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Abstract

Table functions, also referred to as graphical functions, provide a powerful and user-friendly way to
represent nonlinear relationships between variables in system dynamics (SD) models. However, in
many cases modelers may benefit from using analytical equations to represent nonlinear relation-
ships for model sensitivity testing and also for communicating with researchers in other fields and
disciplines. We propose six analytical equations that can be used to represent many of the
nonlinear relationships commonly formulated using table functions in SD models. Specifically, this
article provides guidance on using the generalized logistic function, the exponential function, the
modified exponential function, the quadratic function, the logarithmic function and the power func-
tion to replace existing table functions. Importantly, we also present a version of each equation that
includes an interior reference point. We demonstrate how to apply these analytical equations in SD
models by replacing the table functions in the original World Dynamics model. We also provide a
Python script to help implement our recommended procedure for incorporating the six analytical
equations into models and a Vensim macro for each analytical equation.
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Introduction

Table functions have been an important aspect of system dynamics
(SD) modeling since the first SD models were constructed (Forrester, 1961,
1968, 1969). Table functions enable modelers to draw on their own and other
domain experts’ knowledge of the system to represent nonlinear functions.
Using table functions to formulate nonlinear relationships requires no advanced
mathematical knowledge and provides flexibility in specifying the nature of
causal relationships (Sterman, 2000). These characteristics afford distinct advan-
tages, especially when eliciting nonlinear relationships from managers or
policymakers with detailed knowledge of the system under study but who may
possess limited mathematical training (e.g. see Ford and Sterman, 1998).

After following all recommended guidelines to formulate nonlinear rela-
tionships using table functions in the model conceptualization stage
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(Sterman, 2000: Chap. 14), continuing to use table functions when testing and
communicating the model assumptions to other scholars has some disadvan-
tages. One disadvantage involves the difficulty of running extensive sensitiv-
ity tests of different specifications for each table function in a model. Of
course, modelers can test the sensitivity of model behavior to changes in one
or more table function(s) by adjusting each table function manually. This pro-
cess may be adequate for univariate sensitivity tests but can be time consum-
ing when performing multivariate sensitivity tests of models with numerous
table functions. Although some scholars have identified useful work-around
solutions for this problem (Eker et al., 2014; Gonçalves et al., 2005), none of
the solutions completely resolve this issue. Another disadvantage involves
justifying each table function included in a model to other researchers work-
ing in the domain. Researchers unfamiliar with SD may be skeptical of table
functions because nonlinear relationships in their domain may typically be
represented using well-established analytical equations. An additional disad-
vantage of table functions includes the introduction of discontinuities from
linear interpolation between points (Saeed, 1984). Increasing the number of
points defined for a table function generally resolves this as a substantive con-
cern (Eker et al., 2014), but using a continuous analytical function ensures a
smooth curve over the entire range of values.
Previous research proposed using analytical equations to represent

nonlinear relationships that were concave, convex, or s-shaped curves
(Saeed, 1984). This article builds on and extends this prior work by adding
more analytical functions, so modelers can represent a larger range of
nonlinear relationships. We describe six analytical equations capable of rep-
resenting many of the nonlinear relationships commonly formulated using
table functions in SD models. Specifically, we focus on the generalized logis-
tic growth equation, the exponential function, the modified exponential
function, the quadratic polynomial equation, the logarithmic function, and
the power function. Figure 1 shows the six distinct shapes of nonlinear rela-
tionships that these analytical equations can represent: (i) S-shaped (sig-
moid) curve, (ii) inverse S-shape curve, (iii) accelerating growth, (iv)
decreasing decay, (v) diminishing growth with saturation, and (vi)
diminishing growth without saturation. These six curves can represent a
wide range of relationships and frequently appear in SD models.
We propose a procedure to convert existing table functions into analytical

equations or to formulate analytical equations representing nonlinear rela-
tionships in the early model-building stages. Replacing table functions with
analytical equations or adopting analytical equations directly when building
an initial model facilitates more straightforward sensitivity testing of these
nonlinear relationships. Also, the procedure we describe and the form of the
analytical equations we use include the flexibility to specify an internal ref-
erence point for each nonlinear relationship. Providing versions of the ana-
lytical equations that include an interior reference point represents an
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Fig. 1. Six distinct shapes
of nonlinear relationships

