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Abstract

Despite extensive research, the mechanisms underpinning successful emotion recognition
remain unclear. Constructionist, template-matching, and signal detection theories illuminate
several emotion-related psychological processes that may be involved — namely the
conceptualisation, experience, visual representation, and production of emotion —however, this
requires empirical verification. Therefore, across the six empirical chapters described here, I
developed and applied several novel experimental paradigms to assess the way in which
individuals conceptualise, experience, visualise, produce and recognise emotion, and created
new mathematically plausible, mechanistic models that shed light on the processes involved in
emotion recognition. In doing so, I identified several candidate mechanisms that may underpin
the emotion recognition difficulties seen in a range of clinical conditions, including autism
spectrum disorder, and I (1) determined whether there are differences between autistic and non-
autistic individuals in these emotion-related psychological processes, and (2) ascertained
whether differences therein underpin emotion recognition challenges for autistic people.

Ten years ago, it was theorised that the emotion-related difficulties of autistic
individuals do not stem from autism per se, but rather alexithymia — a subclinical condition
highly prevalent in the autistic population characterised by difficulties identifying and
describing emotions. Since its inception, this theory has gained empirical support, with
multiple studies documenting that alexithymia, and not autism, is associated with emotion-
processing differences. However, to date, this evidence has largely been confined to the domain
of emotion recognition. As such, it is unclear whether there are differences between autistic
and non-autistic individuals in the conceptualisation, experience, visual representation, and
production of emotion, after controlling for alexithymia. Here, I resolved this ambiguity,
discerning the explanatory scope of the “alexithymia hypothesis”: there were no differences

between autistic and non-autistic individuals in the understanding or differentiation of emotion



concepts (Chapter 6), the precision or differentiation of emotional experiences (Chapter 6), and
the speed (Chapter 3) or differentiation of visual emotion representations (Chapter 5), after
controlling for alexithymia. Nevertheless, there were differences between groups with respect
to the precision of visual representations (Chapter 5), the production of emotional facial
expressions (Chapter 7), and recognition of specific emotions (Chapter 2), even after
accounting for this confound.

Despite suggestions that autistic individuals adopt alternative strategies to recognise the
emotions of others, very few studies have examined mechanistic differences in emotion
recognition between autistic and non-autistic people. Therefore, here I aimed to compare the
processes involved in emotion recognition for these groups. Across multiple empirical
chapters, I identified that there are similarities and differences in the processes implicated in
emotion recognition for autistic and non-autistic people (Chapters 4, 5, 6, and 7), with autistic
individuals relying on fewer emotion-related psychological processes. By elucidating several
candidate mechanisms underpinning superior emotion recognition, my doctoral work paves the
way for future supportive interventions to help both autistic and non-autistic individuals to
accurately interpret other people’s emotions, thus ultimately fostering more successful and

fluid social interactions.
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About this thesis
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addition to these empirical chapters, this thesis includes a general introduction, which provides
an overview of the literature, and a general discussion, which places our finding within the
literature and discusses strengths, limitations, and future directions.
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Chapter 1: General Introduction

1.1. Overview

My doctoral work featured two primary aims: (1) to elucidate the mechanisms
involved in, and build empirical models of, autistic* and non-autistic emotion recognition, and
(2) to examine whether there are differences between autistic and non-autistic individuals in
the conceptualisation, experience, visual representation, production, and recognition of
emotion, after controlling for alexithymia — an important confound. In doing so, I hoped to
elaborate on existing theories pertaining to the experience and recognition of emotion, and
expand upon current knowledge regarding the origin of putative socio-emotional difficulties
for autistic people. As such, in the current Chapter, I first synthesise the evidence concerning
theories of human emotion and emotion recognition. In doing so, I highlight several candidate
mechanisms that may contribute to emotion recognition difficulties in autism spectrum
disorders — the precision and differentiation of semantic emotion concepts, emotional
experiences, visual emotion representations, and emotional facial expressions. Second, I
consider autism, social cognition, and emotion-processing, with a specific focus on these
factors. Throughout, I discuss a possible role for alexithymia, address shortcomings of previous

research, and highlight gaps in the literature.

1.2. Theories of human emotion

Humans are emotional creatures. Emotions shape our relationships throughout our

lives'?, influence attention, memory and decision making>®, and contribute to our physical
) 5 Yy

586,587

* In line with language preferences of the majority of the autistic community , identity-

first language is used throughout.



health’ and psychological wellbeing®. Due to its role in numerous aspects of our lives, it is

unsurprising that emotion has been a topic of scientific enquiry for over 150 years®!!

. However,
despite extensive research by psychologists, anthropologists and sociologists over this period,
researchers still cannot agree on the definition of emotion, and the process by which it is
experienced (see '*'%). For the purpose of this thesis, I consider emotions to be short-lived
psychological phenomena that are constructed when the brain makes predictions about our
neurophysiological state based on previously acquired knowledge and experiences (taking
influence from constructionist theories'#; see below).

Perhaps, the earliest theory of emotion was devised by Charles Darwin in The
Expression of the Emotions in Man and Animals®. In this book (and others), Darwin proposed
that facial movements, gestures, and physiological changes that accompany expressed emotions
are largely universal, instinctive, and inherited, as such behavioural modifications were
adaptive in our early evolutionary environment™!>. These ideas were highly influential in
shaping contemporary theories of emotion.

Approximately ten years later, William James and Carl Lange proposed their theory
(James-Lange theory!?), delineating the process by which emotion is experienced. According
to this theory, a stimulus activates the sensory cortex which directly evokes physiological
and/or motor responses'’. Following this, the feedback from these responses travels back to the
sensory cortex where it generates an experience of emotion'’. In essence, this theory proposes
that the conscious awareness of a physical sensation results in (and equates to) an experience
of emotion!?. To illustrate this idea, imagine that you encounter a threat in your environment,
for example a venomous snake. Upon detecting this threat, your sympathetic nervous system
initiates physiological arousal, making your heart race. Under the James-Lange theory, you

would experience ‘fear’ after recognising these physiological changes in your body. According



to James!?, each specific emotion has its own unique set of physiological and neural responses;
the response signature associated with excitement differs from that of fear, which differs from
that of anger.

Although this theory was prominent during its time, it was criticised by Walter Cannon
for several reasons. Firstly, Cannon!!' highlighted that each emotion does not have its own
unique response signature as the physiological responses accompanying distinct emotions lack
specificity (e.g., fear and excitement are both associated with elevated heart rate). Second,
Cannon'! argued that artificial elicitation of physical arousal, for example via injections of
adrenaline, does not generate real emotional experiences, as would be predicted by James’
account. Finally, Cannon'! noted that disrupting feedback (e.g., via disconnection of the central
nervous system from peripheral organs), does not eliminate emotion, suggesting feedback
between these systems is not integral to affective experiences. On the theoretical side, James!'®
reduced emotions to experiences of bodily responses and thus did not account for the fact that
emotions can have a cognitive component, being intentional and object-directed!6-!8,

Mitigating some of these limitations, Cannon and Bard came up with their own theory
(Canon-Bard theory!!). They proposed that physiological arousal and the experience of emotion
occur simultaneously, yet independently!'!. According to this theory, when you see the
venomous snake, you feel fear at the exact same time that your sympathetic nervous system
prepares your fight or flight response!!. That is, the emotional experience of fear is separate
and independent of the physiological arousal, even though they co-occur. Critics of this theory
argue that the experience of emotion cannot be separated entirely from the physiological
component'?,

With the growth of cognitive psychology in the 1950s, cognitive theories of emotion

became the prevailing viewpoint. One highly influential cognitive theory is the Two-Factor



Theory, as proposed by Schachter and Singer in 19622%2!, This theory combines elements of
both previous theories and addresses their main limitations!2. As the name suggests, this theory
proposes that there are two steps to emotion: first, an individual experiences physiological
arousal, and second the individual consciously interprets the response based on the situational
context?*2!, Revisiting the previous example, the two-factor theory asserts that the snake evokes
activation of the sympathetic nervous system which is subsequently labelled as fear given the
context. Importantly, this theory can allow for similar autonomic nervous system (ANS)
responses for different emotions (as similar ANS responses could be interpreted differently
based on context), thus mitigating the limitations of James-Lange'?. Concurrently, this theory
maintains the connection between physiological reactions and emotional experiences, thus
addressing the pitfalls of Canon-Bard?.

Schachter and Singer!® found support for their theory by demonstrating that injections
of adrenaline (causing physical arousal) resulted in experiences of joy or anger depending on
the presence of a happy or angry bystander. Thus, the researchers showed that the same
physiological experience can be interpreted differently according to the situational context.
Although this theory was highly influential and supported by some empirical work, a number
of critics challenged it on theoretical and empirical grounds (see?>?*). For example, Zajonc?
disagreed with the idea that conscious appraisal is imperative for the experience of emotion.
Following this, studies showed that repeated exposure to a stimulus that was presented
subliminally (such that the stimulus could not be consciously identified) led to increased liking
of such a stimulus?®. This led the authors to suggest that unconscious appraisals (and not just
conscious ones) may play a role in affective experience. Such findings support the central ideas

discussed in appraisal theories.



2021 assertion that

Appraisal theories of emotion (e.g., >3%) retained Schacter’s
cognition is an antecedent to emotion, but argued that the cognitive component is primarily
unconscious (see ! for a full discussion appraisal theories). Madga Arnold pioneered this
category of emotion theory in 1960, coining the term ‘appraisal’ to mean the cognitive act of
evaluating a situation?. These theories differ from the two-factor theories by placing the
cognitive component directly following the onset of the stimulus and prior to the bodily
responses. According to some appraisal theories, following the introduction of a stimulus, an
individual makes an unconscious appraisal (evaluating whether a situation is positive or
negative), which results in an action tendency (i.e., approach or avoid) and a physiological
and/or motor response, which is then consciously labelled as a particular emotion (see ). Thus,
such theories introduce an wunconscious attribution process, and shift Schacter’s conscious
attribution to the end of the emotional episode. Returning to our example, after perceiving the
snake, you may unconsciously appraise that the situation is dangerous, causing your heart to
race (i.e., physiological changes), which you then consciously label as fear.

Most recently, constructionist theories of emotion, such as the Conceptual Act
Model'#**40 have gained traction. These theories, first proposed by Lisa Feldman Barrett,
postulate that emotions are constructed, automatically, from two basic psychological primitives
that influence and constrain each other: (1) a basic neurophysiological system that produces
variation in core affect (i.e., arousal and valence*!), and (2) a conceptual system for emotion
(i.e., one’s knowledge about emotion)!*. These psychological primitives will be discussed in
greater detail below.

The first psychological primitive that contributes to the construction of emotion is a
core affect system'*, which comprises neurophysiological states that can be defined in terms of

valence (i.e., pleasantness versus unpleasantness) and arousal (see *>* for reviews). The



purpose of this system is to integrate sensory signals from the environment (e.g., the presence
of a venomous snake) with interoceptive and homeostatic bodily signals to create a mental state
that allows us to predict threat and reward, and thus safely navigate the world. Essentially, core
affect can be seen as a neurophysiological barometer which reflects an individual’s response to
changing events in their environment'4,

According to the Conceptual Act Model, the experience of feeling an emotion, or
perceiving it in others, also relies on the involvement of a second psychological primitive — our
conceptual emotion knowledge (i.e., what we “know” about emotion)'*. According to this
model, we possess a conceptual system that houses all the knowledge we have acquired via
previous experiences — the bodily sensations, semantic meanings, motor responses (e.g., facial
expressions), and contexts (amongst others) that we associate with distinct emotions!**. By
accessing the knowledge in this conceptual system, we are able to make sense of, and
categorise, core affect, thus producing experiences of “anger”, “happiness” or “sadness” (or
whatever categories exist in one’s conceptual landscape)'.

