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Based on skill estimates from hindcasts made over the last couple of decades, recent studies
have suggested that considerable success has been achieved in forecasting winter climate
anomalies over the Euro-Atlantic area using current-generation dynamical forecast models.
However, previous-generation models had shown that forecasts of winter climate anomalies
in the 1960s and 1970s were less successful than forecasts of the 1980s and 1990s. Given that
the more recent decades have been dominated by the North Atlantic Oscillation (NAO) in
its positive phase, it is important to know whether the performance of current models would
be similarly skilful when tested over periods of a predominantly negative NAO. To this end,
a new ensemble of atmospheric seasonal hindcasts covering the period 1900–2009 has been
created, providing a unique tool to explore many aspects of atmospheric seasonal climate
prediction. In this study we focus on two of these: multi-decadal variability in predicting the
winter NAO, and the potential value of the long seasonal hindcast datasets for the emerging
science of probabilistic event attribution. The existence of relatively low skill levels during
the period 1950s–1970s has been confirmed in the new dataset. The skill of the NAO forecasts
is larger, however, in earlier and later periods. Whilst these inter-decadal differences in skill
are, by themselves, only marginally statistically significant, the variations in skill strongly
co-vary with statistics of the general circulation itself suggesting that such differences are
indeed physically based. The mid-century period of low forecast skill coincides with a
negative NAO phase but the relationship between the NAO phase/amplitude and forecast
skill is more complex than linear. Finally, we show how seasonal forecast reliability can be
of importance for increasing confidence in statements of causes of extreme weather and
climate events, including effects of anthropogenic climate change.
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1. Introduction

Forecasts of seasonal-mean anomalies of the climate using
physically based circulation models are now routinely made
at many operational meteorological forecast centres around the
world. Such seasonal predictions provide estimates of seasonal-
mean statistics of weather, typically up to 6 months ahead. The
physical basis for extended-range predictions originates from slow
variations in the lower boundary forcing of the atmosphere due to

the dynamics of the oceans and the hydrology of the land masses,
and from large-scale components of the atmospheric general
circulation with an intrinsic predictability time beyond that of
individual synoptic weather systems, including the stratosphere
(e.g. Palmer and Anderson, 1994; Sigmond et al., 2013).

The dominant mode of interannual variability of the coupled
atmosphere–ocean system, the El Niño Southern Oscillation
(ENSO), is a source of considerable seasonal predictability of
the large-scale atmosphere in the Tropics (Barnston et al., 2012)
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and, through global teleconnection patterns, also elsewhere in the
world albeit to a lesser degree (Trenberth et al., 1998). Predicting
the extratropical weather and climate is more difficult because
atmospheric and oceanic instabilities and nonlinearities result in
increased levels of variability compared to the Tropics. On the
other hand, a large component of extratropical predictability is of
tropical origin with circulation patterns in the Tropics influencing
the extratropical circulation through teleconnections induced by
Rossby wave dynamics (Hoskins and Karoly, 1981; Simmons,
1982; Greatbatch and Jung, 2007; Yu and Lin, 2016).

The exact extent to which these links between the Tropics
and the extratropics translate into useful forecast information
in seasonal predictions, however, remains an active area of
research. In particular, the question of whether the North
Atlantic Oscillation (NAO) and associated climate anomalies
over the North Atlantic–European area during winter can be
predicted with any confidence is still a matter of ongoing
scientific debate. Müller et al. (2005) and Shi et al. (2015) reported
that the skill of predicting the NAO in retrospective forecast
experiments of previous years (also referred to as re-forecasts
or hindcasts) with quasi-independent seasonal forecast models
varies considerably over the last four decades. They found positive
skill in predicting the interannual fluctuations in the atmospheric
flow for more recent decades but in general not for hindcast
periods started in the 1960s and 1970s. The study by Scaife et al.
(2014) demonstrates high predictability of the NAO in the UK
Met Office seasonal forecasting system over the 20-year period
1992–2011. More recently, Dunstone et al. (2016) showed that
the Met Office Decadal Prediction System produces similarly
skilful NAO hindcasts (from 1981 onwards) and appears to have
skill also in the second winter. However, the relatively short length
of this hindcast set raises questions over the robustness of the skill
estimates if tested during a different climate period. The Bayesian
inference study by Siegert et al. (2016) suggests a high chance of a
decrease in correlation skill if the hindcasts of Scaife et al. (2014)
were evaluated over different periods. They further concluded
that the particular 20-year period was unusual and produced
higher-than-normal correlation skill. Thus, an important open
question with implication for future skill estimates is whether
current-generation models would be able to skilfully predict the
NAO in earlier decades, e.g. around the 1960s where the models
analysed by Müller et al. (2005) and Shi et al. (2015) struggled the
most. Related questions include whether or not the variation of
skill is monotonic in time, with further reduction in skill for even
earlier decades, and if so what are the potential drivers?

In order to address these questions, we have performed a long
retrospective atmospheric seasonal forecast experiment for all
boreal winter seasons over the period 1900–2010. While decadal
retrospective forecasts covering a similar period were presented
in a recent study by Müller et al. (2014), the focus of their
analysis was on decadal prediction skill of surface temperature.
Here we concentrate on analysing one of the dominant modes
of atmospheric variability in the extratropics, the NAO, and
demonstrate how seasonal forecasts could prove useful for the
emerging scientific area of probabilistic extreme weather and
climate event attribution.

The aim of our article is threefold. Firstly, we present a
new global atmospheric seasonal forecast dataset, called ASF-
20C, which covers the 110-year re-forecast period from 1900 to
2010 and consists of 51 ensemble members. The unprecedented
size of the seasonal hindcast, both in terms of its length as
well as its ensemble size allows for a thorough inspection of
the robustness of forecast skill estimates and their variability
on a centennial time-scale. Secondly, we demonstrate that the
ASF-20C hindcasts indicate some multi-decadal variability in
predictive skill of the NAO, even though the uncertainty ranges
around statistical skill estimates are necessarily large (Kumar,
2009). Our findings underline the importance of a representative
re-forecast dataset for robust conclusions about the levels of
model skill in predicting the Atlantic–European climate in the

future. Finally, we propose the use of our long ASF-20C seasonal
hindcast ensemble to complement attribution statements about
extreme seasonal climate events with quantitative estimates of
forecast reliability. Model-based probabilistic event attribution
can provide answers to the question of whether human activity
increased the risk of occurrence of such events (for recent reviews
of the subject, see Shepherd (2016) and Stott et al. (2016)).

