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Abstract

Reverse epidemiology is a mathematical modelling tool used to ascertain information
about the source of a pathogen, given the spatial and temporal distribution of cases,
hospitalisations and deaths. In the context of a deliberately released pathogen, such as
Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders
to quickly identify the location and timing of the release, as well as other factors such as
the strength of the release, and the realized wind speed and direction at release. These
estimates can then be used to parameterise a predictive mechanistic model, allowing for
estimation of the potential scale of the release, and to optimise the distribution of
prophylaxis.

In this paper we present two novel approaches to reverse epidemiology, and
demonstrate their utility in responding to a simulated deliberate release of B. anthracis
in ten locations in the UK and compare these to the standard grid-search approach. The
two methods - a modified MCMC and a Recurrent Convolutional Neural Network - are
able to identify the source location and timing of the release with significantly better
accuracy compared to the grid-search approach. Further, the neural network method is
able to do inference on new data significantly quicker than either the grid-search or
novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.

Author summary

In this paper we demonstrate three methods for estimating the source location and
timing of a deliberate release of Bacillus anthracis based on the temporal and spatial
distribution of cases. Two of our proposed methods, a modified MCMC approach and a
neural network based approach, provide significant improvements over previous methods
by directly addressing the problematic parameter-likelihood surface, and, in the case of
the neural network approach, addressing the slow deployment speeds of existing
methods. Our results represent a major step forward in the accuracy and speed of
epidemiological back-calculation.

Introduction 1

A core part of the public health response to the deliberate or accidental release of a 2

wind or environmentally dispersed pathogen is in identifying the location and timing of 3

the release [1, 2]. During such an event, it is likely that the only data streams available 4

to responders will be incomplete line-lists detailing the location of individuals when 5

symptom onset occurs, as well as the time of symptom onset, and the timing of any 6

subsequent hospitalisations or deaths [1]. 7

The process of using line-list style data to infer information about the source of the 8

pathogen is called reverse-epidemiology. Typically, this process starts by using a 9

forward model which predicts the geographic and/or temporal distribution of cases for 10

an initial set of joint disease and transportation model parameters. Example models are 11

discussed extensively in [3], in which various forward models for B. anthracis dispersion 12

and symptom progression are evaluated. The chosen forward model with the initial 13

parameter set is then optimised to find the most likely set of parameters, such as source 14

location, given the observed outbreak (from the early cases from line list). Once a 15

new/updated parameter set is identified, within given confidence limits, the forward 16

model with these fitted parameters is used to estimate the timing and location of any 17

subsequent cases, allowing for the efficient distribution of potentially life-saving 18

prophylactic antibiotics [2, 4]. 19
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The forward model used in this paper comprises of two parts. Firstly, Briggs’ 20

dispersion model [5] is employed to simulate the dispersion of B. anthracis organisms 21

across two planar directions. This is parameterised by wind speed, wind direction, and 22

strength of source; with other factors such as organism decay rate and individual 23

breathing rate fixed at pre-determined values. Using this model we can estimate the 24

dose received at each planar location. Secondly, by combining this with a UK 25

population density map [6] it allows us to estimate the number of individuals exposed to 26

the pathogen at each planar location. A within host disease model [7] is then used to 27

estimate the incubation period for each person infected by the pathogen, as well as the 28

time between infection and potential hospitalisation or death. The combination of these 29

two models provides a realistic simulation of the spatial and temporal distribution of 30

cases, hospitalisations and deaths following a B. anthracis release in a given location. 31

A common approach to reverse-epidemiology is to derive some likelihood function 32

related to the forward model [2, 3], then use a method which searches the parameter 33

space to find the set of parameters which maximises the likelihood of a given set of 34

observations. However, care is needed when taking this approach. Depending on the 35

complexity of the forward model the parameter-likelihood surface can often be 36

extremely complicated - featuring many local maxima and steep gradients. As such, a 37

simple gradient descent approach is often unsuitable and will tend to given erroneous 38

results. This problem is worsened with increased model complexity. 39

In this paper we present three approaches. First, we introduce the standard 40

grid-search technique which searches the entire parameter space for the parameter set 41

with the maximum likelihood, given an observed outbreak. The second approach, a 42

modified MCMC optimizer, also relies on the likelihood function but implements novel 43

strategies for avoiding the local maxima and steep gradients in the parameter-likelihood 44

surface. Finally, we introduce a Recurrent Convolutional neural network (RCNN) 45