356 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr

 10991727, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1718 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [27/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



important contribution since many (perhaps most) table functions contain
an interior reference point. Also, in prior research on this topic, only a small
set of specific parameter conditions could be included as reference points
(Saeed, 1984). In addition, providing a procedure to incorporate analytical
equations into SD models may help improve communication with
researchers in other fields and disciplines who frequently use analytical
equations and may be skeptical of table functions.
In the next section, we outline the procedure for replacing an existing

table function with one of the analytical equations. If a table function has
not been formulated already, then the modeler must initially follow the
guidelines for formulating nonlinear relationships (e.g. Sterman, 2000,
p. 553) to determine the shape of the relationship, important reference
points, and the (x, y) values for the function. The subsequent
section explains the general form of each analytical equation and provides a
version of each equation that includes an interior reference point (rx, ryÞ. In
the final section, we provide concluding remarks. Appendices A–E, in the
online supporting files, provide additional information. Appendix A pro-
vides step-by-step instructions demonstrating how to apply the procedure to
replace one of the table functions in the World Dynamics model
(Forrester, 1971). The World Dynamics model includes 22 table functions,
and we used the same procedure to replace the other 21 table functions in
the model. Due to space constraints, step-by-step instructions are only pro-
vided for replacing one table function (see the supplementary Excel file for
details on replacing all 22 table functions). Appendix B explains how vary-
ing the parameters of the six analytical equations affects the shape of the
functions and provides graphs illustrating the changes. Appendix C presents
the steps used to derive a version of each of the analytical equations that
includes an interior reference point (rx, ry ). Appendix D explains how to use
a custom-written Python 3 script to replace an existing table function with
one of the six analytical equations. Finally, Appendix E provides the syntax
of a set of Vensim Macros that can be used to implement each analytical
equation in Vensim.

Procedure

This section provides the procedure for replacing table functions with ana-
lytical equations. Figure 2 illustrates the steps involved in this procedure. If
a table function has not been formulated already, then Step 0 involves fol-
lowing the guidelines for formulating nonlinear relationships to determine
the shape of the relationship, important reference points, and (x, y) values
for the function (Sterman, 2000, p. 553).
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Step 1: Identify the shape of the nonlinear relationship in the existing table
function. If the shape matches one of the curves shown in Figure 1,
then one of the six analytical equations discussed in this article may
be used to replace the table function.

Step 2: Given the shape of the nonlinear relationship, determine the analyti-
cal equation(s) (discussed further in Section 3) most appropriate for
replacing the table function.

Fig. 2. Procedure for
using analytical equations
to represent nonlinear
functions
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Step 3: Define the minimum and maximum y-axis values of the curve. Mod-
elers should adhere to good modeling practice by normalizing,
where appropriate, the input and output values of the function
(Sterman, 2000).

Step 4: Specify an important interior reference point (rx, ry Þ for the
nonlinear relationship where the values of the function are deter-
mined by definition. Interior refers to a point between the minimum
and maximum y-axis values. Identify a reference point, where possi-
ble, but skip this step if no reference point can be identified.

Step 5: If a reference point is not specified in Step 4, then use the conven-
tional form of the analytical equation selected in Step 2. If a refer-
ence point is specified in Step 4, use the version of the analytical
equation with a reference point. See Tables 1 and 2 for the conven-
tional form of each analytical equation along with an alternative ver-
sion of each equation that includes a reference point.
Determine which parameters need to be defined or estimated for the
selected analytical equation. Estimate the parameter values using
nonlinear regression to minimize the Sum of Squared Errors (SSE)
or Root-Mean-Square Error (RMSE) between the table function and
the analytical equation. Large discrepancies between the original
table function and the analytical equation necessitate returning to
Step 2 and selecting another analytical equation or, in the case of
the family of generalized logistic equations, selecting a more general
form of the equation that includes additional parameters.