The article is structured as follows. The next section describes
the century-long seasonal re-forecast dataset. In section 3 we
discuss the multi-decadal variability of NAO forecast skill,
followed by section 4 on the potential use of the century-long
hindcasts for event attribution studies. We finish with a summary
and concluding remarks.

2. Atmospheric seasonal re-forecasts of the twentieth century

Due to a lack of global sub-surface ocean data to initialise the
model in the first half of the century, the seasonal re-forecasts have
been carried out with an atmosphere-only model using prescribed
observed sea-surface temperatures (SSTs) as lower boundary.
Such a set-up, which was widely used in the early days of dynamical
seasonal prediction in the late 1990s (Palmer and Shukla, 2000;
Shukla et al., 2000), can be seen as an experimental idealised
version of the more complex coupled ocean–atmosphere seasonal
forecasts. It assumes a perfect forcing of the atmosphere from
the SSTs below and neglects any feedbacks from the atmosphere
onto the SSTs. In particular, the oceanic ENSO forcing from
the tropical Pacific SSTs is therefore prescribed, rather than
predicted. However, the dynamical processes linking tropical
and extratropical regions of the atmosphere are, in principle,
represented in atmosphere-only models and do not necessarily
rely on an interactive coupling to the ocean. The NAO in particular
is an internal mode of variability of the atmospheric circulation
and the dynamical coupling with the ocean is not considered an
essential feature of its dynamics (Greatbatch, 2000).

The atmospheric model used for the ASF-20C re-forecasts is
version CY41R1 of the atmospheric component of the European
Centre for Medium-range Weather Forecasts (ECMWF)’s
Integrated Forecasting System model (IFS). An earlier version
of the model (CY36R4) coupled to an ocean model is used for the
production of ECMWF’s operational seasonal forecasting System
4 (Molteni et al., 2011). The horizontal spectral resolution of the
model of T255 corresponds to a grid length of approximately
80 km with 91 vertical levels and the model top is at 0.01 hPa.
The hindcasts were performed using the European atmospheric
Re-Analysis of the 20th Century (ERA-20C: Poli et al., 2013,
2015) for initialisation and verification. ERA-20C assimilates
only surface pressure and marine wind observations. SSTs from
the HadISST2.1.0.0 dataset (Rayner et al., 2003) were used to
initialize and force the lower boundary. Seasonal re-forecasts
over 4 months were initialised for every 1 November during the
period 1900–2009 which enables us to analyse the traditional
boreal winter season of December to February (DJF) with a
2–4 month lead time. The DJF seasons are labelled according to
the year the forecasts were initialised, that is, the DJF 1900 forecast
corresponds to the forecasts initialised on 1 November 1900 and
runs until the end of February 1901.

The re-forecast experiments were set up in a way to mimic
the operational System 4 (except for prescribed SST forcing and
without singular vector perturbations on the initial state) as much
as possible to enable a fair comparison with a forecasting system
when only information before the initial date is available to use. In
particular, this means that time-varying greenhouse gas forcings
were specified to improve the simulations of trends during the
re-forecast period. The forcings also include a time-varying solar
cycle and volcanic aerosols (Molteni et al., 2011).

The atmospheric forecast model includes an explicit stochas-
tic representation of the uncertainties related to physical
parametrizations of subgrid-scale atmospheric processes, which
generates an ensemble of 51 model realisations during the forecast

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 1. (a) DJF global mean 2 m temperature anomalies in ERA-20C (red) and the re-forecast ensemble of ASF-20C (blue). Uncertainty estimates from the
reanalysis and the re-forecast ensemble are shown in orange (full range of the 10-member ensemble) and with blue shades (light blue: full range; darker blue:
interquartile 25–75% range; blue dots: ensemble median), respectively. (b) DJF NAO index in ERA-20C (red) and the ASF-20C re-forecasts (blue). Blue shades show
the re-forecast ensemble distribution, similar to (a).

runs. Weisheimer et al. (2014) showed that stochastic pertur-
bations decrease some of the model biases in tropical deep
convection and consequently improve ENSO forecasts.

Figure 1(a) displays DJF-mean global mean 2 m temperature
anomalies over the period 1900–2009 from the ASF-20C
ensemble (shades of blue) started on 1 November each year
and from ERA-20C (red line). Here the blue shading shows the
ensemble distribution of the re-forecast ensemble with the lighter
blue shades indicating the full range of the ensemble, the darker
shade indicating the interquartile range between the 25th and 75th
percentiles and the dark blue dots denoting the ensemble median.
As a proxy for estimating the uncertainty of the 20th Century
reanalysis data, the orange shading surrounding the red ERA-20C
line shows the temperature range of a ten-member ensemble of
reanalysis generated with an earlier version of ERA-20C (Poli
et al., 2015). Although the reanalysis ensemble spread is larger
at the beginning of the century reflecting larger uncertainties in
the reconstruction of the global mean temperatures in this early
period, the overall level of reanalysis ensemble spread of seasonal
mean temperature is too small to be realistic; see Poli et al. (2015)
for discussion.

As can be seen from Figure 1(a), the 110-year hindcast
ensemble captures the verification data very well. In particular,
the multi-decadal fluctuations and the strong warming during
the last decades are well reproduced in the forecasts, though the
model somewhat underestimates the global cooling period of the
1950s–1980s. A comparison of global land and sea areas separately
(not shown) indicates that the underestimation is larger over land
but still present over sea, even though the model is forced by
prescribed SSTs at its lower boundary.

