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Synopsis  Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological
resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing
temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to
trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of
resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks.
Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of
biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an
urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help
predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can
be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could
be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an
integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously
intractable impacts of climate change, with effective predictive potential to guide management and mitigation.

Introduction

Climate change is set to disrupt biological processes at
every scale, from the physiology and behavior of indi-
viduals (Musolin 2007; Portner and Farrell 2008; Travis
et al. 2013) to whole ecosystem functioning (Lensing
and Wise 2006; Walther 2010; Peters et al. 2013).
Changes in environmental conditions such as tem-
perature, barometric pressure, and precipitation have
severe consequences for trophic interactions, as they
influence their frequencies and identities (Harrington et
al. 1999; Winder and Schindler 2004; Blois et al. 2013;
Cuff et al. 2023¢). Understanding how these interac-
tions shift with weather and climate is consequently
important for predicting community-level responses to
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climatological change (Blois et al. 2013; Singer et al.
2013). Alterations to phenological matches (Thackeray
et al. 2016; Renner and Zohner 2018) and species
distributions (Poisot et al. 2015) rewire interspecific
interactions across entire ecosystems (Winder and
Schindler 2004), with cascading effects on ecosystem
services and functioning. The implications for trophic
interactions will, however, be compounded both di-
rectly and indirectly by simultaneous effects on other
constraints on foraging ecology, including metabolism
(Brown et al. 2004), symbioses (Kikuchi et al. 2016),
and biomechanical traits (Domenici and Seebacher
2020). Biomechanics, the physical laws that underpin
animal movement and structure, play a key role in
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determining the feasibility of interactions. Due to their
foundation in physics, they are amenable to analysis
from first principles, enabling detailed quantitative pre-
dictions of relevant performance metrics—a welcome
advantage in the otherwise complex and unpredictable
context of the effects of climate change on trophic
interactions.

Biomechanical traits are crucial determinants of
trophic interactions, both directly, for example, through
consumer bite forces and resource penetrability (Wang
et al. 2017; Puffel et al. 2023b), and indirectly, by
determining locomotor capacity or surface attachment
forces, which in turn influence predator-prey co-
occurrence, and capture and escape efficiencies (Betz
and Kolsch 2004; Wilson et al. 2013). Biomechanical
properties are, however, modulated by abiotic condi-
tions; for example, higher average temperatures can
affect biomechanical performance not only directly
(Olberding and Deban 2017, 2021), but also indirectly
through changes to animal morphology (Mackenzie et
al. 2014; Domenici and Seebacher 2020; Donihue et
al. 2020). The body sizes of beetles, for example, may
reduce with increasing average temperatures (Tseng
et al. 2018) in accordance with the “temperature-size
rule” (Klok and Harrison 2013), with likely concomitant
consequences for biomechanical performance, such as
reduced bite forces (Riihr et al. 2024; Piiffel et al. 2023a,
2023b).

The interaction between foraging ecology, biome-
chanics, and climate change remains poorly resolved,
yet the combined impact on trophic interactions has
important implications for the ecology of individu-
als, trophic network structure, and ecosystem func-
tioning. Climate change may consequently disrupt
the mechanisms underpinning biological processes
as general and significant as conservation biocontrol
and species invasions. To understand, predict, and
mitigate these effects, the pairwise interactions between
climate change, biomechanics, and foraging ecology
must first be understood, and then integrated (Figure
1). Here, we describe these interactions and discuss
their implications for a range of ecosystem services
and ecological phenomena. We argue that integrating
foraging ecology, biomechanics, and climate change
through network science—the study of interconnected
complex systems with graph theory—can clarify the
likely impacts of climate change on trophic interactions.
To illustrate this idea, we discuss how different data
types can be integrated through network science. We
also discuss the wider advances that network science
might represent in this line of enquiry, and outline
the specific requirements of realizing these advances.
A glossary of technical terms can be found in the
Supplementary Table S1. Appropriate integration of
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climate change, trophic interactions, and biomechanics
has the potential to facilitate not only a deeper un-
derstanding of these dynamics but also prediction of
future disruptions of ecosystem functioning by climate
change.

