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Abstract

Gravitational waves (GWs) can be deflected, similarly to electromagnetic (EM) waves, by massive objects through
the phenomenon of gravitational lensing. The importance of GW lensing for GW astronomy is becoming
increasingly apparent in the GW detection era, in which nearly 100 events have already been detected. As current
ground-based interferometers reach their design sensitivities, it is anticipated that these detectors may observe a
few GW signals that are strongly lensed by the dark halos of intervening galaxies or galaxy clusters. Analyzing the
strong lensing effects on GW signals is, thus, becoming important to understand the lens’ properties and correctly
infer the intrinsic GW source parameters. However, one cannot accurately infer lens parameters for complex lens
models with only GW observations because there are strong degeneracies between the parameters of lensed
waveforms. In this paper, we discuss how to conduct parameter estimation of strongly lensed GW signals and infer
the lens parameters using additional EM information, including the lens galaxy’s axis ratio and the GW source-
hosting galaxy’s lensed images. We find that for simple spherically symmetric lens models, the lens parameters can
be well recovered using only GW information. On the other hand, recovering the lens parameters requires systems
in which four or more GW images are detected with additional EM observations for nonaxially symmetric lens
models. Combinations of GW and EM observations can further improve the inference of the lens parameters.

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Strong gravitational lensing (1643);
Gravitational lensing (670); Gravitational waves (678); Computational methods (1965)

1. Introduction

Measuring the masses of the dark halos of galaxies or galaxy
clusters is one of the most important challenges in astrophysics
and cosmology. The halo masses are a key factor for
understanding important phenomena relevant to the physics
of galaxies, from galaxy formation and evolution (Behroozi
et al. 2010; Fanidakis et al. 2012; Wetzel et al. 2012) to galaxy
quenching (Woo et al. 2013; Zu & Mandelbaum 2016; Wang
et al. 2018; Behroozi et al. 2019). Most methods developed to
date for measuring masses of galaxies depend only on
electromagnetic (EM) wave observations. The application of
photometry to gravitational lensing events and spectroscopy for
velocity dispersion measurements of galaxies and clusters have
been widely used—and have estimated the mass of galaxies
with small error ranges (Broadhurst et al. 1995; Hoekstra 2003;
Mandelbaum et al. 2006; Hansen et al. 2009; Elahi et al. 2018;
Kafle et al. 2018). However, EM waves can be easily absorbed
and reemitted by baryonic matter. Also, accurate measurements
of galaxy components’ dynamics are necessary, which are
challenging.

In this regard, one promising approach to measuring dark
halo masses is to use gravitational waves (GWs), which are not
subject to some of the same limitations as EM waves. GWs can
also be gravitationally lensed by massive objects like EM
waves—resulting in larger angular areas on the lens
plane (Wang et al. 1996; Nakamura 1998; Takahashi &
Nakamura 2003; Sathyaprakash & Schutz 2009). Unlike EM

waves, the universe is nearly transparent to GWs, and lens
mass measurements using GWs are, in principle, more
straightforward by analyzing their strain amplitudes.
Among the different kinds of GW lensing that may be

considered, strong lensing occurs when there are massive
objects along the line of sight, such as galaxies and galaxy
clusters, which have a larger Schwarzschild radius than the
wavelengths of the propagating GW signals. This results in a
splitting of the original unlensed GW signal into multiple
lensed signals, each characterized by a distinct amplitude,
arrival time, and phase shift. Until now, confident evidence of
strong lensing has not been found in the events detected during
the first three observing runs (referred to as O1, O2, and O3,
respectively) carried out by the LIGO, Virgo, and KAGRA
collaborations (Hannuksela et al. 2019; Abbott et al.
2021, 2023). In the near future, however, it is expected that
up to 1 2( ) ~ strongly lensed compact binary coalescences
per year may be observed as ground-based GW detectors reach
their design sensitivities (Biesiada et al. 2014; Ding et al. 2015;
Li et al. 2018; Ng et al. 2018; Mukherjee et al. 2021; Wierda
et al. 2021).
To investigate the properties of the lens from the analysis of

lensed GW signals, a lens model has to be specified that
characterizes the properties of dark galactic halos. In previous
works, axially symmetric lens models were mainly considered
for simplicity (Cao et al. 2014; Hannuksela et al. 2019; Hou
et al. 2020; Robertson et al. 2020; Abbott et al. 2021; Cheung
et al. 2021; Seo et al. 2022). However, nonaxially symmetric
lens models should be considered for more realistic galactic-
scale lensing scenarios (e.g., Kormann et al. 1994; Golse &
Kneib 2002; Tessore & Metcalf 2015).
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In this paper, we perform a Bayesian parameter estimation
and employ rejection sampling techniques to infer the proper-
ties of the dark halos of intervening galaxies using various lens
models: (1) simple lens models that have previously been used,
such as the point mass (PM) and singular isothermal sphere
(SIS) models and (2) more complicated lens models that can be
nonisothermal and have ellipticity. Furthermore, we also
calculate the lensing cross section of each density profile to
investigate which lens model is more effective in generating
strong GW lensing.

To maintain consistency with prior analyses (e.g., Abbott
et al. 2021, 2023), we assume the so-called “Planck 15”
cosmology, H0= 67.8 km s−1 Mpc−1, Ωm= 0.308, ΩK= 0,
and ΩΛ= 0.692 (Ade et al. 2016).

2. Strong Lensing Configuration

The thin lens approximation holds in astrophysical gravita-
tional lensing systems since distances between the observer and
the source and lens are very large. Thus, one can describe a
gravitational lensing system using a two-dimensional plane.
Figure 1 shows the geometry of the system in detail, where DL,
DS, and DLS are the angular diameter distances between the
observer and lens, observer and source, and source and lens,
respectively. It is convenient to express the image and source
positions in dimensionless values of
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where ξ and η are the displacements from the lens to an image
and from the line of sight to the source, respectively, and ξ0 is a
normalization constant that makes x and y dimensionless. In
this work, we set the Einstein radius (rE) as the normalization
constant if there is no specific indication otherwise. The
Einstein radius of an axially symmetric lens is defined by
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where M(rE) is the mass within the Einstein radius (Schneider
et al. 2006); see the Appendix A for the details of the Einstein
radii of various lens models.