Step 6: Once the fully specified analytical equation yields a curve that closely
matches the original table function, add the analytical equation to the
simulation model and create new variables for parameter values, the
minimum and maximum y-axis values, and the reference point.

Step 7: Simulate the model and compare the output for key variables before
and after incorporating the analytical equations. Some differences
can be expected, but large discrepancies in the before and after
dynamics require further investigation and may require returning to
Step 2 and selecting another analytical equation. An important point
to note is that when the y(x) minimum and/or y(x) maximum values
are not defined in Step 3 or do not exist, the output of the analytical
equations may extend without bound and could well impact model
behavior. Be sure to check that this is appropriate for the nonlinear
relationship.

The above procedure can be followed to replace an existing table func-
tion with an analytical equation or to directly represent a nonlinear rela-
tionship using an analytical equation. Of course, when the modeler knows
the underlying data-generating process, they can directly select the most
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appropriate analytical function in Step 2 and work through the remaining
steps. But modelers may not always know the underlying data-generating
process. In these cases, in Step 2 modelers must carefully examine the
shape of the table function curve and identify all the candidate analytical
function(s) that can possibly match that qualitative shape. Next the mod-
eler must go through the remaining steps of our procedure for each candi-
date analytical equation and then use all the results combined with
judgment to select the most appropriate analytical equation to replace the
table function. The choice of which analytical function to use must not be
based only on the best statistical fit.

We have also written a Python script—provided in the online supporting
information and explained in Appendix D—that helps automate this proce-
dure. When using the script, the modeler enters information about the exis-
ting table function(s), and the program estimates the best-fitting values for
each of the six analytical equations based on the SSE statistics and RMSE.
The script also draws a graph showing all the estimated curves along with
the original table function. The modeler still must use all the results com-
bined with judgment to select the most appropriate analytical equation to
replace the table function.

Analytical equations

This section introduces a set of exact, closed-form analytical equations that can
be used to represent a range of different nonlinear relationships. We focus on:
(i) the generalized logistic function, (ii) the exponential function, (iii) the modi-
fied exponential function, (iv) the quadratic function, (v) the logarithmic func-
tion, and (vi) the power function. After explaining the conventional form of each
analytical equation, we also present a version of each equation that includes a
reference point, (rx, ry ), where the values of the function are determined by
definition. For example, many nonlinear functions in SD models have (1, 1)
as a reference point, indicating the relationship between the two variables
under normal conditions (Forrester, 1971; Martin, 1997; Sterman, 2000).

Generalized logistic function

The generalized logistic function is used in many disciplines, including the
natural sciences and social sciences. The generalized logistic function, pro-
vided in Eq. (1), can represent nonlinear relationships characterized by an S-
shape or sigmoid curve (Graph 1 in Figure 1), the inverse S-shape curve
(Graph 2 in Figure 1), as well as the diminishing growth with saturation
curve (Graph 5 in Figure 1). Using this equation involves identifying the
minimum value of y xð Þ, the inflection point, and the maximum value of
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y xð Þ. This function is widely used in modeling a variety of different phe-
nomena such as cumulative sales in marketing (Lilien et al., 2017), technol-
ogy adoption (Struben and Sterman, 2008), and the spread of infections in
pandemics (Struben, 2020).

y xð Þ¼Aþ K�A

CþQ �e�β� x�Mð Þð Þ1v
(1)

where A, K , C, β, Q, M , and ѵ are parameters and x is the independent vari-
able. A is the minimum value (or lower asymptote) of y xð Þ. When C ¼1, K is
the maximum value (or upper asymptote) of y xð Þ. If A¼0 and C ¼1, K is
known as the carrying capacity. The parameter M represents the inflection
point of the curve. When β >0 the curve yields S-shaped growth and when β
<0 the curve yields the inverse (or reverse) S-shaped decline. Appendix B in
the online supporting information explains how varying each parameter
affects the logistic curve shape and provides graphs illustrating the changes.
Please note that throughout the article and online supporting information,
Greek letters (β, θ, and λ) denote growth rates and Roman letters are used to
denote all other parameters.
The generalized logistic equation can also be simplified depending on the

particular shape of the nonlinear relationship the modeler wants to repre-
sent. These simplified versions compose alternative specifications of the gen-
eralized logistic function. For example, in one of the most common
specifications (provided in Eq. (2)): C, Q, and ѵ =1, A = the minimum value
of y xð Þ, and K = the maximum value of y xð Þ.

