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Electric vehicles (EVs) are one promising technology for an improved sustainable transportation sector, particularly when they are
charged with electricity from renewable energy sources. However, the EV user behaviour uncertainties as well as the fluctuating
generation of renewable energy sources make the interaction between these technologies challenging. In this work, a new
approach to coordinate the charging process of multiple EVs parked at workplace charging station (WCS) equipped with
Photovoltaic panels (PV) is proposed. Considering the PV incremental cost and the day-ahead electricity price (DAEP), an
optimal framework is introduced to maximize the WCS owner profit while compensating the EV users for discharging their EVs’
battery. *e EV user behaviour uncertainties are modeled by probability distribution functions, and the PV generation is
forecasted by the backpropagation neural network model (BPNN). *e optimization problem is solved by mixed-integer linear
programming (MILP) while the Monte Carlo sampling methods have been applied to handle the EV user behaviour uncertainties.
*e results show that the proposed method increases the WCS owner profit and the EV user compensation by 54% and 50.7%,
respectively, compared to uncoordinated charging. Moreover, the estimated WCS owner profit and the EV user compensation
generated by coordinated charging are 1.72% and 1.35%, respectively, higher than the profits based on real user behaviour data.

1. Introduction

Electric Vehicles (EVs) are becoming popular due to their
potential for reducing air pollution, dependence on oil
consumption, and ability to promote the penetration of
renewable energy sources into the transport sector [1, 2].
Nevertheless, with the large scale of EVs connected to the
power grid, the distribution network load profile will be
extremely changed, which can lead to voltage fluctuations,
power losses, and incremental overloads. Besides, there are
environmental controversies about the EVs’ charging, since
the reduction of CO2 vehicle emission might be followed by
increasing the emissions in power generation. *erefore, the
EVs can be beneficial for the environment only if the
electrical energy used to charge their batteries is coming
from renewable sources [3], such as photovoltaic panels
(PV), concentrated solar power, and hydraulic and wind
systems.

1.1. LiteratureReview. *e concept of integration of PV with
EV charging infrastructure attracts huge researchers’ at-
tention in recent years. In [4], a classification scheme of EVs
in PV charging station (PVCS) has been studied to reduce
the total cost of energy trading of the PVCS. A real-time
price based on automatic demand response strategy is
proposed in [5] for PVCS, which intends to minimize the
electricity cost, to mitigate the peak charging demand, and to
improve the PV self-consumption. In [6], a close-to-optimal
algorithm based on the Lyapunov optimal is developed to
improve the PVCS owner profit. A rule-based decision-
making algorithm is applied in [7] to manage EVs charging
based on PV generation and electricity time-of-use tariffs. A
rule-based decision-making method that makes the solid
state transformer-based PVCS can dynamically participate
in the ancillary service of smart grid is presented in [8]. A
new architecture for a PVCS with a hybrid control strategy is
proposed in [9] to minimize the charging cost and to
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increase the PV self-consumption. Two optimization algo-
rithms have been applied in [10] to minimize the EVs
charging cost and to maximize the PV self-consumption for
three EV fleet categories which are commercial (night
charging), commuter (long day charging), and opportunity
(short day charging). *e authors in [11] developed a model
to maximize the PVCS owner profit while considering the
grid constraints, and results show that the PVCS owner
profit is increased by 10% and the peak load is decreased by
40%. An energy management framework has been formu-
lated for a university campus microgrid to coordinate the
EVs’ charging and maximize the PV self-consumption [12].
Based on the EVs’ energy demand and the electricity price, a
fuzzy logic power-flow controller has been designed in [13]
to decrease EVs’ charging cost at workplace parking garage
equipped with PV panels. A Stackelberg game is designed in
[14], where the PVCS operator acts as a leader and the EV
users as followers. Soares et al. [15] developed an optimi-
zation model to minimize the operational cost of an eco-
district microgrid with EV and PV systems compared with
uncoordinated scenario; the operational costs are decreased
by 70%. *e authors in [16] propose an optimization
problem to coordinate 6 EVs at workplace charging station
(WCS) supplied by PV and grid.

