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A B S T R A C T   

Our knowledge of the organisation of the human brain at the population-level is yet to translate into power to 
predict functional differences at the individual-level, limiting clinical applications and casting doubt on the 
generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of 
individuating biological patterns within the brain, or from limited power to access them with the models and 
compute at our disposal. 

Here we comprehensively investigate the resolvability of such patterns with data and compute at unprece-
dented scale. Across 23 810 unique participants from UK Biobank, we systematically evaluate the predictability 
of 25 individual biological characteristics, from all available combinations of structural and functional neuro-
imaging data. Over 4526 GPU*hours of computation, we train, optimize, and evaluate out-of-sample 700 indi-
vidual predictive models, including fully-connected feed-forward neural networks of demographic, 
psychological, serological, chronic disease, and functional connectivity characteristics, and both uni- and multi- 
modal 3D convolutional neural network models of macro- and micro-structural brain imaging. 

We find a marked discrepancy between the high predictability of sex (balanced accuracy 99.7%), age (mean 
absolute error 2.048 years, R2 0.859), and weight (mean absolute error 2.609Kg, R2 0.625), for which we set new 
state-of-the-art performance, and the surprisingly low predictability of other characteristics. Neither structural 
nor functional imaging predicted an individual’s psychology better than the coincidence of common chronic 
disease (p < 0.05). Serology predicted chronic disease (p < 0.05) and was best predicted by it (p < 0.001), 
followed by structural neuroimaging (p < 0.05). 

Our findings suggest either more informative imaging or more powerful models will be needed to decipher 
individual level characteristics from the human brain. We make our models and code openly available.   

1. Introduction 

That the brain exhibits a finely wrought functional-anatomical 
organisation is no longer in doubt. Macro- and micro-structural fea-
tures, task-specific and resting state neural activity, focal disruptive and 
lesion-related neural dependence, all show richly structured, replicable 
variation across the population (Littlejohns et al., 2020; Bethlehem 
et al., 2022; Elliott et al., 2018; Wang et al., 2022; Bazinet et al., 2023; 
Hansen et al., 2022; Suárez et al., 2020; Honey et al., 2009; Fischl et al., 
2008; Thomas Yeo, 2011; Hansen et al., 2021). But whether these now 
familiar patterns can explain individual-level differences remains an open 

question (Marek et al., 2022; Finn et al., 2015; Bzdok et al., 2020; Wu 
et al., 2023). Its answer is crucially important for two reasons: first, 
because the clinical applications of our knowledge of the brain are 
necessarily addressed not to populations but to individual patients, and 
second, because the fewer the individuals to which any model gener-
alises, the weaker the grounds it provides for mechanistic inference, no 
matter how well supported its parameters. It is also a far harder question 
to address, for individual-level models must inevitably capture the many 
complex interactions between multiple features on which individual 
functions may jointly depend. Model architectures of the requisite ex-
pressivity (LeCun et al., 2015; Goodfellow et al., 2017; Richards et al., 
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2019)—whose least upper bound is unknown—plausibly require data of 
far greater scale and inclusivity than is usual in the field (Szucs and 
Ioannidis, 2020), and computational resources rare in neuroscience. 

This places us in a Catch 22. Failure to find individually discrimi-
nating patterns may be a consequence not of their absence, but of in-
adequacies of the data and the computational regime (Marek et al., 
2022; Schulz et al., 2020). Yet calibrating the regime to the demands of 
the brain’s complexity cannot be done with small samples, so dis-
tinguishing between the two possibilities is impossible without the 
resource the distinction is needed to justify in the first place. 

How do we break out of this? Models of the necessary complexity 
here can always be improved upon, so no limit on theoretically 
achievable fidelity can be definitively set. But we can conduct a 
comparative analysis of a set of biological characteristics, at the current 
practical limit of model expressivity and the compute it requires. If such a 
state-of-the-art analysis reveals a marked contrast of pre-
dictability—very high for some characteristics, very low for oth-
ers—then the conclusion that the unpredictable characteristics are 
practically inaccessible with current data and models is corroborated, 
and a wholesale change in our approach—data, models, and 
compute—is motivated (Fig. 1). If performance is uniformly poor, then 
our test may have been inadequate; if it is uniformly excellent, then no 
change to current practice is indicated. 

Here we conduct such an analysis in a sample of 23 810 unique 
participants from UK Biobank (Littlejohns et al., 2020; Alfaro-Almagro 
et al., 2018), systematically evaluating the predictability of a wide set of 
individual characteristics from all possible combinations of available 
neuroimaging data, spanning structural and functional domains. We 
build and evaluate a suite of 700 discriminative models of different 
combinations of brain imaging—uni- and multi-modal, macro- and 
micro-structural, and resting state functional—with biological charac-
teristics ranging across psychology, serology, and disease comorbidity. 
Over 4526 GPU*hours of computation, including extensive 
hyper-parameter optimisation, we comprehensively evaluate the 
individual-level predictability of common biological and pathological 
characteristics from current brain imaging in this general population 
cohort. Our analysis sets a new state-of-the-art benchmark for age 
regression and sex classification (for which we make all model weights 
open source), demonstrating the felicity of our modelling approach, and 
reveals a marked heterogeneity of individual predictability that argues 
for a radical change in the current brain modelling regime. 

2. Materials and methods 

2.1. Data 

Data was retrieved from the UK Biobank repository (https://www. 
ukbiobank.ac.uk) (Littlejohns et al., 2020; Alfaro-Almagro et al., 2018; 
Sudlow et al., 2015). From here, we retrieved an unselected fully in-
clusive representation of the cohort, a sample of 502 505 individuals 

with 3581 individual variables detailing them. Data missingness of the 
parameters modelled never exceeded 20% for any variable in our study. 
We imputed missing variables from this full set using multivariate 
iterative imputation (Pedregosa et al., 2011), with hyperparameters of 
10,000 maximum iterations, a default stopping condition tolerance of 
0.001 and an initial strategy of median imputation. 

We selected 31 participant variables as predictive modelling targets 
that engendered a range of domains of individuality. We chose this 
number as a reasonable balance between high dimensionality of indi-
viduating factors, and the volume of models required to be trained for 
each individual proposed target and anticipating a training time of 
several months even on cutting-edge computational hardware. We 
applied an exclusion criterion after variable selection, where if a feature 
was categorical/binary in nature, it was excluded if an imbalance be-
tween majority and minority class were 10:1 or greater. The rationale 
was to minimize the impact of imbalance on our evaluations of pre-
dictability. This led to 3 variables being removed (namely pathological 
classes of previous stroke, myocardial infarction, and the presence of 
type 2 diabetes), leaving 28 variables for possible targets. 

Next, we computed the pairwise Maximal Information Coefficient 
(Reshef et al., 2011) between all 28 targets. The purpose of this was to 
identify features that were highly collinear to one another, limiting the 
interpretability of their individual prediction where they are jointly 
modelled. This led to the removal of 3 further variables, namely 
neuroticism (closely related to several other psychological factors, 
haematocrit (closely related to haemoglobin concentration), and body 
mass index (closely related to weight). In total, this process yielded 25 
unique and minimally inter-related target features (Fig. 2, Supplemen-
tary Figure 1, Supplementary Table 1). The choice to not select further 
variables was entirely driven by available computing resource and the 
substantial GPU-hours required for the large number of possible models 
with different input features to predict each target. 

We then organised these 25 targets into their respective domains, as 
follows: i) Constitutional, comprising sex, age, weight and handedness; 
ii) Psychology, comprising feelings of guilt, loneliness, worry, feeling 
tense, anxious, nervous, fed-up, sensitive, irritable, miserable, with 
mood-swings, and participant reaction time (ms); iii) Disease, 
comprising body fat (obesity), hypertension, asthma, atopy, smoking 
(addiction); and iv) Serological, comprising concentrations of haemo-
globin (g/dl), HbA1c (mmol/mol), HDL (mmol/L) and LDL (mmol/L) 
(Fig. 2, Supplementary Figure 1, Supplementary Table 1). 