Since we assume a dark galactic halo as our lens scale, which
has a larger Schwarzschild radius than the wavelength of the
propagating GWs from typical binary black hole (BBH)
systems detected by current ground-based interferometers, we
can apply the geometrical optics approximation to calculate the
lensed GW signal (Wang et al. 1996; Takahashi & Nakamura
2003; Dai & Venumadhav 2017). Within the geometrical optics
regime, the lensed GW signal hl and unlensed GW signal hu,
both defined in the frequency domain f, have the following
relationship:
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where θs and θl are parameters of the GW source and model-
dependent lens parameters, respectively, and M M z1l

z
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is the redshifted lens mass of the intervening halo. Fgeo is the
amplification factor, which is given by (see Takahashi &
Nakamura 2003)
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where μj is the magnification factor of the jth image, xj, and Tj
and nj are the Fermat potential and Morse index of the jth
image, respectively.
Magnification factors and Fermat potentials can have

different values for the same θl depending on what lens model
is assumed. A lens model describes how much an image is
distorted at an image position, with its deflection potential.
Thus, it is useful to show how deflection potentials determine
the two parameters above. The magnification factor and the
Fermat potential for the jth image can be written as
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where ψj is the deflection potential at the jth image and xa
indicates the a-component of xj. The fm term is the arrival time
of the unlensed signal unchanged by lensing effects.
Using Equation (5), one can also calculate the differences

between (μj, Tj) and (μk, Tk) for the jth image and kth image,
which we identify as the relative magnification factor μrel and
dimensionless time delay ΔT.
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These two quantities, which we call lensing observables, can
be obtained numerically or analytically depending on the
assumed lens model. Furthermore, an actual time delay
between the two images can be derived from Equation (7)
with a given redshifted lens mass under thin lens

Figure 1. Schematic of the gravitational lensing system. GW signals from a
BBH on the source plane go through different paths to produce multiple images
by a dark galactic halo on the lens plane. ξ is the displacement between lens
and image positions, the so-called impact parameter, and η is the source
position from the line of sight. DL and DS are the angular diameter distances
between the observer and source and the observer and lens plane, respectively,
and DLS is the angular diameter distance between the source and lens plane.

2

The Astrophysical Journal, 966:107 (13pp), 2024 May 1 Seo, Li, & Hendry



approximation (Takahashi & Nakamura 2003);
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where the Ml
z is the redshifted mass within the normalization

factor in Equation (1). Note that we do not deal with the Morse
phase because it has just three discrete values nj= 0/0.5/1
when a Type I/Type II /Type III image occurs,
respectively (Dai & Venumadhav 2017).

3. Lens Models

In this section, we explore relatively simple (axially
symmetric) and complex (nonaxially symmetric) lens models,
which are used to simulate various GW lensing systems on a
galactic scale. For some simple lens models, the lensing
observables are analytically obtained from θl. On the other
hand, it is nontrivial to calculate the lensing observables from
θl for more realistic lens models. One needs to solve the lens
equations y= xj−∇ψj to obtain the jth image positions and
deflection potential values of each image in order to calculate
the lensing observables.

3.1. Axially Symmetric Lens

We introduce three axially symmetric mass distributions as
outlined in Takahashi & Nakamura (2003). First, the PM model
is one of the simplest density profiles to describe small objects,
such as stars and dwarf star clusters, whose Einstein radii are
much larger than their physical sizes. Under the geometrical
optics approximation, lensing effects due to an isolated PM are
governed by the dimensionless source position (i.e., θl= y; see
Equation (1)), and it always generates two GW images. Note
that the PM model is unsuitable for describing galactic halos,
but we consider the PM model to show the robustness of the
inference technique presented in this paper.

Second, the SIS model is the simplest extended lens model
used to characterize the distribution of matter in a gravitational
system, such as a galaxy or a galaxy cluster. This model
assumes that the velocity dispersion of particles in the system is
constant at all radii. Like the PM model, the value of y
determines the strong lensing effects due to SIS. However, the
SIS model generates two images only when y< 1; otherwise,
image splitting does not occur. Lensing observables for the PM
and SIS models can be analytically calculated as a function
of y.

Lastly, the Navarro–Frenk–White (NFW) model is a density
profile identified in numerical N-body simulations, assuming a
ΛCDM cosmology (Navarro et al. 1997). Due to its depend-
ence on various cosmological parameters, the strong lensing
effects of the NFW model are more intricate to determine than
those of the PM and SIS models (Wright & Brainerd 2000;
Takahashi & Nakamura 2003; Oguri 2019). Nevertheless, the
dimensionless surface density (κs) includes information about
the parameters, which is written as
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where ρs and rs are the characteristic density and the scale
radius of the lens (Bartelmann 1996; Keeton 2001). Thus, we
define the lens parameters of the NFW model as θl= (y, κs).
Depending on θl, one or three images can be created with this

model. Also, unlike the PM and SIS models, the NFW model
does not have an analytical form for the lensing observables.
Therefore, one needs to numerically derive the lensing
observables using Equations (6) and (7), which requires
solving the lens equations. Details of the lensing formalism
for these three axially symmetric lens models can be found in
Appendix A.

3.2. Nonaxially Symmetric Lens

For more realistic scenarios, it is appropriate to use
nonaxially symmetric lens models with more lens parameters,
such as the minor-to-major axis ratio, q. Unlike simple lenses,
lensing observables of elliptical lens models should normally
be numerically calculated from image positions and deflection
angles. However, the deflection angle depends on the position
angle with respect to the center of the halo as well as the
displacement to the image position. Thus, solving the lens
equations for nonaxially symmetric lens models is more
demanding.
We introduce three elliptical mass distribution models

generally used in strong EM lensing analyses (e.g., Treu 2010;
Tessore & Metcalf 2015; Nightingale et al. 2019; Oguri 2019;
Shajib et al. 2021). First, the singular isothermal ellipsoid (SIE)
is the simplest elliptical lens model (Kormann et al. 1994). The
SIE model assumes that the SIS model still approximately
describes the mass distribution of the galaxy or cluster of
galaxies but with some ellipticity. Thus, the lensing effects of
the SIE model are described by two parameters, θl= (q, y).
Two or four images can be generated depending on the
combination of the two lens parameters.
A more general lens model can no longer be isothermal. The

singular power-law ellipsoidal mass distribution (SPEMD) is
one of the generally used elliptical and nonisothermal density
profiles (Barkana 1998; Tessore & Metcalf 2015), which has an
additional lens parameter γ, the slope of halo density. Hence,
the lens parameters are θl= (q, y, γ). The SPEMD model can
be reduced to an SIE when the density slope γ= 1. When
γ� 1, two or four images can be generated like for the SIE,
while three or five images can be generated when γ< 1.
Finally, we consider the elliptical Navarro–Frenk–White