Foraging ecology changes with climate

Trophic interactions are driven by a range of processes,
including biotic factors, such as resource abundance
and choice (Van Der Putten et al. 2010; Vaughan
et al. 2018; Cuff et al. 2022b), and abiotic factors,
such as altitude, soil, water, and air chemistry, and
temperature (Sanchez-Carrillo et al. 2018). Foraging
ecology—the study of how animals search for, obtain,
and use food resources—accounts for the biotic and
abiotic factors that drive these interactions, facilitating
investigation of the mechanisms through which climate
change will alter them, and the likely consequences
of such changes. Climate change will impact foraging
ecology via both top-down and bottom-up alterations
of ecological interactions. Top-down effects are elicited
by changes at higher trophic levels, for example, due to
altered predator activity (Lang et al. 2012), metabolism
(Csik et al. 2023), or sensory perception (Draper and
Weissburg 2019); bottom-up effects are elicited by
changes to resources, for example, through alteration of
resource growth rate (Went 1953; Ratte 1984), location
(Schultz 1998; Ma et al. 2018), or phenology (Forrest
2016; Renner and Zohner 2018). Irrespective of their
directionality, these alterations may alternatively be
broadly categorized as ecological (e.g., phenology, co-
occurrence) or physiological (e.g., metabolism, sensory
perception; Laws 2017).

The ecological impacts of climate change on foraging
ecology can be both direct and indirect; indirect effects
are typically either spatial (e.g., resource distribution)
or temporal (e.g., phenology; Figure 1; Van Der Putten
et al. 2010; Thackeray et al. 2016; Renner and Zohner
2018; Cuff et al. 2023a). Resource community dynamics
and consumer-resource co-occurrence are easily ob-
servable manifestations of environmental change (Van
Der Putten et al. 2010; Renner and Zohner 2018). For
plant-animal interactions, climate change can alter co-
occurrences by altering the emergence time of animals
or the development time of plants, with mismatches
between resource availability and consumer activity
resulting in few or poor-quality resources (Feeny 1970;
Hunter 1990; Singer and Parmesan 2010; Kharouba
et al. 2015; Ross et al. 2017). For predator-prey
interactions, structural changes in prey communities
can result from migration of prey in response to
environmental change (Van Der Putten et al. 2010; Yang
et al. 2011), changes in prey behavior (Knowlton and
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Fig. | Conceptual diagram pairing drivers with consequences across climate change, biomechanics, and foraging ecology. Outlines of
organisms represent different groups and different shaded lines represent different drivers linked to their consequences. The right panel
provides an example based on increasing temperature relating to reduced bite forces and therefore reduced access to resources. Climate
change impacts foraging dynamics and can consequently cause spatiotemporal changes in trophic interactions. Biomechanical traits
determine the feasibility of trophic interactions, with profound impacts on their identities, frequencies, and outcomes. Climate change is set
to modify the physiological and morphological parameters that determine the biomechanical performance of organisms, leading to a
complex three-way interaction. Network science offers an opportunity to integrate these interactive effects, and to study their combined
impacts on trophic interactions. Figure created with Biorender.
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Graham 2010; Harborne 2013), or survival of prey in
environmental extremes (Aleuy and Kutz 2020; Neilson
et al. 2020), all of which can result in large fluctuations
in predator-prey co-occurrence rates. Environmental
variation can also change co-occurrence patterns more
directly; for example, greater wind speeds may dislodge
animals (Donihue et al. 2020), complicate foraging
by aerial predators (Lane et al. 2019), or make the
transport of resources more costly (Alma et al. 2016a,
2016b). Although consumer-resource co-occurrence is
a necessary condition for trophic interactions, it does
not determine them outright (Blanchet et al. 2020).
Prey preferences of predators can change irrespective of
prey availability (Cuff et al. 2022b), perhaps dictated by
metabolic, and other physiological changes (Jackson et
al. 2004).