2.2. Participant selection 

Our next task was to delineate the participants who had undergone 
comprehensive neuroimaging investigations inclusive of T1-weighted 
(T1), fluid-attenuated and inversion recovery (FLAIR), diffusion- 
weighted imaging (DWI), and functional magnetic resonance imaging 
(fMRI) sequences. Brain MRI data was available in our server for the 
following: FLAIR (n = 39 276), T1 (n = 34 041), DWI (n = 38 909), and 

Fig. 1. A 2 × 2 factorial relation between the maximum predictability of a set of characteristics and its variation across the set. A failure to achieve high fidelity for 
any characteristic suggests a general inadequacy of the modelling framework that casts doubt on the quality of the test. Achieving excellent fidelity across all 
characteristics suggests current approaches are satisfactory. Achieving high fidelity for some features but not for others, suggests a change in the modelling regime is 
indicated: any or all of data, model, and compute. 
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Fig. 2. Approach. A) Data selection and partitioning. B) Mean T1-weighted, FLAIR, DWI images, and rsfMRI connectivity matrix across the full cohort of 23 810 
participants. C) Layered, nested, generative stochastic block model of modelling targets, with edges depicting the strength of interconnection by mutual information 
(MI). Node size is proportional to eigenvector centrality, a measure of node ‘influence’ across its network. D) Algorithmic approach for exploring the model target- 
feature space to distinguish targets that can be reliably predicted from those that cannot, across all possible data inputs. Shown here is also a schematic of the possible 
data to train with, ranging from non-imaging data across the constitutional (C) – orange, disease (D) – blue, psychology (P) – green, and serology (S) – pink feature 
domains; and T1/FLAIR volumetric structural imaging; DWI volumetric imaging; and rsfMRI connectivity. These data are passed to individual trainable model blocks: 
a fully-connected feed-forward network (FNN) for both non-imaging data, and rsfMRI connectivity, and a 3D convolutional neural network (CNN) for T1/FLAIR and/ 
or DWI. Model block dense layers are then concatenated and passed to a final FNN for output prediction. 

J.K. Ruffle et al.                                                                                                                                                                                                                                 
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fMRI (n = 31 748). For participants with multiple imaging attendances, 
we utilised only the first MRI study to prevent an information leak. We 
removed 8 participants with artefact degraded MRI sequences and 
subsampled the cohort to include those with all four imaging dimensions 
of MRI data (Fig. 2). This yielded a suitable sample of 23 810 unique 
participants (11 141 male, 12 669 female, mean age ± standard devia-
tion (SD) 54.775 ± 7.44 years). A breakdown of this data is provided as 
Table 1. 

Pre-processed brain images were used from the pipeline as curated 
by the brain imaging leads to the UK Biobank, as described elsewhere 
(Alfaro-Almagro et al., 2018). All data were held in compressed NIFTI 
format. Formulations of these imaging sequences included the original 
raw data and imaging registered to Montreal Neurological Institute 
(MNI) template space. This pipeline relied on the validated toolkit 
developed by the FMRIB Oxford team and the FMRIB software library 
(FSL) (Smith et al., 2004). This included brain extraction (Smith, 2002), 
and image registration (Jenkinson et al., 2002) to the MNI152 nonlinear 
sixth generation standard space T1 brain template (Grabner et al., 
2006). We utilised the Biobank-release pre-processed 3-dimensional 
volumetric T1-weighted and FLAIR structural acquisitions, the tract 
based spatial statistics (TBSS) pre-processed fractional anisotropy (FA) 
maps, and the pre-processed 4-dimensional (4D) volumetric blood ox-
ygen level dependent (BOLD) fMRI acquisition (Alfaro-Almagro et al., 
2018; Smith et al., 2006). From the pre-processed 4D time-series fMRI, 
we derived z-scored standardized functional connectivity matrices 
(Abraham et al., 2014) in accordance with the Glasser cortical parcel-
lation scheme, comprising 360 regions of interest (180 per hemisphere) 
(M.F. Glasser et al., 2016). With pairwise connectivity this yields 64 620 
unique edges. We did not use thresholding on the edges, for the down-
stream deep learning architectures would undertake feature selection 
intrinsically. 

The rationale to reduce dimensionality of 4D time-series fMRI data to 
a connectome representation was twofold: firstly, since connectivity 
analyses now form a mainstay of neuroimaging analysis in this scientific 
domain (Bullmore and Sporns, 2009; Zalesky et al., 2010; Ruffle et al., 
2021); and secondly, to reduce computational demand that would 
otherwise be infeasibly large with direct modelling of the raw fMRI 
time-series in what would otherwise demand a 4D convolutional neural 
network, infeasible for this study in scale of sample size, algorithm (GPU 
size), and the number of models to train. We deliberately chose not to 
use the mean BOLD 3D image across the 4D timeseries (using instead the 
aforementioned connectivity approach), as the single mean 3D image 
would not capture variances in haemodynamic response, and therefore 
was felt likely to be reductive (Logothetis et al., 2001). Moreover, it 
seemed prudent to use data formulations like that which is used across 
the bulk of neuroimaging research, which could form helpful bench-
marks in model fidelity. Similarly, we deliberately chose not to pass 
other measures of structural connectivity, such as gray matter similarity 
(Raamana et al., 2015) or tractography (Ruffle et al., 2021; Thiebaut de 
Schotten et al., 2020; M.F. Glasser et al., 2016), as it was felt likely these 
data would at least in part be leveraged from the 3D T1/FLAIR and DWI 
images, respectively. 

2.3. Sample partitioning 

We partitioned the suitable cohort of 23 810 unique participants into 
training, evaluation and testing sets, using 80% of samples for training 
(n = 19 048), 10% for model validation (n = 2381) and reserving the 
remaining 10% (n = 2381) for model testing on completely unseen data 
(Fig. 2). This data partition was performed prior to any modelling, with 
the precise partition maintained for every experiment undertaken to 
ensure their comparability. 

We statistically compared all modelling targets across the training, 
validation, and testing partitions. For continuous targets, these were 
compared with one-way analysis of variance (ANOVA), and for cate-
gorical targets, Chi-squared. P values were corrected for multiple 

Table 1 
Cohort statistics across all modelled targets within training, validation, and 
testing data partitions. The domain of each target is demarcated by the brack-
eted letter: C, constitutional; P, psychology; D, disease; S, serology. Categorical 
features are shown with the number of entries to each category, whilst contin-
uous are shown with mean and 95% confidence interval. Statistical testing 
across training, validation, and testing sets shows there are no significant cohort 
differences between each partition. All p values are False-Discovery-Rate 
corrected.  

Target 
(Domain) 

Training 
(n = 19 
048) 

Validation 
(n = 2381) 

Testing (n 
= 2381) 

FDR- 
P 
value 

Statistical 
test 

Sex (C) Female (n 
= 10,163), 
Male (n =
8885) 

Female (n =
1267), Male 
(n = 1114) 

Female (n 
= 1239), 
Male (n =
1142) 

0.64 Chi- 
square 

Age (C) 54.74 
(54.64 - 
54.85) 

54.59 
(54.29 - 
54.89) 

55.01 
(54.71 - 
55.3) 

0.45 ANOVA 

Weight (C) 76.5 (76.3 
- 76.71) 

76.45 
(75.86 - 
77.03) 

77.22 
(76.62 - 
77.81) 

0.35 ANOVA 

Handedness 
(C) 

Right (n =
16,983), 
Left (n =
2065) 

Right (n =
2101), Left 
(n = 280) 

Right (n 
= 2116), 
Left (n =
265) 

0.57 Chi- 
square 

Mood Swings 
(P) 

No (n =
11,252), 
Yes (n =
7796) 

No (n =
1415), Yes 
(n = 966) 

No (n =
1370), 
Yes (n =
1011) 

0.55 Chi- 
square 

Miserableness 
(P) 

No (n =
11,306), 
Yes (n =
7742) 