Such categorisation processes are fundamental cognitive activities that allow the brain
to make a prediction about the meaning of sensory information!*#>- 4, Categorizing something
renders it meaningful, determining what something is, why it is, and what to do with it'*. To
explain this categorisation process, Barrett draws an analogy between categorising emotions
and categorising colours*®. Although the retina registers light across a continuous spectrum of
wavelengths, people perceive distinct categories of colour — “red”, “yellow”, “green” — due to
the previously acquired conceptual knowledge. According to her theory, the same happens with
emotion!**®; the act of categorizing core affect can be considered as similar to figure-ground

47,48

segregation*’**, wherein emotional experiences emerge as separate events from ongoing



changes in core affect. In essence, emotion concepts transform ongoing changes in arousal and
valence into interpretable and meaningful experiences (e.g., “happiness").
But what exactly are emotion concepts, and how do they form? According to

t1446 concepts are embodied (e.g., *°°), multimodal (e.g., '**), representations of

Barret
emotions that are acquired through experience. Barret'** contends that an emotion concept,
like happiness, evolves as sensory, neurophysiological, and motor information is integrated
across numerous instances where happiness is labelled. That is, sensory cues from your
environment (e.g., visual or auditory information about your interaction partner),
neurophysiological information about your core affective state (e.g., current homeostatic state),
motor responses (e.g., facial movements, loudness or tone of voice), and so on, all bind together
with the label “happiness” (which could be provided by yourself or others) to form a singular
instance of happiness!#. Across instances, the multimodal information is integrated, and thus
the conceptual knowledge about happiness accumulates'®. According to this theory, large
collections of information reside within your concepts, and this information can be retrieved
and combined in diverse and flexible ways to produce an experience of emotion'* When our
conceptual knowledge about happiness is primed, for example by the sensory environment
(e.g., hearing the voice of your favourite comedian), a motor response (e.g., smile), and/or core
affect (e.g., positive valence, high arousal), the concept is activated, thus encouraging us to
experience or perceive “happiness” in that particular situation.

Central to this model is the idea that emotion concepts shape both experiences (i.e.,
inferences about how oneself is feeling) and perceptions of emotion (i.e., inferences about how
others are feeling!* >!-3%). Under this theory, individuals with lower access to emotion concepts

should have greater difficulties interpreting their own and others’ emotions. One approach to

testing this hypothesis is to assess the experience or perception of emotion in those who



naturally lack access to concepts, for example those with semantic dementia*. These
individuals typically have permanent brain lesions which impair their ability to remember
words and concepts, including those for emotion*. One study involving these individuals found
that although they were able to classify emotional facial expressions as ‘pleasant’ and
‘unpleasant’ (i.e., could make judgements based on core affect), they were unable to categorise
them as discrete emotions like anger or sadness (even when such judgements did not require
the use of emotion words®’). Such evidence suggests that emotion conceptual knowledge
(which the patients could not access) transforms perceptions of affect into experiences of
discrete emotions.

Another approach is to experimentally restrict access to emotion concepts, for example
by semantic satiation, and assess the consequences for emotion perception!**, In semantic
satiation experiments, participants repeatedly say a category word until it becomes just a sound
that is mentally disconnected from its meaning'®. Following this, participants have to judge
whether a stimulus is a member of the repeated category!. In such experiments, relative to
repeating an emotion word a few times (i.e., low semantic satiation), repeating it numerous
times (i.e., high semantic satiation), led to slower and less accurate judgements of whether a
subsequent facial expression matched the repeated word®®>°. In later studies, after undergoing
semantic satiation, participants were presented with two pictures of emotional facial
expressions and were required to judge whether they were displaying the same emotion®. This
allowed the researchers to examine how temporarily restricting access to a concept influences
perception when it is not necessary to label the face stimuli verbally. This work identified that
semantic satiation led to slower ability to determine whether two facial expressions matched
each other or not>®. Thus, rendering the emotion concept less accessible led to difficulties with

emotion perception, supporting the role of concepts in the recognition of others’ emotions.



Thus far, the extant literature has primarily focused on empirically demonstrating that
the accessibility of emotion concepts influences emotion perception (see * for a full
discussion). However, according to constructionist theories!*>!, the differentiation of such
concepts should also play a role. From a developmental standpoint, these theories suggest that
across the lifespan, emotion concepts evolve from a positive-negative dichotomy into more
differentiated multidimensional representations (i.e., based on arousal, context, motor
responses, semantic meanings etc.) via the accumulation of conceptual emotion knowledge
(through experience), thus producing concomitant shifts in the experience and perception of
emotion®!, Essentially, an individual with a greater range of emotion concepts will have a more
precise and differentiated framework for categorizing their own and others’ emotions. If, for
example, your concepts for anger and sadness are overlapping — perhaps they are associated
with similar core affect, motor responses (e.g., facial expression) or contexts, or have a similar
semantic meaning to you — it will be difficult to distinguish whether you and others are feeling
angry or sad. If, on the other hand, your concepts are differentiated for highly similar emotions,
such as irritation and frustration, you are likely to be able to categorise yours and others’
emotions precisely as such. Nevertheless, although existing theories suggest that the
differentiation of emotion concepts will play a role in the experience and recognition of
emotion, research is yet to test this idea.

Interwoven into the fabric of these past theories is the function of emotion. In most
early work, the dominant view was that emotions primarily serve an adaptive role, facilitating
survival in response to human predicaments such as threat®®. Under this framework,
experiencing the emotion fear in response to predators or enemies is adaptive as it results in

individuals being highly vigilant or avoidant, thus improving the probability that the individual

will escape such a threat (see ). Such work has primarily been shaped by biological and



evolutionary perspectives, and has mostly ignored the social function of emotion®!. However,
more recent theories have argued that human emotions have developed and are experienced,
expressed, and regulated through others and with others (e.g., see 2¢1-%%) Thus, unsurprisingly,
in addition to emotions serving an adaptive function (e.g., facilitating appropriate responses for
survival), many researchers argue that emotions possess a social function — allowing us to
communicate our needs, intentions, desired courses of action, and role-related expectation and

63-66  offering opportunities for shared affective experiences (see ¢7), and thus

behaviours
facilitating the formation and maintenance of social relations®®-7%. Some have even gone as far
to say emotions are imperative for “social survival” (e.g., ) — for building social ties and to

overcome social problems including loss of power and status, or exclusion (e.g.,*”"). Thus,

emotions can be seen as important tools for social communication.

1.3. Emotions as tools for social communication

Humans are highly social beings, deeply embedded into a world where social
information is ubiquitous in everyday life. One of the richest sources of this social information

is the face, from which observers can readily make a number of inferences®® — for example

81-84 85-87 88-90 93,94

h?1-92,  attractiveness®>%4,

about identity®'**, gender/sex®®’, ethnicity®®*”", physical healt
personality®>-7, and emotional state % ?8-191 The latter of these has attracted a large amount of
interest for over a century, perhaps because the ability to effectively convey emotions is
important for both expressing one’s intentions and basic needs, and also for ensuring the success

60-62,102) "In scenarios where individuals can read the

and fluidity of social interactions (e.g.,
expression of their interaction partner, they are able to respond in an adaptive and/or socially

appropriate manner. For example, successful conveyance of sadness (e.g., a downturned mouth

and eyes filling with tears) may elicit reassurance, words of comfort, or a hug from another
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person (see '*). Successfully communicating threat, aggression or submission, on the other
hand, prevents potentially harmful encounters, thus benefitting all participants in the
interaction!®. In contrast, a breakdown in communication — for example difficulties in

conveying or recognising emotional signals— can significantly damage social relations,

105-107 80,104

precipitating increased risk of social isolation , or even physical or mental harm
An important question is therefore where do these breakdowns in communication
come from? In other words, why is it that some individuals struggle to recognise the emotions

of other people, or convey their own emotions? To start to answer this question, it is useful to

consider modern theories of emotion recognition.

1.3.1. Theories of emotion recognition

At present, the most widely accepted theories of emotion recognition are template
matching models. Under these theories, the emotional facial expressions that we encounter are
compared with stored templates (i.e., imagined visual representations of emotional

108-111

expressions), which allows us to identify the displayed emotion . To fully explain the

process by which template matching is theorised to occur, and the relevant empirical support,

it is necessary to draw on the core principles of ‘face-space’!12-114,

It is theorised that adults visually represent faces in a multidimensional ‘face-space’!!>
114 Each dimension in this space corresponds to a way in which faces are perceived to vary
(though it is unclear what dimensions are!®®). Every face can be coded based on each of these
dimensions, giving it a unique position in face-space. Faces that are perceptually similar (i.e.,
similar across the dimensions) will be positioned close together in this multidimensional space,

while perceptually dissimilar faces will be located far away from each other!!3-!!°, Although

‘face-space’ was first devised to explain how individuals code and recognise face identities ''*
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17" more recently it was broadened to explain how individuals code and recognise facial
expressions'% 111,
The most widely accepted model to explain how the visual system codes the position

of an incoming facial identity or expression in face-space is the ‘norm-based coding’ model!?®-
y

H2118-130 "which posits that each facial identity or expression is coded according to how much
it deviates from a central norm (an average derived from previously encountered facial
identities or expressions!®-112), Under this model, individuals compare incoming facial
expressions to stored templates of anger, happiness, sadness, and so on, which are each
represented as the average of all previous encounters (i.e., the average angry expression, the
average happy expression, the average sad expression, etc.)!%!!!, When an individual perceives
that an incoming facial expression is close (in position) to a given template in face-space (i.e.,
similar across many dimensions), they will categorise the expression accordingly!'%8-!1,

One fruitful way to test whether a norms-based coding system is used to represent a
particular sensory input is through adaptation'®!. In such a technique, participants’ perceptions
of stimuli are affected by previous exposure (i.e., adaptation) to other stimuli!3!. This technique
is successful because exposure to stimuli reduces the responsiveness of neurons that fire for
that stimuli, thus altering the neural response to, and thus the perception of, subsequent

stimuli!3?

. One example of this phenomenon is that, after adapting to constant motion in one
direction, individuals perceive stationary stimuli to be moving in the opposite direction'*. Such
alterations to perception are often termed ‘aftereffects’ in the literature. Importantly, aftereffects

can also occur for high-level stimuli such as faces!'*+!37

. For example, exposure to a distorted
face (e.g., eyes raised higher on the forehead than is typical) causes a subsequently viewed

typical face to appear slightly distorted in the opposite direction (e.g., eyes appear lower than

typical!!?).
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In a norm-based coding model, all of the potential values across a dimension in face-
space (e.g., height of eyebrows) are thought to be coded based on the relative output of two
pools of neurons: one pool responds maximally to high values on the dimension (e.g., eyebrows
high up the face) and minimally to low values (e.g., eyebrows far down the face), and the other
pool responds with the inverse tuning!3¥. According to this model, the “norm” on this dimension
(e.g., mean eyebrow height) is perceived when both pools produce the same strength output
signal'®®. Therefore, if participants follow a norm-based coding approach, we would predict
that adapting to a face at one end of a dimension (e.g., raised eyebrows) affects the reactivity
of the pool of neurons tuned to that end (e.g., raised eyebrows) more than the other pool (e.g.,
lowered eyebrows), thus shifting the norm and creating an aftereffect (e.g., lowered
eyebrows)!3®. A stimulus that lies further from the norm (e.g., very raised eyebrows) will
produce stronger activation and subsequent suppression of these neurons, thus shifting the norm
further along the dimension than a stimulus closer to the norm (e.g., slightly raised eyebrows),
creating a larger aftereffect!3®,

Here, an important question concerns how we assess adaptation to emotional facial
expressions, and thus whether individuals follow a norm-based approach to coding incoming
expressions. Typically, researchers will evoke expression aftereffects using a spectrum of facial
expressions ranging from a prototypical exemplar (e.g., happiness with raised cheeks and an
upturned mouth) to an ‘antiexpression’ - the physical opposite of the exemplar (e.g., lowered
cheeks and downturned mouth)!'!:13°, These antiexpressions are created by calculating how far
each facial feature in the emotional expression deviates from a neutral expression, and then
moving these features in the opposite direction from neutral'!’:!3°. This distance can then be
used to create more intense (e.g., 100% antiexpression) and less intense (e.g., 33%

antiexpression) antiexpressions!'!13%, In these paradigms (e.g.,!%®), participants are typically
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shown the antiexpression for 15 seconds, and then a test ‘norm face’ (the average of the six
basic expressions) for 400ms. Following this, participants are required to label the emotion in
the norm face!%.

The idea is that if individuals represent facial expressions in a multidimensional,
template-referenced framework, we would expect adaptation to anti-expressions to produce a
selective effect on perception!!!; adaptation to each antiexpression should bias perception
towards its corresponding ‘real’ expression, and not to other emotional expressions'!!. That is,
we would expect adaptation to an antiexpression of anger to bias perception of a subsequent
norm face towards anger, and not happiness, sadness, or fear (and so on). If, however, facial
expressions are not represented in this multidimensional, template-based framework,
antiexpressions will be perceived as deformations of the face that have no specific meaning
relative to the real expression, thus not resulting in such systematic selective biases in
perception!!'!. That is, if you do not represent facial expressions in a dimensional framework,
the opposite of an angry expression (e.g., raised eyebrows) just looks like a deformation of a
face and will not bias your perception towards a real angry expression (e.g., furrowed
eyebrows). There is growing evidence to suggest that people adopt a norm-based coding model
to code and recognise facial expressions for the six basic emotions!®®!!!; perceiving
antiexpressions of anger, happiness, sadness, fear, disgust and surprise selectively biases our
perception (i.e., shifts the template) towards the corresponding expression, and more intense
antiexpressions results in larger biases (i.e., larger shifts in the template)!%-!!!, Such evidence
suggests that individuals code incoming facial expressions based on their relative position to

norm expressions (i.e., average exemplars) in a multi-dimensional face-space.
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1.3.2. Breakdowns in the conveyance and recognition of emotion

Template-matching models make several predictions as to why individuals may
struggle to read the emotions of one’s interaction partner. Such models suggest that successful
conveyance of emotion depends on the interactants having shared visual representations (i.e.,
the emotional expression imagined in the mind’s eye; templates) and motoric representations
of facial expressions (i.e., the emotional expressions produced). That is, in order to recognise
the emotion of your interaction partner, they must produce a facial expression which visually
matches your ‘template’ for that emotion. A mismatch between the “producer” and “perceiver”
in the appearance of imagined and expressed facial expressions — perhaps with respect to the
spatial configuration or the kinematics of facial features — could result in bidirectional
difficulties in emotion recognition. However, in addition to visual appearance (e.g., spatial
configuration of facial features, or kinematics of facial features, etc.) there may be other features
of imagined emotion representations that influence our ability to interpret others’ emotions —
for instance the precision and/or differentiation of such representations.