Climate change also brings about physiological
changes, which usually affect trophic interactions in-
directly. Higher temperatures increase metabolic rates,
leading to greater energy demands and a concomitant
increase in feeding rates (Robinson et al. 1983; Gillooly
et al. 2001; Boscolo-Galazzo et al. 2018; Csik et
al. 2023), which may manifest in greater consumer
generality (Cuff et al. 2023¢) or changes in resource
choice (Eitzinger et al. 2021). This could rewire trophic
networks and increase competition for high-quality
resources (Lang et al. 2012). Heightened metabolic
demands with higher temperatures may also increase
animal activity (Gibert et al. 2016; Terlau et al. 2023),
but it can also decrease in small animals (Lang et al.
2012); regardless, variation in activity will alter co-
occurrence rates and, consequently, the frequencies and
identities of interactions. The production, emission,
and detection of sensory stimuli, crucial determinants
of trophic interactions, is also impacted by temperature
(Tingey et al. 1980; Pefiuelas and Staudt 2010; Sentis
et al. 2015), humidity (Menzel et al. 2018; Sprenger et
al. 2018; Baumgart et al. 2022), and wind (Goldansaz
and McNeil 2006; Hall et al. 2012; Wijers et al. 2022).
Although its impact is both broad and significant,
animal ecology is not the sole determinant of trophic
interactions. Instead, it will interact with biomechanical
constraints to determine trophic interaction identities,
frequencies, and outcomes.

Biomechanical traits constrain foraging
ecology

Physical processes play a key role in animal foraging,
and biomechanical traits have thus long been an
important element of foraging theory (Stephens and
Krebs 1986; Domenici 2001; Combes et al. 2012;
Moore and Biewener 2015). The role of biomechanical
traits in foraging is, with few exceptions, eventu-
ally linked back to the performance of muscle, the
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primary agent of motion. As a broad characteriza-
tion, biomechanical constraints on muscle may be
placed in one of two categories: dynamic constraints,
which determine energy output during continuous
movements or explosive predatory strikes; and effec-
tively quasi-static constraints, which determine the
magnitude of the maximum forces animals can apply
(Alexander 2006).

Dynamic biomechanical constraints typically play
a key role during resource acquisition, as is perhaps
most evident in predator—prey interactions that involve
pursuit. Successful pursuit hinges on a complex trade-
off between speed, maneuvrability, and predictability
(Domenici 2001; Combes et al. 2012; Wilson et al.
2013, 2018; Clemente and Wilson 2015; Moore and
Biewener 2015; Martin et al. 2022); for example,
cheetahs run at sub-optimal speeds in the pursuit of
agile prey in order to retain maneuvrability (Wilson
et al. 2013), and fruit flies maximize their escape
chances when increasing the frequency of erratic
saccade maneuvers (Combes et al. 2012). Although
biomechanical constraints are not the sole determinant
of the outcome of trophic interactions (Martin et al.
2022), they can drive musculoskeletal adaptations over
both evolutionary and developmental time scales. For
example, predator-prey interactions can place high
athletic demands on predators, which consequently
exceed their prey in muscle power, acceleration, and de-
celeration capacity, such as in big cats on the savannah
(Wilson et al. 2018). Similarly, grasshoppers reared in
the presence of predatory threats adjust their jumping
“technique” such that they can jump quicker and further
compared to conspecifics raised in safe environments
(Hawlena et al. 2011).

Quasi-static biomechanical constraints come into
play primarily during resource consumption: in both
invertebrates and vertebrates, bite forces play a key
role in foraging because they determine the type and
size of food items animals can mechanically process
(e.g., Wheater and Evans 1989; Behrens Yamada and
G. Boulding 1998; Herrel et al. 2001; Schenk and
Wainwright 2001; Verwaijen et al. 2002; Christiansen
and Wroe 2007; Santana et al. 2010; Tan et al. 2021;
Puffel et al. 2023c). Bite forces thus also influence
interspecific competition, for example, in predator—
predator interactions (Ginot et al. 2018), or in con-
trolling resource accessibility. Some weevils escape
predation by tree lizards because they are significantly
harder to break open than comparable prey in their
habitat (Wang et al. 2017), and the strong bite forces
of predators may have been a contributing factor to the
evolution of exceptional toughness in mollusc “armour”
such as nacre (Jackson et al. 1988). Because sufficiently
high bite forces are a necessary condition for successful
feeding in many animals, dietary needs have been
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explicitly argued to have driven the evolution of bite
performance in reptiles (e.g., Metzger and Herrel 2005;
Dollion et al. 2017), benthic predators such as crabs
(Taylor 2000), and phytophagous insects such as leaf-
cutter ants (Ptffel et al. 2023b). Indeed, bite forces in
some amniote groups have evolved through bursts of
exceptional rates of adaptive change (Sakamoto et al.
2019).