1.2. Contributions and Novelty of #is Research. Relying on
our scientific knowledge, designing an EVs’ charging
strategy to maximize the WCS owner profit while com-
pensating the EV users for discharging their EVs’ battery is
not proposed in those previous works. In other words, in this
paper, the PV power generation is forecasted by the back-
propagation neural network. Besides, based on the day-
ahead electricity price (DAEP), the EV user behaviour and
the PV incremental cost of an optimal charging strategy are
proposed to maximize the WCS owner profit and to com-
pensate the EV users for using their EVs’ battery to supply
the grid. *e optimal charging strategy implemented in this
work satisfied the PV system constraints, the EVs’ con-
straints, and the grid constraints. Moreover, this paper
presents a method to calculate EVs’ initial state of charge
(SOC0) based on their daily driving mileage. In this case, the
WCSwould not need to collect the SOC0 of the EVs from the
users, which could help the WCS to predict the EVs’ energy
demand. Furthermore, the EV user behaviour has been
modeled by probability distribution functions while Monte
Carlo sampling methods (MCS) have been applied to handle
EV user behaviour uncertainties. Hence, the contribution
and novelty of the paper can be presented as follows:

(i) Presenting an optimal charging strategy that max-
imizes theWCS profit while compensating EV users
for discharging their EVs’ battery

(ii) Modeling EV user behaviour by probability dis-
tribution functions

(iii) Applying the MCS to handle EV user behaviour

1.3. Paper Organization. *e paper is organized as follows.
Section 2 provides the problem formulation. *e PV power

forecasting model is described in Section 3. *e modeliza-
tion of EV user behaviour by probability distribution
functions is formulated in Section 4. *eMCS, the proposed
algorithm, and the optimization parameter value are pre-
sented in Section 5. To assess the effectiveness of the pro-
posed optimal charging strategy, the results are compared
with the uncoordinated charging scenario in Section 6.
Finally, the conclusion of the paper is given in Section 7.

2. Problem Formulation

2.1. EV Charging Model. EVs park at the workplace for a
sufficiently long time during the day [1]. For this reason, the
concept of WCS with a fleet of EVs, PV panels on the roof,
and bidirectional grid connection is studied in this paper. It
is assumed that the WCS owner pays the EV users when
their EVs supply the grid. As shown in Figure 1, there are
two kinds of connection, energy and information connec-
tion. *e optimal charging strategy resides in three steps. In
the first step, an EVs’ charging control center (EVs CCC) is
supposed to collect the day-ahead electricity price from the
electricity operator to forecast the PV power generation and
the EV user behaviour. In the second step, an optimal
charging strategy is implemented by CCC to maximize the
WCS owner profit while compensating the EV users for
discharging their EVs. Finally, the EVs CCC broadcast the
information to the EVs, PV, and grid to exchange the energy
between them.

In this work, we aim at designing a smart charging
strategy scheme to maximize the WCS owner profit while
compensating the EV users for discharging their EVs, where
the EVs’ constraints, the PV system constraints, and the grid
constraints are fulfilled. *e charging scheduling optimi-
zation problem for the WCS might be formulated as follows:

min
T

t�1


N

i�1
λPV2V,tP

i
PV− V,t + λG2V,tP

i
grid− V,t

− λV2G,t − Cdeg P
i
V− G,t − λPV2G,tPPV− G,tΔt.

(1)

*e objective function is subject to the following
constraints.

(A) EVs constraints:

0≤P
i
χ− V,t ≤ u

i
t · P

i
max, ∀t, i, (2)

0≤P
i
V− G,t ≤ v

i
t · P

i
max, ∀t, i. (3)

Each EV has its own limitation of charging and dis-
charging power, as presented in (2) and (3).

u
i
t + v

i
t ≤ 1, ∀t, i. (4)

Equation (4) is necessary to prevent the EV contem-
poraneous charging and discharging, where ui

t is the
binary variable that states whether the EV labelled i is
charging (1) or not (0) at time t and vi

t represents the
binary variable that states whether the i th EV is dis-
charging (1) or not (0).
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*e power received by each EV at time t (Pi
EV,t) can be

calculated according to equation (5). Subsequently, we
can track the battery’s state of charge (SOC) during the
whole simulation time by (6), where SOCi

t− 1 indicates
the state of charge of the i th EV at time t − 1, Δt
represents the time step (in hour), and Ci

max is the EV
maximum capacity. *e restriction in (7) guarantees
that the EV labelled i is fully charged at the end of
charging period T. To avoid impacting the battery states
of health due to overcharging and deep discharging,
partial states of charge (SOCi

t) must be constrained
between certain boundaries, as in (8), where SOCmin
and SOCmax are the minimum and the maximum
constraints, respectively, imposed to all partial states of
charge.