The NAO, with its strong impact on the weather and climate
over the Atlantic–European sector, varies on multiple time-
scales from days to years and decades (Woollings et al., 2014).
Here we analyse the retrospective seasonal forecast skill of the
winter NAO in the ASF-20C data. We define the reference NAO
index as the principal component (PC) of the leading empirical
orthogonal function (EOF) of DJF anomalies of geopotential
height at 500 hPa (Z500) over the Atlantic sector (90◦W–30◦E,
30◦N–90◦N) calculated from the ERA-20C reanalysis data. The
re-forecast NAO index from ASF-20C is computed by projecting
each ensemble member onto this reference EOF.

Figure 1(b) shows the NAO index for DJF from the
deterministic ERA-20C (red line) and the ensemble of seasonal

hindcasts, in a similar fashion to Figure 1(a). The NAO index
from ERA-20C is in very good agreement with other estimates
of the index, for example, the correlation with the Hurrell et al.
(2003) PC-based sea-level pressure (SLP) NAO index is 0.96. The
ASF-20C re-forecast ensembles include the verifying index for all
but three years (1978, 1988 and 2009). Two of these are the most
extreme positive and negative NAO winters during the entire
110-year period. The NAO was in predominantly positive phases
at the beginning of the twentieth century and during the last three
decades, while the negative phase was more pronounced from
the 1940s to the 1970s; see also low-pass filtered NAO index in
Figure 2(b). In the following section we describe and discuss the
skill of the forecast model predicting the NAO index throughout
the twentieth century.

3. Multi-decadal variability of predictive skill of the NAO

Seasonal forecasts suffer from model biases that can, to first
order, be corrected for by computing observed and model
anomalies from a long-term climatology of observations and
the model, respectively. The ensemble-mean anomaly correlation
coefficient (ACC) is often used as a simple deterministic measure
of interannual forecast skill. Computed over the entire 110-year
forecast period, the ACC for the NAO index is 0.31, which is
highly statistically significant (p-value <0.001, using the t-test).
The 90% confidence interval for the correlation coefficient of
[0.17, 0.45] excludes zero indicating a promising level of overall
forecast skill in this system during the twentieth century.

Seasonal forecasts traditionally focus on the more recent
decades due to the improved quality of initial data for the
atmosphere and ocean. The NAO correlation skill of ASF-20C
during the latest 30-year period 1980–2009 is 0.44 (p = 0.01 with
a 90% confidence interval of [0.16, 0.66]). In order (i) to test
the impact of reducing the coupled ocean–atmosphere system
to an atmosphere-only system, and (ii) to see the impact of
using an atmospheric reanalysis that assimilates not only surface
pressure and marine winds but all the range of in situ, airborne
and satellite data, we have run seasonal hindcasts for 1980–2009
using the same atmospheric forecast system and initialisation but
(i) coupled to the Nucleus for European Modelling of the Ocean
(NEMO) ocean model (Molteni et al., 2011), and (ii) initialised
using ERA-Interim (Dee et al., 2011). The coupled re-forecasts

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 2. (a) Anomaly correlation coefficient (ACC) of the DJF NAO index between the ensemble mean ASF-20C and ERA-20C (black) over the period 1900–2009
computed for moving 30-year windows by 1 year. Values are plotted at the 15th year of each window. Dark grey: ACC when a linear trend in each 30-year window has
been removed before the computation. Light grey: ACC of a simple statistical forecast using persistence of the November average NAO index. The dotted horizontal
line indicates the t-test 95% significance level of the correlations and the red vertical bars show 90% confidence intervals estimated from bootstrap re-sampling (1000
times) with replacement for three representative periods. (b) 30-year running mean filtered DJF NAO index in ERA-20C (orange) and area-averaged intraseasonal
variance of 10-day mean Z500 in the Atlantic sector computed from moving 30-year windows and expressed as anomalies (green), units in m2. (c) ACC of the
DJF NAO index for years with positive (red) and negative (blue) indices in ERA-20C computed for moving 30-year windows. Vertical bars indicate the confidence
intervals. (d) ROC Skill Score (ROCSS) of the DJF NAO index being above the upper tercile (red) and below the lower tercile (blue). Dots indicate where the ROCSS
is significantly different from zero at the 95% level according to a non-parametric Mann–Whitney U-test and vertical bars indicate confidence intervals.

result in an ACC for the NAO of 0.48 indicating a rather constant
level of correlation skill regardless of whether prescribed or
interactive SSTs are used. The uncoupled re-forecasts using
ERA-Interim rather than ERA-20C for the initialisation of the
atmosphere result in a comparable level of ACC (0.40). The fact
that using ERA-20C for the initialisation of the atmosphere leads
to very similar results as using ERA-Interim for the initialisation
thus enhances the confidence in using ERA-20C for earlier
periods.

In order to diagnose the multi-decadal variability of the
NAO forecast skill throughout the century, we now analyse the
evolution of the ACC between ERA-20C and the ensemble mean
of ASF-20C during the 110-year hindcast period. To compare
with previous hindcast experiments, which have typically been

performed over periods of 20–30 years, the ACC has been
calculated between the forecast anomalies and the corresponding
verifying anomalies for a moving 30-year window. The ACC
for the NAO forecasts for each 30-year period is shown in
Figure 2(a), and exhibits marked variability on multi-decadal
time-scales across the 110-year period. While the estimated
ACCs are positive throughout the entire century, there are
coherent groups of multiple decades where our analysis suggests
that the skill over the different 30-year periods exceeds the
95% significance level of a t-test. These include the years
centred around the mid-1920s to mid-1940s and from the mid-
1970s onwards. The skill is lower, though still positive, for all
of the 30-year periods centred between the early 1950s and
mid-1970s.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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How significant are these variations in forecast skill though?
The t-test statistics and the confidence intervals of the estimated
correlation coefficients (Figure 2(a)) indicate that it is reasonable
to assume there is skill in the ensemble-mean forecast of the
NAO at least for the earlier and late periods. The skill of the
forecasts appears to weaken in the middle part of the century,
but the statistical evidence for a significant difference between the
periods is, however, not overwhelming. Figure 2(a) displays
the 90% confidence intervals for the three non-overlapping
periods 1911–1940 (representative for the early high-skill period),
1941–1970 (representative for the middle low-skill period) and
1979–2008 (representative of the late high-skill period). Due to
sampling uncertainty, the confidence intervals are relatively large
and partly overlap, though these still give an indication of a
difference in skill during the different decades.