Force capacity is also important for a range of spe-
cialized behaviors that involve surface attachment. For
example, palmetto tortoise beetles produce attachment
forces so large that predatory ants fail to prey on them
(Eisner and Aneshansley 2000); pitcher plants trap
insects with pitfall traps that make them slip (Bohn
and Federle 2004; Labonte et al. 2021); and specialized
adhesive organs play an important role in prey capture
and predator defense in invertebrates, vertebrates, and
plants (e.g., Herrel et al. 2000; Betz and Koélsch 2004;
Poppinga et al. 2012; Krimmel and Pearse 2013; Wolft
et al. 2014, 2017; Kleinteich and Gorb 2015; Von Byern
et al. 2017). Here, force capacity may be determined
primarily by the stress capacity and size of adhesive
patches (Labonte and Federle 2015), instead of animal
muscle force (but see Labonte et al. 2019). Although
biomechanical constraints on foraging ecology are in
principle measurable and often even predictable via first
principles, the underlying parameters are not imper-
vious to external influence. How will climate change
confound and perturb biomechanical constraints?

Climate change modifies biomechanical
performance

Given the broad range of meteorological impacts
associated with climate change, the biomechanical
performance of animals will be challenged on many
fronts (Domenici and Seebacher 2020). Variations
in environmental conditions due to climate change
can both directly and indirectly alter biomechanical
performance through a range of mechanisms, acting
across different timescales.

Direct impacts encompass immediate fluctuations
in external biomechanical demands and in intrinsic
biomechanical performance capacity; for example, vari-
ations in wind or water currents can increase the
external demand placed on adhesive organs (Forrester
et al. 2016; Cherry and Barton 2017; Donihue et al.
2020) or hinder locomotion (Kramer and McLaughlin
2001; Cherry and Barton 2017; Ventura et al. 2022).
Intrinsic locomotor performance capacity is deter-
mined by muscle (Biewener 2016), and the mechanical
performance of muscle, including muscle shortening
speed and power output, approximately doubles for
every 10°C of temperature increase (i.e., the Qo is

~2), until performance eventually plateaus at high tem-
peratures (Bennett 1985, 1990; James 2013; Olberding
and Deban 2017; James and Tallis 2019). Consequently,
maximum running speed has a Qo of around two in
both ecto- and endotherms for temperatures in the
broad range of 10-50°C (Bergmann and Irschick 2006;
Hurlbert et al. 2008; Rojas et al. 2012), equivalent to
a 10% increase in maximum speed per degree Celsius
warming. The downstream effects of such fluctuations
on predator—prey interactions may thus be substantial
(e.g., James 2013; Domenici et al. 2019), but remain
difficult to predict because the variation of maximum
speed with body size is non-monotonous (Garland
1983; Hirt et al. 2017; Labonte et al. 2024). In addition,
locomotion at higher temperatures may become more
costly, hinting at the possibility of complex trade-
offs (Halsey 2016; Seebacher et al. 2016). Available
evidence suggests that the phenotypic plasticity to
cope with temperature-induced fluctuations in loco-
motor performance capacity is limited; it appears
that the thermal sensitivity of the chemical processes
that underpin muscle contractions cannot be avoided
(Bennett 1985, 1990; see James 2013; James and Tallis
2019). However, locomotor strategies that are based
on temperature-insensitive mechanical processes do
exist: many small animals temporarily “store” muscle
work in latched “springs” in the form of elastic
strain energy. This energy is then released rapidly to
drive explosive jumps. Because muscle force capacity
tends to only show a weak temperature dependence
(Bennett 1985, 1990; Olberding and Deban 2017), such
spring-actuated jumping can be “thermally robust”
(Olberding and Deban 2021).

