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Abstract

Statistical approaches to evaluate higher order SNP-SNP and SNP-environment interactions are

critical in genetic association studies, as susceptibility to complex disease is likely to be related

to the interaction of multiple SNPs and environmental factors. Logic regression (Kooperberg

et al., 2001; Ruczinski et al., 2003) is one such approach, where interactions between SNPs and

environmental variables are assessed in a regression framework, and interactions become part of

the model search space. In this manuscript we extend the logic regression methodology, originally

developed for cohort and case-control studies, for studies of trios with affected probands. Trio

logic regression accounts for the linkage disequilibrium (LD) structure in the genotype data, and

accommodates missing genotypes via haplotype-based imputation. We also derive an efficient

algorithm to simulate case-parent trios where genetic risk is determined via epistatic interactions.
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1 Introduction

Statistical approaches to evaluate higher order interactions between SNPs, or between SNPs and

environmental variables, are critical for analyzing complex diseases as higher susceptibility is likely

to be related to the interaction of multiple SNPs and environmental factors. The effect sizes

seen in complex diseases are typically very small, and therefore the power to detect those small

effect sizes can crucially depend on whether methods to simultaneously investigate SNPs and

environmental variables are employed, i.e. whether or not such interactions are directly assessed.

This, however, creates statistical challenges in the analysis of how SNPs and environmental vari-

ables relate to the disease outcome, since the number of possible interactions between genetic

markers and the environmental factors is immense. To address this issue, many tools from the

statistical and machine learning literature, developed to deal with high-dimensional search spaces,

have been applied to multi-marker SNP data, for example neural networks (Lucek and Ott, 1997;

Bhat et al., 1999; Ritchie et al., 2003b; North et al., 2003; Tomita et al., 2004), random forests

(Breiman, 2001; Lunetta et al., 2004; Bureau et al., 2005; Chen et al., 2007), and various other

methods based on partitions, trees, and splines, and ensembles of base learners (e.g. Chen et al.,

2003; Cook et al., 2004; Zhang et al., 2008). Some approaches to delineate higher order interac-

tions were specifically developed for SNP data, such as the multifactor dimensionality reduction

techniques (Hahn et al., 2003; Ritchie et al., 2003a; Moore, 2004; Ritchie and Motsinger, 2005;

Ritchie, 2005), the restricted partition method (Culverhouse et al., 2004, 2007), and logic re-

gression (Kooperberg et al., 2001; Ruczinski et al., 2003, 2004). An overview and comparisons

of some of these algorithms can for example be found in McKinney et al. (2006), Heidema et al.

(2006), and Vermeulen et al. (2007), and additionally, an extensive discussion of the properties

of these algorithms is given in Musani et al. (2007).

In logic regression, the interactions between SNPs and environmental variables are assessed in

a regression framework, where interactions become part of the model search space. Given a

set of binary covariates, logic regression creates new predictors for the response by considering
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Boolean combinations of such binary covariates, while also being able to adjust for other covariates

of interest as main effects in the regression model. The SNPs are usually recorded as two

indicator variables under dominant or recessive coding, which enables a statistical representation

of many genetic models (for example, double penetrance models) and biological interactions of

interest. The regression framework allows for quantitative statements such as the odds of disease

for a subject who has at least one variant allele at both SNP 7 and SNP 12 are three times

higher compared to a subject of the same age who does not have variant alleles at both of

these loci. The model search is carried out using a simulated annealing algorithm, and model

selection is performed via cross-validation and permutation tests. Logic regression has been

applied in numerous SNP association studies, for example on breast cancer (Justenhoven et al.,

2008), colorectal cancer (Suehiro et al., 2008), prostate cancer (Etzioni et al., 2004), bladder

cancer (Andrew et al., 2008), head and neck squamous-cell carcinoma (Harth et al., 2008),

hypertension (Huang et al., 2004), and myocardial infarction and ischemic stroke (Enquobahrie

et al., 2008). Logic regression has also been applied in the context of other biomedical research,

such as the detection of transcription factor binding sites (Keles et al., 2004), DNA methylation

(Feng et al., 2005), HIV replication capacity (Segal et al., 2004), immunohistochemistry (Yaziji

et al., 2006), and biomarker detection (Vaidya et al., 2008). Extensions of the logic regression

methodology exist to detect associations between disease and haplotypes in blocks with little

or no recombination (Clark et al., 2007), to generate ensembles of plausible models based on

Markov chain monte carlo algorithms (Kooperberg and Ruczinski, 2005), and to obtain measures

of variable importance and approaches suitable for variable selection (Schwender and Ickstadt,

2008).

The above cited methods, including logic regression, are typically employed in case-control or

cohort studies, relating genotypes to binary, ordinal, or numeric phenotypes. In addition to pop-

ulation based designs, family based studies offer an appealing alternative, since these designs are

robust against population substructure, and allow for the assessment of linkage and association

(Spielman and Ewens, 1996; Gauderman et al., 1999; Fallin et al., 2002; Laird and Lange, 2006).
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Arguably, the simplest and most prominent test is the transmission disequilibrium test (TDT), a

completely non-parametric approach applicable to trios of parents plus affected offspring (Spiel-

man et al., 1993). Many extensions to the TDT have been proposed, for example allowing for

multi-allelic and haplotype based tests, general pedigrees, missing data, quantitative traits, many

using parametric approaches (see for example Laird and Lange, 2008, for a comprehensive review).

Much thought and effort was provided by the community to devise methods to detect gene-

gene and gene-environment interactions in family data, particularly for nuclear families, and most

prominently among those, for parentaffected-child trios (e. g. Schaid, 1999; Lunetta et al.,

2000; Culverhouse et al., 2002; Lanktree et al., 2004; Baksh et al., 2006, 2007; Kotti et al.,

2007a,b). However, these approaches do not provide algorithms to allow for the actual search

of SNP-SNP interactions, but quantify the statistical significance of candidate interactions under

investigation. A noticeable exception to this is the algorithm MDR-PDT (Martin et al., 2006).

