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1. Introduction

Many studies of survival data involve mark variables that are only observed at an endpoint

event and it is of interest to investigate whether there is any relationship between the time to

endpoint and the mark variable. For example, in a clinical trial of drug regimens for treating HIV

infection, the time to treatment failure (typically de�ned by levels of viral load rising above a

threshold (Gilbert et al., 2001)) can decrease with increases in a distance measure describing the

extent of drug-selected HIV genetic evolution within a patient between baseline and the time of

failure. Detecting such an association can help in designing anti-HIV treatments that overcome

the problem of drug resistance, which represents one of the greatest barriers to achieving durably

eÆcacious treatment of HIV infection (Hirsch et al. 2000; Yeni et al. 2002).

In this article we develop tests for detecting whether a mark-speci�c hazard rate (or cumulative

incidence function) depends on the mark, and apply the tests to HIV genetic data collected in an

AIDS clinical trial. If we denote the time to endpoint T and the mark variable V , the observable

random variables are (X; Æ; ÆV ), where X = minfT;Cg, Æ = I(T � C), and C is a censoring

random variable that is assumed to be independent of T and V . When the failure time T is

observed, Æ = 1 and the mark V is also observed, whereas if T is censored, the mark is unknown.

Statistical interest focuses on the mark-speci�c hazard rate function

�(t; v) = lim
h1;h2!0

PfT 2 [t; t+ h1); V 2 [v; v + h2)jT � tg=h1h2; (1)

and the cumulative incidence function

F (t; v) = lim
h2!0

PfT � t; V 2 [v; v + h2)g=h2; (2)

with t ranging over a �xed interval [0; � ]. If V is discrete, the limit h2 ! 0 is not needed, and

the de�nitions (1) and (2) simplify respectively to the discrete cause-speci�c hazard function and

the discrete cumulative incidence function, which have received much attention in the competing

risks literature. In this article, the mark variable V is assumed to be continuous, in which case

the functions (1) and (2) are the natural analogs of their discrete counterparts, with similar

interpretations. In particular, �(t; v) is the instantaneous risk of failure by a cause V in a small

interval [v; v + h2) in the presence of all other causes, and F (t; v) is the probability that failure

with V in a small interval [v; v + h2) will occur before the speci�ed time t:

As with the classic competing risks model, the mark-speci�c hazard relates the cumulative

incidence function through the simple formula F (t; v) =
R t
0 �(s; v)ST (s) ds, where ST (t) is the
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survival function of T . Furthermore, just as the cause-speci�c hazard functions are the basic

estimable quantities when the mark variable is discrete (as originally pointed out by Prentice et

al., 1978), the mark-speci�c hazard function (1) is estimable from the available data and forms the

basis for inference when the mark variable is continuous. Indeed, the likelihood function under the

competing risks data with continuous mark has a similar form and is derived as follows. Assume

that the continuous mark variable V has a known bounded support; rescaling V if necessary, this

support is taken to be [0; 1]. Let f(t; v) be the joint density of (T; V ). Then �(t; v) = f(t; v)=ST (t)

and �(t) =
R 1
0 �(t; v) dv is the overall hazard function of T . The likelihood function given n i.i.d.

observations (Xi; Æi; ÆiVi), i = 1; : : : ; n from the above model can be expressed in terms of the

mark-speci�c hazard rate as

Y
o

f(Xi; Vi)
Y
c

ST (Xi) =
Y
o

�(Xi; Vi)

nY
i=1

exp

�
�
Z 1

0

Z Xi

0
�(s; v) ds dv

�
; (3)

where
Q

o denotes the product over the observed failure times,
Q

c denotes the product over right

censored failure times, and each product only applies to the expression immediately in front.

These considerations motivate us to develop an inferential procedure based on the function (1).

Our interest centers on testing the null hypothesis

H0: �(t; v) does not depend on v for t 2 [0; � ]

against the following alternative hypotheses:

H1: F (t; v1) � F (t; v2) for all v1 � v2; t 2 [0; � ];

H2: �(t; v1) � �(t; v2) for all v1 � v2; t 2 [0; � ];

H3: �(t; v1) 6= �(t; v2) for some v1 � v2; t 2 [0; � ]

with strict inequalities for some t; v1; v2 in both H1 and H2. Equivalently, H0 can be expressed

in terms of the cumulative incidence function F (t; v) not depending on v for t 2 [0; � ]: The null

hypothesis H0 can also be written as H0 : �(t; v) = �(t) for all t 2 [0; � ] and v 2 [0; 1]: Expressed

in this way, H0 is the continuous version of the null hypothesis considered by Aly, Kochar, and

McKeague (1994), who developed a test for equality of two discrete cause-speci�c hazard rates,

H0 : �1(t) = �2(t) for all t 2 [0; � ]:

As for the case of discrete competing risks, the interpretation of inferences on the mark-speci�c

hazard function �(t; v) is restricted to actual study conditions (i.e., is \crude" or \gross"), and

there is no implication that the same inference would be made under a new set of conditions in
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which, for example, certain causes of failure v were not present. With Tv denoting the latent

(i.e., notional) failure time for mark v (see Prentice et al., 1978, for discussion of latent failure

times), the assumption of mutual independence of the Tv for all v 2 [0; 1] is needed for �(t; v) to

possess the stronger interpretation as the hazard function for cause v given that all other causes

are inoperative. As in the discrete case, the independence assumption is untestable from the

available competing risks data (cf., Tsiatis, 1975); additional data such as observations of marks

beyond the �rst failure time are needed. Thus, tests of H0 have an interpretation in terms of

association, and cannot be used for causal inference of the predictive e�ect of a mark variable on

the risk of failure. The fact that the mark variable is only observed simultaneously with failure

makes clear the impossibility of causal inference (in the absence of strong untestable assumptions).

In the AIDS clinical trial example, V is a measure of the accumulated HIV genetic resistance

resulting from exposure to an antiretroviral treatment, which is measured only on subjects who

fail treatment, at the time of treatment failure. The test of H0 versus the monotone alternative

H1(H2) assesses whether the absolute (instantaneous) risk of treatment failure increases with the

level of acquired drug resistance. If V is a reliable measure of the \resistance cost" of the regimen,

i.e., if the risk of treatment failure is higher for larger values of V , then we would expect to reject

H0 in favor of H2: Thus, the test is useful for evaluating if V is a clinically relevant measure of

a treatment's resistance cost (see Gilbert et al. 2000 for a discussion of relevant resistance cost

metrics). Knowledge of clinically meaningful genetic resistance cost metrics would be helpful for

identifying combination drug regimens that do not select for drug resistant virus, and thus provide

long-lasting treatment eÆcacy.

