by combining the outputs of the three
components by a parameter matrix.

V. RESULTS AND ANALYSIS

1) Performance Metrics: To comprehensively evaluate
the performance of each prediction model, we employ
two metrics: mean absolute error (MAE) and root mean



squared error (RMSE) [12], [13]. These metrics allow us
to objectively assess the predictive accuracy of the model.
They are calculated as follows:

MAE =
1

n

n∑
i=1

|ŷi − yi| (4)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5)

2) Data Preprocess: In order to simplify the problem,
we only analyze the prescription data in the London area
in the experiment. There are 513 GP clinics in the London
dataset for a total of 113 monthly prescriptions demand
data. Our data preprocessing pipeline involves outlier de-
tection and subsequent missing values reconstruction.

To begin, we employ the Z-score outlier detection method
to identify outliers within the dataset. Any detected outliers
are considered as missing values and subsequently treated
accordingly. By setting these outliers as missing values, we
ensure they do not influence our analysis. Next, we utilize
the temporal average method to impute the missing values
in our dataset. It is worth noting that for locations with
missing values, we retain their data as input to the model to
provide as much information as possible for the prediction,
but do not perform an error assessment on their predicted
values. Finally, as part of our evaluation process, we assess
the predicted values of future prescription demand for all
rest 379 GP clinics.

3) Performance on Prescription Demand Prediction: In
this section, we investigated the effectiveness of different
models in predicting prescription demand. We chose two
chronic diseases, hyperlipidemia and diabetes, and con-
ducted experiments on a drug corresponding to each of
them. The results of each model are shown in table I and II.

Among all the models, the two graph neural network-
based models, STGCN and ASTGCN, demonstrated su-
perior performance across all evaluation metrics. For the
prediction of hyperlipidemia drug, ASTGCN achieved a
reduction of 21.4% and 20% in MAE compared to the
optimal statistical model HA and the optimal deep learning
model GRU, respectively. Furthermore, the RMSE was
reduced by 16.2% and 21.7% for ASTGCN compared to
HA and GRU, respectively. For diabetes drugs, ASTGCN
achieves 22.9% lower MAE, and 20.3% lower RMSE,
compared with HA, and achieves 31.5% lower MAE, and
28.6% lower RMSE, compared with GRU.

As prescription demand datasets are often collected on a
monthly basis, they tend to be relatively small in size. In the
above experiments, we noted that for the traditional neural
network XGBoost, a small dataset inevitably brings about
overfitting problems. However, for graph neural networks,
due to its mechanism of parameter sharing and connection

sparsity, it can better exploit the information of the data,
which allows it to reduce the risk of overfitting.

TABLE I
HYPERLIPIDEMIA PRESCRIPTION DEMAND PREDICTION

Model MAE RMSE
HA 0.1216 0.1474

ARIMA 0.1280 0.1651
XGBoost 0.1839 0.2375

GRU 0.1194 0.1502
STGCN 0.0991 0.1299

ASTGCN 0.0955 0.1234

TABLE II
DIABETES PRESCRIPTION DEMAND PREDICTION

Model MAE RMSE
HA 0.1241 0.1557

ARIMA 0.1718 0.2233
XGBoost 0.1885 0.2370

GRU 0.1398 0.1738
STGCN 0.1139 0.1465

ASTGCN 0.0957 0.1241

4) Performance at Different Locations: Different regions
exhibit distinct spatial-temporal correlation patterns, and
each model has its own advantages in different patterns.
In this section, we analyze the performance of each model
across various prediction locations, and the corresponding
results are shown in Table III.

The results clearly indicate that the accuracy of graph
neural network-based models, STGCN and ASTGCN, sur-
passes that of other models in over 52.9% of the regions.
Among them, ASTGCN, which performed best, achieved
the best performance in 118 locations. Even where the
rest of the models perform best, ASTGCN showcased
comparable accuracy, with minimal deviation.

TABLE III
LOCATIONS WHERE EACH MODEL PERFORMS THE BEST

Model # of locations % of locations
HA 37 10%

ARIMA 47 12.4%
XGBoost 44 11.6%

GRU 50 13.4%
STGCN 83 21.8%

ASTGCN 118 31.1%

5) Performance with Longer Prediction Window: Long-
term prediction is also an essential part of prescription
demand prediction applications. In the experiment, we
explored the ability of graph neural network-based models
for long-term prediction by progressively increasing the
output size with a one-month step and employing GRU



Fig. 1. MAE of each model under different prediction window length

Fig. 2. RMSE of each model under different prediction window length

as a comparison. We report the results in Figure 1, 2.
The results show that both MAE and RMSE increase with
increasing prediction window length. This is due to the
diminished temporal correlation of further future moments
with the existing training data. However, both the ASTGCN
and STGCN models, which leverage graph neural networks,
consistently outperformed the GRU model. It is worth
noting that while ASTGCN showcased better accuracy for
short-term predictions, STGCN proved to be more effective
for long-term forecasts.

VI. CONCLUSION

In this paper we present the region-level prescription de-
mand problem and investigate the spatial-temporal correla-
tion of prescription data demand. The characteristics of low
data volume, missing data, and outliers in prescription data
put forward high requirements for the prediction model. To

tackle these challenges, we analyze three types of models.
Through a series of experiments, it is shown that graph
neural network-based models outperform traditional fore-
casting models in terms of various evaluation metrics. This
demonstrates their effectiveness in capturing and leveraging
spatio-temporal correlations in the prescription data. As part
of our future work, we intend to develop more accurate
models that can effectively exploit correlations between
data with different prescription requirements while better
extracting spatio-temporal correlations from the data.
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