Indirect impacts of climate change on biomechan-
ical demands and performance capacity may emerge
through adaptive processes, and thus occur on substan-
tially longer time scales. The most significant adaptation
to a warming climate may be variations in animal
body size (Atkinson 1994; Sheridan and Bickford 2011;
Tseng et al. 2018). Body size is a major predictor of a
range of biomechanical performance metrics, including
maximum running speed and force capacity (Schmidt-
Nielsen 1984; Alexander 1985; Biewener 2005), but also
for structural traits such as rigidity and the external
loads that can be sustained without material failure
(Alexander 1981). The relationship between body size
and biomechanical capacity is often regular, so that
it can be described to reasonable accuracy through
statistical analysis, and it is also usually the result of
first-principle physical constraints, so that it can be
linked with measurable phenotypic traits in predictive
models (Schmidt-Nielsen 1984). The relation between
trait T and body mass m is typically expressed via
power laws: T ~ m*, where x is a characteristic scaling
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Table | Various ecological systems, processes and services will be disrupted by climate change due to associated and interactive
ecological and biomechanical changes. Biological control and species invasions/reintroductions offer two examples of systems that
transdisciplinary research spanning these fields could address. Various hypotheses remain to be tested for this interaction between

foraging, climate and biomechanics.

System Climatic driver

Consequence

Impact

Relevant references

Biological control Temperature changes

Wind/Pressure
changes

Species invasions and
reintroductions

Temperature changes

Biomechanical: bite force
changes with altered body
size

Ecological: phenological
changes causing
pest-predator phenological
mismatches

Biomechanical: altered flight
ability of many crop pests
and predators
Biomechanical: increased
adhesive forces required or
dislodgement

Ecological: invasive range
changes

Biomechanical: bite force
reduction with smaller

Ecological: trophic niche
contraction as resources
become inaccessible
Biomechanical: trait
mismatch between
consumers and available
resources

Ecological: altered
co-occurrence of
consumers and resources

Biomechanical: altered
access to resources and
evolutionary mismatch
between consumer and
resources

Ecological: a species’
invasive potential may be

Tseng et al. (2018); Riihr et
al. (2024); Puffel et al.
(2023c)

Singer and Parmesan
(2010); Thackeray et al.
(2016); Renner and Zohner
(2018)

Walters and Dixon (1984)

Forrester et al. (2016);
Cherry and Barton (2017);
Donihue et al. (2020)
Hellmann et al. (2008);
Smith et al. (2012); Zhang et
al. (2020); Riihr et al. (2024)

Tseng et al. (2018); Piiffel et
al. (2023c)

body size
Wind/Pressure Biomechanical: altered
changes flight/dispersal ability

reduced if their access to
resources is hindered
Ecological: altered dispersal
potential

Saura-Mas and Lloret
(2005); Lander et al. (2014)

coefficient. The immediate advantage of such regularity
is that it provides the possibility to link temperature-
induced changes in body size with variations in biome-
chanical performance. If body sizes decrease by a factor
a with every degree Celsius, then the biomechanical
performance decreases by a factor «*. Thus, for a
decrease in body size of about 10% (« = 0.9), T would
consequently decrease by 3-10%, for traits that scale
with length (x = 1/3), area (x = 2/3), or volume (x = 1).
The utility of such simple calculations is illustrated with
a concrete example further below.

Environmental change can also impact structural and
morphological traits independent of muscle physiology
or variations in body size, with downstream effects
on locomotion, predation efficiency, or defense. For
example, an increase in temperature can result in nutri-
tional deficits or allocation trade-offs in which energy
and nutrients are diverted toward the mitigation of the
physiological impacts of warming, at the expense of de-
fensive traits (e.g., shell or chitin thickness; Mackenzie
et al. 2014; Woodman et al. 2021). More generally,
the mechanical properties of biological materials, often
considered extended phenotypes, can also be sensitive
to fluctuations in temperature and humidity (e.g., in
spider silk; Blamires et al. 2017; Blamires and Sellers
2019). Adaptive and evolutionary processes can drive
biomechanical changes, and organisms may be able

to compensate for and acclimatize to environmental
change to some extent (Le Roy et al. 2017), poten-
tially buffering biomechanical and ecological impacts.
However, the plasticity of species and specific traits
to change can vary greatly (Padilla et al. 2019) and
will ultimately impact the ability of animals to forage,
resulting in a complex three-way interaction between
foraging ecology, biomechanics, and climate change.