Signal detection theory (see '*%) posits that signal and noise distributions that are
precise (i.e., narrow) and distinct (i.e., not overlapping) provide high sensitivity to distinguish
the signal from the noise. Applying this principle, an individual with a precise representation
of anger, that is distinct from the representation for sadness, will be adept at discriminating
whether encountered facial expressions are angry or sad. Conversely, someone with imprecise
and overlapping visual representations of anger and sadness may struggle to distinguish these
expressions (see Figure 1.1, bottom-left). This idea is compatible with the principles of face-
space; if the templates for anger and sadness are positioned close together in face-space, it will
be difficult to determine which template is closest (i.e., most similar across numerous

dimensions) to an incoming facial expression (see Figure 1.1, left). If, however, the templates
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for anger and sadness are far away from each other in face-space, it will be relatively easy to

categorise the incoming facial expression (see Figure 1.1, right). Another important feature is

precision; if the templates for anger and sadness are precise (i.e., consistent across instances),

it may also be easier to categorise the expression (see Figure 1.1, top), whereas imprecise

templates may lead to difficulties due to increased overlap between visual representations (see

Figure 1.1, bottom). Notably, however, while there is theoretical justification for a role of the

precision and differentiation of visual representations in emotion recognition, research is yet to

test this idea.

Figure 1.1.

A schematic depicting the position of angry (red circle) and sad (blue circle) templates and an

incoming facial expression (black circle) in face-space

Individual with
precise
templates

Individual with
imprecise
templates

Individual with
similar templates

Individual with
dissimilar templates

@ Anger

@ Expression
@ Sadness

@ Anger

@ Expression

@ Sadness

@ Anger

@ Expression
@ Sadness

@ Anger

@ Expression

@ Sadness

Note. The precision of templates is shown by faded red (angry) and blue (sad) ellipses. This
diagram illustrates the potential importance of the precision (high precision: top; low precision:
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bottom) and differentiation (poor differentiation: left; good differentiation: right) of visual
emotion representations when attempting to match incoming expressions to one’s templates.

The ideas discussed above are also compatible with constructionist theories of
emotion. As mentioned, it is theorised that we possess multimodal emotion concepts that are
made up of sensory (e.g., visual), affective, contextual, and motor information, for example
about one’s facial movements'*#**  Thus, each emotion concept groups both visual
representations of emotions — the visual information about facial expressions that has been
stored during instances where these emotions have been labelled or perceived in others — and
motoric representations of emotions — proprioceptive information about our own facial
movements when these emotions are labelled or perceived in ourselves. As such, our emotion
concepts may unite our visual and motoric representations of facial expressions, which are
central to template-matching models of emotion recognition, in a multidimensional conceptual
space (similar to a face-space format). In addition, our previous affective experiences, and the
semantic meanings associated with emotions, are also integrated into our emotion concepts'>.
These features could also be mapped out in a multidimensional conceptual emotion space.
Drawing on this idea, if semantic, affective, visual, or motoric representations are imprecise or
overlapping, it could be more difficult to assess whether incoming facial expressions belong in
one category or another. For example, if your visual representations for anger and sadness are
overlapping — perhaps they are both associated with a downturned mouth — it will be difficult
to establish whether incoming facial expressions match your template for anger or for sadness.
Concurrently, if your visual representation for anger is imprecise — perhaps you have
encountered highly variable angry expressions — it will be difficult to determine whether
incoming expressions match such a representation. Similarly, if the semantic meaning or core
affect (i.e., the levels of arousal and valence) you associate with anger and sadness are imprecise

(i.e., variable across instances) and overlapping (i.e., similar to one another), you may find it
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more difficult to distinguish when you or others are experiencing anger or sadness. Although
these are logical possibilities, research is yet to interrogate whether the precision and
differentiation of semantic conceptualisations, affective experiences, visual representations,
and motoric productions of emotion, contribute to emotion recognition performance.

In sum, together constructionist, template-matching, and signal detection models raise
the hypothesis that difficulties interpreting the emotions of others could arise due to less precise
or differentiated semantic meanings, experiences (i.e., core affect), visual representations, or
productions of emotion. Hence, this work illuminates candidate mechanisms that may underpin
the emotion recognition difficulties documented in a range of clinical conditions (see '41-146)
such as autism spectrum disorder (see !46). These mechanistic pathways are particularly
plausible since there is evidence to suggest that autistic individuals may have altered
conceptualisations, experiences, visual representations, and productions of emotion!#6-150,
which could feasibly contribute to emotion recognition difficulties. Before considering this

literature at length, it is useful to discuss autism, social cognition, and emotion-processing more

generally.

1.4.  Autism, social cognition, and emotion-processing

Autism Spectrum Disorder (hereafter ‘autism’) is a neurodevelopmental condition
characterised by socio-communicative difficulties and restricted and repetitive interests'>!.
Recent investigations have found that approximately 1.6% of the UK population have a
diagnosis of autism'*2. As suggested by its name, autism has a heterogeneous behavioural
phenotype, with varying constellations of strengths, differences, and difficulties (e.g.,!>3-15%).

With respect to the former, autistic individuals frequently show cognitive advantages including

enhanced creativity, focus, and memory, along with personal qualities, such as honesty,
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dedication, and a sense of social justice (e.g.,!>%'%?). On the other hand, autistic individuals are

163,164

thought to have difficulties distributing cognitive resources flexibly , a tendency towards

165-168

local rather than global processing , and challenges understanding others’ beliefs and

desires (i.e., mental states!%%:168:16%) Beyond these challenges, autistic people often experience

170,171 172-174

educational and employment difficulties , poorer quality of life , social isolation (see
175) and suicidality'’®. Since the emergence of the social model of disability (e.g., see "), it has
been increasingly recognised that some of these difficulties arise due to external factors (e.g.,
stigma, discrimination, lack of accessibility, etc.), rather than due to factors intrinsic to

autism!78-181,

1.4.1. Autism and social cognition

One particular area of difficulty for autistic individuals is thought to be social cognition
(see '#2). Social cognition is a broader term representing the cognitive ability to perceive,
categorise, and respond to other people’s thoughts, intentions and feelings'®3. Social cognition
enables the acquisition of knowledge and social skills, promotes the success and fluidity of
social interactions, and facilitates the formation and maintenance of social relationships (see
184-186) Hence, social cognitive abilities play a major role in everyday life and in psychosocial
outcomes. Social cognition can be divided into several sub-abilities including social orientation,
theory of mind, emotion recognition, and emotion expression (amongst others'®’). Notably,
differences have been documented between autistic and non-autistic individuals across all of
these sub-abilities: autistic individuals show reduced social orienting (see !%), difficulties
inferring the mental state (see '¥-1°?) and emotions of others (see '4%!1°!), and differences in the

production of emotional facial expressions (see '46:150),
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1.4.2. Autism and emotion-processing

In addition to having emotion-related difficulties in the interpersonal domain (e.g.,
difficulties recognising emotions of others), autistic individuals are also thought to have
intrapersonal emotional difficulties. For example, there is evidence to suggest that autistic
individuals have difficulties acquiring, developing, and differentiating emotion concepts (see
148,192 "and co-occurring challenges identifying, understanding (see '#°), differentiating!*® and
regulating!® their own emotions. At present, it is not clear whether these difficulties are related,
and/or whether emotion difficulties in the intrapersonal domain precipitate difficulties in the
interpersonal one (or vice versa). That is, it is unclear whether difficulties understanding,
identifying or differentiating emotion concepts or emotional experiences underpin the emotion
recognition and production differences seen in autism.

In sum, a growing body of evidence suggests that autistic individuals have broad social
and emotional difficulties. However, when considering this evidence, it is imperative to note
the role of alexithymia — a subclinical condition characterised by challenges identifying and

describing one’s own emotions!®4.

1.4.3. The alexithymia hypothesis

The term “alexithymia” was first coined in 1973 to describe a group of patients with
psychosomatic illnesses who showed additional difficulties interpreting their own emotions!®>.
Today, alexithymia is widely regarded as a transdiagnostic risk factor for a numerous mental
health conditions including psychosis, depression, anxiety, and eating disorders (e.g., see 1%
198), Besides these conditions, alexithymia is also highly prevalent in the autistic population,
with around half of autistic people experiencing co-occurring alexithymia, in comparison to

just 5% of neurotypicals'®. This elevated prevalence, alongside evidence that (neurotypical)
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individuals high in alexithymia show reduced emotional reactivity , empathy?92-2 and

emotion recognition performance (see 2°), led to the proposition of “the alexithymia

hypothesis™2’7

. This hypothesis proposes that autistic individuals’ difficulties with emotion-
processing are caused by co-occurring alexithymia, and not autism?’. There is growing support
for this hypothesis (e.g.,2%-214), though notably the majority of this research has focused on the
domain of emotion recognition. Thus, currently it is unclear whether differences exist between
autistic and non-autistic individuals in the conceptualisation, experience, visualisation, and
production of emotion, after controlling for alexithymia.

For the remainder of Chapter 1, I synthesise the previous findings regarding these

emotion-related factors in autism and, where possible, discuss the evidence from studies

controlling for alexithymia.

1.4.4. Recognising emotional signals in autism

As discussed, the ability to infer the emotions of one’s interaction partner is important
for social interaction (see !'°%). Since autism is characterised by difficulties with such
interactions, emotion recognition has been suspected as a difficulty for autistic individuals for
over three decades?!®. However, the existing literature is rife with mixed findings (see 4% 11
216-218): some studies find global differences in emotion recognition between autistic and non-
autistic people, while others show no differences, or emotion, task, or stimuli-specific
difficulties (see 146 191,216-218)

A growing literature suggests autistic individuals may have emotion-specific
difficulties with facial expression recognition (e.g., see '°!). For example, numerous empirical

studies (e.g., '¥21°22%) and meta-analytic evidence (e.g., '°') demonstrate that autistic

individuals may have selective emotion recognition difficulties for expressions of anger, but
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not happiness or sadness. At present, it is unclear why autistic individuals have specific
difficulties recognising anger, however, there are a number of potential explanations. It could
be, for example, that differences in facial information sampling play a role. Since autistic
individuals typically spend less time attending to the eyes, and more time attending to the
mouth, (relative to non-autistic individuals 2>+22%), they may struggle to recognise anger, as the
upper half of the face conveys the majority of the expressive information (e.g., 2272%%).
Alternatively, since autistic individuals display slowed processing of emotional facial

expressions??9-238

, it could be that these individuals have particular difficulties recognising
angry facial expressions due to them being inherently fast-moving?°. Another possibility is that
autistic individuals visualise and/or produce different emotional expressions of anger
themselves, and thus the non-autistic expressions presented to them do not match their
expectation, resulting in difficulties interpreting the expression (see emotion recognition
theories above). Finally, it is possible that autistic individuals themselves have less precise
and/or differentiated experiences or visual representations of anger, which underpin their
emotion recognition difficulties. Although these are logical possibilities, research is yet to test
these ideas.

The existing literature also points towards potential task and stimuli-specific
difficulties in emotion recognition. For example, it appears that autistic individuals may have
particular difficulties recognising low intensity expressions (e.g., 2%%%241) and not “full
blown” prototypical expressions (e.g., 2#*2*%). Alternatively, autistic individuals may struggle
to recognise emotion in certain types of stimuli, for example in point-light (series of dots that
convey biological motion; see 24°) but not full displays (e.g., photos or video recordings??!).

