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Abstract

This paper introduces a novel model to analyse the impact of macroeconomic shocks on volatility

spillovers within key financial markets, such as Stock, Bond, Gold and Crude Oil. By treating

macroeconomic variables as external factors to financial market volatility, our study distinguishes

between internal financial volatility spillovers and external shocks arising from macroeconomic

changes. Our analysis reveals that without macroeconomic shocks, the Stock market predomi-

nantly acts as the main source of volatility spillovers, with Crude Oil being the principal spillover

recipient. However, the Stock market’s role in driving volatility spillover, especially towards the

Crude Oil market, changes markedly in the context of macroeconomic shocks. These shocks exert

a more substantial impact on Crude Oil compared to other markets. In contrast, the Bond and Gold

markets exhibit a lower level of volatility transmission and are less influenced by macroeconomic

shocks, thereby reinforcing their roles as stabilizers within the financial system.
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1. Introduction

The spillover of risks, which is commonly known as the volatility spillover effects, characterize

how shocks and risks propagate and spread among different markets (Diebold and Yilmaz, 2012;

Diebold and Yılmaz, 2015). Numerous studies have highlighted the significant effects of changes

in macroeconomic conditions on the volatilities of financial markets. Given their importance for

risk valuation and portfolio diversification strategies (Garcia and Tsafack, 2011), there is a need

for precise quantification of the impact of macroeconomic shocks on these volatility spillovers.

The exploration of volatility spillover effects in financial markets has been extensively covered,

with contributions from Gallo and Otranto (2008); Diebold and Yilmaz (2012); Engle et al. (2012);

Diebold and Yılmaz (2015); Qian et al. (2023). Typically, these studies are anchored in the Vector

Auto-regression (VAR) models or the multivariate GARCH model, often integrating the volatility

spillover index as highlighted by Diebold and Yilmaz (2009). More recently, Engle et al. (2012)

introduced the Multiplicative Error Model (MEM), which addresses some limitations of the VAR

model (e.g., Diebold and Yilmaz (2009); Baruník et al. (2016); Baruník et al. (2017)) and the

multivariate GARCH model (e.g., Bauwens et al. (2006); Wang and Li (2021)). For instance,

unlike the VAR model, MEM is not prone to the issue of zero and non-negative predictions of

volatility. Compared to the multivariate GARCH model, it avoids the ’curse of dimensionality’

problem, as noted by Bauwens et al. (2006).

Macroeconomic shocks often stem from changes in broader macroeconomic conditions that

impact asset markets. These risks can manifest in various forms, including monetary policy risks

(Greenspan, 2004), interest rate risks, inflation risks, economic policy uncertainty (Bali et al.,

2014), and geopolitical risks (Bratis et al., 2023). The influence of policy-induced uncertainty on

commodities, currencies, and Crude Oil has been well-established (Albulescu et al., 2019; Dai

and Zhu, 2023). For instance, Albulescu et al. (2019) identified a causal effect of U.S. economic

policy uncertainty on the interconnectedness between Crude Oil and currency markets in both

emerging and developed economies. Similarly, inflationary pressures and shifts in interest rates
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have also been found to significantly affect financial markets. For example, Dai and Zhu (2023)

discovered that term and credit spreads have strong predictive power for total return spillovers and

total volatility spillovers in financial markets. Lastly, financial markets, particularly equities and

Bonds, are also subject to climate and geopolitical risks. Research by Antonakakis et al. (2017),

Gu et al. (2021), and Sohag et al. (2022) has examined the responses of equity and Bond markets

to geopolitical and environmental risks, with Sohag et al. (2022) noting that geopolitical risks can

positively influence the performance of green Bonds and equity.

Despite extensive research on how macroeconomic shocks affect individual market’s return and

volatility, there is a noticeable research gap in understanding their impact on spillovers and conta-

gion between financial markets. Our study addresses this gap by examining how macroeconomic

shocks influence the volatility spillovers in Stocks, Gold, Bonds, and Crude Oil markets. Exist-

ing models, mainly VAR models, assume a two-way influence between financial volatilities and

macroeconomic factors. However, this mutual influence is not well-supported by evidence. In fact,

macroeconomic changes, driven by economic policies and market conditions, tend to have a greater

effect on market volatilities. This is supported by findings that show financial markets are more

reactive to macroeconomic shifts than vice versa (Bali et al., 2014; Karali and Ramirez, 2014).

Recent studies provide further evidence supporting the dominant influence of macroeconomic fac-

tors on financial market volatilities. For example, Li et al. (2016) show significant information

transmission from equity-related uncertainty to oil prices, but not vice versa. Similarly, Leung

et al. (2017) find that macroeconomic fundamentals explain the increased spillover between global

equity markets and the Dow Jones Industrial Average (DJI) during financial crises. Yang and Zhou

(2017) demonstrate a strong sensitivity of German and US implied volatility indices to macroeco-

nomic announcements. Megaritis et al. (2021) argue that heightened macroeconomic uncertainty

impacts the volatility of the US stock market, which is particularly evident in the aftermath of

the 2007 US Great Recession. Smales (2021) finds a significant role of geopolitical events on oil

price volatility and, to a lesser extent, on stock market volatility. Furthermore, Iqbal et al. (2024)
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demonstrate that the US default spread, the TED (Treasury Eurodollar) spread, US stock volatility,

and the Risk Aversion Index (RAI) contribute to volatility spillovers at various levels of volatility

states.

Inspired by these insights, our first contribution extends Engle et al. (2012) vector Multiplica-

tive Error Model (vMEM) by incorporating macroeconomic variables as additional exogenous

factors. This extension, known as the vMEM-X model, is designed to investigate the influence of

macroeconomic shocks on volatility spillovers across financial markets. In the vMEM-X frame-

work, macroeconomic variables are treated as external factors that impact market volatilities in-

dependently. These variables are integrated into the model using a VAR framework, under the

assumption that financial market volatility does not reciprocally affect macroeconomic conditions.

The vMEM-X model distinguishes between two types of shocks: those originating within financial

markets and those resulting from macroeconomic changes. To assess the impact of these shocks,

we also extend and develop new formulas for the calculation of volatility spillover balance and

impulse response functions proposed by Engle et al. (2012). These enhancements enable a thor-

ough examination of market responses to both types of shocks, providing valuable insights into the

dynamics of volatility transmission across financial markets.

