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Abstract
Autonomous vehicle racing has attracted extensive interest due to its great potential in autonomous
driving at the extreme limits. Model-based and learning-based methods are being widely used in
autonomous racing. However, model-based methods cannot cope with the dynamic environments
when only local perception is available. As a comparison, learning-based methods can handle
complex environments under local perception. Recently, deep reinforcement learning (DRL) has
gained popularity in autonomous racing. DRL outperforms conventional learning- based methods
by handling complex situations and leveraging local information. DRL algorithms, such as the
proximal policy algorithm, can achieve a good balance between the execution time and safety in
autonomous vehicle competition. However, the training outcomes of conventional DRL methods
exhibit inconsistent correctness in decision-making. The instability in decision-making introduces
safety concerns in autonomous vehicle racing, such as collisions into track boundaries. The pro-
posed algorithm is capable to avoid collisions and improve the training quality. Simulation results
on a physical engine demonstrate that the proposed algorithm outperforms other DRL algorithms
in achieving safer control during sharp bends, fewer collisions into track boundaries, and higher
training quality among multiple tracks.
Keywords: Autonomous vehicle racing, local planning, proximal policy optimization, balanced
reward function.

1. Introduction

Autonomous vehicle racing has become an emerging field that combines the excitement of human 
vehicle racing and the state-of-the-art technologies in autonomous driving. Autonomous racing 
vehicles are expected to drive through complex tracks by exploring the limits of speed and decision-
making. On the other hand, autonomous racing also escalates the entertaining value of the competi-
tion, by showcasing the amazing capabilities of autonomous vehicles. One of the main motivations 
for autonomous racing is to bridge the gap between the current level of autonomous driving and 
human driving at extreme limits.



Figure 1: Sketch of a closed-loop vehicle racing environment.

1.1. Motivation

Traditional vehicle racing is a challenging sport that requires reliable decision making, precise con-
trol, and robust perception. As illustrated in Figure 1, the racing track represents a complex and
dynamic environment with varying properties such as track width, curvature, and surface condi-
tions. In traditional vehicle racing, human drivers often encounter unexpected disturbances due to
posture, viewing habits, and other factors [1]. Therefore, it is desirable to improve the driving safety
by minimizing the affect of these disturbances during the racing. To this end, two main approaches
are considered. The first approach involves optimizing the physical structures of the racing vehicle
based on aerodynamics [2] [3]. The second approach involves designing robust control strategies
from the online training. Recently, the growing interest of autonomous racing is demonstrated by
several events such as Roborace [4] and Indy Autonomous Challenge [5]. In autonomous diving,
the first stage is to obtain the driving environment information via perception. In autonomous rac-
ing competitions, the racing environment may equip with different perception levels. Therefore, to
cope with diverse perception conditions, autonomous racing vehicles should not heavily depend on
perception schemes.

Perception schemes for autonomous racing can be broadly classified into local perception and
global perception. Global perception methods, such as [6], can assist the decision and planning
of racing vehicles [6, 7, 8]. Nonetheless, excessively depending on global perception introduces
certain drawbacks. For example, sensor failure or communication loss may prevent the vehicles
from obtaining global information. Besides, competition organizers may limit the use of global
perception to increase the difficulty and excitement of the races [9]. Therefore, it is required to
develop methods that can enhance the racing vehicles to perceive local environments without global
perception [10]. Model-based methods rely on predefined models or extra processes, such as Gaus-
sian Process to quantify the uncertainty [11]. As a comparison, learning-based methods use data
driven approaches to learn the optimal driving manner from data [12] [13]. Reinforcement learning
(RL) is a powerful technique that learns optimal control commands from the training without global
information [14, 15, 16]. Therefore, RL is capable to adapt to the local conditions of the environ-
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ment [17]. Recently, Deep reinforcement learning (DRL) has been developed for high dimensional 
complex tasks. To enhance the autonomy level and reduce the reliance on perception, this paper 
would use DRL to achieve safe autonomous racing.

1.2. Related Works

State-of-the-art results of using DRL have been demonstrated in autonomous vehicles [18, 19, 20, 
21]. Recently, a set of DRL algorithms with exceptional performance have attracted interest, such as 
Q-Learning [22], deep deterministic policy gradient (DDPG) [23], and proximal policy optimization 
(PPO) algorithms [24] [25].