approach which does not explicitly rely on the likelihood function. In this approach we 46

randomly sample the parameter space a large number of times, and use the forward 47

model to simulate an outbreak from each parameter set. The RCNN model is then 48

trained to estimate the parameter set used to produce a given input. 49

Materials and methods 50

Forward Models 51

A key part of the reverse-epidemiology process is the forward model. This can be 52

described as some function F (x, y, t; Θ) 7→ C(x, y, t) which provides the number of cases 53

at a given location and time, dependant on some set of parameters, 54

Θ = {px, py, t, S, Us,Wd}, specific to the release. See below for an explanation of these 55

parameters. 56

For this paper, we consider the forward model to be a combination of a dispersion 57

model, describing the transportation of the disease particles from the source (via 58

atmospheric dispersion) and ultimately yielding the dose received at each x, y location; 59

and a disease course model which describes the progression of the disease from exposure, 60

through symptom onset, and to possible hospitalisation and death. We use the Briggs’ 61

dispersion model described in [5] and [3], along with an incubation period model 62

described in [7], and a within host model described in [8]. A formulation for each of 63

these models is described in the supplement (S1-S3). 64

The forward models produce a simulated line-list of geographically and temporally 65

distributed cases, based on five variable source parameters: location, (px, py); release 66

time, t; source strength (as the number of organisms released), S; wind speed (in meters 67

per second), Us; and wind direction, Wd, as well as a number of fixed parameters (see 68
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supplement for full list of fixed and variable parameters). Simulated line-lists also have 69

an associated censor date - that is the date on which the line-list is produced. No cases, 70

hospitalisations or deaths are recorded after the censor date, even if we know that 71

people will fall ill after this cut-off date. 72

Likelihood Function 73

This section describes of the likelihood function used in the grid-search and MCMC 74

methods. We employ the same likelihood function as described in [3]. This function has 75

the following equation: 76

cases∏
i=1

(
aifi
Fi

) non-cases∏
i=1

(1− aiFi) (1)

where cases are individuals who are symptomatic by the censor date, and non-cases 77

are individuals who are not symptomatic by the censor date. [3] 78

In above notation ai is the attack rate for case i (based on the dose which was 79

deposited at the location of case i), fi is the probability density function (PDF) of the 80

disease symptom onset distribution evaluated at the symptom onset time for case i, Fi 81

is the cumulative distribution (CDF) of the disease distribution, evaluated at the censor 82

time, for case i. The calculation of this likelihood function first of all requires an 83

application of the dispersion model to determine the dose inhaled at each location. We 84

opt for returning the log of the likelihood from this function. If at any point any 85

component is calculated as zero the calculation is abandoned and a value of −∞ is 86

returned as the log-likelihood. 87

In equation (1) the first factor is the probability that each case occurred when it did, 88

given that it occurred by the censor time. The second is the probability that each 89

non-case had either not been infected by the censor time or, if infected, was not showing 90

symptoms by this time. Thus the likelihood reflects the probability that current cases 91

occurred at the time that they occurred, and that non-cases have not occurred by the 92

censor date. 93

For each individual, the PDF and CDF are weighted by the attack rate, i.e. the 94

probability of being infected, for the corresponding location. The inclusion of the attack 95

rate means that a large number of non-cases occurring in low dose locations has no 96

adverse effect on the likelihood (i.e. a large number of non-cases at low dose location is 97

to be expected). Conversely a large number of cases at these low dose location would 98

greatly reduce the likelihood. 99

The likelihood based approaches discussed below have two major drawbacks, both 100

illustrated in Fig 1, which sketches a possible scenario where the estimated wind 101

direction may become trapped in a plausible region due to an adjacent area with high 102

population density and zero observed cases. 103

Parts of parameter space with higher likelihood can often be surrounded by areas 104

with log-likelihood approaching negative infinity. This is often because that part of 105

parameter space corresponds to cases occurring in areas with no population, or that the 106

resulting solution can not account for the lack of cases occurring in a region with high 107

population density. In Fig 1 we see that while the current solution, Ŵ 1
d , has a relatively 108

high likelihood, it is separated from the true solution, Wd, by a region with 109

log-likelihood approaching negative infinity. Because humans tend to aggregate in space, 110

this is a common problem when searching through the space of spatial parameters (px, 111

py, Wd), and does not generally occur with the time parameter, t,which is much more 112

dependent on the smooth incubation period distribution. 113

The likelihood based approaches also implicitly rely on a degree of smoothness in the 114

parameter-likelihood surface. In Fig 1b we see a proposed solution, Ŵ 2
d , close to the 115
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Fig 1. (a) shows a possible scenario in which wind direction is being varied for a given
(px, py) (illustrated by the red cross). Regions A, B and C have population density