No (n =
1415), Yes 
(n = 966) 

No (n =
1354), 
Yes (n =
1027) 

0.35 Chi- 
square 

Irritability (P) No (n =
13,804), 
Yes (n =
5244) 

No (n =
1760), Yes 
(n = 621) 

No (n =
1681), 
Yes (n =
700) 

0.34 Chi- 
square 

Sensitivity (P) No (n =
8998), Yes 
(n =
10,050) 

No (n =
1155), Yes 
(n = 1226) 

No (n =
1094), 
Yes (n =
1287) 

0.48 Chi- 
square 

Fed Up (P) No (n =
12,287), 
Yes (n =
6761) 

No (n =
1504), Yes 
(n = 877) 

No (n =
1479), 
Yes (n =
902) 

0.34 Chi- 
square 

Nervous (P) No (n =
15,288), 
Yes (n =
3760) 

No (n =
1917), Yes 
(n = 464) 

No (n =
1913), 
Yes (n =
468) 

0.99 Chi- 
square 

Anxious (P) No (n =
8953), Yes 
(n =
10,095) 

No (n =
1116), Yes 
(n = 1265) 

No (n =
1120), 
Yes (n =
1261) 

0.99 Chi- 
square 

Tense (P) No (n =
16,320), 
Yes (n =
2728) 

No (n =
2013), Yes 
(n = 368) 

No (n =
2022), 
Yes (n =
359) 

0.48 Chi- 
square 

Worry (P) No (n =
9860), Yes 
(n = 9188) 

No (n =
1225), Yes 
(n = 1156) 

No (n =
1207), 
Yes (n =
1174) 

0.76 Chi- 
square 

Lonely (P) No (n =
16,245), 
Yes (n =
2803) 

No (n =
2033), Yes 
(n = 348) 

No (n =
2027), 
Yes (n =
354) 

0.99 Chi- 
square 

Guilty (P) No (n =
13,820), 
Yes (n =
5228) 

No (n =
1701), Yes 
(n = 680) 

No (n =
1714), 
Yes (n =
667) 

0.64 Chi- 
square 

Reaction Time 
(ms) (P) 

537.17 
(535.78 - 
538.57) 

534.12 
(530.34 - 
537.91) 

536.45 
(532.54 - 
540.35) 

0.56 ANOVA 

Smoking (D) No (n =
11,670), 
Yes (n =
7378) 

No (n =
1482), Yes 
(n = 899) 

No (n =
1456), 
Yes (n =
925) 

0.76 Chi- 
square 

(continued on next page) 
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comparisons by False Discovery Rate using the Benjamini-Hochberg 
method (Table 1) (Benjamini and Yekutieli, 2005). 

2.4. Bayesian graph representations of interactions amongst non-imaging 
features 

To investigate the pairwise relations between the 25 variables we 
employed graph analysis of the training sample non-imaging data. Given 
the variety of variable types—continuous or categorical—we used 
mutual information as the primary index of similarity. This was con-
structed into the format of an undirected graph, wherein nodes were the 
targets of study, and the edges were mutual information between pair-
wise features – creating a graph of 25 nodes and 300 edges. The 
weighted eigenvector centrality of nodes was also calculated. From 
these data, we fitted a layered nested stochastic block model, a gener-
ative model of the community structure of graphs (Peixoto, 2015; 
Cipolotti et al., 2022), passing the association direction as a layer 
property. We further equilibrate the stochastic block model fit with 
Markov-Chain Monte Carlo (MCMC) simulated annealing to optimise 
the partition in accordance with minimizing the description length en-
tropy criterion, as detailed elsewhere (T.P. Peixoto, 2014; Peixoto, 2012; 
J.K. Ruffle et al., 2023) (Fig. 2). 

3. Approach 

3.1. Multi-modal modelling of volume brain imaging data 

We modelled T1 and FLAIR sequences for macrostructure, DWI FA 
for microstructure, and functional connectivity matrices derived from 
participant BOLD timeseries for resting state function. The non-target 
(for each experiment) non-imaging data were organised across the do-
mains of constitutional, psychology, serology, and disease. It is over 
these seven (three imaging, four non-imaging data) domains that we 
could evaluate multimodal performance. 

3.2. Combinatorial analysis of the imaging and target feature space 

Having identified a set of unique targets and predictors from a large 

population, we set out to perform a systematic combinatorial analysis to 
determine what targets could—and just as importantly could not—be 
predicted by machine models, from predictors taken alone or in 
combination. 

First, we constructed models to predict targets within the constitu-
tional domain, i.e., participant sex, age, handedness, and weight. We 
examined all combinations of the imaging modalities for this case out of 
i) T1 + FLAIR, ii) DWI, iii) rsfMRI connectivity, and all combinations of 
the former, i.e., the largest model feature set would therefore be T1 +
FLAIR + DWI + rsfMRI connectivity. This yielded 7 different models to 
fit for each of the 4 constitutional targets. These models would also serve 
as a benchmark to quantify the felicity of architectural choices in com-
parison with the extant literature. 

We applied a similar approach to the targets across the psychology, 
serology, and disease domains, fitting models with the same imaging 
combinations. Constitutional data is typically collected as a standard 
part of a research experiment (including in neuroimaging), and used for 
either predictive modelling, nuisance covariates, or even as the variable 
of interest. To that end, we decided the available inclusion of these 
constitutional features to all other models of these non-constitutional 
targets was also reasonable. Similarly, we quantified the benefit of 
providing further non-imaging data from domains different to the cur-
rent target, which further supplemented the number of possible imaging 
and non-imaging input feature sets for a given target significantly (i.e., 
32 unique combinations for each target). 

Overall, this process yielded 28 unique models to be trained across 
the constitutional targets (7 combinations * 4 targets = 28 models), and 
672 unique models across the psychology, serology, and disease targets 
(32 combinations * 21 targets = 672 models). This yielded a total of 700 
models to be trained in this experimental design. 

4. Algorithm 

4.1. A role for complex models 

A typical volume brain image is a 182×218×182 matrix of voxels: 
more than 7 million variables. This is for a single – unimodal - imaging 
sequence. Our task is to capture complex biological and pathological 
traits about individuals from high-dimensional data, a task necessarily 
best solved by models of sufficient complexity to capture this richness. 
3D convolutional neural networks (CNNs) offer a potential solution to 
this problem and have become state-of-the-art for modelling brain im-
aging data across numerous tasks (Bakas et al., 2018; Isensee et al., 
2021; Jonsson et al., 2019; J.K. Ruffle et al., 2023). 

4.2. Remediating target class imbalances 

Class imbalance was handled by randomly sub-sampling the majority 
class, performed at the beginning of each epoch. No under- or over- 
sampling was applied to the validation of test partitions, but perfor-
mance metrics were always balanced to accommodate class imbalances. 

4.3. Data pre-processing and augmentation 

For each model target, continuous variables were clamped between 
the 0.5th and 99.5th percentile, z-scored, and normalized to the range 
− 1 to 1. The targets this applied to were age, weight, haemoglobin, 
reaction time, body fat, HBA1c, HDL, and LDL. Categorical targets were 
one-hot encoded. The reasoning behind re-scaling continuous targets 
into a − 1 to 1 range space (for example, as opposed to modelling age in 
years), was so that all models across different continuous targets with 
different native ranges were more optimally comparable in both loss 
function and evaluation metric. 