In Q-Learning, the state-action value function is applied to determine the best action in a given 
state [26]. Correct actions are selected by Q-Learning in autonomous driving despite numerous 
safety constraints [27]. However, only simple tasks and scenarios were considered and tested in [27], 
without considering bends and more complex tasks. Moreover, another drawback of Q-Learning is 
the relatively low training efficiency [28].

DDPG uses deep neural networks to approximate the control policy [29]. With the suitability 
for handling high-dimensional data, multiple demonstrations of using DDPG have been given in 
autonomous driving [30]. For example, a DDPG model was proposed for safety driving within 
an end-to-end architecture [30]. Improved DDPG models have been proposed to improve training 
efficiency and results [31] [32]. However, the key issue is that DDPG gives an absolute result from 
the control policy. The absolute result hinders the exploration of more possible actions and restricts 
the adaptability in diverse driving scenarios.

PPO approximates the control policy in a probability distribution and offers fast strategy explo-
ration improvements over DDPG [33]. PPO has been used to create control models for multi-agent 
driving scenarios [34]. PPO has been developed to generate smart driving strategies that balance 
safety and efficiency for crowded highway traffic [35]. In PPO, the traditional reward function uses 
a fixed ratio of averaged reward and current r eward. The traditional reward function does not ac-
count for the influence of historical data on the current states in some cases. This leads to local high 
profits but global low profits. Hence, a reward function with a global perspective is needed.

1.3. Problem Statement and Contributions

DRL methods have greater potential than model-based methods in autonomous racing since they 
can better imitate the process of human decision making. However, The training results are unsta-
ble because the training guidance unbalances the local and global profits. To this end, a  balanced 
reward-inspired PPO (BRPPO) is proposed in this paper. To optimize the future steps, a balanced 
reward function is proposed to consider both the historical and the prospective actions. The pro-
posed reinforcement learning using PPO with the balanced reward function is illustrated in Figure
2. The whole algorithm is composed of offline training and real-time control. The decision network
produces control commands in offline training, while the experience network generates real-time
control commands. In offline training, the decision network learns to generate control commands
based on the balanced rewards. The primary contributions are

• A balanced reward function is applied to deal with safety issues, such as collision during
sharp bends. The number of collisions of sharp bends are significantly reduced.
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Figure 2: Diagram of the autonomous racing algorithm using the proposd BRPPO.

• The proposed BRPPO increases the training quality by balancing the historical and current re-
wards, enabling the autonomous racing vehicle to choose appropriate actions from the global
perspective.

The rest of the paper is organized as follows: Section II introduces the decision network in-
cluding the network structure and the control policy update process. Section III presents the details
of balanced reward function. Section IV demonstrates the simulation results. Section V draws the
conclusions.

2. Decision Network

The decision network is to generate safe and efficient control commands during training. The deci-
sion network consists of a set of actor-critic network that receives the balanced rewards of actions.
The control policy in the actor-critic network compares the candidate control commands and choose
the best one based on their relative advantages.

2.1. Network Structure

The decision network is composed of two actor-critic networks, which select actions based on the
states of the racing vehicle. The actor-critic network is a neural network that integrates the control
policy and the evaluation of control commands. The control policy selects control commands for
less collisions. The evaluation of control commands is to estimate the relative advantage of the con-
trol commands. The relative advantage is served as a reference for updating the actor-critic network.
The actor-critic network can be divided into the actor network (AN) and the critic network (CN).
The AN and CN have similar structures, while the AN is to generate candidate control commands
and the CN is to access the relative advantages for each candidate control command. The AN con-
sists of an input layer, a series of convolutional layers, a linear layer and an output layer. The input
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Figure 3: Structure of the actor-critic network.

layer receives the current state of the racing vehicle. The convolutional layers extract features from
the driving states at each step. The linear layer adds linearity to the actor-critic network during the
training. The output layer generates the control commands. The rectified linear unit (ReLU) layer
applies the ReLU function to the output of the preceding layer. The ReLU function implements
the operation max(x , 0) on each input tensor element, where x represents the input element. The
objective of ReLU layer is to introduce non-linearity into the actor-critic network during training.
The expression format of convolution layer CL is expressed as

CL = (A,B,C) (1)

where A , B and C indicate the number of input channels, the number of output channels and the
kernel size, respectively. The CN is composed of an input layer, a series of convolutional layers
and an output layer. The input layer takes the output from AN and the current state of the vehicle
as inputs. The convolutional layers extract features from the driving states and the corresponding
control commands at each step. The output layer selects the best control commands based on their
evaluation under the current state. The best control commands are then sent to the actuators. To
generate a convincing evaluation, the relative advantage aims to reflect long-term advantages and
spans a time period T . Hence, the CN compares the performance of a set of selected control
commands with the average performance from the starting point t to t+T . The actor-critic network
structure is illustrated in Figure 3.