P
i
EV,t � ηch · P

i
χ− V,t − ηdis · P

i
V− G,t, ∀t, i, (5)

SOCi
t � SOCi

t− 1 +
Pi
EV,t.Δt
Ci
max

, ∀t, i, (6)

SOCi
T � SOCmax, (7)

SOCmin ≤ SOC
i
t ≤ SOCmax, ∀t, i. (8)

(B) PV system constraints:
It has been assumed that the PV plant is equipped
with a DC-DC converter with Maximum Power
Point Tracker (MPPT), which has efficiency ηMPPT �

0.98 [17]. Furthermore, to allow the smart charging
strategy to curtail PV power, equation (9) has been
introduced:



N

i�1
ηMPPT · P

i
PV− V,t +

PPV− G,t

ηMPPTηinv
· ≤P

max
PV,t, ∀t, i. (9)

(C) Grid constraints:

*e charging/discharging power drawing from the
grid or feeding into the grid is limited by the fol-
lowing equations:

0≤P
i
grid− V,t ≤w

i
t · P

max
grid , ∀t, i



N

i�1
P

i
V− G,t + PPV− G,t ≤ 1 − w

i
t  · P

max
grid , ∀t,

(10)

where wi
t represents the binary variable that prevents

drawing power from the grid while feeding power into
grid {0, 1}.

3. Forecast Model for PV Power

In order to achieve the goal of this work which is forecasting
the WCS profit while compensating the EV users for dis-
charging their EV batteries, PV power generation needs to
be predicted day-ahead. Many techniques have been devoted
to predict PV power generation [18], for instance, statistical,
persistance, hybrid technique, and machine learning. *e
machine learning technique includes Artificial Neural
Network (ANN) which is one of the most widespread
models among literature studies. ANN can learn, memorize,
and build a system model through manipulating external
information to get the predicting capabilities. However,
ANN is underperformed by SARIMA at the highest tem-
poral resolution (i.e., 5 minutes) [19]. In this work, the PV
power forecasting is considered based on 1 hour temporal
resolution. Besides, BPNN showed a successful result at
lower temporal resolution (i.e., 1 hour) [20], which is why
BPNN is used as the model to forecast PV power generation.

*e predicting accuracy is influenced by meteorological
factors, for instance, solar irradiance and ambient temper-
ature. Hence, these parameters are chosen as basic elements
of a feature vector to obtain similar days; equation (11)
presents the coefficient of similarity:

Θ � θf − θh



, (11)

EVs’ charging
control
center

10kV/400V
AC/DC

DC/DC

Information
Energy

Figure 1: System model for charging/discharging EVs at WCS.
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where θf is the forecast day feature vector composed of solar
irradiance and ambient temperature. θh is the feature vector
of the historical day.*e smallestΘ value explains the higher
similarity between corresponding historical PV power
generation data and the forecast day. *e D historical days
with the smallest coefficient of similarity will be chosen as
the training input of the BPNN, where D is the size of input
data.

3.1. BPNN Training Structure. *e BPNN selected in this
paper consists of three layers: the input layer, the hidden
layer, and the output layer, as shown in Figure 2.

*e input node number is 30, of which 15 nodes are the
hourly PV power of an identical day that has the smallest
similarity coefficient, and 15 other nodes are the charac-
teristic vector elements of the identical days and the forecast
day. *e number of output nodes is 15, indicating the PV
power generation output. A trial-and-error method [21] has
been chosen to determine the appropriate number of hidden
layers. Furthermore, the tangent sigmoid-function is used as
the activation functions of the hidden layer and output layer,
respectively.

3.2. Data and Error. *is paper considers a charging station
located in an industrial zone on sunny days. *e PV power
generation data has been collected from an actual PV plant
with a rated capacity equal to 30 kW [22]. Fifty historical
days with the smallest similarity coefficient in the past three
months are chosen as the training input of the BPNN.

To define the prediction accuracy correctly, the forecast
error is presented as follows:

ε �
eacpv − efrpv





 eacpv
, (12)

where eacpv is the actual PV output energy and efrpv is the
forecast output energy of PV.