ρ ≫ 0, all other locations have ρ = 0. The current prediction, Ŵ 1
d (dashed line), points

toward region A and passes near region C. The true parameter value, Wd, passes
through regions A and C. Neither solution passes through region B. Cases, illustrated
by the red dots, occur in regions A and C, but do not occur in region B. As such, both
Ŵ 1

d and Wd are plausible solutions. However, due to the absence of any cases in the
region, any solution pointing through region B would have log(L) → −∞. This is
illustrated in (b) which sketches the likelihood of different values of Wd. For most

gradient descent based methods it would not be possible for Ŵ 1
d to be improved upon as

it would require the estimate to pass through a region where log(L) → −∞. We also
illustrate how the smoothness assumption limits the utility of such approaches.
Depending on the step size used in such an approach, it is possible that a gradient
descent method may misidentify the local maxima at Ŵ 2

d as the true solution
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true solution, Wd. If the step size used is too large, then Ŵ 2
d will be misidentified as the 116

solution with the highest log-likelihood. 117

In the example in Fig 1 we consider how regions with negative-infinity log-likelihood 118

can occur when varying a parameter in one dimension. More commonly, however, these 119

regions arise when we vary both the wind direction, Wd, and the source location, 120

(px, py). Fig 2 illustrates how the space of possible parameters, rather than being 121

continuous, is generally divided into distinct plausible regions. Frequently, the plausible 122

region containing the true solution is accompanied by a second plausible region directly 123

opposite, with the wind direction rotated by 180◦. There may additionally be (many) 124

other islands of plausibility. 125

Inference Method 1: Grid-Search 126

The first, and perhaps simplest, approach to optimising the likelihood function is to use 127

a grid-search method to assess the function across all feasible parameter space. The 128

log-likelihood function is evaluated on a uniform parameter grid, with the strength 129

parameter, S, being considered in log space. The parameter estimate is simply taken as 130

the set of parameter values with the greatest log-likelihood, given the observed case 131

distribution, amongst the sampled values. Details of the parameter ranges and step 132

sizes used in this approach are given in section S2 of the supplement. 133

This approach is not limited by the constraints of the parameter-likelihood surface 134

but is also guaranteed not to find the global maxima. To do this a second step gradient 135

decent or adaptive grid-search based on the maxima found would be needed. We have 136

not reported on such a multi-step process in this paper as they are limited by the 137

effectiveness of the initial search. 138

Inference Method 2: MCMC 139

The second approach to the problem involves the application of a standard MCMC 140

optimisation method [9], an approach previously applied to a similar problem in 141

Legrand et. al. [2]. However, we have modified the method to address some of the 142

problems with the likelihood function described above. In this method we randomly 143

select an initial starting point within the the parameter space. Thereafter, the solution 144

advances by choosing a new point based on a sample drawn from a random distribution 145

centred on the current point. An acceptance test (which is based on the likelihood 146

function) is then applied to decide whether or not this new point should be accepted. If 147

accepted, the new point becomes the current point - if not, the process is repeated for 148

the unchanged current point. 149

The standard MCMC approach of gradual adjustments to the current solution is not 150

generally able to move from one plausible region to another due to regions with negative 151

log-likelihood dividing them. Thus, if the initial proposed solution is in an incorrect 152

region the solution chain will be trapped on this region and away from the true solution. 153

In the case illustrated in Fig 2 this leads to a 180◦ error in the wind direction, and a 154

corresponding misidentification of the source location. 155

By examining the orientation of the case data it is possible to make an initial 156

estimate of the wind direction. Of course, it might not be similarly possible to decide if 157

the release is travelling up or down that path - .i.e the wind direction might be the given 158

orientation, or that orientation rotated by 180◦. However, imposing this estimated wind 159

direction on the otherwise randomly chosen initial point of the MCMC procedure means 160

the solution is starting off from either the true solution region or its mirror image region. 161