2.2. Control Policy Update of the Decision Network

The control policy is determined by the weights of the neurons in the decision network. Therefore,
the weights of the neurons should be adjusted to optimize the control policy. Figure 4 shows an
example of a learning process involving a single racing sequence. The autonomous racing vehicle
starts from the starting point with the maximum score. During the racing process, two types of
losses including safety loss and efficiency loss are defined. When the autonomous racing vehicle
reaches the finish point, a final score is calculated. Then, a score comparator compares the final
score with a predefined expected score. If the final score is higher than the expected score, the
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weights of the neurons in the decision network are updated. Otherwise, the weights of the neurons
are not updated, as the performance does not meet the expected level.

3. Balanced Reward Function

The reward function is used to evaluate the actions selected by the decision network. During the
racing, the laptime and collision frequency are the two main factors that affect the performance of
the competitors. The laptime reflects the effectiveness of the actions, while the collision frequency
reflects the safety of the actions. Therefore, a good reward function for racing should guide the
decision network to select actions that can minimize collisions with the track boundaries. However,
the traditional reward functions assigns equal weight to each step. The averaged reward is greatly
influenced by previous high-reward actions. Therefore, the averaged reward is not able to balance
the historical and current rewards. The averaged reward function is defined as

rave = 0.99rave + 0.01rcurrent (2)
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where rave and rcurrent are the averaged reward for historical states and the reward of the current 
state, respectively. Collisions during large and series bends at high speeds are the main safety con-
cerns. The reward function should pay more attention to these critical single steps, which are called 
corner rewards. However, the averaged reward cannot focus on dangerous scenarios effectively, as 
the averaged reward gives equal weights to all historical steps. To address this issue, a hyper param-
eter is introduced to balance the average reward and the corner rewards. With the hyper parameter, 
a balanced reward function is proposed to consider both the historical and current rewards

r = (1− γ)rave + γrcurrent (3)

where r represents the total reward under the current state of the racing vehicle, γ is a hyper
parameter that directs the racing vehicle to prioritize random corners. With calibration, a value
of γ that emphasizes most risky corners can be acquired. Therefore, γ promotes a safety-aware
and forward-looking strategy, allowing the vehicle to predict possible dangers. Constraints on the
learning speed are also required to restrained within a fair range during each update. To improve the
stability in learning, a clipped surrogate objective is used to control the learning speed. The clipped
surrogate objective prevents significant adjustments of neurons that might result in control policy
divergence. The clipped surrogate objective is employed to update the policy network. The clipped
surrogate objective is defined as

Lclip = min(R ∗A, clip(R, 1− ϵ, 1 + ϵ) ∗A) (4)

where R represents the proportion of the new policy probability to the old policy probability, and
the clip() function ensures that each component of the gradient is bounded between 1− ϵ and 1+ ϵ .
A is obtained from the actor-critic networks, and ϵ is a self-defined hyper-parameter constraining
the amplitude of alterations for the learning parameters during each iterative update.

4. Simulation Results

The simulations are designed to evaluate the safety of the BRPPO in different driving scenarios. To
generalize the training results, racing tracks are randomly selected from the candidate tracks. The
training quality of the BRPPO and two other DRL algorithms have been evaluated by their training
scores on five racing tracks. The racing performance at critical bends, the number of collisions into
track boundaries on five racing tracks with the BRPPO are compared and analyzed.

4.1. Simulation Environment

The training and testing environment employed is Box2D, which is a widely adopted open-source
physics engine. The Box2D is designed to simulate and animate two-dimensional rigid-body dy-
namics [36]. In Box2D, the racing vehicle is modeled as a rigid body, consisting of several con-
nected shapes, such as the chassis and wheels. The racing vehicle is connected to a controller that
generates control commands in terms of acceleration and steering based on a set of physical rules.
Furthermore, the physical engine enables the simulation of suspension systems and enhances the
fidelity of the simulation. In order to reduce the computing burden of BRPPO, a bicycle model [37]
is used for the racing vehicle in Box2D

ẋ = V cos(φ+ β) (5)
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ẏ = V sin(φ+ β) (6)