However, in order to show that this decadal variation in
skill is not just a statistical artefact, in the following we present
supportive evidence that these multi-decadal variations in skill
(with a moderate level of statistical significance) co-vary strongly
with statistics of the general circulation itself. The combination
of a marginally significant time series of skill correlated with
various diagnostics of the circulation will lead us to hypothesise
the existence of genuine multi-decadal fluctuations in the level of
seasonal forecast skill of the NAO.

3.1. Linkages to the NAO phase and amplitude

Comparing the 30-year correlation skill from Figure 2(a) with
the 30-year running mean NAO index in Figure 2(b) reveals
that, in general, periods of significant forecast skill coincide with
periods when the 30-year averaged NAO index is positive. For
example, the mid-century decades of low correlation skill agree
with periods when the NAO was in a strongly negative phase. At
first glance this suggests that the model is struggling to predict
the circulation in seasons with negative NAO. To test this, we
recalculated the correlation coefficient in each 30-year period for
only the positive and negative NAO winters; these are shown in
Figure 2(c). The vertical bars indicate the confidence intervals, as
estimated by bootstrap resampling from each 30-year period with
replacement. The correlation skill from the early 1970s onwards
seems to come primarily from the skilful prediction of positive
NAO years, whereas in earlier periods negative NAO years appear
to contribute at least as much, if not more, to the correlation
skill. We cannot therefore conclude that the model is unable to
skilfully predict negative NAO winters in general.

It is useful to compare the ASF-20C forecasts with a benchmark
statistical forecast in order to gauge the value of using the
dynamical model based on physical principles. Here we construct
a simple persistence forecast which targets the same DJF season as
ASF-20C. As a predictor we use the monthly mean NAO index of
ERA-20C from the previous November. The resulting ACC skill
is plotted in Figure 2(a) (light grey line) for each 30-year period,
following the same format as the ASF-20C. The correlation skill
of the persistence forecast is lower than that of the ASF-20C and
not significant for most of the century, except for a period centred
around 1960, in which the correlation reaches a peak. This period
of maximum skill in the statistical reference forecast coincides
with the drop in skill seen in ASF-20C, and the period of generally
low NAO indices as seen in Figure 2(b). If such negative NAO
states are related to tendencies for longer persistence time-scales
and the dynamical forecast model has deficiencies in simulating
such persistent situations of negative NAO flow patterns in the
atmosphere, then it is plausible that the positive forecast skill using
persistence and the drop in skill of the dynamical forecast model
could be related. However, exploratory analysis of the hypothesis
by looking at these metrics across all years individually, rather
than at 30-year statistics, did not reveal any clear relationship.

The ACC is a deterministic measure of forecast skill as it is
based on one deterministic forecast, the ensemble mean forecast.
However, the full ensemble with its 51 forecast members offers

a deeper insight into the probabilistic nature of NAO forecast
skill by constructing probability forecasts for various values of
the NAO index (i.e. Figure 1(b)). In the following we analyse the
Receiver Operating Characteristic (ROC) skill score, ROCSS (e.g.
Mason and Graham, 2002; Jolliffe and Stephenson, 2003), of the
NAO forecasts as two metrics of probabilistic skill.

The ROCSS measures the ability of a probabilistic forecast
to detect the occurrence of a dichotomous event, for example
a variable falling above or below a certain threshold, and
encompasses hit and false alarm rates measured through a range
of thresholds. As such the ROCSS is a categorical score which
requires the definition of the events or category. The score is
calculated with respect to a reference forecast of climatological
frequency, such that ROCSS = 1 indicates that the forecast
system can perfectly discriminate events from non-events, whilst
ROCSS = 0 indicates that a system does not offer improvement
over simply using the climatological frequency as the event
forecast probability. We have chosen the ROCSS because it is
a commonly used skill score in the verification of operational
seasonal forecasts.

From the entire 110 years of NAO forecasts we can construct
a climatology of the forecast index and compute the percentiles
of the distribution in steps of 5% (Figure 3(a)). We then use
all of these percentiles separately as the thresholds for defining
binary events above these thresholds in the computation of
the ROCSS (Figure 3(b)). The median, upper and lower tercile
events, for example, correspond to the 50th, 67th and 33rd
percentiles. The significance of the ROCSS was calculated using
the non-parametric Mann–Whitney U-test (following Mason
and Graham, 2002) and is indicated by the blue crosses in
Figure 3(b). The confidence intervals were calculated separately
using a bootstrap resampling, performed 1000 times with
replacement, essentially giving two estimates of the statistical
significance for the ROC skill scores. As can be seen, the
probabilistic forecasts of the NAO index being below the 10th
percentile (corresponding to an NAO index of approx. −1.4)
appear to have the highest ROCSS of all thresholds. As can
be also seen from Figure 3(b), over the whole hindcast period
1900–2009, the ROCSS for predicting NAO indices for all ranges
of NAO percentile threshold is positive. Moreover, the ROCSS is
significantly positive at all thresholds apart from those between the
20th and 45th percentiles, corresponding to NAO values between
−1 and 0. In this sense, the model does not perform as well at
predicting weak negative NAO winters as for predicting positive
NAO index winters. However, the model performs remarkably
well at predicting strong negative NAO winters, indicating that
the model clearly does not struggle with negative NAO winters of
all magnitudes.