Once the calculation of the solution is underway the standard MCMC method of 162

selecting a new potential point is replaced by a Rotate method at randomly selected 163

steps. This methods rotates the source location by 180◦ about the center of mass of 164
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Fig 2. Plausible solution regions for a given spatial distribution of cases (blue points).
The true source location is somewhere in the green region, however the MCMC method
will occasionally arrive at a solution in a region diametrically opposed to the true
solution, indicated here by the solid red circle. Other plausible regions may also exist,
as indicated by the red dashed region.
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cases, along with a 180◦ rotation of the current wind-direction estimation. The source 165

location is then randomly moved towards or away from the the center of mass of cases, 166

along the line joining the new position to the center of mass. In addition to the linear 167

movement of the source location there is a corresponding adjustment made to the 168

source strength (increased if the distance between source and center of mass is increased, 169

and decreased otherwise). 170

Upon completion of this rotation function we apply the standard MCMC acceptance 171

test to determine whether the new point should be accepted as the new current solution. 172

If the rotated solution is not accepted, but it is at least a plausible solution, (i.e. one 173

with finite log-likelihood), rotating back is suppressed for a fixed number of iterations. 174

This allows the standard MCMC to improve on the rotated solution, before a final 175

decision is made on whether the solution should be accepted. 176

The above procedure has been adopted to address the specific problem of disjoint 177

regions of plausible solution space. This process improves the method’s ability to 178

identify the location of the source, however a further modification was required to 179

improve performance on other parameters. 180

In the standard MCMC iteration, the new solution point is found by randomly 181

varying all five parameters simultaneously. An improved final solution was found if, at 182

the end of a number of iterations (either standard MCMC iterations or rotate 183

iterations), a further number of iterations is performed where each of the five 184

parameters is changed one at time. After each parameter has been varied individually 185

to produce a potential new solution, a standard MCMC acceptance test is performed to 186

decide if this new solution should be accepted. 187

Inference Method 3: Recurrent-Convolutional Neural Network 188

(RCNN) 189

The first two approaches discussed in this paper are limited by both the behaviour of 190

the likelihood landscape and the complexity of the forward model. Both approaches rely 191

on some smoothness assumption placed on the the likelihood function - this may not be 192

satisfied for more complex models. Further, the approaches require the forward model 193

to be evaluated a very large number of times during inference, which leads to long 194

calculation times. Increasing the complexity of the forward model exacerbates both of 195

these problems. 196

In this section we propose an alternative solution which does not rely on an explicit 197

likelihood function. This method utilises neural networks to learn the inverse of the 198

forward model. The network can be trained on thousands of simulated outbreaks prior 199

to any need for inference, and run very quickly when source-term inference is required. 200

Further, the Neural Network model is able to leverage more information from the 201

line-list data by incorporating the timing of hospitalisations and deaths - data which is 202

otherwise unused in the MCMC and grid-search approaches. 203

In this approach, we treat each simulated outbreak as a single observation when 204

training the neural network. The forward model parameter set, Θ = px, py, t, S, Us,Wd, 205

used to produce each outbreak is used as the response variable for the model. Each 206

observation in the model consists of three inputs; X1 ∈ RNt×Nx×Ny×3 describing the 207

relative spatial and temporal distribution of cases, hospitalisations and deaths; 208

X2 ∈ R1×9 providing a positional reference for X1, along with information about the 209

scale of the outbreak; and X3 ∈ RNx×Ny describing the local population distribution in 210

the geographic region spanned by the case data, using data provided by the UK Health 211

and Safety Executive [6]. A detailed description of how these inputs are constructed is 212

given in the supplement (S3). 213

The response variable, Θ, undergoes a transformation prior to use in the model. The 214
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Fig 3. The structure of the RCNN model. Each CNN layer consists of three pairs of
two-dimensional convolutional layers with 16, 32 and 64 filters respectively and a kernel
size of three. Reticulated linear unit (ReLU) activation functions are used for each layer.
Between each pair of convolutional layers there are two-dimensional max-pooling layers
with stride two and pool size (2,2). The single LSTM layer has 256 units and uses a
tanh activation function. The first dense layer (labeled Dense1) has 256 units, with a
dropout rate of 0.4 and a ReLU activation function. The second dense layer (Dense2)
also has 256 units, a ReLU activation function and a dropout rate of 0.2. The Output
layer outputs six parameters, and uses a linear activation function.

wind speed, Us, and wind direction, Wd, are transformed into cartesian coordinates such 215

that η1 = Us sinWd and η2 = Us cosWd. This removes the discontinuity in the wind 216

direction as Wd approaches 0◦ or 360◦, which would otherwise lead to unnecessary 217

penalisation in the loss function. To improve model efficiency we standardised the 218

target variable so that each parameter has mean of 0 and standard deviation of 1. 219