For associated non-imaging data (e.g., any combination of constitu-
tional, psychology, serology, and disease features), the selected combi-
nation was first passed to the code, with any unused non-imaging data 

Table 1 (continued ) 

Target 
(Domain) 

Training 
(n = 19 
048) 

Validation 
(n = 2381) 

Testing (n 
= 2381) 

FDR- 
P 
value 

Statistical 
test 

Hypertension 
(D) 

No (n =
15,612), 
Yes (n =
3436) 

No (n =
1943), Yes 
(n = 438) 

No (n =
1940), 
Yes (n =
441) 

0.89 Chi- 
square 

Atopy (D) No (n =
14,736), 
Yes (n =
4312) 

No (n =
1807), Yes 
(n = 574) 

No (n =
1812), 
Yes (n =
569) 

0.45 Chi- 
square 

Asthma (D) No (n =
17,210), 
Yes (n =
1838) 

No (n =
2135), Yes 
(n = 246) 

No (n =
2131), 
Yes (n =
250) 

0.52 Chi- 
square 

Body Fat (%) 
(D) 

30.1 
(29.99 - 
30.22) 

30.03 
(29.71 - 
30.36) 

30.24 
(29.91 - 
30.57) 

0.76 ANOVA 

Hb (g/dl) (S) 14.16 
(14.15 - 
14.18) 

14.17 
(14.12 - 
14.22) 

14.21 
(14.16 - 
14.26) 

0.48 ANOVA 

HbA1c (mmol/ 
mol) (S) 

34.92 
(34.86 - 
34.99) 

35.03 
(34.85 - 
35.22) 

35.06 
(34.88 - 
35.23) 

0.48 ANOVA 

HDL (mmol/L) 
(S) 

1.48 (1.47 
- 1.48) 

1.48 (1.46 - 
1.49) 

1.46 
(1.45 - 
1.47) 

0.34 ANOVA 

LDL (mmol/L) 
(S) 

3.59 (3.58 
- 3.6) 

3.57 (3.54 - 
3.61) 

3.61 
(3.57 - 
3.64) 

0.56 ANOVA  
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(including that of the same block to the model target) zeroed. For 
example, in training a model to predict anxiety, using constitutional and 
serological non-imaging data, all other psychological data would be 
zeroed since anxiety were within this target domain, but disease data 
would also be zeroed as it was not selected to be passed to the model. 
The reasoning behind this was to 1) ensure the prevention of an infor-
mation leak between similar feature domains (e.g., it seemed probable 
one could fit a function of anxiety from a selection of other measures of 
psychology), but 2) would maintain precisely the same modelling 
architectural complexity, only where some features were encoded as 
zero. 

For structural neuroimaging, we developed a comprehensive MRI 
augmentation pipeline using MONAI (Consortium, 2020; Pinaya et al., 
2023). This pipeline included the following: image resizing; ii) clamping 
along the 0.5th and 99.5th percentile; iii) intensity normalisation; in-
tensity scaling to the range of − 1 to 1; iv) random histogram shifting; v) 
random intensity scaling; vi) random affine transformations; vii) 
random 3D elastic deformations; vii) image re-normalization and viii) 
image re-scaling to the range of − 1 to 1. All random transformations 
were with a probability of application of 0.1. 

To evaluate the discrepancy (if any) in model fidelity at differential 
imaging resolutions, we considered two image resolutions to resize data 
to. We firstly fitted the 700 models with resizing images from native 
182×218×182, isotropic and volumetric, 1 mm (Elliott et al., 2018) 
voxel dimensions to a smaller 64×64×64 isotropic resolution. Doing so 
would enable models to train significantly faster and illuminate where 
performant signal for a given target could be extracted from the struc-
tural 3D sequences. This enabled training one model on four Tesla P100 
16Gb GPUs within a DGX environment with a batch size of 64. Having 
trained these models, we identified the best sets of input combinations 
for each of the 25 targets and retrained each (i.e., the best model, per 
target), with resizing images from native 182×218×182, isotropic and 
volumetric, 1 mm (Elliott et al., 2018) voxel dimensions to a 
128×128×128 isotropic resolution. This enabled training one model on 
eight Tesla P100 16Gb GPUs within a DGX environment with a batch 
size of 32. 

Like the associated non-imaging data pipeline, where a given MRI 
sequence was not chosen as a data input to a given target, it was zeroed. 
For example, when training a model to predict sex with T1+FLAIR, the 
DWI channel was zeroed. The rationale for this was to maintain the same 
model size/architecture regardless of the data passed to it. 

For functional connectivity, we used the bilateral Glasser parcella-
tion of 360 regions (180 per hemisphere) to extract a given regions 
BOLD time-series signal, and cross-correlate to a symmetrical adjacency 
matrix of shape 360×360, using nilearn (Abraham et al., 2014). Data 
were standardised by z-score transformation. For each participant, the 
upper triangle of this symmetrical rsfMRI connectivity matrix was 
extracted and flattened to a 1D array, with 64 620 functional connec-
tions between each pairwise set of regions. Like the remaining pipeline, 
where connectivity was not selected as an input to a given model, it was 
zeroed. We opted for the Glasser parcellation scheme (M.F. Glasser et al., 
2016) since it is one of the most widely used and cited (3965 tracked 
Google Scholar citations as of 01/03/2024). We did consider the use of 
other functional templates to boost the analysis further, however since 
the computing requirements for all modelling was already substantial, 
we did not pursue it further. This could however be explored in future 
research. 

5. Architecture 

All deep learning aspects of the study were undertaken using 
PyTorch (Paszke et al., 2019) and MONAI (Consortium, 2020), with 
model architectures as listed below. 

5.1. Feed-forward neural network for non-imaging data 

For modelling with non-imaging data, we constructed a feed-forward 
neural network (FNN), which took an input dimension of 24, the number 
of non-imaging data features minus 1 (the target), with sequential dense 
layers of 128, 64 and 32 with sequential batch normalisation (Ioffe et al., 
2015), Gaussian error linear unit (GELU) activation (Hendrycks and 
Gimpel, 2016), and dropout (rate 0.1) (Srivastava et al., 2014). The 
non-imaging data FNN comprised 13 984 parameters. 

5.2. Three-dimensional convolutional neural networks for volumetric 
imaging data 

We developed a 3D convolutional neural network (CNN) architec-
ture for modelling with volume brain imaging data (Goodfellow et al., 
2017; Krizhevsky et al., 2012). This CNN was contained three channels, 
for T1, FLAIR and DWI. The architecture followed the sequence of 3D 
convolution, GELU hidden activation (Hendrycks and Gimpel, 2016), 
skip convolution layers (He et al., 2016), batch normalization (Ioffe 
et al., 2015), GELU hidden activation (Hendrycks and Gimpel, 2016), 
max 3D pooling (Yamaguchi et al., 1990), dropout (rate 0.1) (Srivastava 
et al., 2014), flattening to a linear dense layer, batch normalisation (Ioffe 
et al., 2015), and GELU output activation (Hendrycks and Gimpel, 
2016). For training with 64×64×64 images, the CNN channel sizes were 
32, 64, 128, 256, 256 with a further final output channel of size 128. For 
training with 128×128×128 images, the CNN channel sizes were 32, 64, 
128, 256, 256, 256 with a further final output channel of size 256. Our 
architectural design and channel sizes were guided by review of existing 
literature, and benchmark comparisons to open-source datasets inclu-
sive of MNIST and MNIST-fashion (He et al., 2016; Heinz, 2018; 
Benchmarks, 2021). Skip convolutions have been shown advantageous 
to well-known models such as that of ResNet, with a building block 
composed of two convolution layers and activation operators, then 
concatenated (He et al., 2016; Ahn and Yim, 2020). The CNN comprised 
7 427 680 parameters for 64×64×64 resolution models, and 11 295 968 
for 128×128×128 models. 

5.3. Feed-forward neural network for functional connectivity 

For modelling with functional connectivity, we constructed a FNN 
which took an input dimension of 64 620, the number of unique pair-
wise functional connections in the flattened connectivity matrix, with 
sequential dense layers of 128 and 128, each with batch normalisation 
(Ioffe et al., 2015), GELU activation (Hendrycks and Gimpel, 2016), and 
dropout (rate 0.5) (Srivastava et al., 2014). This rsfMRI connectivity 
FNN comprised 8 288 512 parameters. 