We analyse how the skill of the probabilistic NAO forecasts
varies over the entire hindcast period by calculating the ROCSS
for the upper and lower tercile events over moving 30-year
periods, shown in Figure 2(d). Here, upper (lower) tercile events
correspond to forecasts within the upper (lower) third of the
corresponding 30-year NAO index distribution. The vertical bars
show the confidence interval estimated through a bootstrap
approach while the blue and red dots indicate significance
according to a Mann–Whitney U-test, as in Figure 3(b). In
the most recent period, from the mid-1970s onwards, the
model demonstrates impressive significant skill in forecasting
the probabilities of upper-tercile NAO events, which is consistent
with the skill of the positive NAO ensemble mean forecasts in
this period (i.e. Figure 2(c)). In the earlier periods, up to around
1950, the model generally produces skilful probabilistic forecasts
for both the upper and lower terciles. The overall NAO skill in
the earlier period thus stems from skilfully predicting a spectrum
of NAO events, which is also highlighted in the ensemble mean
correlation skill in Figures 2(a) and (c). During the period
centred between the early 1950s and early 1970s the model has
no significant ensemble mean correlation skill (Figure 2(a)).
However, the model does demonstrate significant skill for the

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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Figure 3. (a) Cumulative distribution (percentiles) of the DJF NAO index in
ERA-20C computed from all data in the period 1900–2009. (b) ROCSS of
predicting the DJF NAO index during the period 1900–2009 for varying event
thresholds from the 5th to the 95th percentiles of the distribution. Blue crosses
indicate the significance according to a non-parametric Mann–Whitney U-test
and vertical bars indicate confidence intervals.

lower-tercile events during part of the middle of the twentieth
century (blue curve in Figure 2(d)). In this period, the lower-
tercile events correspond to winters with a strongly negative NAO
index (that is less than about −1, see tercile thresholds for each
period in Figure 4), which is consistent with the finding shown
in Figure 3(b) that the model is skilful for strong negative NAO
events (up to the 20th percentile) over the entire hindcast period.

3.2. Trends as a potential source of predictive skill?

The strong positive trend in the NAO from the mid 1970s
onwards (Figure 2(b)) synchronising with significantly positive

forecast skill during this period raises the question whether
trends in the data are the primary source of forecast skill.
In order to test this hypothesis, we have removed the linear
trend in each of the moving 30-year windows and computed
the ACC of the detrended anomalies. The result is shown with
the dark grey line in Figure 2(a). This detrending, however,
has little effect on the multi-decadal variability in forecast skill.
The level of skill is overall slightly increased for the detrended
data suggesting that any existing trends may even act to reduce
the skill.

3.3. Relationship with other indices of the general circulation

The mid-century period during which the NAO hindcast skill
is relatively small has been proven to be difficult to predict in
previous studies (Müller et al., 2005; Shi et al., 2015). Greatbatch
and Jung (2007) noted that the low level of NAO forecast skill
during the period 1962–1981 corresponded to a period of weak
seasonal diabatic heating anomalies in the tropical Pacific. The
lower variance of the tropical Pacific SSTs during this period
might explain the lack of predictable skill in the NAO hindcast
compared to the more recent period (i.e. from the 1980s onwards),
particularly as Scaife et al. (2014) find that much of their NAO
forecast skill is associated with the response to different phases
of El Niño. The Niño3.4 central tropical Pacific SST index used
in the model is shown in Figure 5(a). However, the skill of
the earlier period coincides with general low levels of ENSO
activity in terms of variability of tropical Pacific SST (dark
curve in Figure 5(a)) so that we cannot explain the variability
in skill over the hindcast period through El Niño variability
alone.

The forecast skill for each of the 30-year periods does seem
to be related to the dominant phase of El Niño (Figure 5(a)),
with periods of positive SST anomalies in the central tropical
Pacific being coincident with the early and late periods of
strong NAO skill in the hindcasts. This is also the case for
the Pacific Decadal Oscillation (PDO: e.g. Mantua et al., 1997;
Minobe, 1997), shown in Figure 5(b), which is in a positive
phase during periods when the hindcasts are most skilful.
Extratropical circulation primarily forces the PDO (Newman
et al., 2016) and as such this may indicate that different circulation
patterns in the extratropical North Pacific have an influence
on predictability in the North Atlantic sector. This certainly
merits further investigation and is something we are actively
studying.

Whether the trends in the NAO towards a positive polarity
in the later periods can be understood as the remotely forced
atmospheric response to the progressive warming of the tropical
Indian Ocean since the 1950s, as suggested by Hoerling et al.

1

30-year running NAO thresholds (from ERA-20C)

0.5

0
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1900 1910
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1920 1930 1940 1950 1960
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Figure 4. Absolute thresholds of the DJF NAO index in ERA-20C corresponding to the lower tercile (blue), upper tercile (yellow) and median (red) during each
moving 30-year window.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 5. (a) Time series of DJF-mean central tropical Pacific SST anomalies of annual (light blue) and 30-year average (dark blue) data and their variability during
moving 30-year windows (black line) in HadISST (Rayner et al., 2003) for the Niño 3.4 index. (b) The annual and 30-year mean PDO index (from https://www.ncdc
.noaa.gov/teleconnections/pdo/).

(2001, 2004), and if there is a possible link to the NAO forecast
skill, remains another hypothesis for future research.

4. The use of seasonal forecasts to increase confidence in
extreme event attribution

Extreme weather and climate events affect many aspects of
our society. Understanding and predicting extremes is one of
the Grand Science Challenges of the World Climate Research
Programme (WCRP) and includes the question of how extremes
are likely to vary under the impact of changing climate.
The emerging field of probabilistic event attribution tries to
provide answers to the question of whether human activity
has increased the risk of occurrence of such events; see the
recently published consensus report by the National Academies
of Sciences, Engineering and Medicine (2016) for a review of
the science of attribution. The report identified as a priority
research need the development of links to an integrated weather-
to-climate forecasting effort on a range of time-scales in order
to promote reliable assessments of the performance of event
attribution systems. As a first step towards such an integrated
attribution framework, we propose the use of our new ASF-20C
seasonal hindcast ensemble to provide attribution statements on
extreme seasonal climate events with quantitative estimates of
their reliability.