(ENFW) model (Golse & Kneib 2002), which is a modification
of the standard spherical NFW profile described in Section 3.1.
Similar to the SIE and SPEMD cases, the strong lensing effects
of the ENFW model are determined by q and the lens
parameters of the NFW (θl= (q, y, κs)). GW lensing systems
described by the ENFW model can produce one, three, or five
images. The details of these three nonaxially symmetric lens
models and their lensing formalism are presented in
Appendix B.
Given the lens model and lens parameters θl, one can solve

the lens equations. For each aforementioned lens model, we
choose specific θl, corresponding to multiple solutions of the
lens equations. Subsequently, we calculate the corresponding
relative magnification factors μrel and dimensionless time
delays ΔT for each θl. These sets of parameters and lensing
observables are then organized as ordered triplets (Θ= {θl,
μrel, ΔT}) and stored in a lensing observable bank.

4. Strong Lensing Cross Section

It is informative to investigate how efficiently various lens
models create multiple GW images when the same source
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redshift (zs), lens redshift (zl), and lens mass (Ml) are given. The
strong lensing cross section (σ) can be defined as the area
where multiple images form, magnified above a certain
magnification threshold, μth (Fedeli et al. 2006; Schneider
et al. 2006; Robertson et al. 2020). For a simple pointlike lens,
a disk with a radius equal to the Einstein radius (rE) of the lens
represents the strong lensing cross section. However, the strong
lensing cross sections of the complex lens models considered in
Section 3 cannot be analytically calculated.

Since we can regard a GW source as a point source, the
strong lensing cross section is simply the area on the source
plane enclosed by the caustics of the lens, where multiple
images are created. In this work, however, we impose an
additional condition on the definition of the lensing cross
section for realistic detections, requiring that all images are
magnified, i.e., μj> 1.0, ∀ j. When a source is placed within an
area As satisfying the above conditions, the lensing cross
section can be written as

D

D
yd , 10

A
1.0

0 S

L

2

s

( )òs
x

=

where y is the dimensionless unit on the source plane (see
Equation (1)) (Fedeli et al. 2006).

We adopt the ray-shooting technique to calculate the area
As (Kayser et al. 1986; Schneider & Weiss 1986). First, we
calculate the largest caustic (cut)5 area Bs on the dimensionless
source plane, given the lens models and their θl except for y.
Note that y determines not the lens properties but the lensing
effects on propagating GWs. By using the ray-shooting
technique, the corresponding image positions and magnifica-
tion factors can be calculated for all source positions within Bs.
The ratio between the area filled with the source positions
satisfying μ(y)> 1.0 and the entire Bs will be the dimensionless
cross section of interest, As.

Next, we adopt the Einstein radius rE (for PM and SPEMD-
like models) and the scale radius rs (for ENFW models) as the
normalization constant ξ0 that converts dimensionless values
into real values. The Einstein radius of a PM lens is a function
of Einstein mass, ME, but the Einstein radii of the SIS, SIE, and
SPEMD lenses depend explicitly on the velocity dispersion, σv,
of a galaxy rather than theME of the galaxy. For this reason, we
assume a plausible galaxy that has an Einstein mass of
ME∼ 1012Me and a velocity dispersion of σv∼ 200 km s−1,
based on Zahid et al. (2016).

For ENFW models, we assume another, different galactic
halo whose mass within the scale radius is M(rs)= 1013Me.
This is because the ENFW lenses with M(rs)= 1012Me create
multiple images only vanishingly rarely due to their ineffi-
ciency at image splitting.

The strong lensing cross sections with at least two magnified
images are shown for various lens models in Figure 2(a). We
include the six lens models considered. Among these lens
models, elliptical models can have a double-image system for
any value of q, but we consider only q� 0.1 for practicality.
For the SPEMD, we input three different density slope
parameters (γ= 0.5, 1.5, and 1.99) to see how the density of
a lens affects the lensing cross section.

The SPEMD models, including SIS and SIE at a lower zl,
tend to have a higher σ1.0 value. Furthermore, σ1.0 increases
with the slope γ of the density, which means that a denser lens
model is more efficient at generating multiple signals. Note that
the function of σ1.0 of the SPEMD with γ= 1.99 is very similar
to that of PM because when γ→ 2, the SPEMD lens becomes a
point mass (Tessore & Metcalf 2015). Moreover, a SPEMD
lens with γ< 1 is more efficient in splitting and magnifying
GW signals when the lens has high ellipticity (low q). A
SPEMD lens with γ� 1 and a higher ellipticity, on the other
hand, has less efficiency in generating multiple magnified
signals.
Nonaxially symmetric lenses have multiple caustics, in

which a propagating GW signal can be split into quadruple or
more signals. In this regard, we also calculate σ1.0 for lens
systems that can create four or more lensed GW signals.
Figure 2(b) shows strong lensing cross sections σ1.0,

generating and magnifying at least four lensed GW signals.
The shapes of the plots are the same as the plots in Figure 2(a)
since the unit areas of each lens model are the same as E

2q .
However, the rate of change of σ1.0 becomes more pronounced
as the ellipticity varies. Also, σ1.0 has the maximum value at
q= 0.5, attributed to the limited region capable of producing
magnified images when q→ 0.1 and the shrinking of the
caustic area is q→ 1. Note that we exclude the SPEMD model
with γ= 1.99 and the ENFW model as their inner caustics are
too small to create four or more images in a galaxy-scale
gravitational lensing scenario.