y xð Þ¼Aþ K�A
1þe�β� x�Mð Þ (2)

Table 1 provides a number of alternative specifications for the generalized
logistic equation alongside an equivalent version of each equation that
includes a reference point (rx, ryÞ. We recommend starting with the most
common, and simpler, version of the generalized logistic function in which
the parameters C, Q and ѵ = 1 (see Appendix B in the online supporting
information). If this simpler form cannot adequately match the shape of the
focal table function, then choose an alternative specification with more
degrees of freedom.
We provide a version of each equation that includes an interior reference

point—in addition to the minimum and maximum y(x) values—because
many table functions include an interior reference point. For example, many
table functions include (1, 1) as a reference point. The version of the analyt-
ical equations that include a reference point ensures modelers can specify
and constrain the function to pass through that reference point. To
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incorporate a reference point (rx, ryÞ into the equation, we rearranged terms
in Eq. (1), solved for β assuming ѵ = 1, and then inserted that solution back
into the original equation. See Appendix C in the online supporting informa-
tion for derivations of the analytical equations with a reference point. The
slope of the curve is negative when rx >M and ry <M or rx <M and ry >M
and is positive when rx, ry >M or rx, ry <M . For example, Eq. (3) provides
the generalized logistic function with a reference point (rx, ryÞ when ѵ =1.

y xð Þ¼Aþ K�A

CþQ � A� C�1ð ÞþK�ry�C
Q� ry�Að Þ

� � x�M
rx�M

(3)

With the following constraints:

K > ry >A

rx ≠M

Q � ry �A
� �

≠ 0

Exponential function

The exponential function, provided in Eq. (4), is well-known and widely
used to represent growth or decay dynamics in many disciplines (Al-Eideh
and Al-Omar, 2019; Dennis, 1989). The exponential function can represent
accelerating growth (Graph 3 in Figure 1) or decreasing decay (Graph 4 in
Figure 1).

Table 1. Alternative
generalized logistic-
equation specifications
and equivalent versions
with a reference point

Generalized logistic equation

Specification Conventional equation
Version of equation with

reference point

Most general form y xð Þ¼Aþ K�A

CþQ�e�β� x�Mð Þð Þ1v
None provided

v ¼1 y xð Þ¼Aþ K�A
CþQ�e�β� x�Mð Þ y xð Þ¼Aþ K�A

CþQ� A� C�1ð ÞþK�ry �C
Q� ry�Að Þ

� � x�M
rx�M

v ,Q,C ¼1 y xð Þ¼Aþ K�A
1þe�β� x�Mð Þ y xð Þ¼Aþ K�A

1þ K�ry
ry�A

� � x�M
rx�M

v ,Q,C ¼1; A¼0 y xð Þ¼ K
1þe�β�ðx�MÞ y xð Þ¼ K

1þ K�ry
ry

� � x�M
rx�M
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y xð Þ¼d �eθ�x þc (4)

where x is the independent variable and θ, d, and c are parameters. θ repre-
sents the intrinsic growth rate: θ >0 yields exponential growth and θ <0
yields exponential decay. Appendix B in the online supporting information
explains how varying each parameter affects the shape of the exponential
curve and provides graphs illustrating the changes.
To incorporate a reference point (rx, ryÞ into the equation, we rearranged

terms in Eq. (4), solved for θ, and then inserted that solution back into the origi-
nal equation. Equation 5 provides the exponential function with a reference point
(rx, ryÞ. See Appendix B in the online supporting information for the derivation.