A second example in which the proposed approach would be of interest is a prospective cohort

study of a population at risk for acquiring HIV infection. In this application, T is the time

from cohort entry until HIV infection, and V is the value of a metric measuring genotypic or

phenotypic dissimilarity of the HIV virus that infects a study participant from a reference HIV

strain. For example, V could be Hamming's genetic distance and the reference strain could be

the prototype virus contained in an HIV vaccine that is under development for �eld testing in

the cohort population. The test of H0 versus the two-sided hypothesis H3 assesses whether the

HIV metric V is associated with the instantaneous risk of HIV infection. Finding evidence for

H3 may suggest that the metric V can be used to guide selection of the types of HIV antigens

to include in HIV vaccines (Gilbert et al., 2001). For example, if H0 is rejected and the infection

risk appears particularly high for v > 0:7, then it may behoove vaccine researchers to insert HIV
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antigens characterized by v > 0:7: Carrying out the test for multiple metrics in multiple genes

could help identify the metric(s) that optimize the breadth of expected protective coverage of

the vaccine. This application is important because the broad genotypic and phenotypic diversity

of HIV poses one of the greatest challenges to developing an e�ective AIDS vaccine (UNAIDS,

2001).

In the case of a discrete mark variable, tests for comparing mark-speci�c hazards can be found

in the literature on competing risks, see, e.g., Aly, Kochar, and McKeague (1994), Sun and Tiwari

(1995), Lam (1998), Hu and Tsai (1999), Luo and Turnbull (1999) and Sun (2001). Fine (1999)

developed a semiparametric regression method for competing risks data in which a discrete mark

V was used to stratify the e�ects of other covariates. This approach could not be used directly for

continuous marks because the subgroup with a given mark V = v would be empty or contain one

subject. Nevertheless, this work suggests that one may explicitly model the e�ect of continuous

mark V on the cumulative incidence function or mark-speci�c hazard rate. As mentioned earlier,

our testing procedure can be viewed as a continuous extension of the procedure of Aly, Kochar,

and McKeague (1994) and Sun (2001). To the best of our knowledge, however, these tests have

not been developed for continuous mark variables.

A nonparametric estimator of the joint distribution of a failure time and a failure mark which

may be continuous has been introduced by Huang and Louis (1998), with a view to applications

such as evaluating the relationship between a quality of life score and survival time (Olschewski

and Schumacher, 1990), or between lifetime medical cost and survival time. Their estimator

could be used to test whether T and V are independent by comparing it with the product of its

marginals. A test statistic based on this approach would have a complex asymptotic distribution,

however, and it is not clear that a tractable testing procedure could be formulated. Furthermore,

given the interpretability of the mark-speci�c hazard function in terms of the instantaneous risk

of failure, we argue that in some biomedical problems testing �(t; v) independent of v is more

directly relevant than testing T and V independent. For example, for an HIV infected patient

receiving e�ective antiretroviral treatment at a given time, the risk of treatment failure over the

next month is of primary clinical interest, and is measured by the hazard function; accordingly

the relationship between the mark variable and the hazard function is of direct clinical interest.

In the case of �nitely many causes of failure, test statistics can be based on di�erences be-

tween Nelson{Aalen estimators of the cumulative cause-speci�c hazard functions, see Sun (2001).

Generalizing this approach, our test procedure is based on estimates of the doubly cumulative
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mark-speci�c hazard function �(t; v) =
R v
0

R t
0 �(s; u) ds du; estimation of this function was also

used in a fundamental way by Huang and Louis (1998). The idea of our testing procedure is

to compare a nonparametric estimate of �(t; v) with an estimate under H0. We show that the

comparison can be weighted to make the test statistics asymptotically distribution-free.

This article is organized as follows. In Section 2 we introduce the test statistics and describe

a Monte Carlo procedure for approximating critical values. In Section 3 we derive the asymptotic

null distributions of the test statistics, and show that the Monte Carlo-derived critical values are

asymptotically accurate. The results of a simulation study and the AIDS clinical trial example

are presented in Sections 4 and 5, and proofs of results are given in the Appendix.

2. Test procedure

Given observation of i.i.d. replicates (Xi; Æi; ÆiVi); i = 1; : : : ; n of the (possibly right-censored)

marked failure times, a suitable nonparametric estimator of �(t; v) is provided by the Nelson{

Aalen-type estimator

�̂(t; v) =

Z t

0

N(ds; v)

Y (s)
; t 2 [0; � ]; v 2 [0; 1]; (4)

where Y (t) =
Pn

i=1 I(Xi � t) is the size of the risk set at time t, and

N(t; v) =
nX
i=1

I(Xi � t; Æi = 1; Vi � v)

is the marked counting process with jumps at the uncensored failure times Xi and associated

marks Vi, cf. Huang and Louis (1998, eq. 3.2). From (3), the log-likelihood can be expressed as

Z 1

0

Z �

0
log �(s; v)N(ds; dv) �

Z 1

0

Z �

0
Y (s)�(s; v) ds dv

and it follows by a routine extension of the argument of Andersen et al. (1993, p. 228) that �̂ is

the nonparametric maximum likelihood estimator of �.

A closely related doubly cumulative hazard function estimator was introduced by McKeague

and Utikal (1990) and McKeague, Nikabadze, and Sun (1995), for testing independence of a

covariate from a failure time. The two estimators are not interchangeable, however, because

the covariate and the mark variable play di�erent roles in each setting. The doubly cumulative

hazard function estimator of McKeague, Nikabadze, and Sun (1995) is formed by stratifying on

the covariate, which cannot be done on the mark for competing risks data since the mark is

not observed under censoring. The risk set at time t for the competing risks data cannot be

strati�ed by the marks since they are not available until the failures are observed. Although the
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current approach could be used to test for independence between a failure time and a covariate,

it would be more appropriate to use the test of McKeague, Nikabadze, and Sun (1995), leading

to a stronger conclusion when the null hypothesis is rejected. We also note here in passing that

it is important to distinguish a mark variable from a \marker"; the latter term is synonymous for

\covariate" in the survival analysis literature.

Because H0 can be expressed as H0 : �(t; v) = �(t) for all t 2 [0; � ] and v 2 [0; 1]; and

�(t; v) = f(t; v)=ST (t), it follows that H0 holds if and only if f(t; v) = fT (t) for all t and v, where

fT (t) is the density of T . Consequently, H0 holds if and only if T and V are independent and V

is uniformly distributed over [0; 1]. Because of this fact, we can write �(t; v) = v�(t; 1); where

�(�; 1) is the cumulative hazard function of T under H0. Thus, under H0 we can estimate the

doubly cumulative hazard function by ��(t; v) = v�̂(t; 1).