5. Inferring the Parameters of a Galaxy Lens

We simulate nine GW lensing systems based on the lens
models described in the previous section. For simplicity, we
inject the same intrinsic unlensed signal hu (GW150914-like
event with luminosity distance dL= 3 Gpc) and redshifted lens
mass value of M M10l

z 12
= for all lensing systems except for

the NFW and ENFW lens cases. For the two lens models, the
strong lensing cross sections (σ1.0) with the above setting are
too narrow, and thus, we inject a GW150914-like event with
dL= 10 Gpc and redshifted lens mass value M M10l

z 13
= .

We use IMRPHENOMXPHM (Pratten et al. 2021) to generate
hu and set possible source-lens systems, from double-image to
quintuple-image systems, where the number of the image is
determined by the model-dependent parameters. Considering
the detectability of the LIGO-Virgo detectors (Abbott et al.
2020), we assume that all lensed GW signals (hl( f )) are
detected at network signal-to-noise ratios (S/Ns) ρnet> 8
except for the NFW and ENFW cases.6 For each system, we
choose the injected θl shown in Table 1 to generate multiple
lensed signals. The S/N ranges of lensed GW signals are
ρnet= (11, 16) for Systems 1, 2 and 4–7, and ρnet= (4, 10) for
Systems 3, 8, and 9.7

Next, we infer the relative magnification factors μrel and time
delays Δt among the lensed GW signals by performing joint
parameter estimation on pairs of the first lensed signal (hl,1) and
the jth lensed signal (hl,j); see Equation (13) of Janquart et al.
(2023a) for the joint likelihood function used in the parameter
estimation. If the system has n lensed GW signals, the relative

5 A cut arises when a lens model has a singularity at its center. When a source
is located within the cut, multiple lensed images can be created even though the
area is not enclosed by a caustic. The cut transforms into a caustic when a
finite-size core is introduced at the center of the lens.

6 Type III images of NFW and ENFW are primarily demagnified, resulting in
low S/Ns for lensed GW signals.
7 We set the S/N threshold as ρnet = 4 for the demagnified images, which are
expected to be detected through subthreshold search (Abbott et al. 2021, 2023;
Li et al. 2023).
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magnification factors between hl,1 and hl,j can be written as
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where dL,j is the apparent luminosity distance inferred from the
jth lensed signal. Also, the actual time delays can be written as

t t t j nfor 2, , , 12j c j c1 , ,1∣ ∣ ( )D = - = ¼

where tc,j is the apparent merger time inferred from the jth
lensed signal.

To conduct joint parameter estimation, we use the GOLUM
pipeline (Janquart et al. 2021, 2023a), which in turn makes use
of the Bayesian inference tools BILBY (Ashton et al. 2019;

Romero-Shaw et al. 2020) and DYNESTY (Speagle 2020) for
nested sampling. Simulated lensed GW signals are injected into
Gaussian noise characterized by the representative LIGO-Virgo
O4 power spectral density (Abbott et al. 2020). We assume
uniform prior distributions for the relative magnification factor
μrel and actual time delay Δt. For the source parameters, we
adopt the prior distributions for precessing BBHs in Romero-
Shaw et al. (2020). Priors of the main parameters used in this
work are shown in Table 2.
Figure 3 shows the posteriors of the μrel and Δt from the

lensing system assuming the SIS model (see Table 1). The
posteriors peak at the injected values with well-constrained
credible intervals. Although the peaks for the other lensing
system cases cannot be precisely at the injected values due to
the effects of noise, we confirm that the peaks of the posterior

Figure 2. Left panel: strong lensing cross section as a function of zl/zs, where at least two GW images are magnified (i.e., μ > 1.0) for the ENFW (red), SPEMD with
γ = 0.5, 1.5, 1.99 (orange, green, blue), SIE (yellow), and PM (black) lens models. Colored solid lines indicate the σ1.0 of spherical lenses (q = 1.0), and dashed lines
indicate σ1.0 of elliptical lenses with q = 0.1. Generally, it is more probable for denser lens models to create magnified images. Furthermore, a SPEMD lens closer to
the observer has a larger σ1.0, while the value of σ1.0 for an ENFW lens decreases when the lens is closer to the observer because σ1.0 depends on the critical density
Σcr. Moreover, a lens with high ellipticity is less efficient in generating magnified images when γ � 1, while a lens with γ < 1 has the contrary aspect. Right panel:
same as the left panel, but at least four lensed GW signals are magnified. Colored dotted lines indicate σ1.0 of elliptical lenses with q = 0.5. We set the maximum value
of the axis ratio as q = 0.9 because a lens with q > 0.9 has a diminutive inner caustic area. The function of σ1.0 is similar to those of the double-image cases shown in
Figure 2(a), but the value of σ1.0 changes more steeply with the ellipticity.

Table 1
Injected θl Values Used to Generate the Nine Gravitational Lensing Systems

Considered in This Work

ID Model Injected θl No. of Images

1 PM y = 0.22 Double
2 SIS y = 0.22 Double
3 NFW (y, κs) = (0.004, 0.167) Triple
4 SIE (q, y) = (0.85, 0.22) Double
5 SIE (q, y) = (0.63, 0.22) Quadruple
6 SPEMD (q, y, γ) = (0.85, 0.22, 1.5) Double
7 SPEMD (q, y, γ) = (0.58, 0.17, 0.75) Quadruple
8 ENFW (q, y, κs) = (0.6, 0.011, 0.167) Triple
9 ENFW (q, y, κs) = (0.82, 0.008, 0.167) Quintuple

Note. The parameters are randomly chosen from a pool of θl that can generate
the specified detectable multiple (double to quintuple) images; see Section 3 for
each lens model’s definition of lens parameters.

Table 2
Prior Assumptions for the Main Source Parameters, Including Component

Masses (m1, m2), Luminosity Distance (DL), and Sky Location (R.A., Decl.), as
well as Lensing Observables (μrel, Δt) Employed in This Work

Parameter Prior Range

m1, m2 Uniform [5, 100] Me

dL UniformComovingVolum [0.1, 5] Gpc or
[0.1, 10]Gpc

R.A. Uniform [0, 2π]
Decl. Isotropic L
μrel Uniform [0.1, 10]
Δt Uniform L

Note. A broader prior range for DL ([0.1, 10] Gpc) is adopted for the NFW and
ENFW lensing systems, reflecting injected DL values greater than 5 Gpc in
these systems.
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become nearer to the injected values when we use zero noise.
We will use these posteriors of μrel and Δt as constraints to
infer the θl.