y xð Þ¼d � ry �c
d

� � x
rx þc (5)

where the following constraints apply:

ry �C
d

>0

rx ≠ 0

ry >C

d≠ 0

Modified exponential function

The modified exponential function, provided in Eq. (6), can represent growth
dynamics with decreasing returns to scale that reaches a saturation level
(Graph 5 in Figure 1).

y xð Þ¼ a� 1�e�λ�x� �þw (6)

where x represents the independent variable and λ, w , and a are parameters.
x must be positive. When x¼ 0,w is the minimum value of y xð Þ: When
w ¼0, a is the maximum value of y xð Þ or the saturation level. When w does
not equal 0, aþw is the maximum value of y xð Þ. Appendix B in the online
supporting information explains how varying each parameter affects the
shape of the modified exponential curve and provides graphs illustrating the
changes.
To incorporate a reference point (rx, ryÞ into the equation, we rearranged

terms in Eq. (6), solved for λ, and then inserted that solution back into the
original equation. Equation (7) provides the modified exponential function
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with a reference point (rx, ryÞ. See Appendix C in the online supporting
information for the derivation.

y xð Þ¼ a� 1� aþw� ry
a

� � x
rx

 !
þ w (7)

where the following constraints apply:

a≠ 0

rx ≠ 0

ry < aþw

Quadratic function

The quadratic function, shown in Eq. (8), is a polynomial of degree two that
can represent accelerating growth that is not exponential (i.e. Graph 3 in
Figure 1 for concave growth curves that are not exponential). However, care
must be taken when using the quadratic function because the shape of the
Quadratic function can become nonmonotonic when one or more of the
parameters are negative.

y xð Þ¼aþb�xþc�x2 (8)

where a, b and c are parameters. a defines the y-axis intercept when
y x¼0ð Þ. If c¼ 0, the equation is linear. The c parameter controls the degree
of curvature of the graph; a larger magnitude of c gives the graph a more
closed (sharply curved) appearance. Appendix B in the online supporting
information contains graphs illustrating how varying c affects the shape of
the quadratic function.

To incorporate a reference point (rx, ryÞ into the equation, we rearranged
terms in Eq. (8), solved for c, and then inserted that solution back into the
original equation. Equation (9) provides the quadratic equation with a refer-
ence point (rx, ry Þ. See Appendix C in the online supporting information for
the derivation.

y xð Þ¼ aþb�xþ ry �a�b� rx
rx2

� �
�x2 (9)

where the rx ≠ 0 constraint applies.
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Logarithmic function

The logarithmic function, shown in Eq. (10), can represent nonlinear rela-
tionships where growth or decay is fast at the beginning and slows down
over time. This function exhibits decreasing returns to scale but continues
growing (Graph 6 in Figure 1) or decaying and does not saturate or reach a
limit.

y xð Þ¼aþb� ln xð Þ (10)

where x ranges from 0 to∞, and a and b are parameters. Changes in a move
the start of the curve up or down along the y-axis. If b>0 the curve increases
with diminishing returns and if b<0 the curve decreases with diminishing
returns. Appendix B in the online supporting information contains graphs
illustrating how varying b affects the shape of the logarithmic curve.
To incorporate a reference point (rx, ryÞ into the equation, we rearranged

terms in Eq. (10), solved for b, and then inserted that solution back into the
original equation. Equation 11 provides the logarithmic equation with a ref-
erence point (rx, ryÞ. See Appendix C in the online supporting information
for the derivation.

y xð Þ¼ aþ ry �a
ln rxð Þ

� �
� ln xð Þ (11)

When ry > a, the curve increases, and when ry < a, the curve decreases, and
where the following constraints apply:

rx >1

x >0

Power function

The power function, shown in Eq. (12), can represent accelerating growth,
diminishing growth with and without saturation (Graphs 3 and 6 in
Figure 1), and also linear growth.

y xð Þ¼ a�xβþc (12)

where a, β and c are parameters. Changes in c move the start of the curve up
or down along the y-axis, and changes in a alter the height of the curve verti-
cally. If β¼1, the equation is linear. If x >0 and β >1, the shape of the func-
tion is accelerating growth (Graph 3 in Figure 1). If β <1, the shape of the
function is growth with decreasing returns (but continues growing; see
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Graph 6 in Figure 1). Also, if β ≤ 0, then the following constraint applies:
x≠ 0. Appendix B in the online supporting information contains graphs
illustrating how varying the parameters affects the shape of the power
function.