MDR-PDT allows for the search and assessment of higher-order interactions by merging the

genotype-pedigree disequilibrium test (Martin et al., 2003) with the above mentioned multifactor

dimensionality reduction technique (Ritchie et al., 2003a): multilocus genotypes are pooled into

high-risk and low-risk groups, sequentially reducing the dimensionality of the predictors.

In this manuscript, we extend the logic regression methodology, employing probabilistic search

algorithms (simulated annealing) to detect and assess higher order interactions in trios with

affected probands. Trio logic regression also accounts for the linkage disequilibrium (LD) structure

in the genotype data, and accommodates missing genotypes via haplotype-based imputation. We

also derive an efficient algorithm to simulate case-parent trios where the genetic risk is determined

via epistatic interactions.
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2 Methods

Trio logic regression

Logic regression is an adaptive regression and classification tool introduced by Ruczinski et al.

(2003) to address problems arising when data of mostly binary covariates are analyzed, and the

interactions between those predictors are of main interest. Given a set of binary covariates, logic

regression creates new predictors for the response by considering Boolean combinations of the

binary covariates. Logic regression models are of the form

g(E[Y ]) = α +
p

∑

i=1

γiZi +
t

∑

j=1

βjLj (1)

where g is an appropriate link function for the response Y , Z1, . . . , Zk are covariates included as

additive terms (this set can be empty), and L1, . . . , Lt are Boolean terms of the binary covariates

X1, . . . , Xk such as Lj = (X2 ∨ X4) ∧ X7. In genetic association studies, the SNPs are usually

recorded as two indicator variables under dominant or recessive coding, which enables a statistical

representation of many genetic models (for example, double penetrance models) and biological

interactions of interest. This framework allows then for statements such as comparing two smokers

of the same age, the odds of disease for the person with two variant alleles at SNP7 and at least

one variant alleles at SNP44 are three times higher than for the other person without this genetic

pattern. The logic regression framework includes many forms of regression (such as linear and

logistic regression, Cox proportional hazards model, and more). In general, any type of model

can be considered, as long as a scoring function (such as a deviance or likelihood) can be defined.

The model search is carried out using a simulated annealing algorithm, and model selection is

performed via cross-validation and permutation tests. A detailed description is given in Ruczinski

et al. (2003).

We extend the logic regression methodology to accommodate the case-parent design by setting
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up the trio data for conditional logistic regression with a 1:3 matching ratio for the case genotypes

versus 3 possible Mendelian realizations given the parents. At each locus, one of four possible

pairs of parental alleles is transmitted to the affected offspring. The other (unobserved) possible

Mendelian realizations of genotypes for a child, given the parental genotypes, can be used as ar-

tificial controls (the “pseudo-controls”), and the resulting matching structure can be accounted

for using a conditional likelihood in a marker-by-marker analysis (Self et al., 1991; Schaid, 1996).

This approach is known as the genotypic transmission disequilibrium test (TDT). Logic regression

however needs to consider all markers simultaneously to detect higher order SNP-SNP interac-

tions. This is problematic since the number of possible pseudo-control genotype sets in particular

grows exponentially with the number of unlinked markers considered since all locus combinations

are possible (e. g., for n unlinked markers, 3n pseudo-controls are possible). We avoid this dimen-

sionality problem by restricting the analyses to 1:3 matching. For unlinked markers, we choose

a random order for the three possible pseudo-controls at each marker, and concatenate these

genotypes. For markers in tight LD (according to some block definition using measures such

as D
′

orR2), we first generate pseudo-controls for the entire haplotype block, and then sample

(without replacement) three realizations of possible pseudo-controls from this entity. We will

discuss the details how to accommodate missing genotypes in a later section (page 12 ff), and

summarize the steps how to generate a data frame suitable for trio logic regression:

1. Estimate the haplotype blocks and the haplotype frequencies using the parents’ genotypes.

2. For each block and each trio, sample haplotype pairs for the parents and the offspring

consistent with the observed genotypes in the trio, allowing for missing data.

3. Generate the probands genotype data from the haplotypes that were passed from the

parents.

4. For each block and each trio, generate genotypes for three pseudo-controls (PC1, PC2,

PC3) using the parents’ haplotypes that were not passed to the proband. The assignment

to PC1, PC2, and PC3 is random.
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5. Assemble three pseudo-controls for each trio by augmenting the genotypes from the blocks.

6. For each locus, translate the genotype data into two binary variables in dominant and

recessive coding.

As any sampling based imputation procedure, the approach outlined above generates one complete

set of data, which can for example be used in logic regression to search for higher order SNP-SNP

interactions. However, when formal inference is the objective, and estimating the effects size and

its standard error is of primary interest, the extra level of uncertainty due to missing data should

be acknowledged. This can be done, for example, by means of multiple imputation (Rubin, 1996;

Schafer, 1999). Several complete data sets are constructed, and the final inference is based on

the parameter estimates and standard errors derived from the individual completed data sets,

taking the variability of the estimates within a data set and between all data sets into account.