We apply the vMEM-X model to the Stock, Bond, Gold and Crude Oil markets, and explore

their volatility spillovers using key macroeconomic variables such as term spread, short-term inter-

est rates, inflation rates, US real economic activity, economic policy uncertainty, and geopolitical

risk 2. Our findings reveal the followings. Firstly, our analysis identifies the Stock market as the

primary provider of volatility spillovers, with the Crude Oil market predominantly acting as the

recipient of these spillovers. This pattern holds true whether or not macroeconomic variables are

included in the model. Secondly, we observe that these macroeconomic shocks impact Crude Oil

and Stock volatility more than they do other markets. Thirdly, in scenarios excluding macroeco-

2We chose the six macroeconomic variables based on existing literature and data availability from 2003 onwards.

Detailed references regarding the use of these variables can be found in the Section 4

4



nomic variables, the apparent spillover effects from Stocks to Crude Oil can be misinterpreted.

Our analysis show that the substantial volatility transmitted from the Stock market to the Crude

Oil market, is not merely a result of the Stock market’s inherent traits. Instead, it mirrors the in-

creased sensitivity of both the Stock and Crude Oil markets to macroeconomic shocks. Lastly, the

Bond and Gold markets, typically regarded as safe havens, demonstrate lower levels of volatil-

ity spillover and are less affected by macroeconomic shocks, confirming their roles as stabilizers

(Shahzad et al., 2020; Gomis-Porqueras et al., 2022; Madani and Ftiti, 2022) in the financial mar-

kets amidst economic uncertainty.

One of the most notable findings is the nuanced role of the Stock market in volatility trans-

mission. The literature has consistently identified the Stock market as a major volatility spillover

provider (Wang and Wu, 2018; Xu et al., 2019; Guan et al., 2024). Initially, our empirical analysis

suggests that the Stock market is the primary force driving volatility. However, a deeper exam-

ination reveals a more intricate interaction. While the Stock market indeed transmits significant

volatility to other markets, especially Crude Oil, this does not solely indicate its inherent propen-

sity to generate spillovers. Instead, this pattern reflects the acute sensitivity of both the Stock and

Crude Oil markets to macroeconomic shocks. These findings suggest that changes in macroe-

conomic conditions, rather than inherent financial market shocks, primarily dictate the observed

volatility transmission from Stocks to other markets.

The rest of the paper is organized as follows. Section 2 introduces multiplicative error model

for the volatility with exogenous variables. Section 3 derive the volatility spillover balance for

this model. Section 4 presents the dataset and Section 5 contains the empirical results and their

interpretations. Finally, Section 6 concludes with policy implications and suggestions.

2. The Methodology Framework

Andersen et al. (2001) introduced a natural estimator for the quadratic variation of a process,

known as the realized variance (RV ), defined as the sum of frequently sampled squared returns.
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To simplify, let us assume that prices p0, . . . , pn are observed at n+ 1 intervals, evenly distributed

over the interval [0, t]. Using these returns, the n-sample realized variance, RV , can be defined as

follows:

RV =
n∑

j=1

r2j (1)

where rj = pj−pj−1.the realized variance (RV ) converges in probability to the quadratic variation

of log prices as the number of intraday observations increases, i.e., as n → ∞.

2.1. Multiplicative Error Models

Since the RV is non-negatively valued and highly persistent over time, we follow the work of

Engle and Gallo (2006), Shephard and Sheppard (2010), Engle et al. (2012), and Xu et al. (2018)

to use the MEM for modeling the dynamics of RV. The MEM was initially proposed by Engle

(2002) and has been widely used for modeling the dynamics of non-negative, highly persistent

financial time series, such as absolute return, daily range, realized volatility, trading duration,

trading volume, and bid-ask spread.

Given the information set It−1, the realized volatility in market i, denoted as RVi,t, is modeled

as follows:

RVi,t|It−1 = µi,tϵi,t, i = 1, 2, ..., k, (2)

where k represents the number of assets/markets studied in the system, which in our case is 4. The

innovation term ϵi,t is a unit mean random variable, such that ϵi,t|It−1 ∼ i.i.d(1, σi). Consequently,

µi,t = E(RVi,t|It−1), which can be specified as a basic MEM(1,1):

µi,t = ωi + αiiRV i,t−1 + βiµi,t−1 (3)

where ωi, αii, and βi are defined according to a standard MEM model, as described in Engle

(2012).

Furthermore, the heterogeneous autoregressive (HAR) model of Corsi (2009) has emerged as a
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simple and powerful way to include the long-memory feature of realized volatilities. Adding HAR

terms to the realized semi-variance equations, results in the richer dynamic equations

µi,t = ωi + αiiRV i,t−1 + βiµi,t−1 + αw
iiRV w

i,t−1 + αm
iiRV m

i,t−1, (4)

where RV w
i,t =

1
5

∑5
l=1 RVi,t−l, RV m

i,t = 1
22

∑22
l=1 RVi,t−l.

To study the volatility spillover effects, we include the lagged daily volatility observed in other

markets to the specification. The general volatility spillover model is then:

µi,t = ωi + αiiRV i,t−1 + βiµi,t−1 + αw
iiRV w

i,t−1 + αm
iiRV m

i,t−1 +
k∑

j ̸=i

αijRV j,t−1 (5)

Next, we add macro condition variables to the volatility volatility spillover model. Let Zt =

(z1t, z2t, ...zmt)
′ be m macro economic variables, then

µi,t = ωi + αiiRV i,t−1 + βiµi,t−1 + αw
iiRV w

i,t−1 + αm
iiRV m

i,t−1

+
k∑

j ̸=i

αijRV j,t−1 +
m∑

l=1

cilzl,t−1, (6)

Following Engle et al. (2012) and Xu et al. (2018), the volatility models in (6) can be estimated

using quasi-maximum likelihood estimation. This is under the assumption that the innovation

terms ϵi,t|It−1 and follow exponential distributions.