Except for a few simple models like PM and SIS lenses, the
μrel and Δt do not have one-to-one relationships with θl.
Furthermore, the inferred μrel takes the form of a probability
distribution rather than a point estimate with a specific value,
which may hinder us from accurately recovering the lens
parameters. In this sense, we can use the rejection sampling
technique (MacKay 2003) to infer the θl since we can
specifically determine the value of μrel from a given θl and
have the probability distribution of μrel.

We use the lensing observable bank introduced in Section 3,
which contains ordered triplets (Θ= {θl, μrel, ΔT}), in which
the θl creates at least two lensed GW signals. In this study, we
use LENSTRONOMY (Birrer & Amara 2018) to calculate μrel
and ΔT from a given θl, applying the rejection sampling
method. Thus, each sampled μrel value is associated with a
specific set of lensing parameter values, θl. Figure 4 shows an
example case for the posterior distribution P(μrel), displaying
accepted (green) and rejected (red) points following the
application of the rejection sampling method.

Finally, the θL points from the accepted triplets (green dots)
may be used to represent the posteriors of these parameters.
Also, the associated ΔT points may be converted to the
corresponding Ml

z samples by using Equation (8).
It is worth noting that the computation time of the rejection

sampling technique is less than 1 CPU hr for a double-image
system (first and second image pair). For triple- to quintuple-
image systems, using rejection sampling would require a few
CPU hr as it involves conducting rejection sampling for the
first and jth image pair only after obtaining the result for the
first and ith pair (i< j).

6. Results

6.1. Axially Symmetric Lens Cases

To check the validity of the rejection sampling technique, we
first compare the θl posteriors inferred from rejection sampling
to analytically obtained posteriors using Equations (A2) and
(A6) for the PM and SIS models, respectively. For these two
lens models, the relative magnification factors μrel are
univariate functions of the lens parameter θl= y. Figure 5
shows that the recovered posteriors of Ml

z and y for System 1
(PM) and System 2 (SIS) using the above two methods peak at

the injected values with great accuracy, and they are almost
identical. These results demonstrate that rejection sampling can
be used to recover the lens parameters from the lensing
observables. Note, however, that this does not mean rejection
sampling can successfully recover all θl regardless of the
degeneracies between them.
Among the spherically symmetric lens models considered,

the NFW model does not have an analytic expression for the
lensing observables. Thus, we use the rejection sampling
technique for System 3 (NFW triple). After identifying the
estimated μrel posteriors with the detected triple images as a

Figure 3. The posteriors of μrel and Δt from the joint parameter estimation for
two lensed GW signals. An isolated PM with y M M, 0.22, 10l

z 12( ) ( )= is
assumed. Gold lines indicate the true values. Vertical-dashed lines mark the
upper and lower bounds of the 90% credible intervals. The lensing observables
are well constrained, and the posteriors peak at the true values (μrel ; 0.64 and
Δt ; 8645972.23 s).

Figure 4. Illustration of rejection sampling. The solid blue line is the proposal
distribution (uniform) to sample points, and the solid black line indicates the
target distribution P(μrel) equal to the posterior of obtained μrel in Figure 3. The
solid yellow line denotes a new proposal distribution made by multiplying a
constant M by the initial uniform distribution Q(μrel), which is satisfied with P
(μrel) � MQ(μrel). Based on the acceptance criterion, green and magenta points
indicate the accepted and rejected θl, respectively.

Figure 5. Posteriors of θl for Systems 1 (PM double) and 2 (SIS double) in
Table 1 inferred from the relative magnification factor μrel using rejection
sampling (blue and violet). The solid black lines indicate the injected values
and the vertical-dashed lines indicate the 90% symmetric credible intervals for
each parameter. The θl posteriors analytically obtained using Equations (A2)
and (A6) are shown with gray- and black-dashed lines, respectively. In both
cases, the posteriors of y and Mz

L are inferred using rejection sampling and
analytically are almost identical, which demonstrates the validity of the
rejection sampling technique.

6

The Astrophysical Journal, 966:107 (13pp), 2024 May 1 Seo, Li, & Hendry



target distribution, we draw μrel samples from the lensing
observable bank of the NFW model to conduct rejection
sampling.

Figure 6 shows the θl and Ml
z posteriors for the NFW case.

Even though injected values are contained within the 90%
credible intervals, all posteriors are poorly constrained. Even κs
is not converged well and does not change from the prior. This
is because many of the (y, κs) pairs in the prior pool, which can
create multiple images, have similar μrel values under galaxy-
scale lens scenarios (i.e., only very small values of y can
generate strong gravitational lensing due to low surface
density). The obtained μrel posterior is not well enough
constrained to break this degeneracy between y and κs.

Nevertheless, we can better recover the lens parameters of
NFW when y and κs have large values (i.e., as will occur in
galaxy cluster-scale lens scenarios).

6.2. Nonaxially Symmetric Lens Cases

The ellipticity of a lens makes the lens model more
complicated and degeneracies between θl stronger. Thus, the
θl and Ml

z posteriors for nonaxially symmetric lens models are
more poorly constrained compared to those of spherically
symmetric lens models.