Logic regression embedded in a conditional logistic regression framework can then be run to find

the best scoring models (e. g. , the models with the lowest deviances) for models of different

sizes. In this manuscript, we limit ourselves to models with only one Boolean term, and the

model size is defined as the number of predictors in the Boolean term. The parameters in the

models are estimated simultaneously in the model search, however, some special attention has to

be given to possible non-convergence in the optimization procedure. This issue can best be seen

when considering the conditional logistic regression likelihood, which can be written as (Breslow

et al., 1978)

L(β) =
N
∏

i=1

(

exp(Xi0β)

exp(Xi0β) + Σ3
m=1 exp(Ximβ)

)

(2)

In this setting, i refers to a trio (i ∈ {1, . . . , N}), Xi0 refers to the exposure of the proband in

trio i, and (Xi1, Xi2, Xi3) are the exposures of the 3 pseudo-controls in trio i. In this setting,

the likelihood will not have a maximum if and only if for either all the trios where Xi0 = 0 or

all the trios where Xi0 = 1, the respective pseudo-controls exposures are equal to the probands’
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exposures, i. e. Xi1 = Xi2 = Xi3 = 0 for all trios with Xi0 = 0, or Xi1 = Xi2 = Xi3 = 1 for all

trios with Xi0 = 1 (see Appendix). In other words, for either the exposure or the non-exposure

groups, all pseudo-controls are equal to the respective probands. This might occur in a particular

sample where the number of trios is small and the (or some of the) SNPs contributing to the

exposure definition have extremely low minor allele frequency, however, it is not plausible that such

a separation would exist in the population in truth. Thus, it is necessary from a computational

perspective (to avoid non-convergence) and meaningful from a scientific perspective to exclude

these settings in the evaluation of logic regression models. We thus implemented a check that

rejects any such models in the annealing algorithm.

Special attention needs also to be given to model selection to avoid over-fitting. In logic regres-

sion, some definition of model size is required, and typically the total number of predictors in

the Boolean term is used as such. However, models of different sizes are not nested. In partic-

ular, models with equal numbers of Boolean terms employ the same number of parameters, and

thus, common measures of model complexity do not apply. This was recognized in the original

methodology, and special model selection techniques such as sequential permutation tests devised

(Ruczinski et al., 2003). However, these are also not applicable in trio logic regression due to the

conditional likelihood. Therefore, a modified permutation test is proposed.

Similar to the original methodology, sequential hypothesis tests are carried out, and the score

(such as the likelihood) of a larger model using the original data is compared to scores derived

using the permuted data, conditioning on models of various sizes (see Ruczinski et al., 2003,

for details). However, the conditioning on the best model of a certain size now has to take the

grouping of the case / pseudo-control quartet into account. In particular, when conditioning on

any particular model, the likelihoods of the original and the permuted data have to be identical.

This can be achieved by swapping the case with one of its pseudo controls that has the same

exposure status. From Table 12 it follows immediately that the likelihood does not change under

this procedure. For d0 and d1 we have three possibilities for each proband to select a pseudo-
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controls for swapping, for c0 and c1 we have two possibilities, for b0 and b1 there is only one

possibility. Trios in which the proband has a different exposure than all of its pseudo-controls

are not altered. As in the original methodology, the best score of a larger model is compared

to a sequence of permutation distributions, conditioning on models of increasing sizes. A shift

in those permutation distributions towards higher likelihoods indicates signal in the data. Over-

fitting starts when the permutation distributions stop shifting and the score of the larger model

derived using the original data resembles those in the permutation distribution.

Case-parent trio simulation

We next describe an efficient approach to simulate case-parent trios, which is a key ingredient to

validate the logic regression methodology and software. However, simulations based on haplotypes

and mating tables very often result in computationally intractable problems. We show that a naive

enumeration of mating patterns quickly results in unworkable dimensionsonalities, and introduce

an alternative that makes the required computations feasible. Using the here introduced notation

also simplifies the description for the method trio logic regression handles missing genotypes,

which will be discussed in the following section. The following simulation methods have been

implemented in the function trio.sim() in the R package trio.

We assume two risk groups in the population defined by some genotype pattern G, and assume

that the probability of disease p is given via the log-odds as

log

(

p

1 − p

)

= α + βIG, (3)

where I is the indicator function, and α and β are some fixed parameters. The genotype patterns

here are based on Boolean combinations of SNPs in dominant and recessive coding, such as

(SNPR
1 ∧ SNPD

15), indicating that subjects with two variant alleles at SNP 1 and at least one

variant allele at SNP 15 are at higher risk (assuming β > 0).
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To simplify notation, we follow Weinberg et al. (1998) and use the letters F , M , and C to

represent the haplotype pairs (diplotypes) of the father, the mother and the child. We refer to

the joint probability distribution of F , M and C as the mating table. Further, we use the letter

D to indicate an affected proband. To simulate case-parent trios, we therefore need to specify

P (F, M, C|D) for each haplotype block (assuming independence between blocks). For haplotype

blocks that do not contain a locus involved in the genetic signal that defines the high risk group

in equation (3), the haplotype frequencies in the trios do not depend on the disease status of

the child. Thus, we have P (F, M, C|D) = P (F, M, C) for a haplotype block that does not

contain information about the disease risk. Further, P (F, M, C) = P (M, F ) × P (C|M, F ) =

P (M)×P (F )×P (C|M, F ), under the assumption of random mating. Thus, for any block that

does not contain information about the disease risk, we can sample the genotypes for the trios by

randomly selecting two haplotypes for each parent using the population frequencies, and generate

the proband’s diplotype from the parents’ haplotype pairs assuming independent segregation.

To generate the trio genotypes for the blocks that do contain information about disease risk, we

have to take into account that the haplotype frequencies in those blocks are different from the

population at large if we condition on having an affected proband. However, enumerating the

entire mating table and calculating all these probabilities is prohibitive. Assume for example that

there are three blocks with loci that contribute to the disease risk, with five haplotypes each.

Thus, there are 53 = 125 possible haplotype sets for a subject, resulting in 125× (125 + 1)/2 =

7875 possible diplotypes for these three blocks combined. For a pair of parents we the have

7875 × (7875 + 1)/2 ≈ 31 million haplotype pair combinations. Thus, we pursue a different

strategy that avoids generating the whole mating table. We first sample the haplotype pairs for

affected probands, and then sample the parents’ haplotype pairs given the proband’s diplotype.

In particular, we use

P (F, M, C|D) = P (F, M |C, D)× P (C|D) = P (F, M |C) × P (C|D) (4)
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That is, we first sample a diplotype for an affected proband, and then sample the parents given

the affected proband. We can avoid extensive enumerations by taking advantage of the fact that

there are only two risk groups. The procedure is best explained in an example.