Now let us write (6) in a compact matrix form. Let xt = (RV1,t, RV2,t, · · ·, RVk,t)
′, µt =

(µ1,t, µ2,t, · · ·, µk,t)
′, xw

t = (RV w
1,t, RV w

2,t, · · ·, RV w
k,t)

′, xm
t = (RV m

1,t, RV m
2,t, · · ·, RV m

k,t)
′ and ϵt =

(ϵ1,t, ϵ2,t, · · ·, ϵk,t)
′ . Denote Zt = (z1t, z2t, ...zmt)

′, conditional on the information available at time

t, (6) can be stacked in a compact matrix form as

xt = µt ⊙ ϵt, ϵt ∼ D(1,Σ),

µt = ω +Axt−1 +Bµt−1 +A
w
x
w
t−1 +A

m
x
m
t−1 + CZt−1. (7)
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where ⊙ denotes the Hadmard (element by element) product. The innovation vector ϵt has support

over [0,+∞), with a unit mean vector 1 and general variance-covariance matrix Σ. This is a

vMEM with exogenous variable, the model is lablled as vMEM-X model.

The first two moment conditions of the vMEM are given by E(xt|Ωt) = µt and var(xt|Ωt) =

µtµ
′
t⊙Σ, with the latter a positive definite matrix by construction. Processes such as those defined

by (7) can be written as VARMA-X(1,1) by defining appropriate error terms (see Appendix A for

the derivations). Given this representation, the covariance stationarity condition requires that the

largest eigenvalue of A+B+A
w +A

m be less than unity. Consequently, the unconditional first

moment can be obtained as E(xt) = (Ik −A+B+A
w +A

m)−1
ω.

3. Spillover Analysis

Engle et al. (2012) and Xu et al. (2018) propose a quantitative measure for the volatility

spillover effects across multiple markets, premised on the measure of spillovers as responses to

shocks. Following their methodology, we derive analogous measures for our volatility models.

Next, we derive a multiple-step ahead forecasting xt+τ (where τ > 0) computed at date t,

which is not known and needs to be substituted with its corresponding conditional expectation

µt+τ |t, hence

µt+1|t = ω +Axt +Bµt +A
w
x
w
t +A

m
x
m
t + CZt, (8)

and for 2 ≤ τ < 22,

µt+τ |t = ω + (A+B)µt+τ−1|t +A
w
x
w
t+τ−1|t +A

m
x
m
t+τ−1|t + CẐt+τ−1|t, (9)

where xw
t+τ−1|t = 1

5

∑5
l=1 xt+τ−l|t, x

m
t+τ−1|t = 1

22

∑22
l=1 xt+τ−l|t and xt+τ−l|t = µt+τ−l|t if τ > l.

And then, for any τ ≥ 22,

µt+τ |t = ω + (A+B+A
w +A

m)µt+τ−1|t + CẐt+τ−1|t, (10)

As long as we know Ẑt+τ−1, the multiple-step ahead forecasting can be solved recursively for any
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horizon τ .

The variables Zt primarily represent macroeconomic condition variables. In our empirical

analysis, we select various proxies for macroeconomic variables, including term spread, short term

interest rate, inflation rate, US real economic activity, Economic policy uncertainty, geopolitical

risk, among others. It is reasonable to assume that these macro variables are exogenous to the

volatility of the financial market. However, changes in macroeconomic conditions significantly

affect the volatility of the financial market. Following the standard approach in macroeconomic

analysis, we employ a reduced form Vector Autoregression (VAR) model for the macro variables,

as it is well-acknowledged that many structural macroeconomic models, for instance, the renowned

Dynamic Stochastic General Equilibrium (DSGE) model by Smets and Wouters (2007), possess a

reduced form VAR representation.

Zt = PZt−1 + ηt, (11)

where ηt ∼ i.i.d(0,Ση) is the shocks of macroeconomic conditions. The VAR coefficient P can

be estimated by OLS. The multiple-step ahead forecasts of Ẑt+τ−1 is given by

Ẑt+τ = P τZt (12)

3.1. Volatility spillover from the financial market shocks

Firstly, let us consider the shocks are from financial markets. we can derive a spillover balance

index. Let us recall that the vMEM-X in a system,

xt = µt ⊙ ϵt, ϵt ∼ D(1,Σ). (13)

The innovation vector ϵt has a mean vector 1 with all components unity and general variance-

covariance matrix Σ. We can interpret µt+τ = E(xt+τ |It, ϵt) = 1, that is, the expectation of

xt+τ conditional on ϵt being equal to the unit vector 1: this is on the basis of the dynamic forecast

obtained before. Let us now derive a different dynamic solution, µ
(i)
t+τ = E(xt+τ |It, ϵt = 1+ s

(i))

, for a generic ith element s(i), where i = 1, 2, ..., k . The ith element equal to the unconditional

9



standard deviation of ϵi,t and the other terms j ̸= i equal to the linear projection E(ϵj,t|ϵi,t =

1 + σi) = 1 + σi
σi,j

σ2

i

. The element-by-element division (⊘) of the two vectors,

ρ
(i)
t,τ = µ

(i)
t+τ ⊘ µt+τ − 1. (14)

Given the multiplicative nature of the model, ρ
(i)
t,τ gives us the set of responses (relative changes)

in the forecast profile starting at time t for a horizon τ brought about a 1 standard deviation shock

in the ith market. The cumulated impact of the shock from market i to market j is:

Φj,i
t =

K∑

τ=1

ρ
j,i
t,τ . (15)

where K is the forecast horizon. The total spillover effect (TSI) as:

TSI =
∑

i ̸=j

T∑

t=1

Φj,i
t (16)

which measures the overall contribution of volatility spillover shocks across markets.

This is also a way to assess the total change induced by the shock of different markets. Follow-

ing Engle et al. (2012), we express the spillover balance as the ratio of the average responses “to”

to the average response “from” (excluding one’s own) :

Balancei =

∑
j ̸=i

∑T

t=1 Φ
j,i
t∑

j ̸=i

∑T

t=1 Φ
i,j
t

. (17)

where Balancei denotes volatility spillover balance. A Balance value greater than 1 signals that

the market is a net creator of volatility spillover, while a Balance value smaller than 1 signals that

the market is a net accepter of volatility spillover.