5.4. Model concatenation and feed-forward neural network for final 
prediction 

Outputs from the non-imaging data FNN, multi-channel 3D-CNN 
connectivity, and rsfMRI connectivity FNN, were concatenated and 
used for a final FNN for target prediction. This took the sum of the output 
channels from above (288 when training with 64×64×64 MRI, 416 
when training with 128×128×128), with further dense layers of size 
256, 256, and a final layer of size 2 where the target was categorical and 
one-hot encoded (e.g., sex), or 1 where the target was continuous (e.g., 
age). Similar to the non-imaging data and connectivity FNN models, 
these used sequential batch normalisation (Ioffe et al., 2015), GELU 
activation (Hendrycks and Gimpel, 2016), and dropout (rate 0.1) (Sri-
vastava et al., 2014). When training with an MRI resolution of 
64×64×64, this final FNN comprised 141 057 parameters, and 173 825 
when training in 128×128×128. 

The total parameter count for this multi-dimensional modelling ar-
chitecture was 15 871 233 when training with an MRI resolution of 
64×64×64, and 19 772 289 when training with an MRI resolution of 
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128×182×128. The full modelling architecture can be visualised in 
Supplementary Figure 2. 

6. Hyperparameters 

All models were compiled with a learning rate of 0.0001, the Adam 
optimiser (Kingma and Ba, 2017), L2 regularisation (Cortes et al., 2012), 
a batch size of 64 for 64×64×64 resolution MRI models, and 32 for 
128×128×128 (limited only by GPU size). Models were permitted to 
train for anywhere up to 100 000 epochs, but with early stopping if there 
was failure to improve the validation loss function after 50 epochs. For 
categorical targets, the loss function was binary cross entropy, and for 
continuous, mean squared error. 

6.1. Model evaluation 

Models were always trained on the training data only and evaluated 
at the end of each epoch with the validation set. The best performing 
model, criterion on the loss function, were saved. After completion of 
model training, the best performing epoch for each model (on validation 
data) were used for evaluation of performance on the completely unseen 
test data. Numerous performance metrics were derived, including ac-
curacy, precision, recall, F1, a confusion matrix (Trimarchi, 2019), the 
receiver operator characteristic (ROC) curve, the R2 and r for continuous 
targets, the model loss, and the amount of time each model required to 
train (Varoquaux and Colliot, 2023; Poldrack et al., 2020). Metrics of 
categorical performance were always balanced by macro average to 
accommodate for any degree of class imbalance. It should be noted that 
we place our focus here on evaluating categorical models with metrics 
appropriate for any degree of class imbalance, such as with balanced 
accuracy or macro-averaged precision, recall, and F1. However, we also 
provide AUROC as there are a high proportion of research articles that 
only report this despite its clear limitation to sample imbalance, such 
that our work is still comparable to the broader literature. To enable 
large-scale comparison across all 700 models, irrespective of if a cate-
gorical or continuous target, we also converted the task to categorical 
with continuous targets divided by median split with respect to the 
training dataset. We determined the ‘best’ performing model by the 
highest balanced accuracy in the testing set for categorical target, and by 
the highest R2 for continuous targets (Varoquaux and Colliot, 2023; 
Poldrack et al., 2020). 

6.2. Model validation with open-source datasets 

To ensure that the performance of our CNN model architectures was 
comparable to existing state-of-the-art performances, we prototyped 
CNNs initial with both MNIST and the MNIST-fashion (data not shown). 

6.3. Model comparison 

6.3.1. Linear mixed-effects models 
After fitting all possible model combinations, we undertook post-hoc 

comparisons of models, reviewing the performance metrics to identify 
both human factors inherently predictable by imaging data, but also the 
value of data components in fitting each factor. This was undertaken by 
visual inspection of all performance metrics, including ROC curves and 
confusion matrices. 

We conducted formal statistical comparison of model performance 
with linear mixed-effect models (Pinheiro et al., 2022; Wickham et al., 
2019). These were in the following formulation: 

Model performance ∼ T1 + FLAIR + DWI + rsfMRI Connectivity

+ Psychology + Disease + Serology + (1 | Target),

where for constitutional, psychological and disease targets, model per-

formance were by the balanced accuracy given the majority were cat-
egorical in formulation, but included conversion of continuous targets 
by median split, as described above. Whereas for serology targets, model 
performance was R2. 

6.3.2. Graph representations 
We derived graph representations of model performances across all 

targets, across all possible feature combinations. This was undertaken by 
fitting an undirected graph of all targets as nodes, wherein the edge 
weights were calculated as the inverse of the Euclidean distance be-
tween all performance metrics for a given model (T.P. Peixoto, 2014). 
We also used this data to derive the weighted eigenvector centrality of 
each node, weighted by the similarity across different performance 
metrics, that might further provide insight in explaining the similarities 
and dissimilarities across model performances. Lastly, we converted 
these results into a fully interactive HTML object (Haas, 2021) to enable 
reader visualisation. 

7. Compute 

7.1. Hardware 

Local development and prototyping were predominantly performed 
on a 32 core (64 thread) CPU Linux workstation housing 135Gb of RAM 
and an NVIDIA 2080Ti GPU (11Gb size), OS Ubuntu 20.04. All model 
training was undertaken on a DGX workstation housing 8 x P100 16Gb 
GPUs, 80 CPU threads and 503Gb of RAM. 

7.2. Software 

Most of the programming was undertaken within a Python envi-
ronment (version 3.6.9). Further small operations were completed with 
Bash for faster IO enabled by GNU parallel (Tange, 2011). The following 
Python packages were utilised: graph-tool (T.P. Peixoto, 2014), gravis 
(Haas, 2021), matplotlib (Hunter, 2007), minepy (Albanese et al., 
2018), MONAI (Consortium, 2020), nibabel (Brett et al., 2020), NumPy 
(Harris et al., 2020), pandas (Reback and McKinney, 2020), PyTorch 
(Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), SciPy (Vir-
tanen et al., 2020), seaborn (Waskom, 2020), statsmodels (Seabold and 
Perktold, 2010). GPU-modelling was achieved with the CUDA toolkit 
version 11.0 (Developers, 2021). Linear mixed effect models were con-
structed within R version 4.1.2, using packages Tidyverse (Wickham 
et al., 2019), and nlme (Pinheiro et al., 2022). 

7.3. Ethical approval 

The study was approved by local institutional review board and 
conducted in accordance with the “Declaration of Helsinki”. Use of UK 
Biobank data were approved under study application identifier 
#16,273. 

7.4. Code, model, and data availability 

All code and models are openly available online at https://github. 
com/high-dimensional/biobank-megamodeller.git. Supplementary 
code evaluating age and sex prediction using other models (Cole, 2020; 
Peng et al., 2021; Gong et al., 2021) is also available. All data is available 
from the UK Biobank curators. 

8. Results 

8.1. Cohort 

We studied an unselected sample of 23 810 unique UK Biobank 
participants (11 141 male, 12 669 female, mean age ± 95% confidence 
interval (CI) 54.775 years (54.66 – 54.85)) who underwent multi- 
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sequence MRI, including T1-weighted, fluid-attenuated inversion re-
covery (FLAIR), diffusion weighted imaging (DWI), and resting-state 
functional MRI (rsfMRI) acquisitions, and for whom a set of 25 consti-
tutional, psychological, disease, and serological domain variables of 
plausible clinical or scientific interest was available. A compact set of 
characteristics was chosen to enable comprehensive modelling of the 
comparative predictability of subsets of variables from the remainder, a 
task that scales exponentially with the number of subsets. Participants 
were randomly partitioned into training, validation, and testing sets of 
19 048, 2381, and 2381 unique participants, respectively, with no sig-
nificant differences between them (Fig. 2, Table 1). 