Assume that there are two haplotype blocks, with two and three loci respectively, that specify

the disease risk (Table 1) as follows:

log

(

p

1 − p

)

= α + β × I
[

(SNPR
1 ∧ SNPD

3 ) ∨ SNPR
5

]

(5)

[ TABLE 1 ABOUT HERE ]

Thus, subjects with two variant alleles at SNP number five (the third locus in block 2) are at

higher risk, and subjects with either two variant alleles at SNP number one (the first locus in block

1), or no variant alleles at SNP 3 (the first locus in block 2). We assume 3 possible haplotypes in

block 1 and 4 possible haplotypes in block 3, resulting in 12 possibilities for a haplotype spanning

both blocks (Table 2). Therefore, there are 12 × (12 + 1)/2 = 78 possible diplotypes in our

population. Out of those 78 diplotypes, 22 have the risk genotype combination as specified

above (Table 3), and we tabulate the haplotype pairs accordingly in high and low-risk diplotypes

(Table 4). For computational efficiency and convenience, we also differentiate between identical

and non-identical haplotypes in a diplotype (denoted as strata HR1, HR2, LR1, and LR2), and

further stratify by the possible indices of the first haplotype we will sample in a pair. Note that

this step needs to be carried out only once, when the simulation is initialized.

[ TABLE 2 ABOUT HERE ]

[ TABLE 3 ABOUT HERE ]

[ TABLE 4 ABOUT HERE ]
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To reflect the diplotype distribution among affected probands, we have to consider the probability

of disease given the genotype, and we note that P (C|D) ∝ P (D|C) × P (C). Moreover, for

any two subjects within the same diplotype stratum as defined in Table 4, we have P (D|C1) =

P (D|C2). Thus, if S denotes the union of all diplotypes within a stratum, we have

P (S|D) ∝ PS(D) × P (S), (6)

where PS(D) is the probability of disease, equal for every element in S. Thus, we can use

the set of probabilities P (S|D) as the sampling probabilities to pick a stratum in initial step

in the sampling procedure. We then sample a haplotype (index i) using the strata probabilities

as indicated in Table 4, and then pick a second haplotype (index j) from the set of permissible

haplotypes, using the haplotype frequencies from this set.

With the diplotype of the affected proband available, the joint diplotype distribution for the

parents P (F, M |C) is rather straightforward. For computational efficiency, we again divide the

joint parental distributions into strata (Table 5). We distinguish the cases when the proband’s

haplotype pairs are identical or not. The strata probabilities are then used to sample the actual

haplotype pairs for the parents (Table 6). Two considerations are important in the calculation of

the sampling probabilities. Since there is no ordering among the parents, the joint probability for

a non-identical pair of diplotypes is multiplied by the factor 2. Further, depending on the parents’

haplotype combinations, the number of distinct diplotypes among the four “Mendelian” children

can be one, two, or four. To calculate the correct sampling probabilities, these issues are taking

into consideration by multiplying the parents’ diplotype probabilities with the respective factors

(Table 6). In summary, given the child’s diplotype, we will first sample the stratum (Table 5),

and then sample the pairs for the parents within each stratum (Table 6).

[ TABLE 5 ABOUT HERE ]

[ TABLE 6 ABOUT HERE ]
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Missing genotype imputation

Logic regression and trio logic regression require complete data, and thus, an imputation method

for missing genotype data is needed that takes the block structure and the phase information

into account. The completed trios will then be used to generate the pseudo-controls, resulting

in a complete data set suitable for trio logic regression. Our imputation method is based on

haplotypes and the observed trio genotype data, and we assume that these data are free of

Mendelian errors (each set of three genotypes that gives rise to a Mendelian error can for example

be replaced by missing values and is an option in the function trio.check() in the R package

trio, though more efficient approaches might be applicable). As before, the enumeration of

all possible haplotype combinations for the trios can be prohibitive, and we employ some of the

previously introduced techniques for trio simulation.

We distinguish six different scenarios for missing genotypes in the trios (Table 7). In general, the

genotypes of one or more subjects in the trio might be completely missing, for example if the

father of the proband was unknown or not genotyped, or if the extracted DNA from one of the

subjects was compromised. Otherwise, the genotypes are typically observed completely, or with

low missingness rates due to genotyping problems. When the proband’s genotypes are completely

missing (scenarios 1 to 3), there are no restriction on the parental diplotypes other than through

the observed genotypes. In these settings, we can directly sample the parental haplotypes given

the observed genotype data, and derive the proband’s haplotypes. Likewise, if all three family

members were genotyped and have complete or partial genotype data (scenario 6), the same

approach remains viable. We find the possible haplotypes for both parents given the observed

data, and derive the proband’s haplotypes for each of these possibilities, subject to the condition

that the proband’s diplotype is in agreement with the observed genotypes.

[ TABLE 7 ABOUT HERE ]

Computational difficulties arise when the proband’s genotypes are (partially) observed, but one
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or both parental genotypes are missing completely (scenarios 4 and 5). In this setting all possible

haplotypes need to be considered, and a technique based on the previously introduced conditional

mating table circumvents the computational difficulties (Table 7). If both parental genotypes are

missing completely (scenario 4), we use the following equation:

P (F, M, C|CG) = P (F, M |C)P (C|CG) (7)

Here, the subscript G refers to “genotype”, to distinguish the observed genotypes from the haplo-

types. The sampling probability calculations for P (F, M |C) are similar to the ones introduced in

our simulation method, except that the possibilities of the child’s haplotypes are now constrained

by the observed genotypes. Therefore, we only need to sample the proband’s haplotypes using the

standardized diplotype frequencies. Once the diplotype C for the proband is fixed, the parental

haplotypes are sampled exactly the same way as in the simulation approach.