In addition to these task-related factors, participant characteristics (e.g., age, extent of

alexithymia) may also influence the magnitude of differences between the autistic and non-
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autistic participants. For example, Lozier and colleagues!®! found that age significantly
moderated the effect of group on emotion recognition performance. Specifically, these authors
found that although both child and adult autistic participants displayed emotion recognition
difficulties (relative to their non-autistic counterparts), these differences were greater in the
adult group. Other empirical work has found that whilst emotion recognition improves
throughout life for non-autistic individuals, it does not for autistic individuals®*®, further
suggesting age plays a moderating role.

Another participant characteristic that may contribute to elevated emotion recognition
difficulties in the autistic population is alexithymia. As mentioned previously, it is theorised
that autistic individuals’ difficulties with emotion recognition are not caused by autism per se,
but rather alexithymia (i.e., the alexithymia hypothesis!*®27-247) There is growing empirical
support for this hypothesis. Cook and Brewer et al**®, for example, showed that when autistic
and non-autistic individuals were matched on levels of alexithymia, they had a comparable
ability to recognise emotion from static face images. Supporting the alexithymia hypothesis,
this study also found that alexithymic traits, but not autistic traits, predicted poorer emotion
recognition performance. Similarly, Milosavljevic et al?!* found that autistic individuals high,
relative to low, in alexithymia had greater difficulties recognising emotion, again from static
snapshots of faces.

Notably, to date, the majority of studies assessing the relative contributions of autistic
and alexithymic traits to facial emotion recognition have employed static face stimuli, thus
overlooking the inherent dynamicity of facial expressions?*¥24°, Prior to this project, only one
study had investigated whether autistic and alexithymic traits contributed to emotion
recognition for dynamic stimuli?'2. This study found support for the alexithymia hypothesis:

alexithymia, and not autism, was associated with poorer facial emotion recognition for dynamic
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212

displays*'“. While these results are informative, there were two key limitations of this study.

Firstly, the authors only included female participants. Since autistic males and females often

possess different behavioural phenotypes?%-233

, it may be that these findings are not
representative of autistic males. Secondly, the authors did not include a non-autistic comparison
group. As such, they were unable to assess whether there were differences between autistic and
non-autistic individuals in emotion recognition from dynamic stimuli, after controlling for
alexithymia. Thus, further research, which employs a non-autistic comparison group and
involves males, is necessary to determine whether autistic versus non-autistic group differences
remain after accounting for the confounding influence of alexithymia.

In sum, although existing literature suggests that autistic people may have difficulties
interpreting the emotions of other people (see 14191:216-218) "most of this work has not assessed
the contribution of alexithymia, and therefore it is unclear whether these difficulties remain
after controlling for this factor. While a handful of studies Aave tested whether autistic or
alexithymic traits contribute to emotion recognition, these studies have solely relied on static

209,123

snapshots of faces , omitted a non-autistic comparison group?!?, and/or exclusively

212 Therefore, future research should aim to test whether there are

included female participants
differences in dynamic emotion recognition for both male and female autistic and non-autistic
individuals matched on alexithymia. Concurrently, although there is evidence to suggest that
autistic individual may have greater difficulties recognising some emotions (e.g., anger 47191
219-223) than others, it is currently unclear why. Therefore, future studies should aim to unpick
the mechanisms underpinning these selective emotion recognition difficulties, assessing
whether such challenges stem from differences in other emotion-related psychological

processes (e.g., the conceptualisation, experience, visual representation, and production of

emotion).
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Mechanistic differences in autistic and non-autistic emotion recognition

Although the vast majority of research has aimed to determine whether there are
differences in emotion recognition between autistic and non-autistic individuals, a handful of
studies have aimed to elucidate the mechanisms involved in emotion recognition for these
groups. This research is imperative for making progress: identifying the mechanisms involved
could illuminate why autistic individuals have greater difficulties on some tasks than others,
thus explaining the inconsistent findings in the literature (see '%6). Moreover, such research
could help us to design tailored support systems, focusing on these mechanisms, to help both
autistic and non-autistic individuals to recognise the emotions of others’, with potential benefits
for psychosocial adjustment?>* and psychological health and wellbeing?*.

There is preliminary evidence to suggest that different mechanisms may be involved
in autistic and non-autistic emotion recognition. While neurotypical adults are thought to

108-111

employ a template-matching strategy to recognise the emotions of others , it is theorised

that autistic adults may follow a rule-based strategy?>¢-2>

. That is, rather than automatically
comparing incoming facial expressions to stored templates, autistic individuals may evaluate
whether the expressions match a set of characteristics they have learnt to be associated with
different emotions (e.g., happiness: “smiling”, anger: “furrowed brow”236-237),

To test this idea, previous studies have presented autistic and non-autistic observers
with emotional expressions that vary in intensity (e.g., 100, 150, 200, 250 and 300%), and asked

them to select which examples appear realistic?>%2>

. The logic was that, if individuals employ
template-matching, naturally exaggerated expressions (e.g., 100%, intensity) would match the
template and thus appear realistic to participants, while unnaturally exaggerated ones (e.g.,

250%, 300% intensity) would be unrealistic representations of the expression. Conversely, if

individuals adopt a rule-based strategy, they would be more tolerant of unnaturally exaggerated
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expressions (i.e., the highly exaggerated expressions appear relatively more realistic), because
the rules such as “upturned mouth” and “furrowed brow” are still true?>®*7. Across both
studies, the autistic adults selected a higher proportion of exaggerated faces as realistic (relative
to their non-autistic peers), suggesting they had a higher tolerance for exaggeration, and thus
raising the possibility of a more rule-based strategy?>62%7,

Although these findings could be indicative of a rule-based strategy, there are
alternative explanations for these results. For example, it could be that the autistic participants
are comparing incoming expressions to more exaggerated templates (relative to non-autistic
participants), and thus the highly exaggerated expressions appear more realistic to them (as they
are a closer match to the template). That is, the autistic participants may have more caricatured
visual emotion representations, leading to a higher tolerance for exaggeration of facial
expressions. This explanation is plausible since recent work has found that autistic people
require emotional expressions to be higher in intensity (relative to non-autistic individuals) in
order for them to be correctly identified??>?*°, Hence, the autistic participants may have more

222,240’ and

exaggerated visual representations, thus leading to higher tolerance for exaggeration
lower emotion recognition accuracy when expressions are less intense??224%-24! (as they do not
match their templates).

Nevertheless, there are other findings which indirectly support the idea that autistic
individuals may be employing alternative rule-based strategies. Firstly, if autistic individuals
employ cognitive or verbally mediated strategies, emotion recognition performance should be
more strongly associated with cognitive or verbal ability for autistic, relative to non-autistic,
individuals. Supporting this idea, there is evidence to suggest that mental age?!®> and verbal
258

ability*>® predict emotion recognition performance for autistic children, but not non-autistic

children. Second, if it is true that autistic individuals employ more effortful cognitive
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mechanisms, we would expect longer emotion recognition response latencies, which have been
documented on numerous occasions (e.g.,22°2%8; though notably there are other explanations for
this finding). Thus, the evidence tentatively points towards (some) differences in the
mechanisms involved in emotion recognition for autistic and non-autistic people.

The idea that autistic individuals may naturally be less guided by their visual emotion
representations aligns with Bayesian accounts of autism. According to these accounts, autistic
people are less affected by their prior experiences (i.e., previously acquired information; priors)
than neurotypicals, instead placing greater weight on incoming sensory information (e.g., 2>
261) Thus, in the domain of recognition, an autistic person would place less emphasis on their
stored templates, which they have acquired through past experiences, and instead focus on the
intrinsic properties of the incoming facial expressions. In addition, Bayesian theories may
predict autistic individuals to place less emphasis on other conceptual emotion information,
which is also said to be acquired through experience (see '*) — the core affect, semantic
meanings, and motor responses (e.g., own facial expressions) associated with an emotion.
However, these ideas have not yet been tested formally.

In sum, there is theoretical justification and preliminary evidence for mechanistic
differences in autistic and non-autistic emotion recognition. However, further work is necessary
to identify the traits, abilities and processes involved for both groups, and to determine whether

such factors underpin the emotion recognition difficulties often found for autistic individuals.

1.4.5. Producing emotional signals in autism
There are a number of factors to consider when examining the production of emotional
facial expressions in autism, for example the frequency, duration, intensity, quality, accuracy,

and general appearance of expressions. With respect to the former, numerous empirical studies,
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and meta-analytic evidence, suggest that autistic children typically produce facial expressions
less often and for shorter durations than their non-autistic counterparts during naturalistic social

150, 262-264

interactions . To date, there are mixed findings with respect to the intensity of produced

facial expressions. In some studies, autistic expressions are subjectively rated as more intense

263.268-270 - A small number of studies have

(e.g., 265-27) while in others the opposite is true
employed more objective measures, such as facial electromyography (fEMG), to assess
differences in facial expressions. The evidence from these studies contradicts that from
subjective ratings, finding no differences between autistic and non-autistic participants in

271-274

expressivity while viewing emotional stimuli , when voluntarily mimicking emotional

274275 and during automatic imitation?’®, Notably, it could be that these null effects

expressions
arise due to fEMG not being sensitive to differences in the activation of all facial muscles:
traditionally fEMG is limited to studying two muscle groups; (1) the corrugator supercilii,
which is responsible for frowning, and (2) the zygomaticus major, which is responsible for
smiling?”’. A more promising tool for analysing expressive differences is facial motion capture
as it records movements of the skin surface across the entire face with high temporal resolution,
such that subtle changes in expression can be recorded every few milliseconds?’”. Thus, future
studies should aim to employ this technique to compare the facial expressions of autistic and
non-autistic individuals.

Concurrently, the extant literature points towards differences between autistic and non-
autistic individuals in the quality, accuracy, and general appearance of facial expressions (see
146,150) In numerous empirical studies, expressions produced by autistic individuals (relative to
non-autistic individuals) are perceived as lower in quality and atypical in appearance, being

rated as odd, awkward or mechanical by non-autistic observers?3-263-266278 = Concurrently,

research has shown that autistic children mimic facial expressions less accurately than their
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non-autistic peers (i.e., with lower congruency to the displayed expression®’®?7%). In sum, the
evidence from empirical and meta-analytic studies suggests that autistic individuals produce
facial expressions less often and for shorter durations, and that such expressions are less
accurate, lower in quality, and atypical appearance, according to non-autistic observers (see
146,150)

Despite growing evidence for differences in the facial expressions produced by autistic
and non-autistic individuals, studies have not yet characterised what specifically is different
about them!#®, There are a number of ways to quantify facial expressions. Firstly, one can look
at the configuration of facial features and assess whether there are spatial differences between
groups (e.g., does one group furrow their brow further when expressing anger)!*®. Secondly,
one can look at how individuals reach these configurations by asking whether there are
kinematic differences (e.g., does one group furrow their brow more quickly or in a more jerky

fashion)!46

, or differences in the temporal profile of expressions (e.g., one group furrows their
brow and then purses their lips, while the other moves these regions simultaneously). However,
despite notions of differences between groups, studies are yet to fully compare the
spatiotemporal and kinematic properties of autistic and non-autistic facial expressions.
Nevertheless, this is an important avenue for future research because the findings of such
studies could have great utility, allowing caregivers and clinicians to be trained to interpret
autistic facial expressions, thus facilitating more successful and fluid social interactions!46.
When conducting such studies, future research should aim to address the limitations
of previous research investigating expressive differences. Thus far, previous studies have not
controlled for facial morphology, which is known to differ between autistic and non-autistic

individuals?”®-2%2, Such differences in facial morphology could underpin subjective ratings of

autistic expressions as odd, mechanical or awkward?63-263266278 Thys, future studies comparing
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the facial expressions produced between these groups should attempt to control for
morphological differences. Such studies will allow us to determine whether differences in the
appearance of facial expressions are truly underpinned by differences in facial movements or
by facial morphology. Second, as mentioned previously, the vast majority of previous studies
have not controlled for alexithymia. However, any study comparing the facial expressions
produced by autistic and non-autistic individuals should model the contribution of alexithymia
to avoid erroneously attributing differences to autism (see the alexithymia hypothesis??’).
Indeed, this is particularly pertinent since recent evidence suggests that alexithymic, but not
autistic traits are related to reduced presentation duration for spontaneous facial expressions?!4.
Further research is necessary to assess whether alexithymia underpins the differences in the

facial expressions produced by autistic and non-autistic individuals with respect to intensity,

overlap, and general appearance.