Fig 3 gives an overview of the Neural Network architecture used. The input X1 is 220

first passed through a series of time distributed convolutional filters, before being 221

flattened and passed through an LSTM layer. Input X2 is passed through a dense layer, 222

and X3 is passed through a series of convolutional filters. The outputs of each of these 223

are then concatenated, before being passed through a dense layer and a final output 224

layer. The output of the model, Θ̂, is then the predicted value of the parameter set used 225

in the forward model, after the transformations described above are reversed. 226

The network is trained for 40 epochs on 7500 training observations and 100 227

validation observations. We use an Adam optimiser combined with a Mean Squared 228

Error loss function. The model with the lowest loss on the validation data is saved. 229

The model was built using Tensorflow (version 2.4.1) on Python (version 3.8). 230

Training on an Nvidia K-80 GPU takes around 6 hours. 231
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Results 232

In order to evaluate the three methods we test their ability to predict the parameter set, 233

Θ = {px, py, t, S, Us,Wd}, used to produce ten simulated outbreaks. The R2 score for 234

each method across each parameter set is given in 1. Additionally, for the RCNN 235

method we consider a wider test set of 700 simulated outbreaks to ensure the model has 236

not over-fitted to the training data. This is not possible for the grid-search and MCMC 237

approaches due to the longer time taken for each prediction. The ten test outbreaks 238

represent a broad range of parameter values, and include outbreaks of between 15 and 239

5272 cases. 240

Table 1. R2 scores for each method across the six source parameters.

Method px py t S Us Wd

Grid-search −8.4 −16.04 0.93 −0.79 −0.85 −0.60
MCMC 0.89 0.04 0.95 −0.41 −1.94 −0.99
RCNN 0.98 0.98 0.98 0.68 0.19 1.00

In section S4 in the supplement we use the predicted parameterisations to produce 241

estimated spatial dose distributions using the forward model. In each case, we compare 242

the predicted dose distribution with the distribution produced from the true parameter 243

set. As with the results above, both the MCMC and RCNN methods perform 244

considerably better than the grid-search approach. 245

Grid-Search 246

Fig 4 shows the predictions made by the grid-search method, Θ̂ = {p̂x, p̂y, t̂, Ŝ, Ûs, Ŵd}, 247

plotted against the true values, Θ. Different simulated outbreaks use consistent marker 248

colours across each plot. The method is good at estimating the date of release, 249

achieving an R2 score of 0.93, and occasionally good at predicting the location of release. 250

The grid-search approach often predicts the correct wind direction, and when it is 251

wrong the error is consistently around 180◦. Notably, the method fails to accurately 252

predict source location in predictions where Wd has also been predicted to be 180◦ from 253

the true value (predictions 2, 3, 5 and 8). 254

MCMC 255

Fig 5 shows the predictions made by the MCMC method on the ten simulated 256

outbreaks. The MCMC method is more consistent than the grid-search, and provides 257

more accurate predictions across almost all parameters. However, the method is not 258

able to predict source strength or wind speed with a great deal of accuracy. The MCMC 259

method also fails to accurately predict the location of outbreak 9, however all other 260

outbreaks are well located. 261

RCNN 262

Fig 6 shows the fit of a trained RCNN model to 700 test observations. The model is 263

able predict the location and timing of the release with good accuracy, achieving R2
264

scores of 0.98, 0.98 and 0.97 on the easting, northing and time of release respectively. 265

Fig 7 shows the predictions made by the RCNN method on the ten simulated outbreaks 266

used to test the grid-search and MCMC methods. 267

The model accurately predicts the wind direction at release, Wd, although some 268

predictions have an error of 180◦s. Observations for which the model failed to 269

accurately predict Wd tended to have very low case numbers. The grid− search2 score 270
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Fig 4. Predictions (Θ̂) plotted against true values (Θ) for the grid-search method on
the ten test outbreaks.

on Wd was 0.79, although it should be noted that this has been artificially deflated by 271

predictions where Wd ≈ 0◦ and Ŵd ≈ 360◦, or vice versa. 272

The model is able to predict the source strength, S, with a reasonable degree of 273

accuracy, achieving an grid− search2 score of 0.79. As with the other methods, wind 274

speed at source, Us, is by far the worst prediction, with the model being only slightly 275

better than random chance when predicting this parameter. It is likely that Us and S 276

have some interdependence making them more difficult to predict. 277

Discussion 278

Of the three methods discussed in this paper it is clear that both the MCMC and 279