2.1 Test processes and test statistics

We consider test processes of the form

Ln(t; v) =
p
n

Z t

0
Hn(s) (�̂� ��)(ds; v) (5)

for t � 0; 0 � v � 1, where Hn(�) is a suitable weight process. The weight process Hn(�) provides a

exible way to specify the relative importance attached to di�erences in the mark-speci�c hazards

at di�erent times, and is useful for controlling instability in the tails. The bivariate test process

Ln(t; v) is similar to the univariate test process Ln(t) used by Aly, Kochar, and McKeague (1994,

p. 996) for comparing two competing risks 1 and 2; given by Ln(t) =
R t
0 w(s)d(�̂1 � �̂2)(s); with

�̂j(�) the cause-j-speci�c Nelson-Aalen estimator.

Let y(t) = P (X � t) and ~� = supft: y(t) > 0g and assume � < ~� . We propose the following

test statistics to measure departures from H0 in the direction of H1, H2 and H3:

U1 = sup
v1<v2

sup
0�t<�

�(t; v1; v2) (6)

U2 = sup
v1<v2

sup
0�s�t<�

(�(t; v1; v2)��(s; v1; v2)) (7)

U3 = sup
v1<v2

sup
0�t<�

jLn(t; v1)� Ln(t; v2)j (8)

where �(t; v1; v2) = Ln(t; v1) + Ln(t; v2)� 2Ln(t; (v1 + v2)=2).

If the marks are discretized into K groups by stratifying the marks into K intervals of equal

length, the proposed tests reduce to the tests of Aly, Kochar, and McKeague (1994) for K = 2 and

are equivalent to the tests developed by Sun (2001). However, the tests using discrete marks could
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have nearly zero power to detect certain alternatives when the underlying marks are continuous.

This point will be discussed further following Theorem 3 on the omnibus property of the proposed

tests.

In the next section we show that Ln(t; v) converges weakly to a Gaussian process under

H0. We also show that the proposed tests based on the Uj are consistent against their respective

alternatives. Since each Uj is a continuous functional of Ln(t; v), its limiting null distribution is the

distribution of the corresponding functional of the limiting Gaussian process. These distributions

are intractable, however, so the critical values of the Uj need to be determined using a simulation

procedure.

2.2 Monte Carlo procedure

The procedure is based on a randomized version U�j of Uj de�ned by replacing each Vi by V
�
i ,

where V �1 ; : : : ; V
�
n are i.i.d. uniform [0,1] random variables. This yields a randomized version of

the test process given by

L�n(t; v) =
p
n

Z t

0
Hn(s) (�̂

�(ds; v)� v�̂�(ds; 1)); (9)

where �̂�(t; v) =
R t
0 N

�(ds; v)=Y (s) and N�(t; v) =
Pn

i=1 I(Xi � t; Æi = 1; V �i � v). Exploiting

the property that T and V are independent and V is uniformly distributed over [0; 1] under H0,

in Section 3 we show that the null distribution of Uj coincides in the limit with the conditional

distribution of U�j given the observed data. Therefore a critical value of Uj can be approximated

via a Monte Carlo estimate of the quantile of U�j corresponding to a given level of the test.

2.3 Choice of weight process and a graphical procedure

The simplest weight process, Hn(t) = 1; yields a test process equal to a normalized di�erence of

estimated doubly cumulative mark-speci�c hazard functions evaluated at v and at 1:

Ln(t; v) =
p
n
�
�̂(t; v)� v�̂(t; 1)

�
: (10)

This process is useful for a graphical procedure, in which the surface Ln(t; v) is plotted together

with 10 or 20 realizations of the simulated null surface L�n(t; v): Relative to the reference processes

L�n(t; v); large values of curvature of Ln(t; v) in v suggest H1; an increasing trend of this curvature

with time suggests H2; and absolute di�erences in Ln(t; v) over di�erent mark values suggest H3:

The graphical procedure is illustrated in the example given in Section 5.

9
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To give the tests maximal power, the weight process should be chosen to downweight the

comparison of mark-speci�c hazards at larger times, where the test process is most variable. A

weight process that accomplishes this is given by Hn(t) = ŜC(t�)Ŝ1=2
T (t), where ŜC and ŜT are

the Kaplan{Meier estimators of SC and ST , respectively, SC being the survivor function of C.

As shown in the next section, this weight process has the added advantage of making the test

statistics asymptotically distribution-free.

3. Large-sample results

We begin by de�ning notation that is used in the sequel. Let 
(t; v) = P (X � t; Æ = 1; V � v).

By the Glivenko{Cantelli Theorem, N(t; v)=n and Y (t)=n converge almost surely to 
(t; v) and

y(t), uniformly in (t; v) 2 [0;1) � [0; 1] and t 2 [0;1), respectively. Let D(I) be the Skorohod

space for a k-dimensional rectangle I (Bickel and Wichura 1971), and C(I) be the subspace of

continuous functions on I. Also, let x^ y and x_ y denote the minimum and maximum of x and

y, respectively.

Our �rst result describes the limiting null distribution of the test process.

Theorem 1

Let the weight process Hn(t) be a continuous functional of the processes N(t; 1) and Y (t), t 2 [0; � ],

� < ~� . Assume there exists a measurable function H(t) such that sup0�t�� jHn(t)�H(t)j a:s:�!
0 and both Hn and H have bounded variation independent of n almost surely. Then, under H0

Ln(t; v)
D�!
Z t

0
H(s)y(s)�1(G1(ds; v)� vG1(ds; 1)) � L(t; v) (11)

in D([0; � ] � [0; 1]) as n ! 1, where G1(t; v) and G2(t) are continuous mean zero Gaussian

processes with covariances

Cov(G1(s; u); G1(t; v)) = 
(s ^ t; u ^ v)� 
(s; u)
(t; v);

Cov(G2(s); G2(t)) = y(s _ t)� y(s)y(t);

Cov(G1(t; v); G2(s)) = (
(t; v) � 
(s�; v))I(s � t)� 
(t; v)y(s):

The limiting process L(t; v) is a mean zero Gaussian process with covariance

Cov(L(s; u); L(t; v)) = (u ^ v � uv)

Z s^t

0

H(r)2

y(r)2

(dr; 1): (12)

The process L(t; v) resembles the Kiefer{M�uller process (van der Vaart and Wellner, 1996, p.

226).