Figure 7 shows the estimated posteriors of θl and Ml
z for

Systems 4, 6, and 8 in Table 1 where double images (SIE and
SPEMD) and triple images (ENFW) are detected. Even though,
for all three models, the true values of the parameters lie within
the 2σ credible regions of the joint 2D posteriors of the lens
parameters, the marginal 1D posterior of each parameter does
not peak at the injected value and is not well constrained. This
is because complex elliptical lenses have more lens parameters
than spherically symmetric lenses, which results in stronger

degeneracies between the parameters of θl. Therefore, the
properties of an elliptical dark galactic halo cannot be
accurately estimated when the GW lensing system, having
the halo, generates only double or triple images considering our
lens model assumptions.
When more than double images are created and detected,

however, the degeneracies between θl of elliptical lens models
can be further reduced thanks to there being more constraints.
In Figure 8, we present the posteriors of θl and Ml

z for Systems
5, 7, and 9. These systems produce quadruple or quintuple GW
images, but it is plausible that we may only observe a subset of
the complete GW image ensemble. In light of this, we present
the outcomes of two scenarios: (1) the detection of only pairs of
GW images (gray) and (2) the detection of all GW images
(colored).
Table 3 shows how much the recovery of lens parameters is

improved for nonaxially symmetric lenses when additional
constraints are available. We calculate a ratio A B

lq between
two 90% credible intervals of θl posteriors obtained from case
A and case B. In reference to Figure 8, cases A and B denote
scenarios where only two GW images are detected and all GW
images are detected, respectively. Except for the SIE case, the
90% credible interval widths of θl posteriors are narrowed
down by tens of percent.
Likewise, the posteriors obtained from more than double

images show better results regarding the degree of convergence
to the injected values. This is especially the case for SPEMD,
where all θl posteriors converge well to the injected values. For
the ENFW case, on the other hand, the degeneracy between y
and κs is significant, similar to the NFW lens case. Thus, for
nonaxially symmetric models, the posteriors of θl and Ml

z are
generally not well constrained from GW information alone.

6.3. Nonaxially Symmetric Lens + Indicative EM Observation
Cases

In this subsection, we consider how extra constraints from
EM observations can reduce the degeneracies between
parameters further, so that Ml

z can be better constrained. For

Figure 6. Corner plot showing the posteriors of the lens parameters θl = (y, κs)
and redshifted lens mass Ml

z for System 3. The solid black lines indicate the
injected values, and vertical-dashed lines mark the upper and lower bounds of
the 90% credible intervals. Each 1D posterior of y and κs is poorly constrained
because the degeneracy between the two parameters is significant. Correspond-
ingly, the Ml

z does not peak at the true value.

Table 3
Quantitative Evaluations of How Many Additional Constraints, Such as More
GW Images and Indicative EM Observations, Improve the Recovery of Lens

Parameters

Pdbl(θl) vs. Pall(θl) in Figure 8

Model q
dbl all y

dbl all
M

dbl all
log l

z
10 dbl allg

dbl all
sk

SIE 1.03 1.01 0.97 L L
SPEMD 1.55 1.33 1.22 1.11 L
ENFW 1.89 1.36 1.30 L 1.06

Pall(θl) vs. Pall+EM(θl) in Figure 9

Model y
all all EM +

M
all all EM
log l

z
10 + all all EMg

+ all all EM
sk

+

SIE 9.87 8.17 L L
SPEMD 6.94 7.90 4.21 L
ENFW 3.07 1.51 L 1.85

Note. In the top table, dbl all
lq denotes the ratios of the 90% credible interval

widths of θl posteriors obtained solely from double-GW images (Pdbl(θl)) to
those from all GW images (Pall(θl)) in Figure 8. Similarly, in the bottom table,

all all EM
lq

+ represents the ratios of the 90% credible interval widths of θl

posteriors obtained from all GW images (Pall(θl)) to those from all GW images
with additional indicative EM observations (Pall+EM(θl)) in Figure 9.
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instance, the axis ratio of the lens galaxy and EM image
positions of the lensed host galaxy can be directly estimated if
one explicitly identifies the lens galaxy. However, it is
challenging to search for the lens galaxy in the GW localization
area, which may contain numerous galaxies.

In this context, Yu et al. (2020), Hannuksela et al. (2020),
and Wempe et al. (2022) propose that one can localize the host
galaxy–galaxy lens system using LSST surveys (Abell et al.
2009) subject to several assumptions, such as the detection of
both lensed GW signals and EM signals from the host galaxy.8

Based on the magnification factors and time delays obtained
from the GW and EM observations, one can reduce the number

of lens galaxy candidates within the sky area determined by the
GW localization.
In particular, Hannuksela et al. (2020) argue that detecting

quadruple GW images can effectively narrow down the sky
area given the current LIGO-Virgo detectors. Moreover,
Figure 8 shows that the axis ratio of a lens galaxy can be
more precisely determined when four or more GW images are
detected. This GW information can be utilized to identify the
lens galaxy with a well-constrained axis ratio.
Therefore, we assume here that the axis ratios of the lens

galaxies and image positions can be confined to within an error
range of±5% and 0 1, respectively, once each lens has been
specified based on the observations of four or more GW
images. Figure 9 shows the posteriors of θl and Ml

z of
nonsymmetric lens galaxies in each GW lensing system (see

Figure 7. Corner plots showing the posteriors of θl and Ml
z for Systems 4, 6, and 8. Solid black lines indicate the injected values, and the vertical-dashed lines mark

the upper and lower bounds of the 90% credible intervals. Even though all injections are included within the 90% credible intervals, the θl posteriors do not converge
well. Meanwhile, the Ml

z posteriors are not highly biased from the injection because the mass strongly depends on the time delays between images, which can be
constrained much better than relative magnification factors. Overall, there are limitations on accurately estimating dark halo properties with only double- or triple-
image systems.

Figure 8. Same configurations as in Figure 7, but showing the posteriors of θl and Ml
z for Systems 5, 7, and 9. Histograms filled with color represent the posteriors

obtained from all sets of quadruple (or quintuple) GW images, whereas histograms depicted as solid gray lines illustrate the posteriors obtained exclusively from
double images, which constitute a subset of the entire image collection. Since more constraints (i.e., more μrel and Δt) are provided, the inferred posteriors for θl are
better constrained than those in the case where a double image is detected. Specifically, for all models, the widths of the posteriors for q are narrowed down, which can
be helpful in localizing the lens galaxy in the inferred sky area.

8 Generally, the host galaxy of a GW source can also be lensed by intervening
dark galactic halos.
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Table 1) derived under the above assumption. Thanks to the
reduced degeneracies between θl, all their posteriors are much
better constrained and peak at the injected values. The
corresponding all all EM

lq
+ values are shown in Table 3. These

values are defined as the ratio of two 90% credible intervals of
θl posteriors obtained from the scenarios where all GW images
are detected and where all GW images, along with indicative
EM images, are detected. Above all, the injected Ml

z are
successfully recovered. One can calculate the lens massMl with
the inferred redshifted lens mass Ml

z and estimated redshift zl
from the corresponding EM observation.