8.2. Graph community representations of non-imaging characteristics 

A generative stochastic block model (Peixoto, 2018), with separate 
layers (Peixoto, 2015) for positively and negatively related character-
istics across the four non-imaging domains, was used to derive a succinct 
hierarchical representation of the non-imaging data in terms of its pat-
terns of distinct covariance, captured by the graph model as hypergraph 
‘community’ structure. The largest community consisted of psycholog-
ical measures. The second community consisted of sex, age, haemoglo-
bin (Hb), weight, percentage body fat, and high-density lipoprotein 
(HDL). Male gender was associated with haemoglobin (mutual infor-
mation (MI) 0.30) and weight (MI 0.18), and inversely related to with 
body fat (MI 0.31) and HDL (0.14). The final community, consisting of 
low-density lipoprotein (LDL), HbA1c, reaction time, asthma, atopy, 
hypertension, smoking, and handedness, was characterised by weak 
mutual information across all features (Fig. 2). A stochastic block model 
employing a non-linear index of dependence based on the maximal in-
formation coefficien (Reshef et al., 2011), revealed essentially the same 
structure (Supplementary Figure 1). 

8.3. Imaging models of constitutional characteristics achieve state-of-the- 
art performance 

Across constitutional characteristics, models of FLAIR, T1, and DWI 
achieved state-of-the-art sex classification (balanced accuracy (BA) 
99.7%, area under the receiver operator characteristic curve (AUROC) >
0.999); age regression (R2 of 0.859, mean absolute error (MAE) of 2.048 
years); and weight regression (R2 of 0.625, MAE of 7.042 kg) perfor-
mance (Fig. 3). Models of rsfMRI connectivity alone performed the worst 
on these characteristics but yielded the best prediction of handedness 
(BA 57.7%, AUROC of 0.915). Our brain age model outperforms 

previous top prediction models including that of Peng et al., (Peng et al., 
2021) (MAE reported in manuscript=2.14 years, MAE from evaluation 
on our test set=5.282 years), and Cole et al., (Cole, 2020) (MAE reported 
in manuscript=3.55 years, MAE from evaluation on our test set=5.115 
years). Similarly, our sex classifier outperformed previous top prediction 
model from Peng et al., (Peng et al., 2021) (accuracy reported in man-
uscript=99.5%, accuracy from evaluation on our test set=96.6%). 

To quantify the relative contribution of each imaging feature we 
employed a linear mixed-effect model predicting balanced accuracy 
from the choice of imaging inputs. This showed the inclusion of T1/ 
FLAIR structural sequences to be significantly advantageous to model 
performance (coefficient 0.041, 95% CI 0.012 to 0.0694, p = 0.008) 
(Fig. 4). There were non-significant trends for the inclusion of both DWI 
(coefficient 0.0211, 95% CI − 0.007 to 0.050, p = 0.138) and rsfMRI 
connectivity (coefficient 0.012, 95% CI − 0.017 to 0.040, p = 0.408). 

8.4. Psychological characteristics are poorly predicted by imaging 

Models predicting psychological characteristics exhibited poor test- 
set performance (Fig. 3), in the face of extensive optimisation. Models 
of non-imaging data alone, offered the best prediction fidelity in 10 of 
the 12 psychological characteristics. Specifically, constitutional non- 
imaging data alone best predicted sensitivity (BA 60.1%, AUROC 
0.614), and guilt (BA 58.1%, AUROC 0.659). Models of constitutional 
and disease non-imaging data best predicted loneliness (BA 57.5%, 
AUROC 0.685), irritability (BA 57.5%, AUROC 0.628), and the pro-
pensity to feel tense (BA 55.8%, AUROC 0.667). Constitutional and 
serological non-imaging data best predicted anxiety (BA 59.0%, AUROC 
0.607). Lastly, models featuring constitutional, serological, and disease 
non-imaging data best predicted nervousness (BA 57.3%, AUROC 
0.650), feeling fed up (BA 57.7%, AUROC 0.649), miserableness (BA 
60.5%, AUROC 0.650), and mood swings (balanced accuracy 56.6%, 
AUROC 0.611). Indeed, only the propensity to worry and reaction time 
were best predicted with the inclusion of any neuroimaging data. Worry 
was best predicted with DWI, FLAIR, T1, and constitutional non-imaging 
data (BA 58.8%, AUROC 0.601), whereas reaction time was best pre-
dicted with DWI, constitutional and disease non-imaging data (R2 of 
0.081, MAE of 70.316 ms). 

A linear mixed-effect model predicting balanced accuracy from the 
choice of T1/FLAIR, DWI, rsfMRI connectivity, serology, and disease 
data for all 32 model input combinations for the 12 psychology targets 
(384 models) found disease significantly advantageous to model per-
formance (coefficient 0.004, 95% CI 0.001 to 0.007, p = 0.021) (Fig. 4). 

Fig. 3. Model performances. Test set performance for all models across constitutional (C) – orange, disease (D) – blue, psychology (P) – green, and serology (S) – pink 
feature domains. Index of performance is given as balanced accuracy for classification targets and R2 for regression fits. The x-axis of all heatmaps depicts the model 
target, and y-axis depicts the range of feature inputs. White boxes demarcate the best set of inputs to achieve the greatest out-of-sample model performance. 
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The inclusion of T1/FLAIR (coefficient − 0.014, 95% CI − 0.017 to 
− 0.011, p < 0.001), DWI (coefficient − 0.012, 95% CI − 0.015 to − 0.009, 
p < 0.001) and rsfMRI connectivity (coefficient − 0.009, 95% CI − 0.012 
to − 0.006, p < 0.001) were all significantly associated with detrimental 
model performance. There was no significant relationship between 
serological non-imaging data and model performance (p = 0.252). 

8.5. Disease characteristics are best predicted by serological data, not 
neuroimaging 

Test performance for models predicting individual disease charac-
teristics was more variable, revealing 3 of 5 disease targets to be best 
predicted from non-imaging data alone. These were: 1) a diagnosis of 
atopy, using constitutional non-imaging data alone (BA 54.4%, AUROC 
0.656), 2) asthma, using constitutional and psychological non-imaging 

Fig. 4. Domain-specific effects. Linear mixed-effects models for predicting out of sample performance (balanced accuracy or R2, where applicable) from structural 
imaging, functional imaging, and non-imaging domain feature sets. Shown are coefficient plots for models whose targets are A) constitutional, B) psychology, C) 
disease, and D) serology. Inputs with coefficients whose values are positive are associated with increase model performance (advantageous), whilst features with 
negative coefficients are associated with weaker performance (detrimental). Asterisks stipulate statistical significance as per standard convention: * denotes p < 0.05; 
** denotes p < 0.01; *** denotes p < 0.001. 
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data (BA 57.8%, AUROC 0.608), and 3) hypertension, using constitu-
tional and serological non-imaging data (BA 66.7%, AUROC 0.774). 
Smoking was best predicted by DWI, FLAIR, T1, constitutional and 
psychological non-imaging data (balanced accuracy 58.1%, AUROC 
0.682), and percentage body fat using DWI, FLAIR, T1, constitutional, 
psychological, and serological non-imaging data (R2 of 0.834, r of 0.914, 
and MAE of 2.653%) (Fig. 3). 

A linear mixed-effect model predicting balanced accuracy from the 
inclusion of T1/FLAIR, DWI, rsfMRI connectivity, serology, and psy-
chology data for all 32 model input combinations for the 5 disease tar-
gets (160 models) found serology significantly advantageous to model 
performance (coefficient 0.008, 95% CI 0.002 to 0.015, p = 0.016) 
(Fig. 4). The inclusion of DWI (coefficient − 0.010, 95% CI − 0.016 to 
− 0.003, p = 0.003) and rsfMRI connectivity (coefficient − 0.008, 95% CI 
− 0.014 to − 0.001, p = 0.023) were significantly associated with detri-
mental model performance. There was a non-significant trend for the 
inclusion of T1/FLAIR imaging to also be detrimental (coefficient 
− 0.004, 95% CI − 0.011 to 0.002, p = 0.209). There was no significant 
relationship between psychology non-imaging data and model 

performance (p = 0.950). 