3.2. Volatility spillover from macroeconomic shocks

Now, let us consider the volatility spillover from the macroeconomic shocks.

The vMEM-X model innovation vector ϵt has a mean vector 1. Let us consider that macroe-

conomic VAR model innovation vector ηt has a mean vector not equal to 0, but (0 + σl), where

l = 1, 2, ...,m. The lth element σl equal to the unconditional standard deviation of ηl,t, keep-

10



ing other macroeconomic shocks unchanged. Let us derive a different dynamic solution, µ
(l)
t+τ =

E(xt+τ |It,ηt = σl) , for a generic lth element σ(l). The multiple-step ahead forecasts of Ẑt+τ is

given by

Ẑ l
t+τ = P τZ l

t (18)

Replacing Ẑt+τ in the multiple step ahead forecasting equations in (9) and (10), we get µ
(l)
t+τ =

E(xt+τ |It,ηt = σl) . The element-by-element division (⊘) of the two vectors is

ρ
(l)
t,τ = µ

(l)
t+τ ⊘ µt+τ − 1. (19)

Given the multiplicative nature of the model, ρ
(l)
t,τ gives us the set of responses (relative changes)

in the forecast profile starting at time t for a horizon τ brought about a 1 standard deviation shock

in the lth macroeconomic condition. The cumulated impact of the shock from macroeconomic

shock l to financial market j is expressed as:

Φj,l
t =

K∑

τ=1

ρ
(l)
t,τ , (20)

and the total spillover effect (TSI) as:

TSI =
∑

j,l

T∑

t=1

Φj,l
t (21)

which measures the overall contribution of volatility spillover shocks across different macroeco-

nomic condition variables.

The total spillover to financial market from macroeconomic shock l is given by
∑k

j=1

∑T

t=1 Φ
l
t

nd the total spillover from all the macroeconomic shocks to financial market j is given by
∑L

l=1

∑T

t=1 Φ
j
t .

4. Data

We follow Fleming et al. (2001, 2003) and choose the four futures contracts: S&P 500 futures

(ES: CME GROUP), Treasury Bond futures (US: CCBOT/CME GROUP), Gold futures (GC:

COMEX/CME GROUP), and Crude Oil futures (CL: NYMEX/CME GROUP) to represent the
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Stock, Bond, Gold, and Crude Oil markets, respectively. The data are obtained from TickData,

Inc. The sample period is July 1, 2003 to August 5, 2022, with a total of 4864 trading days. We

choose July 1, 2003 as starting date, as trading occurs both in the daytime and in the evening (e.g.,

from 7:20 to 16:00 and from 17:00 to 7:20 for Bond) from that day, ensuring that the realized

variance of our dataset closely approximates whole-day variance.

There are two benefits to using future contract rather than using the spot price of the four mar-

kets. First, the four contracts are traded for 23 hours during the sample periods, which closely

approximates whole-day variance, enhancing the accuracy of the realized variances. Second, the

four futures are traded on the same exchange, which eliminates the need to adjust for time zones.

This consistency simplifies the analysis and allows for more accurate comparisons across the dif-

ferent futures contracts. Detailed information regarding data cleaning and the construction of the

realized variance process can be found in Bauwens and Xu (2023) and Guan et al. (2024).

We select the following six variables to assess the macroeconomic conditions of the US, based

on the availability of daily data from 2003 onwards.

• Term spread (TSD): TSD represents the difference between the yield of 10-year constant ma-

turity Treasury Bonds and that of 3-month Treasury bills. As highlighted by Patelis (1997)

and Faria and Verona (2020), the Term Spread is a significant predictor of future Stock

returns and volatility. Notable studies employing TSD as a measure of macroeconomic con-

ditions include , Hjalmarsson (2010), Faria and Verona (2020), Saeed et al. (2021) Ahmed

and Sleem (2023), and Kocaarslan (2023).

• Effective Federal Funds Rate (FFR): The FFR denotes the overnight interest rate at which

US banks and credit unions lend excess reserves to each other. This very short-term rate

serves as one of the primary monetary policy tools utilized by the Federal Reserve to either

stimulate or decelerate overall economic activity. Notable studies that have employed the

FFR as a metric for macroeconomic conditions include Couture (2021), Kocaarslan and
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Soytas (2021), Saeed et al. (2021), Guo et al. (2022), and Ahmed and Sleem (2023).

• Inflation (INF): INF is a forward-looking metric that reflects the expectations of economic

agents (consumers, investors, businesses) regarding the trajectory of US inflation rates over

the ensuing five years. This market-based measure is derived from Treasury spreads. Notable

studies utilizing INF as a macroeconomic condition indicator include Schwert (1981), Wei

(2010), Jareño et al. (2016), Rapach (2002), Fromentin et al. (2022), and Ahmed and Sleem

(2023).

• The Aruoba-Diebold-Scotti (ADS) Business Conditions Index: The ADS Index, as proposed

by Aruoba et al. (2009), serves as a real-time gauge for the overall economic activity in the

US. Given that the average value of the ADS index is zero, positive (negative) values of the

index signify better- (worse-) than-average economic conditions. Notable studies employing

the ADS Index as a macroeconomic condition indicator include Berger and Pukthuanthong

(2016), Giovannelli et al. (2021), Smales (2021),Bruno et al. (2022), and Ahmed and Sleem

(2023).

• US Economic Policy Uncertainty (EPU): The EPU index, developed by Baker et al. (2016),

serves as a proxy for the overall uncertainty pertaining to economic policy in the US. The

construction of the index is predicated on three core components: (i) policy-related economic

uncertainty gleaned from news reports; (ii) uncertainty regarding prospective tax legislation,

as garnered from Congressional Budget Office reports; and (iii) disparate forecasts among

economists concerning public expenditure and future inflation rates. Notable studies utiliz-

ing the EPU as an indicator for macroeconomic conditions include Ivanovski and Marinucci

(2021), Shafiullah et al. (2021), Wang et al. (2022a), Wen et al. (2022), and Ahmed and

Sleem (2023).