The imputations are slightly more complicated if the genotype data are missing completely for one

parent only. In this instance (without loss of generality, assume the father has no observed geno-

types), the child’s haplotype frequencies further need to be adjusted according to the mother’s

observed genotypes and diplotype possibilities. Unfortunately, a similar approach as described

in equation (7), to first assess the diplotypes for the subjects with observed genotypes, does

not work here: the joint diplotype probabilities for the mother and proband P (M, C|MG, CG)

do depend on the father’s diplotypes. Thus we need to calculate the diplotype probabilities

by considering the parental diplotypes that are in agreement with the observed parental geno-

types, and for which at least one Mendelian offspring is in agreement with the observed proband

genotypes. However, these joint probabilities can efficiently be computed. When the father’s

genotype is completely missing, we consider the trio’s diplotype possibilities and stratify them by

the mother/child combinations, grouping identical and homogeneous haplotypes pairs (Table 8).

For each mother/child diplotype combination that is not in conflict with the observed genotypes,

we list the corresponding scenarios and sampling weights, and calculate the sampling probabilities
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for all relevant diplotype combinations, and the mother/child diplotype strata. To impute the

data, we sample the mother/child diplotype pair first, and then sample the paternal diplotype

given the mother/proband haplotype pairs.

[ TABLE 8 ABOUT HERE ]

These imputation methods have been implemented in the function trio.imp() in the R package

trio. We demonstrate the underlying algorithm with a very simple example using a LD block of

length 3 with eight possible haplotypes (Table 9). We note though that the gain in computational

efficiency increases with haplotype block length, as the number of possible haplotypes is 2n for

a block of length n. Assume that in our example the observed genotypes are 22/NA/22 for

the proband, and NA/22/NA for the mother. Thus, given the observed genotype, the offspring’s

diplotype must only include haplotypes 6 and 8. For the same reason, the mother’s diplotype must

only include haplotypes 3, 4, 7, and 8. Since one maternal allele gets passed to the offspring, this

can only be the allele 8. Thus the only possible diplotypes for the child are (6,8) and (8,8), and the

only possible diplotypes for the mother are (3,8), (4,8), (7,8), and (8,8). If the offspring is (6,8),

the father’s diplotype must include haplotype 6. If the offspring is (8,8), the father’s diplotype

must include haplotype 8. The possibilities are easily enumerated and the respected sampling

probabilities calculated (Table 10). We first sample the mother/proband diplotype combination,

and then sample the father’s haplotype pairs given the mother/proband haplotype pairs.

[ TABLE 9 ABOUT HERE ]

[ TABLE 10 ABOUT HERE ]
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3 Results

We validated our case-parent simulation approach using interaction models of sizes one through

six (Table 11), for fifteen haplotype blocks containing forty-five SNPs. In each setting, the loci

contributing to the genetic risk were in separate haplotype blocks. We chose the haplotype

frequencies such that about 5% of the population were carriers of the risk genotype combination.

For each setting, we varied the risk among the non-carriers using α = −5 (0.7%), α = −3

(4.7%), α = −1 (27%). We also altered the odds ratios in the risk model (equation 3) using

β = 0 (OR=1), β = 1 (OR=2.7), β = 2 (OR=7.4), β = 3 (OR=20). These extreme values

were chosen deliberately, as the objective was to validate the trio simulations. We simulated

one hundred data sets with one thousand trios for each α/β combination. It is noteworthy that

it is possible to enumerate the complete mating tables, e. g. the trio haplotype pairs and the

respective sampling probabilities, only for very limited interaction terms. With this approach,

trios under only the first three risk group definitions (Table 11) could be simulated. For the

other settings, this approached failed due to excess memory requirements (> 32 GB), and the

previously described efficient simulation approach had to be employed.

[ TABLE 11 ABOUT HERE ]

For each of the simulated data sets, we derived the pseudo-controls as in the genotypic TDT

at each of the loci that affected the risk (between one and six loci, see Table 11). Since these

loci were chosen in separate blocks, we combined the three pseudo-genotypes in random order at

each locus into three pseudo-controls. For all cases and controls we then calculated the Boolean

genotype combination that defined risk for each of the cases and pseudo-controls (thus, defining

carriers and non-carriers), and used conditional logistic regression with the carrier status as the

predictor of interest.

The validation of the trio simulation method was primarily based on the expected values of the

parameter estimates derived from the simulated data sets. However, when using conditional
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logistic regression to compare cases and pseudo-controls, the expected value of the parameter

estimates is not the logs odds ratio β, but the log relative risk (Schaid, 1996). In our case, the

relative risk is given as

RR =
P (D|IG = 1)

P (D|IG = 0)
=

exp(α + β)/(1 + exp(α + β))

exp(α)/(1 + exp(α))
= exp(β) ×

(

1 + exp(α + β)

1 + exp(α)

)−1

(8)

and therefore the log relative risk is

log(RR) = β − log

(

1 + exp(α + β)

1 + exp(α)

)

. (9)

The latter term describes the deviation from the logs odds β, and is zero only if β is zero (i. e. risk

independent of genotypes), and diminishes as α gets small for β )= 0. Notice though that in

particular for α = −1 in our simulation, the difference between the log relative risk and the log

odds ratio can be substantial (Figure 1).

[ FIGURE 1 ABOUT HERE ]

We also notice that, as expected, the haplotype frequencies in the blocks that carry risk informa-

tion deviate from the population frequencies (Figure 2) when generating case-parent trios. We

observed that the haplotypes that contribute to disease risk were sampled more frequently in our

simulations compared to the population at large, at the expense of the other haplotypes in the

respective blocks.