1.4.6. Bidirectional difficulties in emotion recognition; Differing visual
representations?

Since template-matching models assert that successful conveyance of emotion relies
on common visual and motoric representations of facial expressions between interactants (e.g.,
108-111) "it is reasonable to assume that a mismatch in the production of facial expressions could
lead to bidirectional emotion recognition difficulties for autistic and non-autistic individuals.
Notably, however, the vast majority of research has examined how well autistic individuals can
recognise non-autistic facial expressions, and not the other way round. Nevertheless, although
the evidence is mixed, the very few studies that have assessed how well non-autistic individuals

can recognise autistic expressions have generally reported difficulties (e.g., 147278283 though see

265,267)'
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One particular study that both contributes to this literature, and sheds light on the

mechanisms underpinning expressive differences is by Brewer and colleagues'#’

. In this study,
the authors took video recordings of autistic and neurotypical participants posing the six basic
emotions across three conditions: (1) the standard condition, in which participants posed each
emotion to the best of their ability; (2) the “communicate” condition, wherein participants were
required to pose such that an experimenter could guess the emotion that was being expressed;
and (3) the mirror condition, in which participants were able to view their own expression

during production'#’

. These latter conditions were incorporated to assess whether any groups
differences stem from autistic individuals not recognising the communicative nature of facial
expressions, or due to reduced awareness of their facial movements (i.e., proprioceptive
differences!”). Next, Brewer and colleagues!'#’ asked autistic and neurotypical participants to
match static snapshots of the recorded facial expressions with one of six prompted emotion
labels (anger, happiness, sadness, surprise, fear and disgust).

Interestingly, across all conditions, both the autistic and neurotypical participants had
greater difficulties recognising the expressions produced by autistic posers (relative to
neurotypical posers'#”). In addition, both groups produced more recognizable expressions when
the researchers emphasised the communicative function of expressions, and when participants
had access to visual feedback!'#’. Notably, this improvement across conditions was comparable

between groups'4’

. Together, this evidence suggests it is not the case that autistic people are
less aware of the informative nature of facial expressions (which would have caused larger
improvement in the communicate condition for the autistic than neurotypical group), nor less
able to leverage proprioceptive feedback than their neurotypical counterparts (which would

have caused larger improvements in the mirror condition)!*’. Rather, after receiving visual

feedback and explicit instruction to convey emotions, autistic individuals still produce different
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emotional expressions, suggesting that these individuals may have different visual emotion

representations to their non-autistic peers!4’

. This idea of atypical representations in autism,
alongside the finding that both the autistic and neurotypical participants had greater difficulties
recognising autistic expressions, illuminates two theoretical possibilities. Firstly, it could be
that autistic individuals produce atypical facial expressions which are idiosyncratic, rather than
shared (amongst other autistic individuals), thus leading to difficulties recognising autistic

expressions for both autistic and neurotypical people!'#’

. Essentially, under this explanation,
neither autistic nor neurotypical individuals are able to recognise autistic facial expressions, as
they are unique to the specific autistic individual and thus do not match the perceiver’s visual
representations (irrespective of whether the perceived is autistic or neurotypical). A second
possibility is that autistic individuals produce atypical facial expressions, which systematically
differ from those produced by neurotypicals, but that this group place less weight on their visual
and/or motoric representations when recognising others’ emotions. Under this explanation, the
neurotypical individuals struggle to recognise autistic expressions as they differ from their own
visual representations, whereas the autistic individuals struggle to recognise them because they
are not using their visual or motoric representations (or using them to a lesser extent), which
comprise a good match to incoming autistic expressions, to recognise the emotions of other
people. This latter explanation is compatible with previous arguments that autistic individuals
do not compare incoming expressions to their visual representations (i.e., templates) and instead
follow a rule-based strategy?>®2°7, and/or focus on the sensory properties of the stimuli (e.g.,
259-261) This explanation can also account for why the autistic participants had a better ability
to recognise the expressions produced by neurotypical than autistic posers. Under this

explanation, the autistic individuals may be better able to recognise neurotypical expressions

because they more clearly show the features they have learnt to be associated with distinct
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emotions (as such learning may primarily be based on neurotypical expressions which they
encounter relatively more frequently than autistic expressions). Further work is necessary to
explore these theoretical possibilities.

In sum, irrespective of the degree to which autistic individuals are guided by their

representations, the results from Brewer and colleagues!'#’

suggest that autistic individuals may
have different visual emotion representations to their non-autistic peers. This idea is also
supported by the literature discussed previously: autistic individuals rate highly exaggerated
expressions as relatively more realistic (compared to non-autistic individuals?*%2°7), and require
emotional expressions to be higher in intensity (relative to non-autistic individuals) in order for
them to be correctly identified??224°, Together, this evidence suggests that autistic people may
have caricatured visual representations of emotion.

While informative, the results from previous studies (e.g., 147-222:240.256.257) have led
researchers to indirectly infer that visual emotion representations may be atypical in autism,
without direct investigation. That is, studies have shown differences in the production of
emotional facial expressions!*’, the appraisal of highly exaggerated stimuli*®®*7, and in

identification thresholds??2-24

, which point to differences in visual representations, however,
the appearance of such representations has not been interrogated. Future studies could benefit
from employing psychophysical techniques, such as the method of adjustment (see 2%%), to allow
autistic and non-autistic individuals to manipulate features of emotional expressions such that
they match their visual emotion representations. Following this, features of these
representations can be compared statistically between groups. In addition, previous studies
suggesting atypical visual representations in autism (e.g., !47-222:240.236.257) have specifically

focused on static emotional expressions, and pointed to differences in the spatial domain (i.e.,

spatial exaggeration of facial features). As such, it is unclear whether autistic and non-autistic
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individuals possess different visual emotion representations for dynamic expressions, and
whether these differences specifically pertain to the kinematics (e.g., speed, acceleration, jerk,
etc.), the temporal order (i.e., the way in which the expressions unfold), or spatial exaggeration
of expressions (or other features). Further research is necessary to confirm this.

Another important avenue for future research is to assess whether differences in visual
emotion representations contribute to emotion recognition accuracy for autistic and non-autistic
individuals. In particular, since the aforementioned theories suggest that the precision and
differentiation of visual representations may play a role, future studies should aim to assess
whether there are differences between autistic and non-autistic individuals in these factors, and
examine whether any differences therein contribute to emotion recognition differences. It could
be, for example, that autistic individuals’ selective difficulties recognising anger (e.g., !47-191:21%-
223) stem from imprecise or overlapping visual representations of anger.

Although this is yet to be tested in the domain of facial emotion recognition, links have
been found between these factors for facial identity. For example, one study showed that
participants who had built up more precise visual representations of facial identities from
multiple views, relative to a single view, were better able to subsequently recognise those faces
from a novel perspective?®. Thus, illuminating a role of the precision of visual representations
in the recognition of facial identities. Concurrently, it is well known that it is more difficult to
differentiate and recognise identities that are overlapping in appearance®®. As such, the face
identity literature raises the hypothesis that individuals that struggle with emotion recognition
may have imprecise and/or poorly differentiated visual emotion representations. Hence, future
studies should examine whether differences exist between autistic and non-autistic individuals
on these factors, and determine whether such differences underpin emotion recognition

challenges for autistic individuals.
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1.4.7. The conceptualisation and experience of emotion in autism

A limited body of work has assessed the understanding, conceptualisation, and
experience of emotion in autism (see '¥19?). Although this body of evidence suggests that
autistic individuals may have difficulties identifying and describing their emotions (see '#°),
and challenges acquiring, developing, and differentiating emotion concepts (see *192) such
work has heavily relied on self-report measures (89.4% in of studies in Huggins et al.'*). This
may be problematic for a number of reasons. Firstly, there are often weak associations between
self-reported and objectively measured emotional abilities*®”-2%8, Secondly, self-report measures
of emotional self-awareness may be particularly problematic for use with autistic individuals
as such measures rely on meta-cognition, which autistic people may struggle with?*°-2°!, Hence,
autistic individuals may be less accurate in their estimation of their emotional abilities, thus
threatening the validity of self-report measures. This is particularly plausible since previous
research has found that being high in autistic traits was associated with a greater discrepancy
between self-reported and behaviourally measured emotional self-awareness>2.

Although a handful of objective methods have been developed to assess the experience
of emotion (e.g.,'*?), finding evidence that autistic individuals have less differentiated
experiences and semantic concepts of emotion'*®, such studies have failed to account for
alexithymia. Erbas and colleagues!*®, asked participants to rate the extent to which they
experienced 20 emotion labels in response to a series of standardised emotional images!#®.
Using this task, an index of emotion differentiation was calculated for each participant by
computing the intra-class correlation coefficients (ICC), assessing consistency in intensity
ratings between emotion labels, across images. The logic here was that if participants gave
consistently similar ratings for two emotions (e.g., anger and sad ratings) across the images,

they were not differentiating between these two states!*®. Thus, high ICCs indicated lower
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levels of emotion differentiation (see 2°%). In a second task, participants were required to sort
the 20 emotion terms into groups that they thought belonged together. The individuals that
divided the emotion terms into a higher number of groups were said to make more fine-grained

distinctions between semantic emotion concepts'*®

. Erbas and colleagues found that, compared
to the non-autistic participants, the autistic participants had higher ICCs and divided emotion
terms into fewer groups, indicating that they had less differentiated semantic concepts and
experiences of emotion'*. As mentioned, an important limitation of this study is that it did not
control for, or assess the contribution of, alexithymia. Therefore, it is possible that the authors
erroneously attributed the difficulties differentiating semantic concepts and experiences of
emotion to autism, when these difficulties actually stem from underlying alexithymia (as
suggested by the alexithymia hypothesis???). As such, future research should assess whether
autistic individuals have less differentiated experiences and semantic concepts of emotion, after
accounting for this important confound.

Relatedly, preliminary research indicates that alexithymia, and not autism, is linked to

the precision of emotional experiences, however, this has not yet been established in clinical

292 2

samples®2. To assess emotional precision, Huggins and colleagues®”? asked participants to
select which of two images evoked a more intense emotional response. There were four
emotional ‘test’ conditions: an ‘easy’ and a ‘hard’ condition wherein participants had to judge
which of the two images they found more ‘pleasing’, and an ‘easy’ and a ‘hard’ condition
wherein participants judged which of the two were more “upsetting’. The authors manipulated
task difficulty by selecting images which covered either a narrow range (hard condition) or a
broad range (easy condition) of valence intensity ratings. In each condition, 11 different images

were employed, and thus there were 55 unique image combinations. Emotional precision was

calculated for each condition based on the logical consistency of decision-making: if a
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participant selected image one over image two, and image two over image three, but then
selected image three over image one, this latter decision would be inconsistent with their
previous judgements, and would result in a reduction in their precision score (see Chapter 4 for
more details). This study found that the precision of emotional experiences was (negatively)
correlated with alexithymic but not autistic traits in the general population®*?, suggesting that
those high in alexithymia have less precise emotional experiences across instances. Although
these findings are informative, one should be cautious about assuming these results, which
pertain to the contribution of autistic and alexithymic traits in a general population sample,
extend to autism (i.e., to individuals diagnosed as autistic; see 2** for a full explanation). Hence,
further work is necessary to establish whether there are differences between autistic and non-
autistic individuals in emotional precision, after controlling for alexithymia.

The research field currently lacks psychological mechanistic models that can help us
understand challenges with emotion recognition in the context of autism. As discussed, the
existing evidence points towards difficulties for autistic individuals in differentiating semantic
concepts and experiences of emotion. An important question is, therefore, what are the
consequences of these difficulties for emotion recognition? As mentioned previously,
constructionist and signal detection theories suggest that those with less differentiated semantic
concepts or emotional experiences would have greater emotion recognition difficulties, as they
would have a less precise and differentiated framework for labelling other people’s
emotions!*>, In support of this idea, previous evidence suggests that (non-autistic) individuals
who are poorer at differentiating their own emotional experiences are also less able to
differentiate others’ emotions?>. As such, it is plausible that difficulties differentiating

semantic concepts and experiences of emotion underpin the emotion recognition challenges of
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autistic individuals (or vice versa). However, further research is necessary to test whether this

is the case.

1.5. General limitations of extant autism research

There are a number of general limitations of extant autism research that should be
addressed in future studies. Firstly, despite autism being a lifelong condition, the vast majority
of autism research is conducted with children, with just 3 to 3.5% of research involving autistic
adults?*%2°7. As such, there is a paucity of knowledge regarding the abilities and experiences
of, and issues affecting, autistic adults. This gap has led to multiple international calls for
increased representation of this group in future research®%2°%2% and the advent of Autism in
Adulthood, a journal dedicated to closing this gap. Hence, future studies specifically focusing
on autistic adults are necessary to help increase our understanding of the experiences,
behaviours, and abilities of this group.