8.6. Models of serology perform best with multi-modal imaging and non- 
imaging data 

Serological targets were best predicted from variable combinations 
of imaging and non-imaging data. The best performing haemoglobin 
model included FLAIR, T1, and DWI sequences, with constitutional, 
psychological, and disease non-imaging data, achieving an R2 of 0.524, r 
of 0.725, and MAE of 0.629 g/dl. HDL was best predicted by FLAIR, T1, 
and DWI sequences, augmented with both constitutional and disease 
non-imaging data, achieving an R2 of 0.309, r of 0.556, and MAE of 
0.209 mmol/L. Prediction of HbA1c was weaker, the best feature com-
bination of which was FLAIR, T1, and constitutional non-imaging data, 
achieving an R2 of 0.146, r of 0.394, and MAE of 2.790 mmol/mol. LDL 
concentration was similarly weak, though the best performing model 
utilised FLAIR, T1, constitutional and disease non-imaging data, 
achieving an R2 of 0.126, r of 0.355, and MAE of 0.584 mmol/L (Fig. 3). 

A linear mixed-effect model predicting R2 from the inclusion of T1/ 

Fig. 5. Time costs in training large medical imaging models. A) Strip plot illustrates training time taken per model in GPU minutes (x-axis) for all possible feature 
input combinations (y-axis). Grey points indicate individual models, with mean shown as a black diamond, and 95% confidence interval shown as a black line. B) Bar 
plot of total training time in GPU hours for all feature input combinations. Only 64×64×64 resolution models are shown here for visual simplicity. 
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FLAIR, DWI, rsfMRI connectivity, disease, and psychology data for all 32 
model input combinations for the 4 serology targets (128 models) found 
the inclusion of both disease (coefficient 0.014, 95% CI 0.008 to 0.021, p 
< 0.001) and T1/FLAIR (coefficient 0.008, 95% CI 0.001 to 0.014, p =
0.023) significantly advantageous to model performance (Fig. 4). 
Conversely, rsfMRI connectivity was significantly associated with 
detrimental model performance (coefficient − 0.025, 95% CI − 0.032 to 
− 0.019, p < 0.001). There was no significant relationship between DWI 
and model performance (p = 0.891). 

8.7. The trade-off between computational time and performance 

The total time required to train and optimize all models (both low 
and high resolution) was 188.589 P100 (16Gb) GPU days (4526.135 
GPU hours). The total time required to train all 700 individual 
64×64×64 resolution models was 146.281 GPU days (3510.734 GPU 
hours). The total time required to train the 25 individual 128×128×128 
resolution models was 42.308 GPU days (1015.401 GPU hours). 

For training 3D volumetric 64×64×64 imaging models, mean 
training time was 300.920 min (95% CI 279.316 to 322.524 min) 
(Fig. 5). As expected, models that only included rsfMRI connectivity 
and/or non-imaging data took much less time to train (anywhere from 
just a few minutes for rsfMRI connectivity alone, to up to 123 min for 
constitutional, disease and psychology non-imaging data models. 
Models incorporating 3D volumetric imaging required far longer 
training times, up to a mean of 1412.750 min for predicting constitu-
tional targets with rsfMRI connectivity, T1, FLAIR, and DWI. We cite 
training times for two reasons. First, they indicate the computational 
requirements for training uni- and/or multimodal deep models, 
including with multi-channel 3D imaging. Second, they show that the 
model performance reported here is unlikely to be trivially constrained 
by available compute, and more likely reflects the nature of the data and 
architectural limitations. 

8.8. Graph relationships of model performance 

Finally, we created an undirected graph to visualise the similarities 

and differences of the model targets in terms of their predictability from 
different inputs (Fig. 6). This showed that, whilst pairwise interrelation 
of participant features generally linked constitutional serological fea-
tures, whereas psychological were highly interrelated (Fig. 6A-B), 
pairwise interrelation linked by predictive fidelity revealed a segrega-
tion of constitutional features from those serological, with interrelation 
between features of disease and psychology, This graph is also available 
as a fully interactive, customizable, and downloadable HTML object 
(Supplementary Material). We also provide tabular data of performance 
metrics for all 700 models in the supplementary material. 

9. Discussion 

In the most comprehensive published analysis of its kind, we have 
quantified the individual-level predictability of 25 different constitu-
tional, psychological, chronic disease, and serological characteristics, 
drawing on four different neuroimaging modalities spanning both 
structural and functional domains, and involving all possible combina-
tions of features. The comparative performance of 700 models, trained 
over 189 GPU days (4526.135 GPU hours), with large-scale data from 23 
810 individuals, casts light on the limits to prediction under a practi-
cably ideal modelling regime: large-scale data, state-of-the-art model 
architectures, and high-performance compute. 

9.1. Comparative legibility of biological features 

Our study seeks to identify the limit on achievable individual-level 
predictive fidelity within the prevailing data regime. To do this, we 
are obliged to use state-of-the-art methods, for any shortfall in perfor-
mance could otherwise be attributed to a remediable deficiency in the 
model architecture. Our models of constitutional features set new state- 
of-the-art benchmarks for age and sex prediction from neuroimaging 
data (Peng et al., 2021; Gong et al., 2021). Though models combining 
T1, FLAIR and DWI performed best, achieving balanced accuracy of 
99.7% for sex and MAE of 2.048 years for age, even rsfMRI connectivity 
alone achieved a balanced accuracy of 91.5% for sex, a new 
state-of-the-art for non-structural imaging (Leming and Suckling, 2021). 

Fig. 6. Static visual network analysis plots of feature relationships and model performances. A) Graph of target features, with nodes sized by mutual information 
(MI)-weighted eigenvector centrality (EC), and edges sized according to pairwise MI. Eigenvector centrality is a measure of influence of a node across a network. B) 
Graph of target features, with nodes sized by the maximum information coefficient (MIC)-weighted eigenvector centrality (EC), and edges sized according to the MIC. 
C) Graph of target features, with nodes sized by the maximum balanced accuracy across all models (BA), with edges sized according to the mean inverse Euclidean 
distance of all input combinations between each pair of targets. For all panels we depict the top 60% of edges for visualisation purposes. Note that all graphs are made 
available as fully interactive and customizable HTML objects within the supplementary material. 
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Equally, a MAE of 7.04Kg indicates remarkably high fidelity for weight, 
a hitherto under-explored task here rendered maximally challenging by 
the exclusion of all non-brain tissue prior to modelling. These results 
show that our model architectures and overall analytic pipeline faith-
fully reflect the highest standards in the field, supporting a rigorous test 
of the current limits on the individual predictability of other features. 
That the remaining constitutional feature—handedness, best predicted 
using rsfMRI connectivity data alone—achieved a balanced accuracy of 
only 57.7% suggests the difficulty here does not arise from inadequate 
implementation of current technology. It is striking, even accounting for 
class imbalance, that handedness is individually so poorly predictable 
given the magnitude of population-level differences in the organisation 
of the brain (Sha et al., 2021; Chormai et al., 2022; Good et al., 2001). 

Psychological targets showed equally limited predictability, 
maximal from disease data. The addition of any neuroimaging, whether 
structural or functional, generally offered no material benefit. Of the 12 
psychological targets, only the propensity to worry and reaction time 
showed some effect from neuroimaging, but only in the context of low 
overall performance. This is again strikingly at odds with population- 
level observations, where marked group-level differences are often re-
ported, but individual level predictability is relatively low. 

Disease targets, focused on common conditions without gross, 
diagnostic imaging changes, were also poorly predictable at the indi-
vidual level, with serology the strongest predictor. Only percentage 
body fat benefited from imaging (DWI, FLAIR and T1), achieving MAE of 
2.65%, but not far from age, sex, and weight alone (3.01%). 

Serology was best predicted by disease, followed by T1/FLAIR 
structural imaging. Haemoglobin offered the best—and most multi-
modal—performance, drawing on DWI, FLAIR, T1, constitutional, dis-
ease, and psychological data (MAE 0.629 g/dl), but its prediction is 
likely to lean on covarying sex and age. Although we did not explicitly 
test the question, the difference from constitutional data alone (MAE 
0.676 g/dl) is likely explained by global differences in the MRI signal. 