10

http://biostats.bepress.com/uwbiostat/paper209



We next establish that the randomized version of the test process L�n(t; v); introduced in

Section 2.2, has the same limiting null distribution as Ln(t; v):

Theorem 2

Under the conditions of Theorem 1, conditional on the observed data sequence,

L�n(t; v)
D�!L(t; v) (13)

in D([0; � ]� [0; 1]) under H0, where L(t; v) is given in Theorem 1.

Theorem 2 justi�es the Monte Carlo procedure described in Section 2.2, showing that it yields

asymptotically correct critical values of the tests. Furthermore, under mild conditions the tests

are consistent against their respective alternatives, as stated in Theorem 3.

Theorem 3

Suppose the conditions of Theorem 1 hold.

(a) If there exist (t0; v1; v2), 0 < t0 < � , (v1; v2) 2 [0; 1], such that H1 holds with strict inequality,

H(t)=ST (t) is decreasing and H(t0) > 0, then the test based on U1 is consistent against H1.

(b) If there exist (t0; v1; v2), 0 < t0 < � , (v1; v2) 2 [0; 1], such that H2 holds with strict inequality,

H(t) and
R v
0 �(t; u) du are continuous in t in a neighborhood of t0, and H(t0) > 0, then the test

based on U2 is consistent against H2.

(c) If �(t; v) and �(t) are continuous on [0; � ] � [0; 1] and [0; � ], respectively, and H(t) � c > 0

on [0; � ]; then the test based on U3 is consistent against H3.

In practice, one may conveniently discretize the marks and apply the tests in Aly, Kochar,

and McKeague (1994) and Sun (2001). We caution that such procedures could have nearly

zero power to detect certain alternatives for the underlying continuous marks. For instance, if

the marks are grouped into two categories with V = 0:25 for those in the interval (0; 0:5) and

V = 0:75 for those in the interval (0:5; 1), then the test statistics U1, U2 and U3 reduce to the

tests of Aly, Kochar, and McKeague (1994). Let Hn(t) = 1 and choose a model with continuous

mark such that
R 0:75
0:25 �(t; u) du � 0:5�(t) = 0 for all t, but �(t; v) 6= �(t). This equation is

equivalent to
R 0:75
0:25 f(t; u) du � 0:5fT (t) = 0 for all t, but f(t; v) 6= fT (t). A simple example of

such alternative is that f(t; v) = fT (t)fV (v) with fV (v) = 1 � Æ + 4Æ(v � 0:5) for v 2 (0:5; 1)

and fV (v) = 1 � Æ � 4Æ(v � 0:5) for v 2 (0; 0:5), where 0 � Æ � 1. This alternative approaches

the null hypothesis as Æ ! 0. It follows from the proof of Lemma 1 that 
(ds; v) � v
(ds; 1) =

11
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P (C � s)
�R v

0 f(s; u) du� vfT (s)
�
ds. By Proposition 2 in the Appendix, under such alternatives,

we have Ln(t; 0:75) � Ln(0:25)
D�!
hR t

0 y(s)
�1(G1(ds; v)� vG1(ds; 1))

iv=0:75

v=0:25
, whose distribution

can be arbitrarily close to the corresponding null distribution with the uniform marginal for V as

Æ ! 0. This example shows that the test based on U3 under discretized marks can have nearly

zero large-sample power for certain alternatives involving continuous marks. The same conclusion

can be reached for U1 and U2.

We now show that the test statistics are asymptotically distribution-free when given the

weight process Hn(t) = ŜC(t�)Ŝ1=2
T (t) introduced in Section 2.3. Let ~U1; ~U2; and ~U3 denote the

test statistics with this weight process. With H(t) = SC(t�)S1=2
T (t), simple calculation shows

that
R t
0 H(s)2=y(s)2 
(ds; 1) =

R t
0 fT (s) ds = FT (t). If ~� = supft:ST (t) > 0g, then, from the

previous discussion and by the continuous mapping theorem, under H0,

~U1 � sup
v1<v2

sup
0�t<~�

�(t; v1; v2)
D�! sup

v1<v2
sup
0�t<1

�K(t; v1; v2)

~U2 � sup
v1<v2

sup
0�s�t<~�

(�(t; v1; v2)��(s; v1; v2))

D�! sup
v1<v2

sup
0�s�t<1

(�K(t; v1; v2)��K(s; v1; v2))

~U3 � sup
v1<v2

sup
0�t<~�

jLn(t; v2)� Ln(t; v1)j D�! sup
v1<v2

sup
0�t<1

jK(t; v2)�K(t; v1)j;

where �(t; v1; v2) is de�ned following (8), �K(t; v1; v2) = K(t; v1)+K(t; v2)� 2K(t; (v1+ v2)=2);

and K(t; v) is a Kiefer process with Cov(K(s; u);K(t; v)) = (s^ t)(u^ v�uv). Therefore, the ~Uj

are asymptotically distribution-free test statistics. The asymptotic critical values of the tests ~Uj

can be tabulated through a single simulation study based on the known properties of the Kiefer

process. This asymptotic distribution-free procedure, which applies only for the weight process

Hn(t) = ŜC(t�)Ŝ1=2
T (t), is computationally more eÆcient and provides a good alternative for

large sample sizes. However, the proposed Monte Carlo procedure can be used for a broad class

of weight processes, it provides more accurate critical values for moderate sample sizes, and it is

not overly cumbersome computationally.

Remark 1. In some applications, it is of interest to evaluate whether the instantaneous or absolute

risk of failure depends on a continuous mark variable in a given time interval, say [t1; t2); rather

than over the entire time range [0; �): The null and alternative hypotheses, and the test statistics

U1; U2; and U3, can be modi�ed straightforwardly to address this problem. All of the results given

in this section carry over to this case, by replacing [0; �) everywhere with [t1; t2): In addition, the
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results continue to hold if the time range [0; �) is replaced with the possibly larger range [0; ~� );

see the remark following the proof of Theorem 2 in the Appendix.