[ FIGURE 2 ABOUT HERE ]
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4 Discussion

In this manuscript we presented an extension to the logic regression methodology to detect and

assess higher order interactions in trios with affected probands. Trio logic regression accounts for

the linkage disequilibrium (LD) structure in the genotype data, and accommodates missing geno-

types via haplotype-based imputation. While several approaches to assess SNP-SNP interactions

in family data are available (and in particular for nuclear families and affected proband trios), they

typically quantify the statistical significance of candidate interactions, and do not allow for the

actual interaction search. Trio logic regression is unique in that it employs a conditional logistic

regression framework to search and evaluate higher order SNP-SNP interactions, in a non-greedy

way. In addition, we also devised an efficient algorithm to simulate case-parent trios where the

genetic risk is determined via higher-order epistatic interactions. We validated the algorithm using

interactions involving up to 6 SNPs, which, due to computational constraints (and in particular,

due to memory constraints), can not be achieved by standard mating table computations.

The efficiency of the simulation approach is in part owed to the fact that only two risk groups are

assumed to exist in the population (carriers and non-carriers), which is used for the calculation

of the haplotype frequencies in the blocks that carry information about the disease risk. Thus,

only one logic tree is permitted in the current trio logic regression. This is a limitation in the

explored model space compared to the original logic regression framework introduced by Ruczinski

et al. (2003). As described in equation (1) and implemented in the R package LogicReg,

logic regression in general allows for more than one Boolean term (even though in the vast

majority of previously conducted analyses, a single term proved to be sufficient). The single

tree assumption in trio logic regression could be relaxed, however, this would make the approach

and calculations substantially more complicated. This is in particular the case for the simulation

algorithm since many more strata needed to be defined, but also for the actual trio logic regression

methodology and software, as for example the criteria to assure convergence had to be augmented

(see Appendix). That said, open source software is available to generate a data frame suitable
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as input for the logic regression R package. If run with a conditional logistic link, more than one

tree could be allowed in principle, and might be a future undertaking.

An imperfection is in the haplotype-based imputation employed. Many algorithms and software

packages exist to delineate the haplotypes and their frequencies, for both population based and

family based designs. However, we expect the haplotype frequencies to differ between cases

and controls in disease related blocks, and thus, it might be beneficial to estimate the haplotype

frequencies with the algorithm of choice separately for cases and controls. Usually, most SNPs and

therefore most LD blocks are not disease related however, and thus, the aforementioned procedure

could introduce biases in the analysis simply due to imperfect haplotype frequency estimation in

the null SNPs, particularly in settings with small sample sizes. Since it is a priori not known

which blocks contain disease related information, and the latter concern seems more severe to us,

we do not attempt to estimate haplotype frequencies separately for cases and controls, but only

use the ones derived from the founders’ genotypes for imputation, to be conservative. It seems

reasonable to assume that the loss of information will not be too severe if few data are missing.

We also note that due to recent technological advancements, a major shift from candidate to

genome wide association studies (GWAs) has occured. Case-control study designs have arguably

been the most popular approach for SNP association studies, and might be even more so in the

GWAs settings. Nonetheless, family based GWAs and even GWAs using case-parent designs are

carried out (for example, the International Consortium to Identify Genes and Interactions Con-

trolling Oral Clefts, http://www.genevastudy.org/). Obviously, trio logic regression is not suited

to investigate interactions between the entire set of SNPs interogated in genome wide associa-

tion studies. While investigating all 2-way interactions is computationally feasible (e. g. Purcell

et al., 2007), searching for higher order interactions is not, due to the vastness of the search

space, in particular when probabilistic search algorithms are employed. When permutation tests

for model selection are carried out, even data from a custom panel such the Illumina Golden

Gate platform (with up to 1536 SNPs) will be computationally challenging. As in other instances
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when computationally demanding algorithms are to be used, a pre-selection of SNPs might be

necessary.
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Appendix

The exposures of probands and pseudo-controls are binary, and thus, we can summarize the data

by considering, across trios, how many pseudo-controls’ exposures equal that of the respective

proband, separately for the probands with exposures 0 and 1 (Table 12, upper part).

[ TABLE 12 ABOUT HERE ]

Considering the respective contributions (Table 12, lower part) to the conditional logistic likeli-

hood in equation (2), we can re-write the log-likelihood as follows:

log(L(β))

= a1 {β − log(exp(β) + 3)} + b1 {β − log(2 exp(β) + 2)} + c1 {β − log(3 exp(β) + 1)} −

a0 log(1 + 3 exp(β)) − b0 log(2 + 2 exp(β)) − c0 log(3 + exp(β)) +
d1

4
+

d0

4
(10)
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The first derivative of the log-likelihood yields

∂ log(L(β))

∂β
= a1 − (a1 + c0) ×

exp(β)

exp(β) + 3
+ b1 − (b1 + b0) ×

2 exp(β)

2 exp(β) + 2
+

c1 − (c1 + a0) ×
3 exp(β)

3 exp(β) + 1
(11)

The log-likelihood in equation (11) is monotonically decreasing in β. Further,

lim
β→−∞

∂ log(L(β))

∂β
= a1 + b1 + c1 ≥ 0 and lim

β→+∞

∂ log(L(β))

∂β
= −(a0 + b0 + c0) ≤ 0 (12)

Since the derivative of the log likelihood function is a continuous function in β, it follows that

the likelihood function has a maximum unless a1 + b1 + c1 = 0 or a0 + b0 + c0 = 0.
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Figure 1: One hundred replicates for 1,000 trios were simulated assuming a risk genotype given by
the six-way interaction in Table 11, using various combinations for the parameters α (−5,−3,−1)
and β (0, 1, 2, 3, 4). The exact procedure is described in more detail in the text. The boxplots
summarize the 100 parameter estimates obtained by using the true risk model as binary predictor in
a conditional logistic regression model. The arrows indicate the expected value for the parameters
(the log relative risk) as defined in equation (9). The median of each of the parameter estimate
sets (shown as a horizontal bar in the center of each box) coincides well with the expected value,
thus validating the trio simulation approach. Only the outcome for the six-way interaction is
shown. Results and figures for the other six scenarios as indicated in Table 11 were identical.
Note that the generation of the mating tables is prohibitive for all but the most simple set-ups
(examples 1-3 in Table 11), and a more efficient approach such as the one in the Methods section
has to be employed.
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Figure 2: One hundred replicates for 1,000 trios were simulated assuming a risk genotype given by