An event attribution statement is often expressed in terms
of probabilities that an extreme event occurs (i) under
current conditions that include anthropogenic contributions,
and (ii) under hypothetical conditions that are not affected by
anthropogenic forcings. While (i) describes the factual world as it
is experienced, (ii) refers to a counterfactual world that does not
exist but can be approximated using either observations from the
past, weather and climate models or a combination of both. The

so-called Fraction of Attributable Risk (FAR: Stott et al., 2004;
not to be mistaken with the False Alarm Rate) estimates how the
anthropogenic influence has altered the risk of an extreme event:

FAR = (PFACT − PCOUNT)/PFACT

where PFACT denotes the probability incurring under current
factual conditions (i) and PCOUNT denoting the probability of a
counterfactual world (ii). There are different ways of estimating
PFACT and PCOUNT based on observations of past and recent
periods or on simulations with climate models where the
anthropogenic radiative forcings can be controlled (Shepherd,
2016; Stott et al., 2016).

One popular approach (e.g. Pall et al., 2011; Schaller et al., 2016)
includes running very large ensembles of climate simulations with
an atmosphere-only climate model to estimate PFACT and PCOUNT.
However, all climate models are prone to biases and unreliability
in their estimates, especially for probabilities of rare events. In
order to build more confidence in these estimates and attribution
statements derived from model-based probabilities, it is essential
that the used probabilities are reliable (Christidis et al., 2013;
Lott et al., 2013). While FAR-based attribution statements are
increasingly being issued with an uncertainty range based on
ensembles of model simulations, so far information about the
reliability of these model-based probabilities in the first place has
rarely been included in attribution statements. We argue that such
reliability information is crucial to enhance trust in the science of
attribution. By reliability we mean a very specific and quantifiable
statistical characteristic of probabilities: a probabilistic system is
called reliable if the model probabilities for a certain event equal,
within some error bounds, the observed frequencies of occurrence
of the event; see Weisheimer and Palmer (2014) for a discussion
of this concept for seasonal forecasts.

A recent study by Bellprat and Doblas-Reyes (2016) highlighted
the importance of reliable probabilities for the attributable risk

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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Figure 6. Reliability diagrams for winter temperatures over Southern European land points falling within the lowest quintile for a period at (a) the beginning and (b)
the end of the twentieth century estimated from ASF-20C using ERA-20C as verification. The red line is the weighted linear regression of all data points with the red
shaded area indicating the uncertainty of the regression line, see Weisheimer and Palmer (2014) for details.

of extreme weather and climate events. Using the idealised
framework of a conceptual model, it showed that low reliability
introduces a systematic effect resulting in an overestimation of
the absolute FAR values, leading to overconfident attribution
statements.

We propose to estimate forecast model reliability using
our ensemble of ASF-20C. This approach offers the following
advantages. Firstly, seasonal forecasts are model simulations that
can be statistically verified against observations (or reanalyses)
for every forecast made, which is an essential criterion for
building trust in model-derived probabilities. Secondly, seasonal
forecasts such as ASF-20C use a state-of-the-art dynamical global
atmospheric model to estimate the probability of the state of
the atmosphere throughout a season. Both seasonal forecast
and extreme event attribution studies use essentially the same
class of climate models. Therefore, results from the reliability
analysis of the seasonal forecasts are indicative of the reliability
of other models’ probabilities if we assume that the fundamental
physical processes leading to the extremes are well represented in
these models. Finally, the availability of more than 100 years of
seasonal hindcasts makes it possible to estimate the reliability
of its model probabilities both for an atmosphere that has
experienced anthropogenic forcings and influences up to 2010
(a surrogate for PFACT) and for an atmosphere that was, to first-
order approximation, free of large anthropogenic forcings near
the beginning of the twentieth century (a surrogate for PCOUNT).
ASF-20C thus provides the opportunity to complement estimates
of FAR from the long hindcast series with quantitative measures
of reliability of the probabilities PFACT and PCOUNT. The use
of pairs of reliability diagrams has also been recommended to
provide observational estimates of the accuracy in FAR in a recent
study by Lott and Stott (2016).

To demonstrate how the reliability concept is proposed to
complement attribution statements made using the FAR, let us
consider the example of cold winters over Southern European
land areas below the lower quintile (20th percentile). Here, the
fundamental analysis tool is the reliability diagram; see Figure 6
for the example event. The two diagrams in Figure 6 are estimates
of model reliability for a period near the beginning of the century
from 1900 to 1929 in Figure 6(a) and for the most recent period
1980–2009 in Figure 6(b) using ERA-20C as verification. The
red dots show a range of binned model probabilities (horizontal
axis) and their corresponding observed frequency of occurrence

(vertical axis). The size of the dots is proportional to the number of
data points in each probability bin. Perfectly reliable probabilities
would lie on or near the diagonal, while probabilities with little
or no reliability would be scattered around a flat distribution
indicating little or no link between the model probabilities and the
observed frequencies. Weisheimer and Palmer (2014) suggested a
simple categorisation using the slope of a weighted regression (red
line) between the model probabilities and observed frequencies
and its uncertainty range (light red area around the regression
line) as a measure of reliability (see also Murphy and Wilks
(1998)). In our example case of cold Southern European winters
in Figure 6 it can be seen that the seasonal re-forecasts are
very reliable during both periods. The uncertainty margins of
the regression lines include the perfect reliability diagonal. The
calculation of the FAR for the event of temperature being within
the lower quintile of the recent period results in FAR = −1.2
corresponding to a 55% decrease in risk of the cold winters from
the beginning of the century to current conditions. The reliability
analysis suggests that our confidence in PCOUNT and PFACT is
very high and the derived FAR statement can subsequently be
considered trustworthy.

In cases where the reliability of the probabilities is moderate,
the FAR statements should be made with caution and perhaps be
corrected. If, however, the reliability of the model probabilities
is poor, as is often the case for precipitation and in general
for coupled atmosphere–ocean forecasts where the SSTs are
predicted rather than prescribed, then the resulting FARs are
unreliable, likely to be overstated and should not be considered
trustworthy. Other examples of reliable and unreliable forecast
events for the factual world with anthropogenic impact on the
atmosphere are presented in Weisheimer and Palmer (2014).