Another general limitation of autism research is that the majority of studies enrol small
samples of autistic females, or exclude this group altogether. Historically, autism has been
perceived as a predominantly male condition, with approximately 4 autistic males to every 1
autistic female*”’. However, more recent studies point towards smaller male to female sex

ratios, with some samples even documenting equal prevalence across genders (see 301-302),

Notably, when existing diagnostic tools (e.g., the Autism Diagnostic Observation Schedule®*?)
are used to verify autism status, the male to female sex ratio is higher than when individuals are
given the opportunity to self-diagnose (see 3°?). This is likely because females face greater
barriers to obtaining autism diagnoses: since gold-standard instruments (e.g., Autism
Diagnostic Observation Schedule®*?) are predominantly based on the behavioural phenotype of

303,304

autistic males , which differs from that of females (e.g., 2°°2%%), such assessments may
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poorly identify autistic females393-308

. These assessments may also struggle to diagnose autistic
females as this group camouflage their autistic traits more in both social and clinical settings
than their male peers®®3!!. Overall, this evidence suggests that autistic females are under-
diagnosed, and thus ratios derived from self-identification may be more representative of the
true prevalence of autism. In such studies, the male to female ratio is around 2:1 (see 3?). The
next question, therefore, is to what extent are autistic men and women being included in
research? Across studies published in autism journals between 2010 and 2012, 82.22% of the
participants were male’!?, and 17.30% of studies excluded females entirely!2. Similarly, a
recent review identified that while 434 studies assessing neural functioning in autism employed

313

male-only samples, just four employed female-only samples’'”. These findings demonstrate

that autistic females are often underrepresented and systematically excluded from autism
research. There are numerous consequences of this. Employing consistently small samples of
autistic females compromises our ability to fully understand the experiences, behaviours, and
issues affecting autistic females’®?, and further perpetuates the idea that autism is a male

condition, thus creating a cycle in which future research is constrained to exploring specific

302

male phenotypes®~. As such, further research is necessary to characterise the behavioural

presentation of autistic females, and increase the extent to which they are represented in

research (e.g., 312314315),

Another general limitation of autism research is that the majority of studies do not

316-318

employ participatory methods . There are numerous advantages of adopting participatory-

style approaches: community input can strengthen the quality of research, ensure the
accessibility and efficacy of tasks and materials, and ultimately facilitate translation of findings

into practice?!8-322, Such methods also help to foster positive relationships and trust and between

323 316-318
b

researchers, autistic people, and their allies’*”. Although participatory research is rare
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increasingly, studies are emerging which have meaningfully involved the autism community,
leading to broad benefits for research (e.g., 316318324-330) Fyture studies should also aim to adopt
such approaches, thus leading to enhanced quality, accessibility and impact of the research.

In sum, thus far, autistic adults and autistic women have been underrepresented in
autism research — leading to poorer understanding of the experiences, behaviours, and abilities
of these groups — and participatory methods have rarely been adopted — perpetuating an “about
us without us” (p. 1) discourse *3!. Therefore, in the current project, I specifically focus on the
abilities of autistic adults, ensuring that autistic women are represented in our samples, and

adopt participatory approaches throughout.

1.6. Summary and rationale

In sum, preliminary work points to differences in the conceptualisation, experience,
visualisation, production, and recognition of emotion between autistic and non-autistic
individuals. However, to date, the majority of previous work has not controlled for alexithymia,
and thus it is unclear whether such differences arise due to autism or due to co-occurring
alexithymia. As such, one of the primary aims of my doctoral work was to determine whether
differences exist between autistic and non-autistic individuals in these emotional abilities after
controlling for alexithymia. Hence, in the following chapters, I assess the relative contributions
of autistic and alexithymic traits to the recognition (Chapter 2), visual representation (Chapters
3,4 and 5), experience (Chapter 6), conceptualisation (Chapter 6), and production (Chapter 7)
of emotion.

Moreover, constructionist, template-matching, and signal detection theories raise the
hypothesis that emotion recognition difficulties could stem from a number of factors:

specifically, autistic individuals may possess less precise or less differentiated experiences,
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visual representations, semantic meanings, or productions of emotion. However, thus far, very
few studies have tested these predictions and/or assessed the contribution of these emotion-
related factors (i.e., the precision and differentiation of experiences, visual representations,
semantic meanings and productions of emotion) to emotion recognition. If these factors do
contribute, it is plausible that the putative differences between autistic and non-autistic people
in these emotional abilities could underpin the emotion recognition challenges often
documented in the autistic population. Therefore, in this project, another primary aim was to
empirically assess whether the way in which autistic and non-autistic individuals experience
(Chapters 3 and 6), visualise (Chapters 2 and 5), conceptualise (Chapter 6) and produce
(Chapter 7) emotion contributes to their ability to recognise others’ emotional expressions. In
doing so, I aimed to build models elucidating the similarities and differences in the mechanisms

involved in both autistic and non-autistic emotion recognition (see Chapter 8).
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Chapter 2: Differences between autistic and non-autistic adults in
the recognition of anger from facial motion remain after
controlling for alexithymia

As discussed in the Introduction, the extant literature suggests that autistic individuals
may have difficulties recognising the emotions of other people (see 46 191:216-218) However, to
date, the majority of this work has not assessed the contribution of alexithymia, and therefore
it is unclear whether these difficulties remain after controlling for this factor. Although a
handful of studies #ave examined whether autistic or alexithymic traits contribute to emotion
recognition, thus supporting the alexithymia hypothesis??’ (i.e., alexithymia, not autism

209,123

contributes), these studies have solely relied on static snapshots of faces , omitted a non-

212 Therefore,

autistic comparison group?'2, and/or exclusively included female participants
prior to this project, it was unclear whether autistic versus non-autistic group differences in
emotion recognition for dynamic stimuli, for both males and females, remain after controlling
for alexithymia. To address these limitations, in the following chapter, I assessed whether there

were differences in the ability to recognise emotion from dynamic stimuli for both male and

female autistic and non-autistic individuals matched on alexithymia.
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Publication 1:

Differences between autistic and non-autistic adults in the recognition of anger from
facial motion remain after controlling for alexithymia.

Connor T. Keating, Dagmar S. Fraser, Sophie Sowden, and Jennifer L. Cook
(Published in the Journal of Autism and Developmental Disorders)

Reference: Keating CT, Fraser DS, Sowden S, Cook JL. Differences between autistic and non-autistic
adults in the recognition of anger from facial motion remain after controlling for alexithymia. Journal
of autism and developmental disorders. 2022 Apr;52(4):1855-71. https://doi.org/10.1007/s10803-021-
05083-9
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Abstract

To date, studies have not established whether autistic and non-autistic individuals differ in
emotion recognition from facial motion cues when matched in terms of alexithymia. Here,
autistic and non-autistic adults (N=60) matched on age, gender, non-verbal reasoning ability
and alexithymia, completed an emotion recognition task, which employed dynamic point light
displays of emotional facial expressions manipulated in terms of speed and spatial
exaggeration. Autistic participants exhibited significantly lower accuracy for angry, but not
happy or sad, facial motion with unmanipulated speed and spatial exaggeration. Autistic, and
not alexithymic, traits were predictive of accuracy for angry facial motion with
unmanipulated speed and spatial exaggeration. Alexithymic traits, in contrast, were predictive

of the magnitude of hoth correct and incorrect emotion ratings.

44



2.1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by
difficulties in social communication, and restricted and repetitive interests'>!. Since the ability
to infer emotion from facial expressions is important for social interaction, emotion recognition
has long been suspected as a difficulty in autism?!>. However, whilst many studies suggest a
disparity in the facial emotion recognition ability of autistic and non-autistic individuals (e.g.,
206.332-334) " there have been inconsistent findings, ranging from no differences between these

individuals to large disparities (see 46216217

for reviews). Consequently, the question of
whether autistic individuals exhibit atypical facial emotion recognition has been debated for
over 30 years.

The most recent contributions to this debate claim that it is not autism per se that is
linked to emotion recognition atypicalities but rather alexithymia!?%-207-247-335 " Alexithymia is a
subclinical condition, characterised by difficulties identifying and expressing emotions!®4,
which is often comorbid with ASD (in the neurotypical population the prevalence of
alexithymia is 4.89%, and in autistic populations the prevalence of alexithymia is 49.93%!°.
Cook, Brewer and colleagues®” demonstrated that continuous measures of alexithymic, but not
autistic, traits are predictive of poorer facial emotion recognition from static face images.
Furthermore, when groups are matched in terms of alexithymia, autistic and non-autistic adults
perform comparably with respect to the recognition of emotion®?. Similarly, Milosavljevic et
al?!® demonstrated lower emotion recognition scores - again from static face images - for
autistic adolescents high in alexithymia relative to those low in alexithymia. Consequently, Bird
and Cook?"” proposed ‘the alexithymia hypothesis’: autistic individuals’ difficulties in emotion-

processing, including facial emotion recognition, are caused by co-occurring alexithymia not

ASD.
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To date, the majority of studies that have reported that atypical facial emotion
processing is related to alexithymia, not autism, have focused on the recognition of emotion
from static face images, and have thus overlooked the inherently dynamic nature of facial
expressions?*$2%° Dynamic faces carry both spatial information about the configuration of
facial features relative to each other and information about the kinematics (e.g., speed) of
movement of facial features®*®. Recent developments in the face-processing literature
emphasise the importance of both kinematic and spatial cues in non-autistic facial emotion

recognition. Most notably, Sowden and colleagues?*’

manipulated point-light face (PLF)
stimuli (a series of white dots on a black background that convey biological motion and
eliminate contrast, texture, colour and luminance cues) such that expressions of happiness,
anger and sadness were reproduced at 50%, 100% and 150% of their normal speed, and at 50%,
100% and 150% of their normal range of spatial movement (e.g., at the 150% level a smile
would be 50% bigger / more exaggerated than normal). Sowden and colleagues®*® found that
the emotion recognition accuracy of non-autistic participants was modulated as a function of
both spatial and kinematic manipulation. Specifically, when expressions were reduced in their
speed and spatial extent (i.e., at the 50% level), participants were less accurate in their labelling
of angry and happy expressions and more accurate for sad expressions. Conversely, when
expressions were played with exaggerated spatial movement and greater speed (i.e., at the 150%
level), participants displayed higher accuracy for angry and happy expressions and lower
accuracy for sad expressions?*. Thus, accuracy for labelling high arousal emotions (happy and
angry) is improved when the stimulus is faster and more spatially exaggerated, whereas
labelling of low arousal emotions (sad) is impaired. Recent literature therefore highlights that,

for non-autistic individuals, both spatial and kinematic facial cues contribute to emotion

recognition accuracy.
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Although dynamic information is particularly important in real life processing of facial
expressions®}’, to the best of our knowledge, there are no studies that have investigated autistic
versus non-autistic recognition of emotion from dynamic facial motion stimuli (e.g., PLFs)
whilst controlling for the influence of alexithymia. There are, however, some studies that have
compared autistic and non-autistic processing of full (i.e., not degraded) dynamic facial
expressions without controlling for alexithymia. For example, Sato and colleagues’*®
demonstrated that, for non-autistic adults, reducing the movement speed of facial morph
stimuli'® reduced naturalness ratings, however, for autistic adults the effect of speed on
naturalness ratings was significantly weaker. Sato and colleagues’ results thus demonstrate
differences between autistic and non-autistic adults in the effects of manipulating facial
kinematics. However, it remains to be seen whether these differences would persist if the groups
were matched in terms of alexithymia. To the best of our knowledge, only one study has
examined the contribution of autistic and alexithymic traits to dynamic emotion recognition®!2,
The findings of this study support the alexithymia hypothesis: high alexithymic, but not autistic,

traits were associated with less accurate facial expression recognition?!?

. However, this study,
conducted by Ola and Gullon-Scott, has two important limitations. First, only female
participants were recruited. Since autistic males comprise three quarters of the ASD

250-253,340  one must be cautious about

population®*°, and likely differ in behavioural phenotype
extrapolating the findings to autistic males. Second, Ola and Gullon-Scott did not recruit a non-

autistic control group. Consequently, the authors were not able to explore whether autistic

versus non-autistic group differences in dynamic emotion recognition remain after controlling

® Facial morph stimuli were constructed by successively presenting 26 images from a neutral
(0%) to full emotional (100%) expression with an increase of 4% in emotion from one image to the
next. By presenting the images in this way, it gave the illusion of a dynamic emotional expression.
The speed of playback was then manipulated to allow the researchers to test their hypotheses.
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for alexithymia. That is, although Ola and Gullon-Scott were able to show that some difficulties
with emotion recognition from dynamic stimuli were associated with alexithymia, one cannot
conclude from this study that there are no differences with respect to emotion recognition from
dynamic stimuli that are specifically associated with ASD.