These performance figures were essentially invariant to modelled 
image resolution. Across all 25 model targets, smoking was the only one 
to demonstrate an increase in model fidelity when training at a higher 
imaging resolution (128×128×128). The gain, however, was marginal: 
58.1% rising to 59.2%. Under current data and architectural regimes, 
meaningful improvements in performance are unlikely to be achieved 
merely by increasing image resolution. 

9.2. The limits of individual prediction 

Our analysis shows that whereas constitutional characteristics—age, 
sex, and weight—are highly predictable from neuroimaging, psychol-
ogy, chronic illness, and serological characteristics are not. Crucially, 
comparative differences in predictability are extraordinarily high, sug-
gesting that with currently practicable models, the limits are primarily 
set by the fundamental informativity of imaging signals. Substantially 
higher individual resolving power will require either a radical ‘regime 
change’—in terms of volumes of data, model expressivity, and compu-
te—or new investigational methods. 

Three implications are foremost. First, imaging-based clinical 
decision-support systems with cognitive or behavioural targets—oper-
ating in the absence of overt changes on imaging—will likely continue to be 
plagued by underperformance, especially when deployed in real-world 
scenarios. If fundamental psychological characteristics are illegible 
under a modelling regime far more conducive to success than clinical 
realities ordinarily permit, the prospects of such endeavours seem dim. 
Performance in specific clinical populations inadequately sampled by 
population-based studies such as UK Biobank (Littlejohns et al., 2020), 
especially those with overtly abnormal imaging, may well be higher, but 
the bar is clearly set high. 

Second, population-level mechanistic models of cognition and 
behaviour that seek to ground theories of brain function in terms of 
normal structural and resting-state functional features will likely leave 

most individual variability unexplained (Bzdok et al., 2020). Though 
many in the field consider explanatory and predictive power to be 
decoupled, the claim to fidelity of a theory contradicted by most in-
stances it describes is bound to strike a disinterested observer as inse-
cure. Were residual variability truly random when inspected at finer 
scales of observation, with more powerful methods such as intracranial 
recording, then a case could be made that the observed stochasticity is 
more aleatoric than epistemic. But such studies near-universally reveal 
complex structure a suitably expressive model could conceivably 
capture. 

Third, the manifest difficulty of prediction mandates obtaining not 
just the largest but also the widest possible data support, operating 
multi-modally, with resilience to the missingness and noise corruption 
ubiquitous in the real world. This implies a decisive shift not only away 
from simple models but also from unimodal discriminative models of 
any complexity. Only multimodal generative models drawing on all 
available data, complete and incomplete, could adequately corroborate 
the belief any observed underperformance is irremediable without new 
or higher quality known biological signals (Pinaya et al., 2023). 

9.3. Limitations 

Our inferences are supported by the largest and most comprehensive 
evaluation of its kind. Nonetheless, the data and modelling context give 
rise to an array of limitations. 

First, we chose to model 25 non-imaging characteristics from a far 
wider range of data available in UK Biobank (Littlejohns et al., 2020; 
Alfaro-Almagro et al., 2018; Sudlow et al., 2015; Bycroft et al., 2018). A 
modest number is inevitable where, as here, the objective is to probe the 
effect of multiple combinations of characteristics, with large-scale data 
and comprehensive model optimization. Indeed, the task of training 700 
independent deep learning models of this kind is already onerous 
enough not to have been previously attempted in this domain. The 
choice of as wide a range of characteristics as was feasible for the 
compute at our disposal is deliberate, for it allows us to evaluate the 
predictive contribution of signals distributed across multiple character-
istics. Not doing this could have raised the possibility that a given 
unimodal signal may be present, but camouflaged by multi-modal 
contextual modulation. Note that each individual characteristic is 
comprehensively modelled in any event, and the multimodal perspec-
tive is an addition, not a substitution. 

Second, it is conceivable that architectural—as opposed to hyper- 
parameter—tuning may have obtained better performance for any one 
individual target. But our objective here was to standardize the model 
architecture across all possible targets and feature combinations, 
creating a general-purpose prediction pipeline that enables a fair com-
parison of the distinct contribution of each input. Moreover, reasoning 
that non-constitutional targets may require large numbers of parame-
ters, we employed more flexible architectures than current age and sex 
classifiers (Cole, 2020; Peng et al., 2021). Note the flexibility was not 
such as to induce overfitting on constitutional targets, so potential 
overfitting on other targets is not explained by excessive 
overparameterisation. 

Third, it is possible that aspects of the processing upstream of the 
predictive modelling may have an impact on performance. Such vari-
abilities are common across neuroimaging research (and indeed form a 
focus of other research groups (Fusar-Poli et al., 2010; Haddad et al., 
2023; Zhou et al., 2022)). The same is true for our use of widely avail-
able resting-state (as opposed to task-related) fMRI data, or use of other 
complimentary imaging modalities such as EEG (Chowdhury et al., 
2020), where further improvement in model performance is foreseeable. 
But here we adopt common pre-processing practices (Alfaro-Almagro 
et al., 2018) and parcellations (M.F. Glasser et al., 2016; M.F. Glasser 
et al., 2016), and it seems unlikely that the striking differences in per-
formance observed here, especially with state-of-the-art constitutional 
performance, are thereby explained. Task-based fMRI may reveal 
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greater predictive fidelity in some tasks, especially when compared to 
resting state. We however deliberately did not include such data for our 
priority was to maximise generalizability, for the nature of a task-based 
functional scan could vary greatly across any research study or imaging 
site. 

Fourth, UK Biobank’s cohort, though peerlessly large for phenotyp-
ing of this richness, is explicitly limited to an older age group and 
implicitly limited by the time and dispositional demands of participa-
tion. The observed variations of the features of interest are, however, 
both generous and comparable to those likely to obtain in real-world 
contexts. Equally, the quality and instrumental homogeneity of the 
source data may theoretically be exceeded elsewhere, even if there is no 
superior study currently in progress. The critical question we address in 
this article is the limit on individual-level fidelity imposed by current 
data regimes, a task that necessitates the largest and richest available 
unselected dataset, of which UK Biobank is internationally the leading 
example. While generalisability is definitionally impossible to assure 
universally, this is as close as anyone could plausibly get at present. 

Fifth, the predictive targets are deliberately chosen to exclude those 
diagnosable from imaging (e.g., acute stroke), for the task then becomes 
one of recognition rather than prediction (Farazi and Nogga, 2021). 
Although chronic diseases of high prevalence are included, our focus is 
on characteristics common enough to span the normal/abnormal divide, 
at least in statistical terms. This focus reflects the scale of potential 
population-level benefit in illuminating individual-level patterns of the 
underlying substrates and processes as reflected in the imaged brain. 

Finally, psychological characteristics can only be imperfectly 
captured by test instruments whose reliability is bound to vary, both 
across characteristics and datasets. Better tests may, of course, provide 
targets with higher achievable fidelity. But the variations in observed 
reliability (Fawns-Ritchie and Deary, 2020) are not so large as to trivi-
ally explain the striking differences in comparative predictability here, 
and the chosen tests are known to correlate reasonably well with other 
measures (Wu et al., 2022; He et al., 2020). 

10. Conclusion 

In the largest study of its kind, involving 700 models trained on a 
comprehensive set of combinations of 25 target biological features, 
across multiple domains and 23 810 unique participants, we have 
quantified the individual-level legibility of the human brain. Deter-
mining the comparative predictability of different targets from each 
other and from multimodal brain imaging, under the current practical 
maximum of data quality, algorithmic felicity, and computational 
resource, we set out to answer a key strategic question: is actionable 
individual-level predictive fidelity plausibly achievable under current 
data regimes, or is a radical change necessary? The striking difference in 
observed comparative predictability suggests the latter, interpretative 
limitations notwithstanding. If predictive systems are to achieve the 
individual-level fidelity clinical utility demands, and if mechanistic 
models are to capture enough variability in the population to be 
persuasively generalizable, regime change is now unavoidable. 
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