4. EV User Behaviour Model

A survey has been conducted in Beijing on car user driving
behaviour [23]. *e data recorded by the global positioning
system installed on 112 cars from June 2012 to March 2013
has been selected in this paper. According to the survey, the
distributed percentages revealed that the mileage for each
trip is significantly concentrated in 3 to 30 km range. *e
average travel time during workdays is 0.6 h [23]. Based on
the work in [2], it has been assumed that the EV users arrive
at WCS after 0.6 h from their home departure time, and they
leave the WCS after 8 hours from their arrival time. Hence,
the traveling periods of the EV users to WCS during
workdays are concentrated between 07:36–10:36 (at the
morning). To improve the Monte Carlo sampling credibility,
the EVs’ traveling behaviour statistics has been fitted by
different probability distribution functions (PDFs); to find
the best PDF that fits the data the maximum likelihood
estimates (MLE) is adopted to obtain the selected PDF
parameters.

4.1.#eArrival Time of EVs. *e average travel time per trip
during workdays is 0.6 h. It has been presumed that the EV
users make one trip from home to WCS. To determine the
EVs’ arrival time at WCS, the EVs’ departure time from
home in [2] has been adopted.

*e EVs’ departure time from home follows the t lo-
cation-scale distribution presented in (13) [24], where g(·) is
the t location-scale PDF, Γ(·) represents the gamma func-
tion, σ is the scale parameter, μ is the location parameter, and
] is the shape parameter. Based onMLE, μ � 8.30, σ � 1, and
] � 2.12.

*e statistical curve and the location-scale distribution
fitting curve of the EVs arrival time to WCS are shown in
Figure 3:

g(x | μ, σ, ]) �
Γ(] + 1/2)

σ
���
]π

√
Γ(]/2)

] +(x − μ/σ)2

]
 

− (]+1/2)

.

(13)

4.2. #e Daily Driving Mileage. *e daily driving mileage of
each trip follows Birnbaum–Saunders distribution, as pre-
sented in (14) [25], whereg(·) is the Birnbaum–Saunders
PDF, c represents the shape parameter, and β is the scale
parameter. Based on MLE, c � 0.95 and β � 10.15.

*e statistical data and the Birnbaum–Saunders fitting
data are shown in Figure 4:

g(x | β, c) �
1
���
2π

√ exp −
((

���
x/β


) − (

���
x/β


))2

2c2
  

·
((

���
x/β


) +(

���
x/β


))

2xc
.

(14)

4.3.EVs’ Initial StateofCharge. *e SOC0 that will be needed
to track the battery’s state of charge can be calculated by
equation (15), where Ci

arr represents the arrival capacity of
the i th EV, d is the daily driving mileage (km), and ξi is the
consumption of the i th EV (kWh/km).

*e SOC0 has the same probability distribution function
as the daily driving mileage, with c � 0.95 and β � 90.48.

Figure 5 illustrates the real data curve and the Birn-
baum–Saunders fitting curve:

C
i
arr � C

i
max − d∗ξi

, ∀i, d,

SOCi
0 �

Ci
arr

Ci
max

, ∀i, d.

(15)

4.4. EVs’EnergyDemand. *e EVs’ energy demand may be
forecasted based on the EV owners’ behaviour. Never-
theless, the EV owners’ behaviour is a random factor.
Hence, the good knowledge of this factor gives more
reliability to the predicted EVs’ energy demand. For this
reason, the EVs’ arrival/departure time and the EVs’
daily driving mileage have been presented and fitted by
different PDFs. *erefore, the estimated energy demand

4 Mathematical Problems in Engineering
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may be calculated based on the fitness data, as well as the
statistical data can be used to calculate the real energy
demand.

*e EVs’ energy demand is calculated by equations
(16)–(18) for both cases, where d is the travel distance
(km):

(i) *e EVs’ number that travels the distance (d) is

Nd � N∗gd(x | β, c), d � 3, 6, 9, . . . , 78. (16)

(ii) *e EVs’ number that arrives at WCS at time t is

Nt � Nd ∗gt(x | μ, σ, ]), t � 1.6, 2.6, . . . , 12.6. (17)

(iii) *e EVs’ energy demand at time t is

Ed � Nt ∗ d ∗ ξi
, ∀d, t. (18)

Figures 6 and 7 show the EVs’ estimated and real energy
demand. *e peak energy demand corresponds to 8.6 h, as
most EVs arrive to WCS at this time. *e power demand
value during the peak is equal to 3.48 kW and 4.24 kW for

the estimated and the real energy demand, respectively; this
difference is due to the error between the fitness and sta-
tistical data.