• Geopolitical Risk (GPR): The Geopolitical Risk index, developed by Caldara and Iacoviello

(2022), encapsulates risks stemming from interactions between countries. These interactions
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encompass trade relationships, security partnerships, alliances, multinational climate initia-

tives, supply chains, and territorial disputes. Notable studies employing the GPR index as

a macroeconomic condition indicator include Adebayo et al. (2022), Costola et al. (2022),

Caldara and Iacoviello (2022), Wang et al. (2022a), and Feng et al. (2023).

The descriptive statistics for realized volatility and macroeconomic condition variables are

summarized in Table 1, with their time series evolution depicted in Figures 1 and 2.

In the realized volatility, Crude Oil stands out with the highest volatility, suggesting it is riskier

compared to other markets. Conversely, Bonds exhibit the lowest mean of realized variance, re-

flecting their status as a safe-haven asset with less credit risk and more predictable payments,

consistent with Viceira (2012). The Ljung Box statistics indicate strong serial autocorrelations

in realized variance. Figure 1 shows a marked increase in volatility of the four markets during

the global financial crisis, followed by significant declines with occasional jumps. The volatility

surged at the onset of the COVID-19 pandemic, although it did not persist as during the financial

crisis. The persistent nature of realized variances over time suggests that MEM-type models are

well-suited for modeling these dynamics.

Insert Table 1 here

Insert Figure 1 and 2 here

Turning to macroeconomic condition variables, the mean values for TSD, FFR, and INF (1.63,

1.22, and 2.18 respectively) generally align with the economic policy objectives in the US, indi-

cating a stable economy during the sample period. However, the negative mean for ADS reflects

below-average real business conditions, likely influenced by the COVID-19 pandemic’s adverse

impacts, as seen in Figure 2. The negative skewness in TSD, FFR, INF, and ADS mirrors the

significant downturns experienced during crises, including the 2008 global financial crisis and the

COVID-19 pandemic. The EPU and GPR values, at 1.1 and 1.07 respectively, slightly exceed the

normalized value of 1.
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Figure 2 highlights two sharp declines in TSD coinciding with the global financial crisis and

COVID-19 pandemic periods. These dips in TSD during crisis periods are indicative of market

stress and monetary policy responses. The Inflation (INF) rate, on the other hand, displays relative

stability throughout the sample period. FFR shows a prolonged period of near-zero values between

2009 and 2016, and again from 2020 to early 2022, reflecting the Federal Reserve’s response to

economic downturns with lower interest rates. EPU spiked significantly during the financial crisis

and even more so during the COVID-19 pandemic. This aligns with the heightened economic

uncertainty during major global events. GPR also shows a significant increase in 2022, likely a

reflection of the Russian-Ukrainian crisis, as noted by Wang et al. (2022b).

By comparing Figure 1 and 2, it seems that the volatilities in markets such as Crude Oil, Stocks,

and Gold seems highly responsive to economic policy uncertainties, and major shifts in monetary

policy. In contrast, the Bond market typically exhibits stability during these periods.

5. Empirical results

5.1. Estimates

Based on the equation-by-equation estimation results, we proceed to select a more parsimo-

nious specification, based on the significance of zero restrictions. The large number of coefficients

in the general specification in (7) yields inefficient parameter estimates and, therefore, less precise

spillover forecasts analysis (Engle et al., 2012). We report only the coefficients estimates that are

significant at 5 percent level in Table 2. The model diagnostics are summarized in the lower panel

of Table 2. where the values of the log-likelihood functions, Bayesian Information Criteria (BIC)

and Ljung box (LB) statistics for residuals are reported.

Insert Table 2 here

Columns 2 to 5 of Table 2 present the primary estimated results from the vMEM-X model with

macroeconomic shocks incorporated as additional exogenous variables. Firstly, we observe that the

estimated α is relatively large, while the estimated β is relatively small, indicating persistence and
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slow mean revision in volatility. Secondly, the two HAR parameters, αw and αm, are significant in

all eight cases, indicating a high level of persistence in the variance. Thirdly, lagged Stock volatility

has a positive effect on the other three markets. This suggests a strong contagion effect where

shocks in the Stock market are transmitted to other markets, influencing their volatility. The lagged

Bond volatility has negative impact on the other three market. It aligns with the stabilizing role

of Bonds, suggesting that increased volatility in Bonds could potentially lead to reduced volatility

in other markets. The lagged Gold volatility does not affect the other three markets, nor does the

lagged Crude Oil volatility. This can be attributed to the safe-haven property of Gold and Crude Oil

markets, where investors use them to hedge and diversify their portfolios to mitigate risk exposures.

Lastly, TSD has a positive impact on Stock, Bond and Gold volatilities, implying that an increase

in term spread increases the volatility in these markets. The negative coefficients for INF across

all markets, especially oil, indicate that higher inflation expectations reduce market volatilities,

possibly due to the anticipation of central bank interventions, such as interest rate hikes, which

might stabilize market fluctuations. ADS negatively affects Stock and oil volatilities, suggesting

that better economic conditions might lead to lower volatility in these markets. EPU, GPR, and

FFR only impact stock market volatility and not the volatilities of the other three markets. This

may be attributed to the perception of Bonds, Gold, and Crude Oil as safe-haven assets, especially

during periods of economic uncertainty or geopolitical tensions.

For comparative purposes, we also estimates the vMEM model of Engle et al. (2012), which

excludes the macroeconomic variables. These results are displayed in columns 6 to 9 of Table 2.

It is evident that incorporating macroeconomic shocks in the vMEM model does not alter the sign

and significance of other parameters. However, with the inclusion of macroeconomic shocks, the

vMEM-X model exhibits higher log-likelihood values and smaller BIC values, suggesting an over-

all better fit. The LB statistics are small and insignificant, indicating that both models successfully

capture the dynamics of the semivariance processes, while the vMEM-X model demonstrates a

slightly better capture of the dynamics, as evidenced by smaller LB values.
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5.2. Volatility Spillovers from financial market shocks

From Table 2, it is evident that the four markets are interdependent. The key questions we

address are: Which market plays the most significant role in spreading volatility shocks across

these four markets? And, do changes in macroeconomic variables influence the direction and

strength of volatility spillover effects among them? To answer these questions, we employ the

volatility spillover formulas developed in Section 3. The spillover balance index, particularly when

its value exceeds 1, indicates that a market is a net contributor to volatility spillovers.