RCNN methods provide the more accurate estimates of source parameters based on 280

observed outbreaks. Both approaches achieve similar results on the test set of 10 281

outbreaks, while the grid-search method consistently performs worse. Further, thanks to 282

the fast deployment of the RCNN method, we have been able to demonstrate 283

consistently high accuracy on much larger test sets. However, there are a number of 284

important distinctions between the methods which may make them more or less 285

relevant in certain situations. 286

The MCMC method described in this paper is relatively slow - taking a few hours to 287

perform inference on a single outbreak. Increasing the complexity of the forward model 288

will further increase the time taken to perform this analysis. In situations where the 289

speed of response is critical this may be a significant disadvantage. 290

Unlike the MCMC method, the RCNN model can be quickly deployed on new case 291

data, however the preparation of synthetic training data, as well as the training of the 292

model itself, both require considerable time investment. In instances where no suitable 293

pre-trained model exists for a specific threat this could seriously slow the response time. 294

As such, it is important to carefully consider which diseases most warrant the time 295

investment required to train an appropriate RCNN model. While it is feasible to 296

maintain a catalogue of pre-trained RCNN models to deploy in response to specific 297

diseases, it does mean the method has limited flexibility and will not be appropriate in 298
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Fig 5. Predictions (Θ̂) plotted against true values (Θ) for the MCMC method on the
ten test outbreaks.

all circumstances. By comparison for both MCMC and grid-search methods novel 299

diseases are handled with comparatively simple updates to the forward model with little 300

impact on the inference time. 301

Both the MCMC and grid-search methods rely on an explicit likelihood function. 302

Even with the relatively simple forward model described in this paper, the likelihood 303

function produces spiky distributions which can be challenging to optimise. To address 304

this problem, we have added a number of extra steps to the MCMC approach which 305

attempt to steer the model away from local maxima in the likelihood function, 306

circumventing regions with negative infinity log-likelihood. As more complex forward 307

models are introduced, which are able to more accurately simulate either the dispersion 308

of the pathogen, the movement of susceptible populations, or the within-host dynamics 309

of the pathogen, it will likely lead to an increasingly unstable likelihood function. This 310

may not be a problem with the RCNN method, which does not rely explicitly on the 311

likelihood function and is more flexible to increased model complexity - at the expense 312

of an increased training period. 313

Further work is needed to demonstrate each method’s ability to deal with more 314

complex models and different disease threats. Further, it will be important to build a 315

degree of uncertainty into the predictions produced by the models. For the grid-search 316

and MCMC based approaches this will be relatively straight forward as the techniques 317

lend themselves well to uncertainty quantification. For the RCNN model it may not be 318

possible to effectively derive prediction uncertainty. 319

The models developed in this paper have been shown to be effective when deployed 320

on a fully observed outbreak. It is important to note that this assumption will likely be 321

invalid during a release event - either through cases failing to present to healthcare 322

authorities, inaccurate or low resolution recording of symptom onset times, or through 323

incomplete data capture processes. A natural further step in this work is to consider 324

how well the approaches handle such incomplete or inaccurate datasets. 325

This paper has demonstrated three back-calculation methods for identifying source 326

information during a deliberate release event. The novel methods - the modified MCMC 327

and RCNN approaches - directly address two existing problems in reverse-epidemiology; 328
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Fig 6. Predictions (Θ̂) plotted against true values (Θ) for the RCNN method on test
set of 700 simulated outbreaks.

that of challenging parameter-likelihood surfaces and of slow deployment. Modification 329

of the MCMC approach suggested in [2] has allowed us to develop a method which 330

avoids many of the problems imposed by the parameter-likelihood surface, while the 331

RCNN approach, which does not explicitly use a likelihood function, also manages to 332

avoid many of these problems. Further, the neural network approach allows us to 333

undertake most of the computationally expensive inference prior to use, allowing for an 334

inference method which can be rapidly deployed. 335

These results represent a significant step in source term inference and provides a 336

basis for increased forward model fidelity in the future. For diseases such as anthrax, 337

where effective response is dependent on the fast and efficient distribution of 338

countermeasures, this ultimately reduces the burden on public health services and helps 339

to protect more lives. 340
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