φ̇ =
V

lr
sin(β) (7)

V̇ = a (8)

β = tan−1(
lr

lf + lr
tan(δf )) (9)

where x and y represent the coordinates of vehicle’s centre of mass, lr is the length between the
center of mass and vehicle’s rear axle, lf is the length between the center of mass and vehicle’s front
axle, β is the angle of the velocity with respect to the longitudinal axis of the vehicle, ψ represents
the yaw angle. a and δf are chosen as the inputs. a is the vehicle longitudinal acceleration

a = Fthrottle,maxuthrottle/M (10)

where Fthrottle,max and uthrottle are the maximum force of engine and the input level of throttle gate,
respectively. M is the mass of the vehicle. δf the is steering angle given by

δf = δmaxusteering (11)

where δmax is the maximum angle of steering and usteering is the input of steering level. Therefore,
the states of the vehicle can be changed by adjusting the inputs usteering and uthrottle .

4.2. Evaluation of the Results

Case 1 Case 2 Case 3 Case 4 Case 5   Average

800

850

900

950

1000
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BRPPO PPO DDPG

Figure 5: Scores for Cases 1 to 5 of using BRPPO, PPO and DDPG.

The BRPPO algorithm is compared against two popular benchmark algorithms, PPO and DDPG,
to assess the racing safety and training quality. To ensure convincing simulation results, five differ-
ent racing tracks are used in simulations. The five different racing tracks are correspond to Case 1
through Case 5, respectively.
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As illustrated in Figure 5, both the PPO and DDPG were outperformed by the BRPPO in terms 
of scores and average score from Cases 1 to 5. The BRPPO algorithm achieves higher scores than 
the PPO and DDPG algorithms in each case. The main reason for the superior performance of 
the BRPPO algorithm is that the safety and efficiency losses are reduced during the r acing. The 
safety loss is minimized by the balanced reward function, which enhances the training quality of 
the algorithm and prevents collisions. Figure 6 illustrates how BRPPO, PPO, and DDPG react to

BRPPO PPO DDPG

Figure 6: Driving performance of using BRPPO, PPO and DDPG in Case 5.

dangerous bends in a testing case. There are five bends from A to E in this case. Bend A has
a high curvature, which makes it challenging to drive through. Bends B and C are the normal
bends, which require moderate control. Bends D and E are close to each other, which increases
the difficulty of steering. It can be seen that the BRPPO drives safer than the other two algorithms,
as it travels within the boundaries and stays close to the inner side of curve when possible. At bend
A , PPO deviates from the driving area, which causes a high safety loss. The DDPG follows the
outer side of the track, which increases its efficiency loss. At bend B , the DDPG also leaves the
driving area, which leads to a high safety loss. At bend C and D , the BRPPO stays in the center of
the track, which balances the safety and efficiency objectives. The DDPG moves closer to the inner
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Table 1: Number of Collisions of Using BRPPO, PPO, and DDPG

Number of Collisions

Index of Tracks BRPPO PPO DDPG

Track 1 0 2 4
Track 2 0 3 2
Track 3 0 4 4
Track 4 0 4 2
Track 5 0 4 4

side of the track boundary, which improves its efficiency performance. Bends C and D suggest
that the BRPPO is willing to sacrifice some efficiency profits to avoid collisions. At bend E , both
PPO and DDPG exit the driving area, which results in a high safety loss. Table I compares the times
of accidents that BRPPO, PPO, and DDPG touch the boundaries from Cases 1 to 5. The results in
Table I show that the BRPPO makes fewer collisions. Therefore, the proposed BRPPO algorithm is
superior in handling the complexities in racing and achieves better overall performance.

5. Conclusion

This paper proposed a balanced reward-inspired PPO algorithm for autonomous racing, aiming to
improve the training scores and driving performance of the racing vehicle. To enhance the atten-
tion to critic steps, a balanced reward function is used to balance the historical and current rewards
during the training. The algorithm is trained and tested on a physical rules-based platform that simu-
lates the real driving environment. Comparisons among BRPPO and other two representative DRL
algorithms were conducted, showing that the proposed algorithm outperforms in terms of higher
average scores and fewer collisions. In the future, extensive research will be conducted in several
aspects, including 1) verifying the racing ability of BRPPO under more uncertain conditions, 2) op-
timizing the racing process considering diverse objectives such as riding comfort, and 3) extending
the algorithm to team competitions of autonomous racing vehicles.
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