the three-way interaction (SNPR
1|1 ∧ SNPD

6|2)∨ SNPR
13|1 (Table 11, scenario 3), using α = −5 and

β = 0 (upper panel) and β = 4 (lower panel). The above bars show the haplotype frequencies in
the three blocks that carry disease risk information (block 1 left, block 6 middle, block 13 right).
In each block, we assumed that three different haplotypes exist in the population, as indicated
on the horizontal axis. In the above, 1 refers to the minor (variant) allele, and 2 refers to the
major allele. Thus, individuals with 2 variant alleles at locus 1 in block 13 (L1/11, right) are at
higher risk for disease if β > 0, as are subjects that have 2 variant alleles at locus 1 in block 1
(L1/11, left) and at the same time no variant alleles at locus 2 in block 6 (L2/22, middle). For
each haplotype in each block, we show the population frequency (medium grey), the frequency
among the parents (light grey), and the frequency among the probands (dark grey). As expected,
if there is no association between genotypes and outcome (β = 0, upper panel), the haplotype
frequencies do not differ among parents, offspring, and the population at large. However, we
observe vast differences when such an association exists (β = 4, lower panel). As expected, the
only haplotype that can give rise to genotype 11 at locus 1 in block 13 is 122, and is greatly
enriched in parents and particularly in probands (lower right). The same effect, albeit much less
pronounced, is still visible for haplotype 11 in block 1 (lower left), and haplotypes 122 and 222
in block 6 (lower middle).
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Block Index Haplotype Frequency

1 1 11 f1|1

1 2 21 f2|1

1 3 22 f3|1

2 1 121 f1|2

2 2 122 f2|2

2 3 111 f3|2

2 4 222 f4|2

Table 1: An example of two haplotype blocks having lengths two and three, with three and four
possible haplotypes respectively. In the above notation, fi|j refers to the ith haplotype in bock j.
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Index
Haplotype index Haplotype

Frequency

Block 1 Block 2 Block 1 Block 2

1 1 1 11 121 P (H1) = f1|1 × f1|2

2 2 1 21 121 P (H2) = f2|1 × f1|2

3 3 1 22 121 P (H3) = f3|1 × f1|2

4 1 2 11 122 P (H4) = f1|1 × f2|2

5 2 2 21 122 P (H5) = f2|1 × f2|2

6 3 2 22 122 P (H6) = f3|1 × f2|2

7 1 3 11 111 P (H7) = f1|1 × f3|2

8 2 3 21 111 P (H8) = f2|1 × f3|2

9 3 3 22 111 P (H9) = f3|1 × f3|2

10 1 4 11 222 P (H10) = f1|1 × f4|2

11 2 4 21 222 P (H11) = f2|1 × f4|2

12 3 4 22 222 P (H12) = f3|1 × f4|2

Table 2: The twelve possible haplotypes across two blocks with three and four haplotypes respec-
tively. The haplotype frequencies are derived from the frequencies in Table 1.
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Pair Haplotype 1 Haplotype 2 genotype

(1, 2) 11121 21121 12-11-11-22-11

(1, 3) 11121 22121 12-12-11-22-11

(1, 7) 11121 11111 11-11-11-12-11

(1, 8) 11121 21111 12-11-11-12-11

(1, 9) 11121 22111 12-12-11-12-11

(2, 3) 21121 22121 22-12-11-22-11

(2, 7) 21121 11111 12-11-11-12-11

(2, 8) 21121 21111 22-11-11-12-11

(2, 9) 21121 22111 22-12-11-12-11

(3, 7) 22121 11111 12-12-11-12-11

(3, 8) 22121 21111 22-12-11-12-11

(3, 9) 22121 22111 22-22-11-12-11

(7, 8) 11111 21111 12-11-11-11-11

(7, 9) 11111 22111 12-12-11-11-11

(8, 9) 21111 22111 22-12-11-11-11

(1, 1) 11121 11121 11-11-11-22-11

(2, 2) 21121 21121 22-11-11-22-11

(3, 3) 22121 22121 22-22-11-22-11

(7, 7) 11111 11111 11-11-11-11-11

(8, 8) 21111 21111 22-11-11-11-11

(9, 9) 22111 22111 22-22-11-11-11

(10, 10) 11222 11222 11-11-22-22-22

Table 3: The diplotypes and genotypes for the risk group, assuming the defining interaction is

(SNPR
1 ∧ SNPD

3 ) ∨ SNPR
5 . Here, 1 indicates the minor (variant) allele, and 2 indicates the major

allele. Therefore, subjects with two variant alleles at locus 5 (genotype 11) are at higher risk, as
are subjects with both two variant alleles (genotype 11) at locus 1 and no variant alleles (genotype
22) at locus 3.
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Strata Index 1 Index 2 Probability

Child with different haplotypes (i, j)

Parent 1

A1 i )= i, )= j 2P (Hi)(1 − P (Hi) − P (Hj))

A2 i j 2P (Hi)P (Hj)

A3 i i P (Hi)2

Total → 2P (Hi) − P (Hi)2

Parent 2

B1 j )= i, )= j 2P (Hj)(1 − P (Hi) − P (Hj))

B2 j i 2P (Hi)P (Hj)

B3 j j P (Hj)2

Total → 2P (Hj) − P (Hj)2

Child with identical haplotypes (i, i)

Any Parent

C1 i )= i 2P (Hi)(1 − P (Hi))

C2 i i P (Hi)2

Total → 2P (Hi) − P (Hi)2

Table 5: The distributions for the parental haplotype pairs assuming the child has non-identical
(i, j) or identical (i, i) haplotypes. The strata probabilities are derived from the frequencies in
Table 2.