Integrating foraging ecology,
biomechanics, and climate through
network science

We have discussed the impact of climate change on both
biomechanical performance and foraging ecology, and
how biomechanics interacts with foraging ecology to
determine trophic interactions. This complex three-way
interaction (Figure 1) likely affects several key biological
processes: biocontrol of crop pests by predators, and
species invasions offer just two striking examples in
which ecosystem services and functioning may be
substantially perturbed by the emergent effects of
climate change on biomechanical traits and foraging
(Table 1). Studying this three-way interaction remains
challenging, partly due to the innate transdisciplinarity
required to do so successfully. Foraging ecology pro-
vides observational data on trophic interactions from
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laboratory feeding trials and/or the field, which can
serve as a baseline for comparison against biome-
chanical performance; biomechanical research provides
quantitative mechanistic context to interaction data,
usually derived from laboratory assays or from pre-
dictive physical models derived from first principles.
Integrating these practices in climatological contexts
requires records and predictions of climatological con-
ditions, and empirical or theoretical models that encode
their impact on foraging or biomechanical traits. This
process will naturally require adherence to disparate
or even conflicting best practices; for example, the
requirement for fresh contaminant-free samples for
molecular dietary analyses (increasingly commonplace
for detecting trophic interactions in ecology; McInnes
et al. 2017; Alberdi et al. 2019; Cuff et al. 2023a), may
conflict with the need to measure bite forces from the
same individuals. The collection of some data in the
field (e.g., ecological observations) and others within
the lab (e.g., biomechanical assays) is often necessary,
but may result in temporal or contextual mismatches
due to unavoidable differences in experimental condi-
tions (Campbell et al. 2009). Developing biomechanical
methods that can be brought to the field (Bauer et al.
2020) is one of many vital ways forward that may help
resolve such discrepancies.

One analytical, predictive, and therefore attractive
framework that can integrate ecological, biomechanical,
and climatological data is network science—the analysis
of interconnected complex systems. The application
of network science to ecological networks principally
requires two data types: links and nodes (Fath et al.
2007; Lau et al. 2017). Typically, links are the pres-
ence or frequency of interactions between organisms;
nodes usually represent species identities, but can also
represent individuals (Guimardes 2020) or even trait
data such as morphological features or environmental
context (Poisot et al. 2015; Cuff et al. 2023¢; Cuff et
al. 2022a). Through the integration of biomechanical
data as traits attributed to nodes (i.e., species or
groups of individuals with similar biomechanical per-
formance/traits), foraging data as links between those
nodes (i.e., trophic interactions) and climate data as
spatiotemporal replication (i.e., discrete networks based
on climatic differences), network ecology may enable
exploration of how climate drives trophic interactions
via biomechanical changes. Although the same could
be achieved through methods such as fourth-corner
analysis, which relates species traits to the relationship
between community data and environmental vari-
ables, this neglects indirect interactions and ignores
the structure of interaction networks, both crucial
for understanding interaction rewiring and network
robustness. With appropriate data, such an approach

could help to identify how climate change impacts the
structure of networks by revealing differences in the
interactions between animals based on their changing
biomechanical performance.

The same idea can be applied to key ecological
processes like ecosystem services (Dee et al. 2017;
Bodin et al. 2019) and nutritional cascades (Cuff et
al. 2022c) for deeper ecological and applied insight.
There is a hierarchy of structural properties that can
be analyzed and compared at the node (e.g., species
or individuals, studied in biomechanical assays), group
(e.g., trophic levels, studied in foraging ecology), or
network (e.g., habitat or ecosystems, subject to climate
change impacts) levels (Lau et al. 2017). By analyzing
the spatiotemporal fluctuation of networks, it is possible
to determine intuitive parameters with immediate
management implications, such as network robustness
(i.e., the rate of secondary extinctions when some
nodes/species are removed; Kaiser-Bunbury et al. 2010;
Pocock etal. 2012). The results can be used, for example,
to determine any indirect impacts on ants as a result
of climate change-mediated removal of the epiphytes
they depend on, and vice versa (Morales-Linares et al.
2021); through integration of biomechanical data, the
changing accessibility of resources could be considered
as primary extinctions in the network.

Biomechanical properties can be integrated into
networks as traits (Eklof et al. 2013; Junker et al. 2013;
Poisot et al. 2015), as previously demonstrated for body
size (Woodward et al. 2005). By representing indi-
vidual organisms through their biomechanical traits,
structural differences in interspecific interactions can
be illuminated, and the mechanisms by which biome-
chanical traits structure interactions elucidated. This
process can, for example, lead to the identification of
motifs (i.e., sets of nodes with similar interactions) that
are associated with particular biomechanical properties.
For example, predators with weaker bite forces may
interact consistently with more penetrable prey. Iden-
tification of such correlations would allow for a more
directed monitoring of the response to environmental
change. Motifs also facilitate investigation of indirect
interactions (e.g., the role of plants in supporting
predators/parasitoids; Tavella et al. 2022), which remain
biomechanically poorly understood.