4. Simulation results

We describe results of a simulation study of the test statistics ~U1; ~U2; and ~U3:

First we consider a case with T and V independent. The cumulative incidence function is

then F (t; v) = PfT � tgfV (v), where fV is the density of V . We specify T to be exponential

with mean 1, and fV (v) = (1=�)v(1=�)�1 for 0 � v � 1. Here � = 1:0 corresponds to the

null hypothesis H0 and � = 0:75; 0:5; 0:25 correspond to three di�erent alternative hypotheses

under the monotone alternatives H1 and H2. The extent of departure from the null hypothesis

increases as � decreases. We also consider a two-sided alternative with fV (v) = 12(v � 0:5)2,

0 � v � 1 (results in this case are given under the heading \two-sided" in Tables 1 and 2). Next,

we consider a case with T and V dependent. For the monotone alternatives H1 and H2, we use

F (t; v) = PfT � tjV = vgfV (v) = (1 � exp(�t=(v + 1)))fV (v), with fV (v) = (1=�)v(1=�)�1 for

0 � v � 1 and � = 0:5 and 0:25. For a two-sided alternative, we select V from uniform (0; 1) and

F (t; v) = 1� exp(�v4t).
We choose n = 50; 100 and use a 30% censoring rate for the failure times. The sizes and powers

of the tests are calculated based on 1000 samples. The nominal level is set at 0.05 in each case.

The critical level for each test is calculated using 1000 independent replicates of fV �1 ; : : : ; V �n g.
The results in Table 1 indicate that the proposed tests perform well at moderate sample sizes.

The estimated sizes are all within 1.5% of the nominal 5.0% (range: 3.9% to 6.5%), and the

estimated powers are high for detecting � = 0:25 when n = 50 (range: 81.3% to 100.0%) and for

detecting � = 0:50 when n = 100 (range: 72.0% to 86.6%).

To this point, we have assumed that T and V are jointly continuous. In some applications,

however, some ties may be present in the data. To study the sensitivity of the tests to the presence

of ties, we use the same simulated data that yielded Table 1, and group the failure times into 25

tied values xm = 0:05 + 0:1(m � 1) for 0:1(m� 1) < x � 0:1m, m = 1; : : : ; 24 and x25 = 2:45 for

x > 2:4 (or xm = 3+6(m�1);m = 1; : : : ; 24; x25 = 147 for the two-sided alternative model under

dependent T and V ), and group the failure marks into 20 tied values vm = 0:025 + 0:05(m � 1)

for 0:05(m � 1) < v � 0:05m, m = 1; : : : ; 20: As mentioned earlier, this testing procedure for

the tied mark data is equivalent to the procedure of Sun (2001). The sizes and powers of the

tests for the grouped data at a 30% censoring rate and the 5.0% nominal level are given in Table

13
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2. We note that the presence of ties causes a slight but consistent decrease in the power of the

tests, and the levels become more conservative than in the untied case. The test based on ~U3 is

quite conservative for tied data, with estimated size 1.8% when n = 50: The test becomes less

conservative when the sample size is increased to n = 100; with estimated size 3.3%. An additional

simulation (not reported here) shows that, as might be expected, the tests have decreasing power

as the number of groups decreases.

The slightly larger sizes for n = 100 compared with n = 50 in Table 1 may be due to Monte

Carlo error: The reported sizes are the proportion of rejections of H0 in 1000 samples, so they

have a Monte Carlo standard error of about [0:05 � 0:95=1000]1=2 � 100% = 0:7%.

PLACE TABLES 1-2 HERE

5. Application

In 1995 and 1996, the Adult AIDS Clinical Trials Group (AACTG) conducted a randomized trial

(Study 241) of 400 HIV infected adults to evaluate two combination antiretroviral treatments by

their ability to suppress HIV viral load (D'Aquila et al. 1996). The drug regimens contained

zidovudine and didanosine plus either nevirapine or nevirapine placebo. Gilbert et al. (2000)

analyzed the data from this trial with the failure time T de�ned as the time from randomization

until plasma HIV levels rose above 1000 copies/ml. The available genotypic data from the study

are the amino acids at 19 codons in the reverse transcriptase of HIV isolated from peripheral

blood mononuclear cells at baseline and at or after the time of failure from 12 patients on the

dual-drug arm and 33 patients on the triple-drug arm who failed. The 19 codons were chosen on

the basis of information from published studies that mutations in these positions confer resistance

to at least one of the studied drugs (Gunthard et al. 1999; Leigh-Brown et al. 1999; Hanna et

al. 2000). For the present analysis, codons with a resistance mutation are coded as ones while

codons with nonresistant (whether wildtype or variant) or ambiguous amino acids are coded as

zeros.

Let Vb be the mutational distance of a subject's virus sequence measured at baseline relative

to the \wildtype" virus with no mutations, de�ned by

Vb =

19X
i=1

wiI(mutation at codon i)

,
19X
i=1

wi;

where the weight wi measures the amount of resistance conferred by a mutation at the ith position,

as measured by a drug resistance assay. De�ne Vf similarly for a subject's virus sequence measured
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at or after the time of failure (we refer to this time as the \late week"). Then, we take V = Vf� 2
3Vb

as the measure of acquired mutational distance during the trial, which emphasizes new mutations

more than baseline mutations. The weights fwig are taken to be those used by Gilbert et al.

(2000). Note that V is only de�ned and measured on subjects who fail treatment, and therefore

is appropriately viewed as a mark accompanying failure events rather than as a covariate. In

the analysis we consider both treatment arms in a single group. Pooling the arms is meaningful

because the accumulated resistance metric V is relevant for both arms, as they share the nucleoside

inhibitors zidovudine and didanosine.

PLACE FIGURES 1-3 HERE

As depicted in Figure 1, the mutational distance at baseline Vb ranges between 0.0 and 0.187

in the 45 subjects who failed treatment, and increases to 0.0 to 0.435 by the late week, indicating

a trend of increase in mutational distance during the trial. The observed mark variable V takes

28 unique values for the 45 failures, ranging from 0.0 to 0.358, and appears to be approximately

uniformly distributed (Fig. 1c). A scatterplot of the mark versus failure time does not reveal

a systematic pattern (Fig. 2). To implement the tests, we �rst normalize V by its maximum

observed value (0.358).

The tests con�rm what is suspected from the descriptive plots, yielding nonsigni�cant results

for the three alternative hypotheses, with test statistics ~U1 = 0:628 (p = 0:59), ~U2 = 0:487

(p = 0:64); and ~U3 = 0:353 (p = 0:76): We next implement the graphical procedure, which uses

a unit weight process Hn(t) = 1 in the test process Ln(t; v) (as in (10)). When comparing the

surface Ln(t; v) to eight simulated surfaces L�n(t; v) (Fig. 3), they appear similar except that

Ln(t; 0) rises above zero for increasing t while the processes L
�
n(t; 0) tend to remain closer to zero.

Other than this caveat, which can be explained by the fact that four trial participants had a tied

mark value V = 0; the graphical comparison suggests that the observed test process does not

behave unusually compared to the behavior expected under the null hypothesis. We conclude

that there is no evidence that the instantaneous or absolute risk of virological failure depends on

the level of the resistance mutational distance variable V as de�ned above. Thus, V may not be

useful as a marker of drug resistance. It would be of interest to apply the testing procedure for

several other metrics V , as an exploratory search for marks that indicate drug resistance.