5. Summary and conclusions

The new global seasonal retrospective ensemble forecasting
dataset ASF-20C based on ECMWF’s atmospheric model covers
the boreal winter seasons of the entire twentieth century from
1900 to 2010. The unprecedented size of its hindcast in terms
of the period covered and the number of 51 ensemble members
allow for a thorough inspection of the robustness of seasonal
forecast skill estimates and their variability on a time-scale much
longer than in previous studies.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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In the first part of the article we have demonstrated that while
the ASF-20C hindcasts show positive and significant interannual
correlation skill of the winter North Atlantic Oscillation for
the entire forecast period, the predictive skill of the NAO is
exposed to some multi-decadal variability. One motivation for
the current research was to attempt to replicate the previously
reported variations in skill using a model not used in these
earlier studies. We also wanted to extend the seasonal hindcast
datasets backwards to the beginning of the twentieth century, in
order to assess whether the variation of skill with decade was
monotonic. We are able to confirm relatively low levels of skill
during the period of the 1950s and 1960s as found by previous
studies (Müller et al., 2005; Shi et al., 2015). Interestingly, the skill
appears to increase again for earlier start dates suggesting poor
initial data was not the cause of these relatively low scores. Using
confidence intervals and p-values, we find that these differences in
skill are only marginally statistically significant. However, there is
also evidence for a meteorological explanation of non-stationary
predictability. As a way to either confirm or refute the hypothesis
that these variations in skill are not a statistical artefact, we have
assessed the extent to which they correlate with variations in the
general circulation itself. We find strong correlations between
time series of NAO skill, and low-frequency time series of the
NAO itself, over the whole twentieth century. There is no obvious
statistical reason why these two time series should be correlated.
We also find other correlations between skill and decadal time-
scale diagnostics of the PDO and ENSO. These correlations with
the general circulation suggest that the decadal variations in
NAO forecast skill, otherwise marginally significant, are indeed
genuine.

These findings are in agreement with results from statistical
hindcasts of the winter NAO during 1900–2001, which use, as
predictors, the near-surface temperature during the preceding
months over the Northern Hemisphere sub-polar regions
(Fletcher and Saunders, 2006). These authors conclude that the
hindcast skill is non-stationary and that the highest positive skill
is observed during the early and late twentieth century.

Although the periods of high (low) levels of NAO skill seem
to coincide with periods of high (low) levels of the NAO index,
no general evidence was found that the forecast model cannot
skilfully predict negative NAO winters. Rather, our analysis
suggests that probabilistic forecasts for strong negative and all
ranges of positive NAO indices were highly skilful indeed. The
model does not perform as well for weak negative NAO events
with an index between −1 and 0 though, which is a curious
feature and merits further attention. The overall skill in the first
half of the twentieth century stems from skilfully predicting a
wide spectrum of NAO events. Our findings agree with results
reported in Müller et al. (2005) about a weak relationship between
the NAO amplitude and NAO forecast skill based on multi-model
seasonal forecasts of the four last decades of the twentieth century.

Trends in the NAO index were found to have a negligible
impact on the skill.

During the mid-century period of low skill, the DJF NAO
exhibits remarkable persistence from the November NAO, as
shown in Figure 2(a). This level of NAO persistence is not
observed during the rest of the hindcast period. The decades
of high NAO persistence from the 1940s to the 1970s coincide
with periods of enhanced intraseasonal variability of Z500 over
the Atlantic sector (Rennert and Wallace, 2009) as shown in
Figure 2(b). These findings are consistent with the hypothesis that
upper-level Rossby wave-breaking events occur more frequently
during periods of negative NAO, than during periods of positive
NAO (Benedict et al., 2004; Woollings et al., 2008).

Further study is needed to understand why there appears to
be such low skill in the mid-century period. It is not possible
to conclude whether this is due to a flow-dependent nonlinear
model error, which prevents the model from being able to
simulate extended periods of a relatively stable flow with persistent
negative NAO indices, or whether the intrinsic predictability of the

atmosphere was lower than during other periods of the twentieth
century. It becomes clear, however, that the mid-century decades
stand out as an important period on which to test the performance
of future seasonal forecast systems. Achieving good forecast skill
for the more recent decades with predominantly positive NAO
indices is not sufficient to guarantee similarly good performance
for periods with a stronger tendency for negative NAO states that
might possibly occur in the future again.

The second part of the article discussed another area of
potential application of the ASF-20C dataset, the use of reliability
estimates of ASF-20C seasonal forecast probabilities to increase
the confidence in statements of extreme weather and climate
event attribution to anthropogenic climate change. We see
the proposed use of seasonal forecasts as a first step towards
developing synergies with weather and climate forecasting in
line with the recently defined future research priorities for the
science of extreme event attribution. Probabilities derived from
seasonal retrospective forecasts have the advantage that they can
be verified against observations using the concept of statistical
reliability. For the example case of very cold winters over Southern
Europe the seasonal forecast reliability analysis suggests that our
confidence in the attribution probabilities PCOUNT and PFACT

is very high and that the derived fraction of attributable risk
statement could be considered trustworthy. For cases, however,
where the reliability of the model probabilities is poor, the
attribution statements should not be considered trustworthy
because the FAR is unreliable and likely to be overstated.

It is planned for future work to demonstrate how reliability
diagrams are not only useful tools to evaluate the relationship
between modelled and observed probabilities but at the same
time offer a straightforward way to calibrate any unreliable
system so that its probabilities become reliable (Palmer et al.,
2008; Matsueda et al., 2016).

The analysis of multi-decadal variability in forecast skill of the
NAO and the demonstration of the potential use of the long
hindcast data for improved extreme weather and climate event
attribution statements are just two examples of what could be
studied in such a long climate forecast dataset. In the future
we intend to analyse a wider range of atmospheric variability
components and their predictability, including atmospheric
teleconnection patterns linked to ENSO and stratospheric
circulation.