By representing different time points, spaces, or data
types as distinct network layers, further complexity
can be modeled. Given the complex interdependencies
of different biomechanical properties and ecological
processes, multilayer networks present an opportunity
to link discrete networks across space and time in re-
sponse to changing environmental conditions (Pilosof
et al. 2017; Hutchinson et al. 2019). For example,
networks could each represent climatically distinct
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time points and the interlayer links (i.e., the links
between these networks) could represent changes in the
biomechanical performance of the animals within the
networks; this could more directly elucidate the impact
of these biomechanical changes on network structures
across time.

The potential of network analysis to
investigate the impact of temperature
increases on trophic interactions as a
consequence of bite force changes

The integration of biomechanics, foraging ecology,
and climate change through network science has the
potential to elucidate the mechanisms by which trophic
networks will respond to climate change, ultimately
enabling us to understand and predict these impacts,
which we illustrate with a simplified illustrative example
(Supplementary Information 1). Network science gen-
erally requires data on interaction identities, interaction
rates between consumers and their resources (i.e.,
weighted links), and ideally resource abundances, all in
discrete spatiotemporal units. To the best of our knowl-
edge, such comprehensive data are currently seldomly
available in biomechanical contexts and will require tar-
geted data collection efforts. To illustrate how such data
could be integrated to address fundamental questions,
we present a concrete example where sufficient data
are available or can be generated to illustrate the main
idea within a specific context: the change in resource
accessibility for a generalist insect herbivore due to
climate change-induced reductions in body size (Figure
2). This example is not meant to be read as a concrete
prediction. Instead, it is intended to provide an indica-
tion of both the process and the kind of information that
can be extracted by combining climate data, foraging
ecology, and biomechanical traits through network
science.

We have compiled leaf-cutter ant body size and bite
force data for three colonies of the same species from
Piffel et al. (2023c), required cutting forces for a range
of plants globally available to the ants from Onoda et al.
(2011), and insect temperature-body size relationships
from Tseng et al. (2018). To provide a practical
example of how network science can enable direct
predictions of the effect of climate change on trophic
interactions with a strong biomechanical component,
we constructed networks for different temperatures
using these data (Supplementary Information 1). These
networks represent the interactions possible for the ants
within the biomechanical constraints imposed by the
bite forces they can generate. However, because not all
plant species for which data exist will co-occur, and
because the ants may exhibit selectivity across the plants
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accessible to them, this is not a direct reflection of
the interactions within a natural system. Nevertheless,
analysis of the degree (i.e., number of plants each ant
colony could interact with) and generality (i.e., the
potential niche breadth of ants generally) of the leaf-
cutter ants in response to temperature will give some
indication of how interactions may change in smaller
discrete communities of ants and their resources. With
data on those discrete communities and wider interac-
tions of other consumers and their antagonists, network
science would be poised to illuminate competitive
dynamics, indirect interactions, and ecosystem-wide
cascades.

This example is limited to a simple network analysis
by necessity—the data are currently scarce. Richer
datasets, purposefully collected to enable network anal-
yses, may reveal real-world effects, but the collection
of such data requires careful consideration, which we
hope our article can guide. The example also assumes
that the temperature-size rule is robust and the major
driver of network rewiring, neither of which are likely
to hold in natural systems. For example, alterations in
the structure of plant-ant networks may concentrate
herbivory on fewer plant species, increasing compe-
tition and reducing availability of those resources.
Temperature increases also have various implications
for the trophic interactions of ants, including altered
search behavior (Frizzi 2018) and foraging site selection
(Traniello et al. 1984; Spicer et al. 2017), which will
interact with the temperature-size rule and likely
alter predictions. The selective pressure linked to the
temperature-size rule is also noteworthy; the reduced
access to resources through smaller body sizes may well
propagate a selective pressure for larger body sizes that
will potentially mitigate the impacts of the temperature-
size rule in natural systems. These limitations war-
rant skepticism, and more accurate models will have
to await the availability of purposefully collected
data.