To incorporate a reference point (rx, ryÞ into the equation, we rearranged
terms in Eq. (12), solved for β, and then inserted that solution back into the
original equation (Eq. (12)). Equation (13) shows the power-function equa-
tion with a reference point (rx, ry Þ. See Appendix C in the online supporting
information for the derivation.

y xð Þ¼a�x
ln

ry�c
að Þ

ln rxð Þ

� �
þc (13)

where the following constraints apply:

rx > 1

ry > c

a>0

Table 2 provides a summary of the conventional forms of the exponential,
modified exponential, quadratic, logarithmic, and power equations along
with equivalent versions that include an interior reference point.

In Appendix A in the online supporting information, we demonstrate our pro-
cedure for replacing table functions with analytical equations using the World
Dynamics model (Forrester, 1971). We start by selecting one table function for a
step-by-step demonstration of the seven steps. Subsequently, we provide a sum-
mary table of the analytical equations we use to replace the remaining 21 table
functions in the model. Then, we compare the model behavior between the orig-
inal table-function formulations and the version of the model with analytical

Table 2. Conventional
form of exponential,
modified exponential,
quadratic, logarithmic,
and power functions with
equivalent versions with
a reference point

Conventional equation
Version of equation with

reference point

Exponential function y xð Þ¼d �eθ�x þc y xð Þ¼d � ry�c
d

� � x
rx þc

Modified exponential function y xð Þ¼a� 1�e�λ�x� �þw
y xð Þ¼a� 1� aþw�ry

a

� � x
rx

� �
þw

Quadratic function y xð Þ¼aþb�xþc�x2
y xð Þ¼aþb�xþ ry�a�b�rx

rx 2

� �
�x2

Logarithmic function y xð Þ¼aþb� ln xð Þ y xð Þ¼aþ ry�a
ln rxð Þ
� �

� ln xð Þ
Power function y xð Þ¼a�xβþc

y xð Þ¼a�x
ln

ry�c
að Þ

ln rxð Þ

� �
þc
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equations. In the online supporting information, we include an Excel file show-
ing the analytical equation used to replace each of the 22 table functions in the
original World Dynamics model. Each tab shows a different table function, the
replacement analytical equation, and the estimated fit between the two.
In addition, in Appendix E of the online supporting information, we

include the syntax for Vensim Macros that can be used to incorporate each
of the conventional analytical equations or the version of the equations with
an interior reference point. We also add the Macros files to the online
supporting information to implement in Vensim DSS and a Vensim model
for each analytical equation demonstrating how to use each Macro.
The Python script and the Vensim DSS Macro files can be downloaded

from https://github.com/jprioso2/Using-Analytical-Equations-to-Represent-
Nonlinear-Relationships.

Discussion and conclusion

This article proposes a procedure for using a set of analytical equations to
replace table functions or to formulate nonlinear relationships using analyti-
cal equations directly when building an initial model for representing some
of the most common nonlinear relationships in SD models. To facilitate
using these analytical equations, we provide a version of the generalized
logistic function, the exponential function, the modified exponential func-
tion, the quadratic function, the logarithmic function and the power function
that includes an interior reference point. We explain each of these analytical
functions and the differently shaped nonlinear relationships each function
can represent. In Appendix A in the online supporting information, we also
demonstrate how to replace one table function from the original World
Dynamics model with an analytical equation, and we compare the behavior
of the original World Dynamics model with a version of the model in which
all 22 table functions were replaced with analytical equations.
While table functions provide a powerful and user-friendly way to repre-