7. Discussion

Dark galactic halos are key to understanding galaxy
evolution, formation of large-scale structures, and constraining
cosmological parameters. Precisely measuring their masses and
structures is essential. Gravitational lensing of GWs can
significantly contribute to GW astronomy as increasing
numbers of lensed GWs are observed in the near future by
the next generations of detectors.

One can complement the 3D map of the mass distribution
from lensed GW signals by constraining the halo mass
function. It is important to note that, for the NFW and ENFW
models, we can constrain both the lens mass Ml

z and the
dimensionless surface density κs, which are directly related to
cosmological parameters. The relationship between the two
parameters can also be investigated to constrain the concentra-
tion (c) and critical density (ρc).

In this work, we have proposed how to estimate lens and
source parameters from the lensed GW signals using various
lens models. We assume that all lensed GW signals are
detected and the correct lens model is used to analyze the
signals. Our results demonstrate that we can retrieve lens
parameters from the information contained in the lensed GW
signals, even where these parameters do not have trivial
relationships with each other.

Furthermore, we can make use of EM observations, which
become viable when quadruple or more GW image systems are
detected, to confine the axis ratios of the lenses and image
positions, thereby enhancing the accuracy of their mass

measurements. Although only a BBH source is discussed in
this work, we can also consider binary neutron star and neutron
star–black hole signals, where we could, in principle, observe
both GW and EM lensing simultaneously, which facilitates
localizing the host galaxy (Ma et al. 2023; Smith et al. 2023). In
addition, while we used geometrical information from the EM
observations, it is noteworthy that one can estimate the source
redshift from lensed EM images using a spectroscopic method
in order to calculate true luminosity distance to the source and
individual magnification factors, providing additional con-
straints to the lens parameters. This is particularly possible as
redshifts from lensed images are almost identical to the original
source redshift under galaxy-scale strong lensing (Wang et al.
2022).
However, we recognize that the situation could be more

complicated in real GW detection scenarios. First, we may
observe only a subset of all the lensed GW signals. For
example, only two lensed signals might be observed when an
SIE galaxy generates four lensed signals from a given GW
source. Assuming that the GW detectors keep operating and
our lens model is accurate, there are two scenarios: (i) The two
nondetected signals have not yet arrived because of their longer
time delays. ii) The two nondetected signals have relatively a
lower S/N than the two detected signals. Therefore, one should
perform rejection sampling assuming both double and quad-
ruple-image triplets to investigate which scenario is more
plausible and which number of images is preferred.
Next, we cannot instantly determine the lens density profile

when we detect a set of lensed GW signals from a given GW
source. However, by reversely incorporating the rejection
sampling technique into joint parameter estimation steps, one
can conduct hypothesis testing to determine which model is
more preferred to describe the lensed GW signals. This process
will also be helpful in the search for strongly lensed GW
signals because Çalışkan et al. (2023a) and Janquart et al.
(2023b) argue that lens model-dependent joint parameter
estimations are necessary to overcome false alarms and
improve the search.
Finally, we note that the substructure within a lens galaxy,

such as star clusters and dark matter subhalos, could induce

Figure 9. Same configurations as in Figure 8, but with the assumption that quadruple (quintuple) image systems are detected with the indicative EM observations, and
thereby, axis ratios and image positions are confined with ±5% and 0 1 error ranges. For easier comparison to the results without constraints from indicative EM
observations, we plot the posteriors in Figure 8 with solid gray lines. The inferred posteriors of θl and Ml

z for all nonaxially symmetric lens models peak around the
injected values (solid black lines) within 90% credible intervals. Notably, the recovery of Ml

z shows improvement, enabling more precise calculations of Ml with the
estimated zl of the host galaxy.
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single or multiple microlensing signals to occur in a strongly
lensed GW event (Diego et al. 2019; Mishra et al. 2021; Seo
et al. 2022; Yeung et al. 2023). As a result, additional lens
parameters would be required to describe the lensed GW
signals, also necessitating the application of wave optics to
fully understand the entire lensing effects.9 Since the rejection
sampling technique is highly dependent on the magnification
factors and time delays, ignoring these additional microlensing
effects could result in an incorrect estimation of the lens
parameters. Thus, the development of parameter estimation
techniques that incorporate macrolens-microlens lensing sys-
tems is necessary. In future work, we will expand our study to
address the above problems.
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Appendix A
Lensing Formalism for Axially Symmetric Lens Models

A.1. PM

Following the strong lensing configuration presented in
Section 2, the image and source positions for a PM lens are
normalized by the lens Einstein radius, given in Equation (2),
and the dimensionless lens equations for the PM model are
given by

y x x
x x

x
x

ln
1

. A1

( )
( )

( )

y= - 
= - 

= -

The number of solutions for Equation (A1) is always two,
which means that two GW images are always created by a PM
lens independent of the dimensionless source position y (see
Figure 10). The magnification factors and Fermat potentials of
the two GW images can be analytically calculated by using
Equation (5). The caustic, where the magnification diverges, of
a GW lensing system with a PM lens is a point y= (0, 0). Also,
the lensing observables of the PM model, which can be
obtained using Equations (6) and (7), are expressed analytically

as follows:
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A.2. SIS Model

The density profile of the SIS model is given by

r
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2
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where σv is the velocity dispersion of the particles. Typically,
the Einstein radius of the SIS model is a function of σv,
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which can be calculated using stellar dynamics, while the
Einstein radius in Equation (2) was specified by a given
Einstein mass. These two definitions of the Einstein radius are
basically the same in a GW lensing system. To simulate the
gravitational lensing system with the SIS model, we adopt
Equation (2) as the normalization constant, considering that
lensing observables, namely, the time delays between multiple
GW images (Δt), depend on Einstein mass.
Like the PM model, the dimensionless lens equations for the