6. Concluding remarks

15

Hosted by The Berkeley Electronic Press



The problem addressed here, evaluating whether there is a signi�cant association between the

instantaneous or absolute risk of failure and a continuous mark variable observed only at un-

censored failure times, has broad application. The two cited applications in AIDS research, in

which a time to disease or infection is measured and the mark describes a feature of the agent

that causes or is associated with the failure event, arises in many biomedical applications. For

one non-AIDS example, in studies evaluating survival of cancer patients, tumor mass might be

measured in patients at baseline and at the time of death, and the tests can be used to evaluate

a possible association between the growth rate of the tumor and the risk of death. In addition to

many other biomedical applications, including the aforementioned problems of assessing the rela-

tionship between the risk of death and a quality of life score or a lifetime medical cost, there are a

broad variety of applications in other scienti�c �elds. Advantages of the tests developed here for

addressing these problems include that they are based on a nonparametric maximum likelihood

estimator which is a continuous generalization of the widely-applied and well-understood discrete

cause-speci�c Nelson{Aalen estimator, and they are asymptotically distribution-free.
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Appendix: Proofs of theorems

The following lemma is needed in the proofs of the main results.

Lemma

Assume that C is independent of (T; V ). Then

Z t

0


(ds; v)

y(s)
=

Z t

0

Z v

0
�(s; u) du ds (A.1)Z t

0


(ds; 1)

y(s)
=

Z t

0
�(s) ds: (A.2)

Proof: Let FC(t) be the distribution function of the censoring variable C. Recalling the

notation f(t; v) for the joint density of (T; V ), we have


(t; v) = P (T � t; T � C; V � v) =

Z 1

0
P (T � t; T � s; V � v) dFC (s)
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=

Z 1

0

�Z s^t

0

Z v

0
f(r; u) du dr

�
dFC(s) =

Z t

0

Z 1

r

Z v

0
f(r; u) du dFC (s) dr

=

Z t

0
P (C � r)

Z v

0
f(r; u) du dr:

It follows thatZ t

0


(ds; v)

y(s)
=

Z t

0

�Z v

0
f(s; u) du

�
P (T � s)

�
ds =

Z t

0

Z v

0
�(s; u) du ds:

This proves (A.1). The result (A.2) follows by letting v = 1 and using
R 1
0 f(s; u) du = fT (s).

Proposition 1 describes the limiting distribution of the test process Ln(t; v) when the weight

function is unity.

Proposition 1

For � < ~� ,

p
n(�̂(t; v)� ��(t; v)) �pn

�
�(t; v) � v

Z t

0
�(s) ds

�
(A.3)

D�!
Z t

0
y(s)�1(G1(ds; v) � vG1(ds; 1)) �

Z t

0
G2(s)y(s)

2(
(ds; v) � v
(ds; 1))

in D([0; � ]� [0; 1]).

Proof: By the empirical central limit theorem

p
n(N(t; v)=n � 
(t; v); Y (t)=n� y(t))

D�!(G1(t; v); G2(t)) (A.4)

inD([0; � ]�[0; 1])�D[0; � ], where G1(t; v) and G2(t) are continuous mean zero Gaussian processes

with covariances given in Theorem 1. Let D = D([0; � ] � [0; 1]) � D[0; � ] be the product

space. The Nelson{Aalen-type estimator �̂(t; v) =
R t
0 N(ds; v)=Y (s), 0 � t � � , depends on

the pair (n�1N(t; v); n�1Y (t)) through the following map from the domain of the type D� =

f(A(t; v); B(t)): R jA(dt; v)j �M;B(t) � �g � D for given M and � > 0:

�: (A(t; v); B(t)) �!
Z t

0

1

B(s)
A(ds; v):

Let D0 = C([0; � ] � [0; 1]) � C[0; � ]. First, we show that the map � is Hadamard-di�erentiable

tangentially to the set D0 at every point (A;B) such that 1=B(t) is of bounded variation. Let tn !
0 be any converging sequences and let (�n; �n)! (�; �) 2 D0 such that (A+tn�n; B+tn�n) 2 D�.

Then

t�1n (�(A+ tn�n; B + tn�n)(t; v) � �(A;B)(t; v))
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=

Z t

0

1

B(s) + tn�n(s)
�n(ds; v)�

Z t

0

�n(s)

B(s)(B(s) + tn�n(s))
A(ds; v)

!
Z t

0

1

B(s)
�(ds; v) �

Z t

0

�(s)

B(s)2
A(ds; v); uniformly in (t; v)

= �0A;B(�; �)(t; v); (A.5)

where the limit is obtained by applying a lemma of Bilias, Gu, and Ying (1997). Let

Zn(t; v) =
p
n(�̂(t; v)� �(t; v)): (A.6)

Since the pair (n�1N(t; v); n�1Y (t)), (t; v) 2 [0; � ] � [0; 1], is contained in the domain D� with

probability tending to 1 for M � 1 and suÆciently small � > 0, applying the functional delta

method theorem (van der Vaart and Wellner, 1996, p. 374), (A.1) and (A.5), we have

Zn(t; v)
D�!Z(t; v) ; (A.7)

where

Z(t; v) =

Z t

0

1

y(s)
G1(ds; v) �

Z t

0

G2(s)

y(s)2

(ds; v): (A.8)

Now, consider the following continuous map from D([0; � ] � [0; 1]) into itself,

 1:  1(g)(t; v) = g(t; v) � vg(t; 1); (t; v) 2 [0; � ]� [0; 1]: (A.9)

Applying the continuous mapping theorem, we get

Zn(t; v) � vZn(t; 1)
D�!Z(t; v)� vZ(t; 1); : (A.10)

Proposition 1 follows by plugging the speci�c forms (A.6) and (A.8) of the processes Zn and Z

into (A.10) .

Proposition 2 extends the result of Proposition 1 to general weight processes.