The primary aim of the current study was to investigate whether autistic and non-autistic
adults would exhibit differences in the recognition of emotion from facial motion cues when
the groups were matched in terms of alexithymia. To address this aim, we employed the

paradigm developed by Sowden and colleagues®*

which uses PLF stimuli to represent
emotional expressions in terms of the movement of facial landmarks. More specifically, male
and female autistic and non-autistic adults rated the emotion expressed by PLF stimuli that had
been manipulated such that expressions of happiness, anger and sadness were reproduced at
50%, 100% and 150% of their normal speed and spatial extent. The groups were matched in
terms of their scores on a self-report measure of alexithymia. We predicted that emotion
recognition accuracy would be affected by both kinematic and spatial manipulation and that
these effects would not interact with group, but rather that Bayesian statistics would provide
support for the null hypothesis that the alexithymia-matched groups perform comparably.
Given that we had considerable variation in alexithymic traits, a secondary aim of our study

was to explore whether the effects of the spatial and kinematic manipulation on emotion

recognition accuracy covaried with scores on the self-report alexithymia measure.

2.2. Method

2.2.1. Participants

The chosen sample size is based on an a priori power analysis conducted using

1239

GLIMMPSE**!, which focused on replicating the primary results from Sowden et al**° in the
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control group (the emotion x spatial and emotion x kinematic interactions). Using data from
Sowden et al**?, 8 participants are required in the control group in order to have 95% power to
detect an effect size of 0.70 (77°) at alpha level 0.01 for the emotion x spatial interaction.
Moreover, 11 participants are required in the control group in order to have 95% power to detect
an effect size of 0.53 (p?) for the emotion x kinematic interaction at alpha level 0.01. However,
Button et al?°!? argue that effect size estimates are commonly inflated (“the winners curse”),
and that there is “a common misconception that a replication study will have sufficient power
to replicate an initial finding if the sample size is similar to that in the original study”.
Accordingly, we planned to recruit a larger number of participants (N=30 per group; almost
triple the largest sample size generated in our power calculations), in order to obtain adequate
power. We pre-registered this sample size via the Open Science Framework
(https://osf.io/kpetz).

60 individuals, 31 with an ASD diagnosis and 29 non-autistic controls, participated in
the study (See Appendix 1.1 for ethnicity information). Participants were matched for age,
gender, non-verbal reasoning (NVR; as measured by the Matrix Reasoning Item Bank; MaRs-
IB3*#) and alexithymia (as measured by the 20-item Toronto Alexithymia Scale; TAS-20344).
The ASD group had significantly higher Autism Quotient (AQ*%) scores (see Table 2.1). The
level of autistic characteristics of those in the ASD group was assessed using the Autism
Diagnostic Observation Schedule (version 2, ADOS-23%). The mean total ADOS-2 score in the
ASD group was 10.59 (see Appendix 1.2 for information on the quantity of participants that
met criteria for diagnosis). The MaRs-IB was used to match participants on the basis that the
PLF task relies on non-verbal reasoning ability and, with respect to participant matching, task
specific measures of intelligence/ability have been argued to be more appropriate than general

measures>*. A total of four participants (three in the ASD group and one in the control group)
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had AQ or TAS-20 scores over two standard deviations from their group mean. Since the
general pattern of results was unaffected by their removal, these participants are included in the
final analysis.

Table 2.1.

Means, standard deviations and group differences of participant characteristics

Control group (n=29) ASD group (n=31) Significance
Gender 11 Female, 17 Male, 1 Other 14 Female, 16 Male, 1 Other  p=.850
Age 28.81(9.54) 30.14 (9.08) p=.581
NVR 62.91 (15.17) 57.05 (17.90) p=.178
TAS-20 55.66 (13.57) 59.74 (13.14) p=.241
AQ 19.86 (7.44) 32.52(10.21) p<.001
ADOS-2 N/A 10.32(4.76) N/A

Note. In the central columns, means are followed by standard deviations in parentheses.

Twenty-two of the 31 ASD participants were recruited via an existing autism research
database kept by the Birmingham Psychology Autism Research Team (B-PART). The control
and remaining nine ASD participants were recruited via social media (Facebook and Twitter)
and Prolific — an online recruitment platform. All participants in the ASD group had previously
received a clinical diagnosis of ASD from a qualified clinician.

2.2.2. Materials and stimuli
PLF stimuli

The PLF task was an adapted version of that developed by Sowden and colleagues®*®
which was re-programmed in Gorilla.sc** to facilitate online testing. The same instructions,
stimulus videos, and rating scales were used as in the original study. The stimulus videos
comprised dynamic PLF stimuli, created from videos of four actors (two male, two female)
verbalising sentences (“My name is John and I’m a scientist”) whilst posing three target
emotions (angry, happy and sad). PLFs were adapted (see Sowden et al>*° for further detail) to

achieve three spatial movement levels, ranging from decreased to increased spatial movement
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(S1: 50% spatial movement; S2: 100% spatial movement; S3: 150% spatial movement), and
three kinematic levels, ranging from reduced to increased speed (K1: 50% original stimulus
speed; K2: 100% original stimulus speed; K3 — 150% of the original stimulus speed).
Consequently, there were 9 manipulations per emotion (e.g., (1) S1, K1, (2) S2, K1, (3) S3,Kl,
(4) S1, K2, (5) S2, K2, (6) S3, K2, (7) S1, K3, (8), S2, K3, (9) S3, K3).
Autistic traits

The level of autistic traits of all ASD and control participants was assessed via the 50-
item Autism Quotient***. Scores on this self-report scale range from 0 to 50, with higher scores
corresponding to higher levels of autistic characteristics. The AQ assesses five different areas
relevant for ASD traits (attention switching, attention to detail, communication, social skill and
imagination). The AQ has been widely used in both the general and the autistic population#8-34,
and boasts strong psychometric properties, including internal consistency (a0 > 0.7) and test-
retest reliability (r > 0.8)°%°. The AQ also had good internal consistency here (0. = 0.86).
Alexithymic traits

The level of alexithymic traits was measured via the Toronto Alexithymia Scale***. This
self-report scale comprises 20 items rated on a five-point Likert scale (ranging from 1, strongly
disagree, to 5, strongly agree). Scores on the TAS-20 can range from 20 to 100, with higher
scores indicating higher levels of alexithymia. The TAS-20 is the most popular tool for
assessing alexithymia!*® and has good internal consistency (o > 0.7) and test-retest reliability
(r>0.7)***3! The TAS-20 also had good internal consistency here (a = 0.82).
Non-verbal reasoning

Non-verbal reasoning was assessed via the Matrix Reasoning Item bank (MaRs-IB)**.
Each item in the MaRs-IB consists of a 3 x 3 matrix. Eight of the nine available cells in the

matrix are filled with abstract shapes, and one cell in the bottom right-hand corner is left empty.
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Participants are required to complete the matrix by selecting the missing shape from four
possible options. In order to correctly identify the missing shape, participants have to deduce
relationships between the shapes in the matrix (which vary in shape, colour, size and position).
When participants select an answer, they move on to the next item. If participants do not provide
a response within 30 seconds, they continue to the next item without a response. The MaRs-1B
assessment lasts 8 minutes regardless of how many trials are completed. There is a total of 80
different items in the MaRs-IB, however participants are not required (or expected) to complete
all 80 items within the 8 minutes. If a participant completed all 80 items within 8 minutes, the
items were presented again but the responses to these were not analysed (following the
procedure established by Chierchia and Fuhrmann et al**}). The MaRs-IB has been shown to
have acceptable internal consistency (Kuder-Richardson 20 > 0.7) and test-retest reliability (r
>0.7)*%.
2.2.3. Procedures

Following a pre-registered design (see https://osf.io/kpefz), participants first completed
the questionnaires (demographics followed by AQ, followed by TAS-20) and then moved on
to the PLF task. Each trial in this task began with the presentation of a stimulus, which
comprised a silent PLF video of an actor expressing one of 3 emotions whilst saying a sentence
at one of the 3 spatial and 3 kinematic levels®®. After watching the video, participants were
asked to rate how angry, happy and sad the person was feeling?*®. Participants made their
ratings on a visual analogue scale, with one end representing ‘Not at all angry/happy/sad’ and
the opposite end representing ‘Very angry/happy/sad’*°. Individuals were asked to make
ratings for all three target emotions (angry, happy and sad) on scales, which were presented on
screen in a random order, after each PLF video®*°. Each trial took approximately 25 seconds to

complete. Participants completed 3 practice trials (at the S2 and K2 level) and then 108
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randomly ordered experimental trials (12 per condition) across three blocks. Participants were
invited to take a break between blocks. The structure of each trial is displayed in Figure 2.1.

Figure 2.1.

Example of one trial in the PLF Emotion Recognition task

How ANGRY was the person feeling?

Not at all

ANGRY How SAD was the person feeling?

How HAPPY was the person feeling?

L
~ Not at all
~ HAPPY

Note. The fixation cross display is presented for 500ms at the start of each trial. The average
length of a stimulus video was approximately 7 seconds. Rating scales remained on screen
until participants had rated the stimulus and pressed the space bar

Following PLF task completion, participants completed the Matrix Reasoning Item
Bank (MaRs-IB)**%.

Participants completed all tasks online using Google Chrome or Mozilla Firefox on a
computer or laptop. The frame rate (in frames per second; FPS) of their devices was measured
to ensure that the quality/fluidity of the stimulus videos was not degraded. All participants’
frame rates were 60 FPS or higher with one exception at 50 FPS. When we ran all analyses with
and without the 50 FPS participant, treating them as a potential outlier, the pattern of results

was unaffected. Therefore, this participant was included in all analyses.
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2.2.4. Statistical Analysis

The three emotion rating responses for each trial were transformed into magnitude
scores from 0 to 10 (with O representing a response of ‘Not at all” and 10 representing ‘Very’)
to 3 decimal places. Emotion recognition accuracy scores were calculated as the correct
emotion rating minus the mean of the two incorrect emotion ratings®. For instance, for a trial in
which an angry PLF was presented, the mean rating of the two incorrect emotions (happy and
sad) was subtracted from the correct emotion (angry). Thus, emotion recognition accuracy
reflects how well an individual can distinguish whether an incoming expression is angry versus
happy versus sad. As discussed, our PLF stimuli were created by recording four actors
verbalising sentences while posing anger, happiness, and sadness, respectively (see 23).
Although these actors were instructed to produce discrete angry, happy, and sad facial
expressions, it is important to note that we cannot guarantee that they did not inadvertently
produce mixed emotional expressions. As such, one may argue that there is no objective
“ground-truth” in the emotions that are depicted in the PLF expressions. This limitation is not
confined to the PLF expressions used here, but to all facial expression stimuli used in the
literature. This has led researchers to call for emotion recognition accuracy to be considered as
a form of agreement between the expressor (i.e., our actors) and perceiver*®. Therefore, here

we conceptualise emotion recognition accuracy as the degree of agreement between the PLF

actor and the participants in the present study.

¢ Many of the studies that have investigated the emotion recognition ability of autistic
individuals have used forced-choice paradigms in which there is a binary (correct; 1, or incorrect; 0)
accuracy score for each trial. In order to facilitate comparison of our results to those studies, we also
completed a binary accuracy analysis, which yielded similar results (see Appendix 1.3). In this
analysis, for each trial, participants scored 1 when they gave the highest rating to the correct emotion,
and 0 when they rated either of the incorrect emotions higher than the correct emotion.
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To test our first hypothesis, we submitted these accuracy scores to a 2 x 3 x 3 x 3
Analysis of Variance (ANOVA) with the between-subjects factor group (ASD, control) and the
within-subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, S2, S3), and
stimulus kinematic level (K1, K2, K3). This analysis has the potential to reveal differences
between the groups in their accuracy of emotion recognition from facial motion cues. It is
possible, however, that two groups could have comparable accuracy scores but different
patterns of ratings. For example, an accuracy score of 2 for an angry stimulus could relate to an
anger magnitude rating of 4 and happy and sad ratings of 2, or an anger rating of 4, happy rating
of 0, and a sad rating of 4. To more sensitively pick up on any differences between groups we
used magnitude as the DV and conducted a2 x 3 x 3 x 3 x 3 ANOVA with the between subjects
factor group (ASD, control) and the within-subjects factors emotion (happy, angry, sad),
stimulus spatial level (S1, S2, S3), stimulus kinematic level (K1, K2, K3) and rating (happy,
angry, sad).

To explore whether the effects of the spatial and kinematic manipulation on emotion
recognition accuracy covaried with alexithymia scores we employed multiple regression
analyses. More specifically, we applied a sqrt transformation to all ordinal factors of interest
(age, NVR, AQ, TAS-20), computed z-scores for the transformed data, and submitted the
transformed z-scored data, along with the nominal predictor gender, to multiple regression
analyses. The effect of the spatial manipulation (defined as the difference in accuracy between
S3 and S1), the effect of the kinematic manipulation (defined as the difference in accuracy
between K3 and K1), mean recognition accuracy, and accuracy for angry videos at the normal
level (S2, K2) were used as the DVs for each of these analyses. In addition, in order to explore
whether autistic and/or alexithymic traits predicted the magnitude of correct and incorrect

ratings, we constructed two linear mixed effects models with ratings for angry facial motion at
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the normal level, and ratings across all emotions and levels of the spatial and kinematic
manipulation, as the DVs respectively. For all analyses, we used a p = .05 significance threshold
to determine whether to accept or reject the null hypothesis. The frequentist approach was
supplemented with the calculation of Bayes Factors, which quantify the relative evidence for
one theory or model over another. For all Bayesian analyses, we followed the classification
scheme used in JASP?2: BF values between one and three represent weak evidence, between
three and ten moderate evidence, and greater than ten strong evidence, for the experimental
hypothesis. For all Bayesian ANOVAs, the default Uniform prior was used. For all Bayesian

linear regressions, the default Jeffreys-Zellner-Siow prior was used [r scale = 0.354].