5. Implementation of the Optimization

5.1. Monte Carlo Sampling Methods. *e Monte Carlo
sampling methods (MCS) are a stochastic simulation
method used for simulating the behaviour of uncertain
parameters. *is method can provide highly accurate results
by giving a large sample size. In the MCS method, K var-
iables [y1, y2, . . . , yK] are selected randomly, and the av-
erage output value is calculated:

yK �
1
K



K

j�1
yj. (19)

For those uncertainties parameters described in Section
4, we use MCS to predict the WCS owner and the EV user
profits and then compare them with the profits generated by
using the real parameters.

5.2. Solving the Optimization Problem. *e problem is
nonconvex due to integer variables, and some constraints

Y1

Y15

X2

X30

Input
layer

Hidden
layer

Output
layer

X1

Xi

Yk

Figure 2: Training BPNN structure.
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include binary variables. For this reason, mixed-integer
linear programming (MILP) is chosen to solve the op-
timization problem. *e Intlinprog tool provided by
MATLAB has been used to solve the optimization
problem in equation (1). Moreover, the Monte Carlo
sampling methods have been applied to handle the arrival,
departure time, and SOC0. *e optimal charging algo-
rithm explains in more detail the process of the proposed
strategy (Algorithm1).

5.3. Basic Data. *e proposed optimization model has
been examined under many uncertainties, such as EVs’
arrival time at the WCS, EVs’ departure time from the
WCS, initial state of charge, and EVs’ energy demand
described in Section 4. *e MCS is applied to handle the
EV user behaviour uncertainties. Besides, the optimal

strategy is compared to the uncoordinated charging,
which still is the standard in many countries; hence,
comparison between the proposed optimization model
and the status quo will provide a clear view on the profit
that the WCS owner can expect. Furthermore, realistic
input parameters and appropriate price mechanisms
need to be selected, which is the reason why the UK
DAEP for January workday from [26] is adopted in the
simulation. We also assume that the λV2G,t and λPV2G,t are
10% lower than λG2V,t [16, 27]. Moreover, we defined
λPV2V,t in the objective function implying that PV power
generation is not free. However, most works have ig-
nored λPV2V,t under the assumption that it is the incre-
mental cost [28, 29]. *erefore, λPV2V,t is assumed to be
close to zero in this paper (λPV2V,t � 0.097 €/kWh [22]).
*e battery degradation price has been taken from the
measurement-based prediction laboratory [30], and it is
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equal to 0.032 €/kWh.*e other parameter values applied
in the optimization model are listed in Table 1.

6. Results

Figure 8 shows the PV forecasted energy, actual energy, and
predicted error. It can be noticed that the generated error
using the BPNN is small enough to adopt the PV forecasted
power into the simulation.

To evaluate the efficiency of the proposed optimal
charging algorithm, two scenarios have been considered,
including uncoordinated and coordinated charging. It has
been assumed that the PV power system and the grid are the
principal suppliers to the WCS for both scenarios. *e EVs’
arrival, departure time, EVs’ SOC0, and EVs’ energy demand
have been presented in Section 4.

Figures 9 and 10 present the results of the uncoordinated
charging policy and the optimal charging strategy proposed
in this paper, respectively. *ere are at least three points of
interest. First, the EVs charge their batteries as soon as they
arrive at WCS and discharge at the time where the electricity
price is low in the uncoordinated case.*is is the opposite of

what can be considered optimal charging. Hence, the WCS
profit will be decreased. Second, we can see from Figure 10
that the EVs have discharged when the electricity price is
high and charged when the DAEP is low. *erefore, we can
conclude that the proposed algorithm plays alongside the
WCS owner and increase the WCS profit. Finally, the PV
power generation surplus during the day is fed into the grid,
consequently, increasing the WCS profit. *e estimated
results of the WCS owner profit and the EV user com-
pensation for uncoordinated and coordinated charging are
illustrated in Table 2.*eWCS owner profit and the EV user
compensation have been increased by 54% and 50.7%, re-
spectively, compared with uncoordinated charging.