Firstly, we investigate the volatility spillovers originating from the financial market. The results

are reported in Table 3 and 4. Table 3 shows the outcomes without incorporating macroeconomic

shocks, using the vMEM model and volatility spillover index developed by Engle et al. (2012). The

findings unveil significant volatility spillovers among the four asset markets, particularly towards

the oil market from Stock market. The Stock market exhibits a spillover balance index of 2.39,

illustrating its role as a major volatility spillover provider. Conversely, the Bond and Gold markets

display spillover balance indices of 1.18 and 1.06 respectively, indicating a relatively balanced

stance in terms of volatility spillover. The oil market, with a spillover balance index of 0.27,

significantly below 1, emerges as the principal volatility spillover recipient.

Insert Table 3 and 4 here

In Table 4, which includes macroeconomic variables and represents the vMEM-X model, the

results show distinct variations compared to Table 3. Although the Stock market continues to be a

key source of volatility, its impact is less pronounced when macroeconomic variables are consid-

ered, as the spillover balance index drops from 2.39 to 1.72. The Bond market’s spillover balance

index increases from 1.18 to 1.23, indicating a heightened role in transmitting volatility. Notably,

the magnitude of changes in the stock market’s spillover balance is much larger compared to the

changes in the Bond market’s spillover balance index. This is consistent with the observations in

Table 2, where all six macroeconomic variables have a significant impact on stock market volatility,
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whereas only two of them affect bond market volatility. Gold and oil markets transition to being

recipients of spillovers, aligning with the scenario under investigation. Notably, the spillover from

the Stock market to Crude Oil reduces significantly from 17.16 to 5.55 upon including macroe-

conomic variables, suggesting that these spillovers might be a response to macroeconomic rather

than Stock market shocks. This aspect warrants further exploration in the following subsection.

5.3. Volatility Spillovers from macroeconomic shocks

Table 5 presents the outcomes of volatility spillover resulting from macroeconomic shocks.

The key findings are following.

Insert Table 5 here

Firstly, the overall spillover effect on the four financial markets from inflation expectation (INF)

shocks is 30.85, the highest among all macroeconomic shocks, followed by term spread (TSE)

shocks at 21.98. Other macroeconomic shocks show similar levels of overall volatility spillover to

the financial markets. This indicates that inflation expectations and term structure predominantly

drive financial market spillover and contagion, a conclusion supported by studies from Gkillas

et al. (2019), Wang (2020), and Yang and Zhou (2017).

Secondly, Crude Oil exhibits the highest sensitivity to macroeconomic shocks (with a "Total

from" value of 53.12), highlighting its vulnerability to economic fluctuations. The Stock market

also responds considerably (with a "Total from" value of 35.79), while Bond and Gold markets,

known for their safe-haven attributes, are less impacted (Agyei-Ampomah et al., 2014; Bredin

et al., 2015).

Thirdly, contrasting Tables 4 and 3 reveals that the Stock market’s high volatility spillover bal-

ance index, mainly due to significant spillover to Crude Oil, does not solely indicate its dominant

role in transmitting spillovers among these markets. Rather, it underscores the swift and substan-

tial reaction of both Stock and Crude Oil market volatilities to macroeconomic shocks, with these
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shocks impacting Crude Oil more heavily than Stocks. In scenarios lacking macroeconomic vari-

ables, this differential response to macroeconomic shocks is observed as heightened spillover from

Stocks to Bonds, as shown in Table 3.

5.4. Impulse response analysis

Lastly, we use the vMEM-based impulse response to show how the shocks propagate to other

markets for a crises. We select March 11, 2020, the date when the World Health Organisation

(WHO) declared COVID-19 a global pandemic, as starting date a shock to illustrate how the shock

propagates to other markets 3.

Insert Figure 3 here

The IRF, assuming shocks originating from the financial market, shows that volatility shocks

in the Stock market have a notable ripple effect on other markets. As seen in Figure 3, these

shocks create an immediate and substantial response in the Stock market itself (approximately 0.7

impact), which gradually declines over time. Notably, there is a delayed and smaller impact on

the Bond, Gold, and Crude Oil markets, typically ranging between 30 percent and 40 percent.

This response grows, forming a hump-shaped curve, and peaks between ten and twenty days post-

shock, reflecting the contagion effect from the Stock market to others. This hump-shaped response

is not observed when shocks originate in Bond, Gold, or Crude Oil markets, where other markets

respond with a monotonically declining trend. These patterns show the significant influence of the

Stock market on other markets. Notably, the effects of these shocks dissipate relatively quickly,

becoming negligible after 150 days.

Insert Figure 4 here

When considering shocks originating from macroeconomic variables, a different pattern emerges.

Figure 4 shows hump-shaped responses in all four financial markets to various macroeconomic

3Utilizing alternative dates as starting points, such as September 16, 2008, marking the onset of the global financial

crisis, reveals a similar pattern. The results are available upon request.
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shocks, illustrating the pervasive impact of macroeconomic conditions. Crude oil, in particular,

displays the largest responses to TSE, INF, EPU, and GPR shocks, highlighting its heightened sen-

sitivity to changes in these economic indicators. Gold responds most significantly to FFR shocks,

likely reflecting its sensitivity to interest rate changes. The Stock market’s relatively smaller re-

sponse to most macroeconomic shocks (except ADS) suggests a lower susceptibility to these fac-

tors compared to Crude Oil and Gold. Bonds and Gold, while less impacted than Crude Oil, still

show significant responses, with Gold often reacting more robustly than Bonds. These findings are

consistent with Table 5, reinforcing the idea that macroeconomic shocks, especially those influenc-

ing Crude Oil, have deep and lasting effects on market volatilities. Notably, the effects of macroe-

conomic shocks last much longer than financial market shocks, not reaching a new equilibrium

even after 200 periods. This observation underscores the long-term influence of macroeconomic

factors, particularly on the volatility of the Crude Oil market.

5.5. Robustness and Extension

As a robustness check, we conducted an estimation using different forecasting horizons (10-

step, 20-step, and 100-step ahead) and different orders (2nd order, 4th order, and optimal order)

for the VAR model of macroeconomic shocks. Our findings are robust across these specifications.

The results are available upon request.