The species turnover within natural systems, both
naturally over time and due to climate change, will
also greatly impact outcomes. Climate change-induced
changes to other biological and ecological properties
will also compound predictions; for example, reduced
defoliation of a plant species may increase its fitness by
relief of damage or the cost of induced defenses (Karban
and Myers 1989), and may consequently alter that
species’ abundance, biomass, and range/distribution.
Species turnover will likely be driven by the population
dynamics of each species within a community; by
evaluating changing interactions across entire ecosys-
tems, network ecology is well-placed to assess how
the turnover and dynamics of species will affect wider
interactions through network robustness and rewiring
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Fig. 2 We hypothesize that, as temperatures increase, ants may undergo body size reductions in line with the temperature-size rule.

Because body size correlates with bite force capacity,and because bite force capacity determines the toughest plant tissue the ants can cut,

this size reduction would likely decrease the total number of plant species the ants can forage on (i.e., contract their trophic niche). Figure

created with Biorender.

analyses. Other drivers and constraints of trophic inter-
actions, such as the chemical composition of leaves and
the nutritional quality and complementarity of available
resources, will likely change markedly too, which are,
of course, not represented within our analysis. The
wider effects of climate change on broader ecological
phenomena may only be captured by real-world data.
With appropriate information on other interspecific
interactions of both ants and the plants they forage
on (e.g., symbionts, predators, and parasites), these

impacts can be mapped across the entire ecosystem
(Windsor et al. 2023), a distinct benefit of taking a
network approach to such ecological questions.
Knowledge of interaction strengths would enable a
range of further quantitative analyses. First, we may
predict how trophic interactions and entire networks
rewire in response to critical events, be it invasion by
a new resource or consumer species, or changes in the
biomechanical properties of either group due to en-
vironmental change. Using trait matching approaches,
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which investigate how traits determine the likelihood
of interaction (Pichler et al. 2020), the new interactions
that arise following disturbances could be predicted.
Second, the network structure itself can be used to
estimate the system’s resistance and resilience through
methods such as network robustness analyses, which
assess the rate of secondary extinctions in a network
following the removal of nodes (e.g., Kaiser-Bunbury et
al. 2010; Pocock et al. 2012). Such methods explicitly
consider the ability of networks to respond to events
at the whole system level and can help identify specific
organisms that act as ecosystem stabilizers (Harvey et
al. 2017).

Several key hypotheses emerge through considera-
tion of our illustrative example. The core hypotheses of
our example are among these: (i) temperature increases
will decrease the generality of ants; (ii) temperature
increases will decrease the degree of individual ant
colonies (i.e., the diversity of plants they interact with);
and (iii) the ant degree change will differ between
colonies depending on their initial bite forces. Our
results present a hypothetical prediction, based on the
assumption that biomechanical traits are indeed the
primary driver of climate change-induced changes to
trophic interactions. This idealized expectation is ideal
for comparison against real-world data. As discussed
above, by virtue of being illustrative and idealized,
the analysis has omitted several other variables that
may exert an influence, including how the penetra-
bility of resources (e.g., the cutting force required
to break leaves) may change. Testing the hypotheses
outlined for our example, however, requires repeated
measurements over long time series across large spa-
tial scales and, ideally, with other driving factors
accounted for (e.g., leaf chemistry and penetrability,
ant activity rates, and metabolism). The case for
pursuing this is nevertheless strong given the profound
implications such changes may have on ecosystem-wide
dynamics.

Summary

Foraging ecology, biomechanics, and climate change
likely influence the frequency and identity of trophic
interactions interactively and dynamically, but direct
evidence for such effects remains scarce and disjointed.
The potential implications for ecosystem services like
biocontrol and global challenges like species invasions
are profound, and will likely intensify in the coming
decades, rendering directed research efforts that explore
this disciplinary interface valuable. Understanding and
predicting these impacts will be crucial for maintaining
healthy food systems and ecosystems, and urgently
require transdisciplinary research using convergent
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approaches. Network science has the potential to
illuminate the mechanisms by which biomechanical
traits and foraging ecology structure trophic networks
in response to climate change, and may provide much-
needed predictions of responses to projected change,
but obstacles still exist.
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