To assess the credibility of the proposed algorithm, the
real and the estimated results have been evaluated, where the
fitted data of EV user behaviour has been exploited in the
estimated results, while the real results have used the sta-
tistical data of the EV user behaviour. Figures 9 and 11
illustrate the estimated and real results of uncoordinated
charging, and it can be noticed that the EVs charge their
batteries in the morning and discharge it when the electricity
price is low. *e values of the EVs’ charging/discharging
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Figure 6: EVs’ estimated energy demand.
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Figure 7: EVs’ real energy demand.
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power and the grid-EVs’ power in Figure 9 are different from
those in Figure 11. Furthermore, Figures 10 and 12 show the
estimated and the real results of the coordinated charging,
where the real results are slightly different from the esti-
mated results. *e difference between the estimated and the
real results for both uncoordinated and coordinated

charging is due to the error generated by fitting the EVs user
behaviour data.

In Table 2, the EV user compensation and the WCS
profit for uncoordinated and coordinated EVs’ charging
are shown.*e estimated EV user compensation andWCS
profit generated by uncoordinated charging are 1.4% and

(1) INPUT: *e utility begain by:
Forecasting the PV power generation.
Acquire tarr, Ci

max, d, ξi, Cdeg, N, Pi
max, Pmax

grid , λPV2V, λG2V, and the number of MCS iteration K.
(2) OUTPUT: At each time step t � 1, 2, 3, . . . , T the power output profile

PPV− V � (PPV− V,1, PPV− V,2, . . ., PPV− V,T)
Pgri d− V � (Pgrid− V,1, Pgrid− V,2, . . ., Pgrid− V,T)
PV− G � (PV− G,1,PV− G,2, . . ., PV− G,T)
PPV− G � (PPV− G,1, PPV− G,2, . . ., PPV− G,T)

(3) PROCEDURE:
(4) for i � 1 to N do
(5) Pick tarr
(6) for j � 1 to K do
(7) Ci

arrj � Ci
max − ξ∗ dj

(8) SOCi
0j⟵ (Ci

arrj/Ci
max)

(9) Optimize
(10) min

T
t�1 

N
i�1[λPV2V,tP

i
PV− V,t + λG2V,tP

i
grid− V,t − (λV2G,t − Cdeg)P

i
V− G,t − λPV2G,tPPV− G,t]Δt

s.t.
EVs constraints
PV system constraints
Grid constraints

⎧⎪⎨

⎪⎩

(11) end for
Pi
PV− V,t � (1/K) 

K
j�1 P

j
PV− V,t

Pi
G− V,t � (1/K) 

K
j�1 P

j

G− V,t

Pi
V− G,t � (1/K) 

K
j�1 P

j

V− G,t

PPV− G,t � (1/K) 
K
j�1 P

j

PV− G,t

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12) end for
(13) PPV− V⟵ 

N
i�1 Pi

PV− V,t

(14) PG− V⟵ 
N
i�1 Pi

G− V,t

(15) PV− G⟵ 
N
i�1 Pi

V− G,t

(16) PPV− G⟵PPV− G,t

ALGORITHM 1: *e optimal charging algorithm.

Table 1: *e optimization model parameters.

Parameters Symbol Value
EVs’ number N 50
Battery degradation cost Cbat 0.032
DAEP λG2V,t Dynamic
Electricity price from EV to grid λV2G Dynamic
Electricity price from PV to grid λPV2G Dynamic
*e incremental cost of the PV λPV2V 0.097
Maximum EVs’ charger Pi

max 6.6
EV charging and discharging efficiency ηch, ηdis 90, 90
EVs’ maximum capacity Ci

max 24
Maximum state of charge SOCmax 80
Minimum state of charge SOCmin 20
DC-DC converter efficiency ηMPPT 98
Inverter efficiency ηinv 98
Maximum power transfer from the grid to the EVs Pmax

grid 200
EVs’ consumption ξi 0.17
*e number of MCS iteration K 5000
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9.27%, respectively, higher than the profits using the real
user behaviour data. However, the estimated EV user
compensation and WCS profit generated by coordinated
charging are 1.35% and 1.72%, respectively, higher than
the profits using the real user behaviour data. *e error
generated by using the fitness data and the statistical data
of the EV user behaviour for the proposed optimal
charging strategy is small. *erefore, the WCS owner can
apply the optimal charging strategy proposed in this paper
with the EV user behaviour fitness data to have a clue

about the profit that can make and the EV user
compensation.