We also expand the vMEM-X model to include a semi-variance case, where realized volatility

is divided into good volatility and bad volatility. For details on constructing good and bad volatility,

see Barndorff-Nielsen et al. (2010), Patton and Sheppard (2015), Xu (2024) and Guan et al. (2024).

Our focus is to determine whether shocks from macroeconomics impact the semi-variance in an

asymmetric manner. The results of this investigation are presented in Table 6.

Insert Table 6 here

Surprisingly, our analysis reveals that macroeconomic shocks impact both good and bad volatil-

ity in a relatively symmetrical manner. For example, the total responses of bad and good volatility
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in Stocks to macroeconomic shocks are 19.80 and 19.55 , respectively. The difference is very small

and statistically insignificant. 4. Similar patterns are found for the other three markets as well. This

finding indicates a lack of asymmetric response to macroeconomic shocks in our empirical analy-

sis.

6. Conclusions and Policy Suggestions

This study employs a novel vMEM-X model to analyse how macroeconomic shocks influence

volatility spillovers across key financial markets. The model treats macroeconomic conditions

as external factors affecting market volatility, distinguishing between internal volatility spillovers

within financial markets and external shocks from macroeconomic conditions. Additionally, new

volatility spillover balance indices and impulse response functions are derived.

Our application of this model to the Crude Oil, Stock, Bond, and Gold markets reveals distinct

findings. In scenarios excluding macroeconomic variables, Stocks emerge as primary sources of

market volatility, with Crude Oil being the main recipient. However, the role of the Stock market

in driving volatility, particularly towards Crude Oil, is significantly altered when macroeconomic

shocks are considered. These shocks have a more pronounced impact on Crude Oil than on Stocks,

emphasizing the importance of macroeconomic factors in market behavior. The Bond and Gold

markets, traditionally considered as safe havens, display a lesser degree of volatility spillover com-

pared to Crude Oil and Stocks. This reinforces their roles as stabilizers in the financial market

landscape, especially in times of economic uncertainty.

Our findings carry significant policy implications. Policymakers should prioritize stabilizing

financial markets through various measures. Implementing macro-prudential regulations such as

the capital adequacy ratio and liquidity coverage ratio in banks can bolster financial market sta-

4Guan et al. (2024) has defined an asymmetric volatility spillover index, which is the difference between the total

responses of bad and good volatility of the four markets to different shocks, and proposed a bootstrap procedure to test

if the asymmetric spillover is significant. We have also computed the asymmetric volatility spillover and conducted a

similar test. However, the difference is so small that the test is insignificant.
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bility, thus averting financial crises. Measures like Quantitative Easing (QE) and liquidity support

may also diminish the risk of contagion. Additionally, managing spillover effects from interest rate

decisions is crucial for effective monetary policy formulation. This strategy can help maintain a

stable inflation rate, a key macroeconomic objective, thereby contributing to overall financial mar-

ket stability and mitigating future financial crises and systemic risks. Other recommended policies

include strengthening coordination of monetary policy and the global safety net at a global level,

and enhancing supervision in the financial and banking system. Given the volatility spillovers from

the stock market to Crude Oil, efforts to stabilize US and international financial markets should

prioritize mitigating stock market risk spillovers to potentially prevent Crude Oil market destabi-

lization. Policies such as employing circuit breakers with short-selling restrictions can help prevent

excessive investor losses. From the perspective of investors, adjusting asset weights in portfolios

appropriately to hedge against risk contagion by investing more, particularly in Gold and Crude

Oil for diversification, is advisable. This strategy aligns with the role of both assets as spillover

receivers, as noted by Baur and Lucey (2010) and Hillier et al. (2006).

For future research, we recommend pursuing two directions. Firstly, while we focused on six

macroeconomic variables primarily from the US, it is essential to recognize the significant influ-

ence of emerging markets, particularly China, on the volatility of Crude Oil and Gold markets.

Secondly, the vMEM-X approach and volatility spillover balance formula proposed in our gen-

eral methods can be extended to international financial markets. For instance, exploring volatility

spillover effects between financial markets in different countries and the effects of external shocks

would be interesting.
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Table 1 – Summary statistics

Mean Std Min Max Skewness Kurtosis LB(12)

Panel A: Realized volatilities

Stock 1.298 2.623 0.031 39.409 7.016 69.668 34164

Bond 0.450 0.487 0.002 10.262 8.191 123.104 14195

Gold 1.285 1.575 0.054 23.827 5.536 52.738 17833

Crude Oil 4.743 5.230 0.100 56.532 3.940 25.414 38341

Panel B: Macroeconomic variables

TSD 1.630 1.110 -0.640 3.850 -0.030 2.080 46980

FFR 1.220 1.580 0.000 5.410 1.420 3.860 52389

INF 2.180 0.530 0.000 3.050 -2.310 9.950 9230

ADS -0.260 2.140 -26.480 9.310 -7.180 85.360 50062

EPU 1.100 0.820 0.030 8.080 2.420 12.100 25672

GPR 1.070 0.450 0.090 5.430 2.250 15.110 11272

Notes: This table reports summary statistics of realized volatilities and semivariances. LB(12) is

the Ljung–Box statistics for the serial correlation of order 12. The Term Spread (TSD) represents

the yield difference between 10-year Treasury Bonds and 3-month Treasury bills. Effective Federal

Funds Rate (FFR) denotes the overnight lending rate between banks. Inflation (INF) represents the

expected inflation rates over five years. Aruoba-Diebold-Scotti (ADS) Index measures real-time

economic activity. Economic Policy Uncertainty (EPU) index indicates policy-related economic

uncertainty. Geopolitical Risk (GPR) index tracks risks from international interactions.