Proposition 2

Given the conditions expressed in Theorem 1,

Ln(t; v) �
p
n

�Z t

0

Z v

0
Hn(s)�(s; u) du ds � v

Z t

0
Hn(s)�(s) ds

�
(A.11)

D�!
Z t

0
H(s)y(s)�1(G1(ds; v) � vG1(ds; 1)) �

Z t

0
H(s)G2(s)y(s)

2(
(ds; v) � v
(ds; 1))

in D([0; � ]� [0; 1]).
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Proof: By the almost sure representations theorem (Shorack and Wellner 1986, p. 47), there

exist ~N(t; v), ~Y (t), ~G1(t; v) and ~G2(t) on some probability space such that ~N(t; v), ~Y (t), ~G1(t; v)

and ~G2(t) are equal in law to N(t; v), Y (t), G1(t; v) and G2(t), respectively, and (A.4) holds

almost surely uniformly in (t; v). Furthermore ~N(t; v), ~Y (t), ~G1(t; v) and ~G2(t) can be chosen

to have the same sample paths as the original processes. Let ~Zn and ~Z be the corresponding

representations of Zn and Z de�ned in (A.6) and (A.8), respectively. Repeating the steps of (A.5)

with tn = n�1=2, �n(t; v) =
p
n(N(t; v)=n� 
(t; v)) and �n(t) =

p
n(Y (t)=n� y(t)) and applying

the lemma of Bilias, Gu, and Ying (1997), we have

~Zn(t; v)
a:s:�! ~Z(t; v); uniformly in (t; v) :

Consequently,

~Zn(t; v)� v ~Zn(t; 1)
a:s:�! ~Z(t; v)� v ~Z(t; 1):

Let ~Hn(t) be the process Hn(t) rede�ned in terms of ~N(t; v) and ~Y (t). Then ~Hn(t) has the

properties of Hn(t) assumed in the theorem. Applying the lemma of Bilias, Gu, and Ying (1997),

we have Z t

0

~Hn(s)( ~Zn(ds; v) � v ~Zn(ds; 1))
a:s:�!

Z t

0
H(s)( ~Z(ds; v) � v ~Z(ds; 1)):

Hence Z t

0
Hn(s)(Zn(ds; v) � vZn(ds; 1))

D�!
Z t

0
H(s)(Z(ds; v) � vZ(ds; 1)); (A.12)

in D([0; � ] � [0; 1]). Proposition 2 follows by plugging the speci�c forms (A.6) and (A.8) of the

processes Zn and Z into (A.12) and by (5).

Proof of Theorem 1: Under H0, the failure time T and the failure mark V are independent

and V is uniformly distributed on [0; 1]. Consequently, �(t; v) = �(t) for all (t; v). Further, since

the censoring variable C is independent of (T; V ), V is independent of (T;C) under H0. Hence,


(t; v) = v
(t; 1) under H0. The result (11) follows by applying Proposition 2.

Let Ni(t) = I(Xi � t; Æi = 1). By (A.4), under H0 we have

n�1=2
nX
i=1

Ni(t)(I(Vi � v)� v))
D�!G1(t; v)� vG1(t; 1)

in D([0; � ] � [0; 1]). Since H(t) and 1=y(t) are of bounded variation over t 2 [0; � ], the map

 2: g(t; v) ! R t
0 H(s)y(s)�1 g(ds; v); (t; v) 2 [0; � ] � [0; 1] from D([0; � ] � [0; 1]) into itself is

continuous on C([0; � ] � [0; 1]). Hence, by the continuous mapping theorem,

n�1=2
nX
i=1

(I(Vi � v)� v))

Z t

0

H(s)

y(s)
Ni(ds)

D�!
Z t

0

H(s)

y(s)
(G1(ds; v) � vG1(ds; 1)) = L(t; v):
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The covariance of L(t; v) is given by, under the independence between V and (X; Æ),

Cov(L(s; u); L(t; v)) = Ef(I(Vi � u)� u))(I(Vi � v)� v))gE
�Z s

0

H(r)

y(r)
Ni(dr)

Z t

0

H(r)

y(r)
Ni(dr)

�

= (u ^ v � uv)

Z s^t

0

H2(r)

y(r)2

(dr; 1):

Remark 2. An alternative (and more elegant) proof of Theorem 1 could be developed using

empirical process techniques. This would involve an extension to �̂ of Pollard's (1990, Section

13) derivation of the limiting distribution of the Nelson{Aalen estimator.

Proof of Theorem 2: Let L�1(t; v) =
p
n(�̂�(t; v)�v�̂�(t; 1)). Then L�n(t; v) =

R t
0 Hn(s)L

�
1(ds; v).

Let L1(t; v) =
R t
0 y(s)

�1(G1(ds; v)� vG1(ds; 1)). It is suÆcient to show L�1
D�!L1 conditionally in

D([0; � ] � [0; 1]).

Let Ni(t) = I(Xi � t; Æi = 1) and N(t) =
Pn

i=1Ni(t). Then

L�1(t; v) =
p
n

nX
i=1

(I(V �i � v)� v)

Z t

0

dNi(s)

Y (s)
: (A.13)

To establish the conditional weak convergence of L�1(t; v), we shall show that the �nite dimensional

distributions of L�1(t; v) converge weakly to those of L1(t; v) given the data sequence, and that

L�1(t; v) is asymptotically tight given the data sequence; see van der Vaart and Wellner (1996, p.

183). The former task can be done by a simple application of the central limit theorem. The

asymptotic tightness of L�1(t; v) given the data sequence can be proved by applying the tightness

criteria of Bickel and Wichura (1971, eq. 3, p. 1658) based on neighboring blocks. The details

are contained in a technical report that can be requested from the authors.

Proof of Theorem 3:

(a) Let

m(t; v) =

Z t

0

Z v

0
Hn(s)�(s; u) du ds � v

Z t

0
Hn(s)�(s) ds:

Denote the left and the right side of (A.11) by Lan(t; v) and L
a(t; v), respectively. Then

U1 = sup
v1<v2

sup
0�t<�

�(t; v1; v2)

= sup
v1<v2

sup
0�t<�

[(Lan(t; v1) + Lan(t; v2)� 2Lan(t; (v1 + v2)=2))

+
p
n(m(t; v1) +m(t; v2)� 2m(t; (v1 + v2)=2))]

� p
n sup
v1<v2

sup
0�t<�

((m(t; v1) +m(t; v2)� 2m(t; (v1 + v2)=2)))

� sup
v1<v2

sup
0�t<�

[�(Lan(t; v1) + Lan(t; v2)� 2Lan(t; (v1 + v2)=2))] (A.14)
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Note that

m(t; v1) +m(t; v2)� 2m(t; (v1 + v2)=2)

a:s:�!
Z t

0
H(s)

�Z v1

0
�(s; u) du +

Z v2

0
�(s; u) du� 2

Z (v1+v2)=2

0
�(s; u) du

�
ds

=

Z t

0
[H(s)=ST (s)] d

�Z v1

0
F (s; u) du +

Z v2

0
F (s; u) du� 2

Z (v1+v2)=2

0
F (s; u) du

�

= [H(t)=ST (t)]