7. Conclusion

In this work, we proposed an optimal charging strategy in
mixed-integer linear programming (MILP) framework,
which allows to plan the EVs’ power allocation for each hour
while taking the EV user behaviour into account. *e aim is
to maximize the WCS owner profit while compensating the
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Figure 9: Uncoordinated EVs’ charging with PV power generation (estimated results).
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EV users for discharging their EVs. *e PV power gener-
ation has been predicted by the backpropagation neural
network model, and the EV user behaviour uncertainties are

modeled with parametric probability density functions,
while Monte Carlo simulation methods have been applied to
handle the EV user behaviour uncertainties. *e results
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Figure 11: Uncoordinated EVs’ charging with PV power generation (real results).

Table 2: EV user compensation and WCS owner profit by coordinated and uncoordinated charging.

EV users WCS profit
Profit (€) (€)

Estimated uncoordinated charging (MCS) 5.45 12.51
Real uncoordinated charging 5.37 11.35
Estimated coordinated charging (MCS) 11.06 27.31
Real coordinated charging 10.91 26.84
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Figure 10: Coordinated EVs’ charging with PV power generation (estimated results).
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illustrate that the proposed optimal charging strategy in-
creases the WCS owner profit and the EV users compen-
sation by 54% and 50.7%, respectively, compared with
uncoordinated charging. Moreover, the estimated WCS
owner profit and the EV user compensation generated by
coordinated charging are 1.72% and 1.35%, respectively,
higher than the profits using the real user behaviour data.
*e error generated by using the fitted data and the statistical
data of the EV user behaviour for the proposed optimal
charging strategy is small. Hence, the WCS owner can apply
the optimal charging strategy proposed in this work with the
EV user behaviour fitted data to predict the profit that can
make and the EV user compensation.

*e following step in our research is to forecast the
electricity price. Furthermore, as the output of any PV
system is inherently uncertain, probabilistic PV power
generation forecasting has to be considered. Incorporating
these assumptions, the WCS owner profit and the EV user
compensation would be accurately predicted. Moreover, the
energy storage systemmight be included which will raise the
WCS owner profit.

Nomenclature

T: Set of time period, t ∈ T

N: Set of electric vehicles
K: Set of Monte Carlo simulation
i: Number of EVs available for charging/

discharging, i ∈ N

j: Number of Monte Carlo simulation iteration,
j ∈ K

Pi
max: Maximum EV charger power labelled i

Pmax
grid : Maximum power transfer from the grid to EVs

(kW)
SOCmax: Maximum state of charge (%)

SOCmin: Minimum state of charge (%)
ηch, ηdis: EV charging and discharging efficiency,

respectively (%)
ηMPPT: DC-DC converter efficiency (%)
ηinv: Inverter efficiency (%)
Cdeg: Battery degradation cost in (€/kWh)
Ci
max: EVs’ maximum capacity (kWh)

ξi: EVs’ consumption (kWh/km)
λPV2V,t: Incremental cost of the PV energy at time t

(€/kWh)
λG2V,t: Day-ahead electricity price (€/kWh)
λV2G,t: Electricity price of the power transferred from i th

EV to grid (€/kWh)
λPV2G,t: PV energy cost transferred from PV to the grid

(kWh)
Pi
PV− V,t: PV power transferred to i th EV during time t

(kW)
Pi
grid− V,t: Power transfer from the grid to the EV labelled i

(kW)
Pi

V− G,t: Power transferred from i th EV to grid (kW)
PPV− G,t: Power transfer from the PV system to the grid

during time t (kW)
Pi
χ− V,t: Power transfer from the PV or the grid to the i th

EV at time t (kW)
ui

t: Binary variable that states whether the EV labelled
i is charging (1) or not (0) at time t

vi
t: Binary variable that states whether the i th EV is

discharging (1) or not (0)
wi

t: Binary variable that prevents drawing power from
grid while feeding power into grid {0, 1}.

Data Availability

All data used to support the findings of this study are in-
cluded within the article.
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Figure 12: Coordinated EVs’ charging with PV power generation (real results).
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