34



Index Parent 1 Parent 2 Factor P Factor C Sampling probability

Child with different haplotypes (i, j)

1 A1: (i, k) B1: (j, k) 2 1
4

1
2P (A1)P (B1)

2 A1: (i, k) B2: (i, j) 2 1
4

1
2P (A1)P (B2)

3 A1: (i, k) B3: (j, j) 2 1
2 P (A1)P (B3)

4 A2: (i, j) B1: (j, k) 2 1
4

1
2P (A2)P (B1)

5 A2: (i, j) B2: (i, j) 1 1
2

1
2P (A2)P (B2)

6 A2: (i, j) B3: (j, j) 2 1
2 P (A2)P (B3)

7 A3: (i, i) B1: (j, k) 2 1
2 P (A3)P (B1)

8 A3: (i, i) B2: (i, j) 2 1
2 P (A3)P (B2)

9 A3: (i, i) B3: (j, j) 2 1 2P (A3)P (B3)

Total → 2P (Hi)P (Hj)

Child with identical haplotypes (i, i)

1 C1: (i, j) C1: (i, k) 1 1
4

1
4P (C1)2

2 C2: (i, i) C1: (i, k) 2 1
2 P (C1)P (C2)

3 C2: (i, i) C2: (i, i) 1 1 P (C2)2

Total → P (Hi)2

Table 6: The parental diplotype pair distribution assuming the child has non-identical (i, j) or
identical (i, i) haplotypes. The strata probabilities are based on the haplotype pair frequencies in
Table 5. Two further considerations are important in the derivation of the sampling probabilities.
The joint probability for a non-identical pair of diplotypes in the parents has to be multiplied by
the factor 2, since there is no ordering in the parental diplotype pairs (denoted above as Factor
P). Further, the number of distinct diplotypes in the four “Mendelian” children can be one, two,
or four, depending on the parents’ haplotype combinations. This is taking into consideration
by multiplying the parents’ diplotype probabilities with the respective factor (denoted above as
Factor C).
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index haplotype frequency

1 111 P (H1)

2 211 P (H2)

3 121 P (H3)

4 221 P (H4)

5 112 P (H5)

6 212 P (H6)

7 122 P (H7)

8 222 P (H8)

Table 9: Index and notation for the haplotypes in a three locus block and the respective haplotype
frequencies, used as an example in the text.
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Father Mother Proband Factor Sampling probabilities

A
8 8 (8, 8) (8, 8) 1 P (H8)2P (HM8)2

8 )= 8 (8, 8) (8, 8) 1
2 P (H8)(1 − P (H8))P (HM8)2

C

8 8 (3, 8) (8, 8) 1
2 P (H8)2P (HM3)P (HM8)

8 )=3, 8 (3, 8) (8, 8) 1
4 P (H8)(1 − P (H3) − P (H8))P (HM3)P (HM8)

8 3 (3, 8) (8, 8) 1
4 P (H8)P (H3)P (HM3)P (HM8)

8 8 (4, 8) (8, 8) 1
2 P (H8)2P (HM4)P (HM8)

8 )=4, 8 (4, 8) (8, 8) 1
4 P (H8)(1 − P (H4) − P (H8))P (HM4)P (HM8)

8 4 (4, 8) (8, 8) 1
4 P (H8)P (H4)P (HM4)P (HM8)

8 8 (7, 8) (8, 8) 1
2 P (H8)2P (HM7)P (HM8)

8 )=7, 8 (7, 8) (8, 8) 1
4 P (H8)(1 − P (H7) − P (H8))P (HM7)P (HM8)

8 7 (7, 8) (8, 8) 1
4 P (H8)P (H7)P (HM7)P (HM8)

D
6 6 (8, 8) (6, 8) 1 P (H6)2P (HM8)2

6 )=6 (8, 8) (6, 8) 1
2 P (H6)(1 − P (H6))P (HM8)2

E

6 6 (3, 8) (6, 8) 1
2 P (H6)2P (HM3)P (HM8)

6 )=6 (3, 8) (6, 8) 1
4 P (H6)(1 − P (H6))P (HM3)P (HM8)

6 6 (4, 8) (6, 8) 1
2 P (H6)2P (HM4)P (HM8)

6 )=6 (4, 8) (6, 8) 1
4 P (H6)(1 − P (H6))P (HM4)P (HM8)

6 6 (7, 8) (6, 8) 1
2 P (H6)2P (HM7)P (HM8)

6 )=6 (7, 8) (6, 8) 1
4 P (H6)(1 − P (H6))P (HM7)P (HM8)

Table 10: The sampling probabilities for the trio haplotype pairs as in Table 8, assuming a
three-locus haplotype black and using the notation from Table 9.
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Number of trios where k pseudo-controls match the proband

k → 0 1 2 3

Xi0 = 0 a0 b0 c0 d0

Xi0 = 1 a1 b1 c1 d1

Likelihood contributions for Xi0 = 0

a0 b0 c0 d0

Xi0 0 0 0 0

Xi1 1 0 0 0

Xi2 1 1 0 0

Xi3 1 1 1 0

Li(β) 1
1+3 exp(β)

1
2+2 exp(β)

1
3+exp(β)

1
4

Likelihood contributions for Xi0 = 1

a1 b1 c1 d1

Xi0 1 1 1 1

Xi1 0 1 1 1

Xi2 0 0 1 1

Xi3 0 0 0 1

Li(β) exp(β)
exp(β)+3

exp(β)
2 exp(β)+2

exp(β)
3 exp(β)+1

1
4

Table 12: The number of exposures of pseudo-controls that equal the exposure of the respective
probands, across all trios, separate for the two possibilities for the probands’ exposures. For
example, a0 is the number of trios for which the probands exposure is 0 and all pseudo-controls’
exposure is equal to one. Each of these trios then contributes 1/(1+3 exp(β)) to the likelihood.
Note that trios for which the exposures of all pseudo-controls are equal to the exposure of the
proband (d0 and d1) do not contribute information about β.
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