Sources: Federal Reserve Economic Data (FRED), Philadelphia Federal Reserve, Policy Uncer-

tainty website, and Professor Matteo Iacoviello’s Geopolitical Risk website.
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Table 2 – Estimated Results

vMEM-X Model vMEM Model

With macroeconomic variables Without macroeconomic variables

Stock Bond Gold Crude Oil Stock Bond Gold Crude Oil

w 0.133 0.104 0.127 0.605 0.073 0.055 0.069 0.126

α 0.659 0.194 0.379 0.419 0.635 0.195 0.368 0.399

β 0.069 0.001 0.179 0.149 0.072 0.001 0.197 0.125

αw 0.188 0.385 0.181 0.228 0.207 0.391 0.175 0.270

αm 0.062 0.163 0.206 0.151 0.072 0.228 0.212 0.174

Stock 0.659 0.025 0.024 0.119 0.635 0.022 0.021 0.117

Bond -0.121 0.194 -0.098 -0.143 -0.109 0.195 -0.074 -0.211

Gold 0.379 0.368

Crude Oil 0.419 0.399

TSD 0.018 0.016 0.019

FFR 0.010

INF -0.047 -0.022 -0.034 -0.196

ADS -0.014 -0.057

EPU 0.033

GPR -0.017

LL -3440 -255.6 -4867 -11060 -3447 -270.5 -4869 -11065

BIC 6982 619.0 9810 22198 6946 592.0 9797 22190

LB 15.55 9.21 9.50 8.06 16.99 9.32 9.61 10.15

LL denotes the values of the log-likelihood. BIC is Bayesian Information Criteria. LB(12)

denotes the Ljung Box statistics up to order 12.
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Table 3 – Volatility Spillovers between Stock, Bond, Gold and Crude Oil markets - without Macroeconomic

Variables

From Volatility

Stock Bond Gold Oil Total From

To Volatility

Stock 15.93 4.96 6.11 3.49 14.55

Bond 7.84 4.44 3.59 1.87 13.30

Gold 9.74 4.64 11.59 3.35 17.74

Crude Oil 17.16 6.09 9.15 12.07 32.41

Total To 34.75 15.69 18.85 8.71 0.00

Balance 2.39 1.18 1.06 0.27

The table presents spillovers for the full sample with a forecast horizon of K = 200 days.

Table 4 – Volatility Spillovers between Stock, Bond, Gold and Crude Oil markets - with Macroeconomic

Variables

From Volatility

Stock Bond Gold Oil Total From

To Volatility

Stock 9.68 3.33 3.88 2.13 9.33

Bond 4.24 2.63 2.02 1.01 7.28

Gold 6.25 3.22 7.86 2.20 11.67

Crude Oil 5.55 2.42 3.21 4.18 11.18

Total To 16.05 8.98 9.11 5.34

Balance 1.72 1.23 0.78 0.48

The table presents spillovers for the full sample with a forecast horizon of K = 200 days.

Table 5 – Volatility Spillovers between Stock, Bond, Gold, and Crude Oil Markets - from Macroeconomic

Shocks

From shocks of

TSD FFR INF ADS EPU GPR Total from

To volatility of

Stock 5.92 3.81 7.79 8.36 5.74 4.17 35.79

Bond 1.82 2.51 3.26 1.82 1.67 1.70 12.78

Gold 3.17 3.78 5.22 1.37 2.19 2.73 18.46

Crude Oil 11.06 7.85 14.58 5.00 7.11 7.51 53.12

Total to 21.98 17.94 30.85 16.56 16.72 16.11

The table presents spillovers for the full sample with a forecast horizon of K = 200 days.
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Table 6 – Asymmetric Volatility Spillovers between Stock, Bond, Gold and Crude Oil markets - from

Macroeconomic shocks

From shocks of

To TSD FFR INF ADS EPU GPR Total from

Bad volatility Stock 2.12 1.79 3.30 6.86 3.79 1.94 19.80

Bond 1.42 2.34 2.82 1.79 1.49 1.49 11.36

Gold 0.88 1.16 1.78 1.56 1.29 1.01 7.68

Crude Oil 8.19 5.40 10.76 4.69 5.77 5.41 40.23

Good volatility Stock 2.10 1.68 3.23 6.80 3.82 1.92 19.55

Bond 1.10 2.19 2.46 1.73 1.34 1.30 10.11

Gold 0.99 1.31 2.03 1.61 1.42 1.16 8.53

Crude Oil 7.33 4.93 9.70 4.50 5.30 4.86 36.62

Total to 24.14 20.81 36.08 29.55 24.23 19.07

The table presents spillovers for the full sample with a forecast horizon of K = 200 days.

26



Stock

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

10

20

30

40

Bond

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

2

4

6

8

10

12

Gold

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

5

10

15

20

25

Crude Oil

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

10

20

30

40

50

60

Figure 1 – The time evolution of realized volatility of Stock, Bond, Gold, and Crude Oil
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Figure 2 – Time evolution of macroeconomic variables
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Figure 3 – Impulse response of the volatility in the four markets to realized volatility shocks
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Figure 4 – Impulse response of the volatility in the four markets to markets macroeconomic shocks
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Appendix A: VARMA-X Representation

Taylor and Xu (2017) demonstrated that vMEM(p, q) can be converted to a VARMA(p, q) pro-

cess. In this appendix, we follow Taylor and Xu (2017) and demonstrate that the vMEM-X can be

represented by a VARMA-X model.

Consider the following vMEM-X:

xt = µt ⊙ ϵt, ϵt ∼ D(1,Σ),

µt = ω +Axt−1 +Bµt−1 +A
w
x
w
t−1 +A

m
x
m
t−1 + CZt−1. (22)

where ⊙ denotes the Hadmard (element by element) product. The innovation vector ϵt has support

over [0,+∞), with a unit mean vector 1 and general variance-covariance matrix Σ. Taking the

difference between xt and µt, we obtain

xt − µt = et, et ∼ D(0,Π). (23)

It follows that

µt = xt − et, (24a)

Biµt = Bixt −Biet. (24b)

Substituting the expressions in (24a) and (24b) into (22) and rearranging we obtain the following

representation:

xt = ω +Axt−1 +Bxt−1 +A
w
x
w
t−1 +A

m
x
m
t−1 + CZt−1 + et −Bet−1,

= ω + (A+B)xt−1 +A
w
x
w
t−1 +A

m
x
m
t−1 + CZt−1 + et −Bet−1, (25)

which is a HAR-VARMA-X(1,1) model. Given this representation, the covariance stationarity

condition requires that the largest eigenvalue of A+B+A
w+A

m be less than unity. Consequently,

the unconditional first moment can be obtained as E(xt) = (Ik −A+B+A
w +A

m)−1
ω.
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