SIS model have an analytical form of

y x x
x x

x
x
x

. A5
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∣ ∣
( )
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= - 
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Equation (A5) has two solutions if |y|< 1, while it has a unique
solution if |y|� 1 (see Figure 10). In the case of |y|< 1, the
relative magnification factor and the dimensionless time delay
between two images are written as

y

y
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A.3. NFW Profile

The density profile of the NFW model is described by
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where rs is the scale radius and ρs is the characteristic density of
the dark halo. Since the total mass of the NFW halo is
divergent, we adopt the virial radius of the halo rvir as the
extremity of the halo. With the rvir and the concentration
defined as cvir≡ rvir/rs, the characteristic density is expressed
by

M
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9 When contemplating a space-based interferometer, which may enable us to
observe significantly higher S/N events, the enhanced degeneracies among the
lens parameters can, in principle, be resolved within the wave optics regime
(Tambalo et al. 2023; Çalışkan et al. 2023b; Çalışkan et al. 2023c).
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where M is the total mass of the halo enclosed by rvir.
The dimensionless surface density κs in Equation (9) can be

calculated with given rs and ρs, which describes the lensing
effects due to the NFW profile. By adopting the rs as the
normalization constant, the deflection angle α=∇ψ of the
NFW model is given by

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

A9

x
x

x

x

x

x
x

x

x

x

x
x

x

4

ln
2

2

1
arctan

1

1
1

ln
2

2

1
arctanh

1

1
1

ln
1

2
1 1

,s
NFW

2

2

( )

( )

( )

( )

( )

a
k

= ´

+
-

-
+

>

+
-

-
+

<

+ =

where the image position is x= |ξ|/rs.
Unlike the above simple lenses, the NFW model does not

have an analytic form for the lensing observables. Therefore,
one needs to numerically derive the lensing observables using
Equations (6) and (7), i.e., using the deflection angle in
Equation (A9) to solve the lens equation. Figure 10 shows the
critical liens and caustics of an NFW lens. Similar to the SIS
model, the lens equations for the NFW model have three
solutions when |y|< ycr, while a single solution is obtained for
|y|> ycr, where y= ycr indicates the radial caustic of the lens.

Appendix B
Lensing Formalism for a Complex Lens Model

B.1. SIE

Introducing ellipticity to the SIS model, the density profile of
the SIE model is given by

G q
,
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where (ξ1, ξ2) is a position on the lens plane and q is the axis
ratio of the lens. By adopting the same Einstein radius used for
the SIS model, the dimensionless deflection angle can be
derived from Equation (B1; see Kormann et al. 1994 for the

detailed derivation),
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where x1 and x2 are the x- and y-components of the image
position.
In the same manner as for the NFW model case, one needs to

solve the lens equation using the deflection angle in
Equation (B2) to numerically obtain lensing observables for
the SIE model. Axial symmetry is broken for the SIE model,
resulting in the transformation of the point (tangential) caustic
at y= (0, 0) of the SIS lens into a curved region with a finite
area. Figure 11 illustrates the critical line, cut, and caustic of a
SIE. When a source is located within a cut, two images form;
otherwise, a single image forms. The cut encloses the caustic in
this case, resulting in the creation of two additional images
when a source is located within the caustic.

B.2. SPEMD

The SIE model can be further generalized by introducing a
power-law form for its mass profile. As mentioned in
Section 3.2, we adopt the SPEMD model, and its dimensionless
convergence profile is written as
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where γ is the slope of the halo density. Note that the Einstein
radius of the SIS rE,SIS is adopted as the normalization constant.
Even though lensing effects due to the SPEMD must be

calculated using numerical methods, Tessore & Metcalf (2015)
derived a pseudo-analytic form of the deflection angle of
SPEMD with a complex formalism, namely, α= α1+ iα2,
where the real and imaginary parts indicate the first and second
components of the deflection angle, respectively (Bourassa
et al. 1973; Bourassa & Kantowski 1975). Assuming that

Figure 10. Critical lines (solid black lines) and caustics (solid gray lines) of the PM, SIS, and NFW lenses specified in Table 1 in the units of normalized image and
source positions. Stars and dots indicate the sources and images, respectively, and in each case, the set of images and the corresponding source are distinguished by
color. The numbers next to the images indicate the sequence in which the images arrive. The PM lens always creates two images regardless of the source position,
while the SIS lens produces two images only if y < 1. The NFW lens generates three images when a source is located within a caustic. Note that the PM and SIS
models have one critical line each because they do not have radial caustics.
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ix x1 2a a a= + , one can derive the deflection angle at the
image position (x1, x2) from Equation (B3)—see Section 2 in
Tessore & Metcalf (2015), which is given by
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where x qxarctan 2 1( )j = is the elliptical angle, and 2F1 is the
Gaussian hypergeometric function. Equation (B4) can be used
to solve the lens equations and to calculate the lensing
observables.

When γ� 1, the SPEMD lens has a cut and a tangential
caustic similar to the SIE lens. Thus, double and quadruple
images can be generated. On the other hand, the cut disappears,
and a radial caustic forms when γ< 1 because the singularity at
the lens center vanishes, and the lens produces triple or
quintuple images. Figure 11 shows how many images are
formed depending on the source position for the SPEMD cases.

B.3. ENFW Profile

Similar to the SIE case, NFW can be modified to ENFW by
incorporating ellipticity. We follow Golse & Kneib (2002) by
introducing an elliptical coordinate system to compute the

deflection angles of elliptical lens models. We use
x x x a x a x1

2
2
2

1 1
2

2 2
2

    = + = + to express the deflection
angle of ENFW as follows:

x x x a

x a

, cos

sin , B5
ENFW 1 2 NFW 1

NFW 2

( ) ( )
( ) ( )

  

  

a a f
a f

=
+

where x xarctan 2 1( )  f = is the elliptical angle, similar to j
in Equation (B4). For consistency with the other elliptical lens
models above, we define a1ò= q and a2ò= 1/q.
Analogous to the SPEMD-like lens model, the normalization

constant for the ENFW model is the same as that of the NFW
model. Also, the pointlike tangential caustic transforms into a
curved region with cusps due to ellipticity. Depending on
whether or not the source is located within caustics, single,
triple, or quintuple images can be generated. Figure 11 shows
an example of how a source splits into multiple images using
an ENFW lens.
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