sent nonlinear relationships between variables in SD models, in some cases
modelers will benefit from using analytical equations to replace table-
function formulations. In particular, analytical equations are continuous
functions, unlike piecewise linear table functions. Replacing table functions
with analytical equations removes any discontinuities arising from linear
interpolation between points and also ensures correct calculation of values
beyond the defined range of input values. Also, analytical equations can
improve communication with researchers in other fields and disciplines
who typically represent nonlinear relationships using analytical equations.
In addition, using analytical equations can simplify multivariate model

sensitivity testing when a model contains many nonlinear relationships.
Prior research has identified useful work-around solutions for multivariate
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sensitivity testing using table functions (Eker et al., 2014; Gonçalves
et al., 2005), but none of the solutions completely resolve this issue. Eker
et al. (2014) illustrate an approach that involves multiplying each table func-
tion by a distortion function for testing the sensitivity of the model to varia-
tions in the table functions. The parameters of the distortion function can be
varied as part of subsequent sensitivity testing. While this process does
enable multivariate sensitivity testing of models with table functions,
selecting appropriate distortion functions and ranges of parameter values
can be time consuming and involve significant trial and error.

Gonçalves et al. (2005) adopt a different approach that involves defining
two different table functions for each nonlinear relationship and specifying
a weighting parameter to compute the weighted average table function. Sen-
sitivity testing includes varying the weighting parameter to understand how
model behavior changes in response to different values of the weighted aver-
age function. This approach could be readily extended to accommodate
N different table functions for each nonlinear relationship. Once again, this
approach enables multivariate sensitivity testing of models with table func-
tions, but it does not remove any discontinuities arising from linear interpo-
lation between points in the table functions and may be challenging to
explain to researchers in other fields and disciplines who typically represent
nonlinear relationships using analytical equations.

At the same time, we strongly advocate that modelers use table functions
to initially formulate nonlinear relationships by following the guidelines for
good modeling practice (Sterman, 2000: Chap. 14). This increases the likeli-
hood of ending up with well-formulated nonlinear relationships that can be
replaced with analytical equations at a later stage. Table functions also still
provide more flexibility in terms of representing nonlinear relationships
than analytical equations. For example, nonlinear relationships containing
more than one interior reference point may not be accurately represented
using the specifications of the analytical equations presented in this article.
In addition, table functions afford a more user-friendly approach for explor-
ing alternative formulations for nonlinear relationships when experimenting
with the model alongside domain experts or clients. Clients typically pos-
sess deep knowledge about the systems in which they operate, but they may
not understand the analytical equations. In such cases, continued use of the
original table functions helps maintain transparency of model assumptions
and empowers clients to “own” the model. Modelers can plan to replace
table functions with analytical equations later in the model-development
process for sensitivity testing and communicating with other scholars.

We believe this article will help modelers make use of analytical equations
to replace table functions or to help formulate nonlinear relationships using
analytical equations directly when building an initial model. Many published
SD models contain analytical functions, but there has been limited guidance
(an exception is Saeed, 1984) available for modelers who may not feel
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confident working with analytical equations. This article builds on and extends
this prior work (Saeed, 1984) by adding more analytical equations that can be
used to represent a larger range of nonlinear relationships. In addition, the pro-
cedure proposed in this article enables modelers to incorporate an interior ref-
erence point when using the six analytical equations we discussed. To enable
modelers to incorporate a reference point, we derived versions of each of the
analytical equations that explicitly include a reference point. However, as men-
tioned above, one limitation of our derivations is that each analytical equation
can contain only one reference point within the interior of the curve (i.e. apart
from the minimum and maximum values of the function). Table functions that
contain multiple interior reference points may not be appropriate candidates
for replacement using the analytical equations we derived. A promising oppor-
tunity exists for future research to extend our work to include multiple interior
reference points for the six analytical functions we discussed. In addition,
future research that further expands the set of analytical equations we dis-
cussed would make an important contribution.
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