The presented seasonal forecasting system requires the
provision of sea-surface temperatures as a lower boundary to
the atmosphere. As such the forecasts are purely atmospheric
forecasts assuming perfect knowledge of the oceanic boundary
conditions. With the production of a new twentieth century
reanalysis of the coupled ocean–atmosphere system (Coupled
ECMWF ReAnalysis (CERA): Laloyaux and Dee, 2015) well
under way, similarly long coupled atmosphere–ocean seasonal
re-forecasts are now becoming feasible.
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P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette
J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart
F. 2011. The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system. Q. J. R. Meteorol. Soc. 137: 553–597, doi:
10.1002/qj.828.

Dunstone N, Smith D, Scaife AA, Hermanson L, Eadie R, Robinson N,
Andrews M, Knight J. 2016. Skilful predictions of the winter North Atlantic
Oscillation one year ahead. Nat. Geosci. 9: 809–814, doi: 10.1038/ngeo2824.

Fletcher C, Saunders MA. 2006. Winter North Atlantic Oscillation hindcast
skill: 1900–2001. J. Clim. 19: 5762–5776, doi: 10.1175/JCLI3949.1.

Greatbatch RJ. 2000. The North Atlantic Oscillation. Stochastic Environ. Res.
Risk Assess. 14: 213–242.

Greatbatch RJ, Jung T. 2007. Local versus tropical diabatic heating and the
winter North Atlantic Oscillation. J. Clim. 20: 2058–2075.

Hoerling MP, Hurrell JW, Xu T. 2001. Tropical origins for recent North
Atlantic climate change. Science 292: 90–92.

Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS. 2004. Twentieth century
North Atlantic climate change. Part II: Understanding the effect of Indian
Ocean warming. Clim. Dyn. 23: 391–405, doi: 10.1007/s00382-004-0433-x.

Hoskins BJ, Karoly DJ. 1981. The steady linear response of a spherical
atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38: 1179–1196.

Hurrell JW, Kushnir Y, Ottersen G, Visbeck M. 2003. An overview of the North
Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance
and Environmental Impacts, Hurrell JW, Kushnir Y, Ottersen G, Visbeck
M. (eds.): 1–35. Washington, DC: American Geophysical Union, doi:
10.1029/134GM01.

Jolliffe IT, Stephenson DB. (eds.). 2003. Forecast Verification: A Practitioner’s
Guide in Atmospheric Science. John Wiley & Sons: New York.

Kumar A. 2009. Finite samples and uncertainty estimates for skill measures for
seasonal prediction. Mon. Weather Rev. 137: 2622–2631.

Laloyaux P, Dee D. 2015. CERA: a coupled data assimilation system for climate
reanalysis. ECMWF Newsl. 144: 15–20.

Lott FC, Stott PA. 2016. Evaluating simulated fraction of attributable risk
using climate observations. J. Clim. 29: 4565–4575, doi: 10.1175/JCLI-D-
15-0566.1.

Lott FC, Stott PA, Christidis N. 2013. Can the 2011 East African drought
be attributed to human-induced climate change? Geophys. Res. Lett. 40:
1177–1181, doi: 10.1002/grl.50235.

Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. 1997. A Pacific
interdecadal climate oscillation with impacts on salmon production. Bull.
Am. Meteorol. Soc. 78: 1069–1079.

Mason SJ, Graham NE. 2002. Areas beneath the relative operating
characteristics (ROC) and relative operating levels (ROL) curves: Statistical
significance and interpretation. Q. J. R. Meteorol. Soc. 128: 2145–2166, doi:
10.1256/003590002320603584.

Matsueda M, Weisheimer A, Palmer TN. 2016. Calibrating climate change
time-slice projections with estimates of seasonal forecast reliability. J. Clim.
29: 3831–3840.

Minobe S. 1997. A 50–70 year climatic oscillation over the North Pacific and
North America. Geophys. Res. Lett. 24: 683–686, doi: 10.1029/97GL00504.

Molteni F, Stockdale T, Alonso Balmaseda M, Balsamo G, Buizza R, Ferranti L,
Magnusson L, Mogensen K, Palmer TN, Vitart F. 2011. ‘The new ECMWF
seasonal forecast system (System 4).’ ECMWF Technical Memorandum
656.

Müller W, Appenzeller C, Schär C. 2005. Probabilistic seasonal prediction
of the winter North Atlantic Oscillation and its impact on near surface
temperature. Clim. Dyn. 24: 213–226, doi: 10.1007/s00382-004-0492-z.

Müller W, Pohlmann H, Sienz F, Smith D. 2014. Decadal climate predictions
for the period 1901–2010 with a coupled climate model. Geophys. Res. Lett.
41: 2100–2107, doi: 10.1002/2014GL059259.

Murphy AH, Wilks DS. 1998. A case study of the use of statistical models
in forecast verification: Precipitation probability forecasts. Weather and
Forecasting 13: 795–810.

National Academies of Sciences, Engineering and Medicine. 2016. Attribution
of Extreme Weather Events in the Context of Climate Change. The National
Academies Press: Washington, DC, doi: 10.17226/21852.

Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E,
Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ,
Phillips AS, Scott JD, Smith CA. 2016. The Pacific Decadal Oscillation,
revisited. J. Clim. 29: 4399–4427, doi: 10.1175/JCLI-D-15-0508.1.

Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGL, Lohmann
D, Allen MR. 2011. Anthropogenic greenhouse gas contribution to
flood risk in England and Wales in autumn 2000. Nature 470:
382–385.

Palmer TN, Anderson DLT. 1994. The prospects for seasonal forecasting – a
review paper. Q. J. R. Meteorol. Soc. 120: 755–793.

Palmer TN, Shukla J. 2000. Editorial to DSP/PROVOST special issue. Q. J. R.
Meteorol. Soc. 126: 1989–1990, doi: 10.1002/qj.49712656701.

Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell M. 2008. Reliability
of climate change projections of precipitation: Towards ‘seamless’ climate
predictions. Bull. Am. Meteorol. Soc. 89: 459–470, doi: 10.1175/BAMS-89-
4-459.

Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C,
Laloyaux P, Komori T, Berrisford P, Dragani R, Treémolet Y, Hólm E,
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