�Z v1

0
F (t; u) du +

Z v2

0
F (t; u) du � 2

Z (v1+v2)=2

0
F (t; u) du

�

�
Z t

0

�Z v1

0
F (s; u) du +

Z v2

0
F (s; u) du� 2

Z (v1+v2)=2

0
F (s; u) du

�
d(H(s)=ST (s))

� [H(t)=ST (t)]

�Z v1

0
F (t; u) du +

Z v2

0
F (t; u) du � 2

Z (v1+v2)=2

0
F (t; u) du

�
;

where the last inequality is obtained since
R v1
0 F (s; u) du+

R v2
0 F (s; u) du� 2

R (v1+v2)=2
0 F (s; u) du

� 0 under H1 and H(s)=ST (s) is decreasing. Under H1 with the given t0 such that the inequality

of the alternative H1 holds strictly for some (v1; v2) 2 [0; 1],
R v
0 F (t0; u) du is a strictly concave

function. Hence

Z v1

0
F (t0; u) du+

Z v2

0
F (t0; u) du� 2

Z (v1+v2)=2

0
F (t0; u) du > 0;

for some v1; v2 2 [0; 1]. By Proposition 2, the second term of (A.14) converges in distribution

to a �nite random variable. This yields U1
P�!1. Since U�1 converges in distribution to a �nite

random variable, U1 is consistent against H1.

(b) Note that, for s < t,

m(t; v1) +m(t; v2)� 2m(t; (v1 + v2)=2) �m(s; v1) +m(s; v2)� 2m(s; (v1 + v2)=2)

a:s:�!
Z t

s
H(r)

�Z v1

0
�(r; u) du +

Z v2

0
�(r; u) du � 2

Z (v1+v2)=2

0
�(r; u) du

�
dr:

Under H2, with the given t0 such that the inequality of the alternative H2 holds strictly for some

(v1; v2) 2 [0; 1],
R v
0 �(t0; u) du is a strictly concave function. Hence

Z v1

0
�(t0; u) du+

Z v2

0
�(t0; u) du� 2

Z (v1+v2)=2

0
�(t0; u) du > 0;

for some v1; v2 2 [0; 1]. Following a similar argument as in part (a) of the proof for the consistency

of U1, applying Proposition 2, and by the continuity assumptions of the theorem, we have U2
P�!1.

Since U�2 converges in distribution to a �nite random variable, U2 is consistent against H2.
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(c) Note that the alternative H3 that �(t; v) does not depend on v for all t 2 [0; � ] is equivalent

to
R t
0 H(s)

� R v
0 (�(s; u) � �(s)) du

�
ds not depending on v for all t 2 [0; � ]. Thus, under H3 there

exists (t0; v1; v2), t0 2 [0; � ], (v1; v2) 2 [0; 1] such that

m(t0; v2)�m(t0; v1)
a:s:�!

Z t0

0
H(s)

� Z v2

v1

(�(s; u)� �(s)) du

�
ds 6= 0: (A.15)

Since

U3 � p
n sup
v1<v2

sup
0�t<�

jm(t; v2)�m(t; v1)j

� sup
v1<v2

sup
0�t<�

j(Ln(t; v2)�
p
nm(t; v2))� (Ln(t; v1)�

p
nm(t; v1))j;

it follows by Proposition 2, the continuous mapping theorem and (A.15) that U3
P�!1 under H3.

Since U�3 converges in distribution to a �nite random variable, U3 is consistent against H3.
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Table 1. Observed levels and powers (%) of the test statistics ~U1; ~U2; ~U3 for testing H0 versus

H1;H2;H3, respectively, at the 5.0% nominal level.

Independent T and V Dependent T and V

� �

Size n Test 1 0.75 0.5 0.25 two-sided 0.5 0.25 two-sided

~U1 5.9 21.1 55.2 88.2 19.2 49.5 85.0 17.9

50 ~U2 5.5 17.5 48.6 83.1 14.9 46.0 81.3 12.1

~U3 3.9 12.5 60.0 100.0 99.0 55.8 99.9 56.3

~U1 6.5 27.7 78.2 99.2 62.1 80.2 98.9 29.4

100 ~U2 6.0 23.9 72.0 98.4 54.3 76.0 98.0 19.7

~U3 5.7 20.5 84.5 100.0 100.0 86.6 100.0 85.0
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Table 2. Observed levels and powers (%) of the test statistics ~U1; ~U2; ~U3 for testing H0 versus

H1;H2;H3, respectively, with tied data at the 5.0% nominal level.

Independent T and V Dependent T and V

� �

Size n Test 1 0.75 0.5 0.25 two-sided 0.5 0.25 two-sided

~U1 4.5 16.8 50.3 85.7 17.4 40.5 82.1 9.8

50 ~U2 4.2 13.9 41.7 77.3 11.8 36.2 74.5 3.0

~U3 1.8 8.6 52.4 99.8 96.6 39.4 99.7 42.0

~U1 4.0 24.9 74.0 99.0 55.3 71.1 97.3 25.0

100 ~U2 4.0 19.6 65.2 97.7 45.7 64.6 95.8 11.0

~U3 3.3 13.5 79.1 100.0 100.0 78.3 100.0 86.3
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FIGURE CAPTIONS

Figure 1. Genetic data from the 45 trial participants in AACTG Study 241 who failed antiretro-

viral therapy. The frequency distribution of the mutational distance is shown (i) at baseline (Vb),

(ii) at the late week (Vf ), and (iii) accumulated between baseline and the late week (V = Vf� 2
3Vb).

The mark V is the scaled weighted sum of indicators of zidovudine or didanosine resistance mu-

tations at positions 41, 65, 67, 69, 70, 74, 210, 215, and 219 in the reverse transcriptase gene, and

of the nevirapine resistance mutations at positions 98, 100, 101, 103, 106, 108, 179, 181, 188, and

190 in the reverse transcriptase gene. Details about the types of mutations, including the selected

weights based on the level of in vitro drug susceptibility, can be found in Gilbert et al. (2000).

Figure 2. Accumulated mutational distance V versus failure time, for the 45 subjects in clinical

trial AACTG Study 241 who failed antiretroviral therapy. The line in the plot is a lowess curve

that smooths the data in windows that contain two-thirds of the nearest data-points.

Figure 3. For clinical trial AACTG Study 241, for the testing procedures that account for ties

in the mark variable, (a) plots the test process Ln(t; v); (b)-(i) plot individual realizations of the

simulated test processes L�n(t; v):
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