2.3. Results

Our primary hypothesis was that emotion recognition accuracy would be affected by
both kinematic and spatial manipulation and that these effects would not interact with group.
To test this hypothesis, we conducted a mixed 2 x 3 x 3 x 3 ANOVA with the between-subjects
factor group (ASD, control) and the within-subjects factors emotion (happy, angry, sad),
stimulus spatial level (S1, S2, S3), and stimulus kinematic level (K1, K2, K3). This analysis
revealed a significant main effect of emotion [F(2,116) = 17.79, p < .001, 5’ = .24, BF1o=
1.03¢!%; see Appendix 1.4], a main effect of spatial level [F(2,116) = 259.57, p < .001, n#* =
.82, BF10=9.05¢"7; see Appendix 1.4] which was qualified by an emotion x spatial interaction
[F(4,232) = 88.42, p <.001, n7* = .60, BF19= 7.53¢%], and an emotion x kinematic interaction
[F(4,232) = 53.90, p < .001, 5’ = .48, BFio= 1.90¢?°]. Furthermore, this analysis revealed a
significant four-way emotion x spatial x kinematic x group interaction [F(8,464) = 2.438, p <
.05, np* = .04, BF o= 0.07]. Note that no kinematic x group interaction was found [p = .538,

BF10 = 0.02], suggesting that autistic and control participants exhibit similar patterns of
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accuracy across the kinematic levels. Below, in order to shed light on the effects of the spatial
and kinematic manipulations, we first unpack the emotion x kinematic and emotion x spatial
interactions. Subsequently we fully unpack the emotion x spatial x kinematic x group
interaction.

In line with Sowden et al**°, we observed an emotion x spatial interaction [F(4,232) =
88.42, p<.001, np’ = .60, BF 9= 7.53¢%]. Post-hoc repeated measures ANOVAs revealed that
whilst the effect of the spatial manipulation was present for all three emotions (all F > 7.00, all
p <.01), the direction of the effect varied between high and low arousal emotions: recognition
scores for angry and happy facial motion were highest for 150% spatial extent (S3) [angry mean
(Standard Error of the Mean; SEM) = 5.21(.21); happy mean(SEM) = 5.70(.24)], followed by
100% spatial extent (S2) [angry mean(SEM) = 3.15(.22); happy mean(SEM) = 4.75(.23)], and
finally 50% spatial extent (S1) [angry mean SEM) = 0.53(.22); happy mean(SEM) = 2.10(.25)].
In contrast, for sad facial motion, recognition scores were highest for S1 [sad mean(SEM) =
3.50(.22)], lowest for S3 [sad mean(SEM) = 2.78(.22)] and intermediate for S2 [sad
mean(SEM) = 3.15(.20)]. This pattern matches the results reported by Sowden et al., (2021) for
non-autistic participants. The emotion recognition accuracy scores for each emotion across the
spatial levels can be seen in Figure 2.2 (a).

In addition, our analysis identified an emotion x kinematic interaction [F(4,232) =
53.90, p < .001, 5’ = .48, BFio = 1.90¢?°]. Whilst there was a main effect of the kinematic
manipulation for all three emotions (all F > 20, all p <.001), the direction of the effect differed
between high and low arousal emotions. For angry and happy facial motion, emotion
recognition improved with increasing speed [angry: K1 mean(SEM) = 2.28(.19); K2
mean(SEM) = 2.87(.19); K3 mean(SEM) = 3.73(.23); happy: K1 mean(SEM) = 3.50(.23); K2

mean(SEM) = 4.50(.22); K3 mean(SEM) = 4.55(.21)]. For sad facial motion, emotion
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recognition improved as speed decreased [K3 mean(SEM) = 2.03(.19); K2 mean(SEM) =

3.21(.22); K1 mean(SEM) = 4.18(.23)]. This pattern of results also matches the findings from

Sowden et al>*’. The emotion recognition accuracy scores for each emotion across the kinematic

levels can be seen in Figure 2.2 (b).

Figure 2.2.

Mean accuracy scores, for all participants, for each emotion across the spatial (panel a) and

kinematic (panel b) levels.
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datapoints.
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In order to unpack the significant four-way interaction, we conducted post-hoc 2 x 3 x
3 (group, emotion, kinematic) ANOVAs for each spatial level. This analysis revealed a
significant emotion x kinematic x group interaction at the S2 [F(4,232) =4.53, p < 0.01, 5’ =
.07, BF10=5.92] but not SI [p =.265, BF10=0.09] or S3 [p = .208, BF10= 0.09] level. To
unpack this emotion x kinematic x group interaction at the S2 level, we conducted separate
post-hoc ANOVAs for each kinematic level at the 100% (S2) spatial level. This analysis
revealed a significant emotion x group interaction at the K2 [F(2,116) = 6.48, p <.01, np? = .10,
BF10=17.09] but not K1 [p =.244, BF19=0.32] or K3 [p =.082, BF10= 0.82] level. Bonferroni-
corrected post-hoc independent sample t-tests revealed that control, relative to ASD,
participants had higher accuracy for angry facial motion at the 100% spatial (S2) and speed
(K2) level [t(58) = 2.78, pvont. < .05, mean difference = 1.48, BFio = 6.09]. There were no
significant group differences in emotion recognition accuracy for happy [p =.757, BF10=0.27]
or sad [p =.085, BF10=0.93] videos at the S2K2 level. Thus, the groups significantly differed
in accuracy for angry PLFs that were not spatially or kinematically manipulated. The mean
emotion recognition accuracy scores across each emotion for control and ASD participants at

the S2K2 level are shown in Figure 2.3.
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Figure 2.3.

Accuracy at the S2, K2 level, as a function of emotion
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Note. Control in lilac, ASD in green. The black line represents the mean, the coloured box
represents the standard error of the mean, the shaded region represents the standard deviation,
and the dots are individual datapoints.

To further unpack the emotion x kinematic x group interaction at the S2 level, we
conducted separate post-hoc ANOV As for each emotion at the S2 level. This analysis identified
a significant kinematic x group interaction for angry [F(2,116) = 4.59, p < .05, > = .07, BF 19
= 3.49] but not happy [p = .070, BFio= 0.95] or sad [p = .123, BFi10= 0.53] PLFs. Therefore,
for angry videos at the normal spatial level, the effect of the kinematic manipulation varied as
a function of group. Bonferroni-corrected paired sample t-tests demonstrated that whilst the
control group exhibited increasing accuracy across all kinematic levels [K1-K2: t(28) = -4.31,
Poonf < .001, mean difference = -1.62, BF1o= 153.77; K2-K3: t(28) = -2.86, pvont < .05, mean

difference = -0.95, BFio=5.52], the ASD group only showed improvement from the K2 to K3
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[t(30) = -3.46, pront< .01, mean difference = -1.16, BF10=21.10] and not K1 to K2 [p = .865,
BF10=0.19]. Furthermore, the groups did not significantly differ at K1 (F(1,58) =.18, p > .05)
or K3 (F(1,58) = 3.53 p > .05) but at K2, controls out-performed autistic participants (F(1,58)
= 7.75, p < 0.01, #p* = .12). These results suggest that, whilst controls improved in their
accuracy for angry PLF stimuli across each level of increasing kinematic manipulation, for
autistic participants, only the most extreme (K3) level of the kinematic manipulation resulted
in an accuracy boost. The mean accuracy scores for angry videos across the kinematic levels

(at the unmanipulated S2 level) for control and ASD participants are shown in Figure 2.4.
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Figure 2.4.

Mean accuracy scores for angry videos at the S2 level for control and ASD participants across
the kinematic levels
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mean, the shaded region represents the standard deviation, and the dots are individual
datapoints.

In order to compare the magnitude of the ratings between groups, we conducted a mixed
2 x 3 x 3 x3x3 ANOVA with the between subjects factor group (ASD, control) and the within-

subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, S2, S3), stimulus
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kinematic level (K1, K2, K3) and rating (happy, angry, sad). This analysis revealed a significant
main effect of emotion [F(2,116) = 34.86, p <.001, np° = .38], spatial level [F(2,116) = 50.52,
p <.001, P’ = .47], kinematic level [F(2,116) = 3.51, p < .05, np° = .06] and rating [F(2,116) =
3.592, p < .05, np* = .06, BF 1o = 76], as well as emotion x rating [F(4,232) = 489.95, p <.001,
np’ = .89], spatial x rating [F(4,232) = 64.26, p < .001, > = .53], kinematic x rating [F(4,232)
=49.08, p <.001, np° = .46], emotion x spatial x rating [F(8,464) = 111.13, p <.001, 5’ = .66],
emotion x kinematic x rating [F(8,464) = 12.02, p <.001, np° = .17], kinematic x rating x group
[F(4,232) =2.79, p < .05, np? = .05] and spatial x kinematic x rating x group [F(8,464) = 2.76,
p <.05, np? = .05] interactions. All interactions and main effects are unpacked in Appendix 1.5.

In addition, this analysis revealed an emotion x kinematic x rating X group interaction
which approached significance [F(8,464) = 1.90, p = .058, np? = .03]. Since this interaction
potentially offers further insight about the between group difference in anger recognition, we
unpack it in full here. Post-hoc 2 x 3 x 3 ANOVAs (group x kinematic x rating) for each of the
emotional videos revealed a significant kinematic x rating x group interaction for angry
[F(4,232) = 4.26, p < .01, np? = .07, BF10 = 0.61] but not happy [p = .687, BFio = 0.03] or sad
[p=.122, BF19=0.09] facial motion. Importantly, post-hoc ANOV As revealed that for control
participants, speeding up angry facial motion (regardless of the spatial level) improves accuracy
by increasing ratings of anger [F(2,56) = 15.39, p < .001, np? =.36, BFio = 3344.71] and
lowering ratings of sadness [F(2,56) = 24.15, p < .001, np? = .46, BF 1o = 374155.73] across all
levels of the kinematic manipulation [angry ratings K1-K2: t(28) = -3.17, p < .01, mean
difference = -0.62, BF10 = 10.71; angry ratings K2-K3: t(28) = -2.24, p < .05, mean difference
=-0.40, BF1o = 1.67; sad ratings K1-K2: t(28) = 3.91, p = .001, mean difference = 0.90, BF0 =

58.34; sad ratings K2-K3 t(28) = 2.74, p < .05, mean difference = 0.52, BF 1o = 4.34] (however,
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note that after Bonferroni-correction, the difference in angry ratings for angry facial motion
between K2 and K3 became non-significant; p = .100; see Figure 2.5).

For autistic participants, speeding up angry facial motion also improved accuracy by
increasing ratings of anger [F(2,60) = 12.18, p <.001, np? = .29, BF 1o = 551.72], however this
effect was driven by an increase from the 100% to 150% level [t(30) = -5.24, p = .001, mean
difference = -0.75, BF1o = 1792.14], and not the 50% to 100% level [p = .636, BFio =0.21]. In
addition, we found that there was a main effect of kinematic level for sad ratings that
approached significance [F(2,60) = 2.89, p = .063, ne? = .09, , BFio = 0.90]. Importantly, sad
ratings only decreased from 100% to 150% speed [t(30) =2.32, p <.05, mean difference = 0.39,
BF10=1.94] and not from 50% to 100% speed [p = .877, BF1o = 0.19] (however, note that after
Bonferroni-correction, the difference in sad ratings for angry facial motion between K2 and K3
became non-significant; p = .081; see Figure 2.5). Consequently, we primarily observe
differences in the accuracy of anger recognition between our ASD and control groups because,
for the ASD group, speeding up angry facial motion only reduces confusion between angry and
sad ratings when the speed is increased from 100 to 150% (not 50 to 100%). In contrast, for the
control group increasing the speed of angry facial motion from 50 to 100% and from 100 to

150% reduces confusion between anger and sadness ratings.
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Figure 2.5.

Mean angry and sad ratings given by control and ASD participants for angry facial motion
across the kinematic levels
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Multiple Regression Analyses

In addition, we aimed to explore whether variation in emotion recognition accuracy
covaried with scores on our self-report alexithymia measure (TAS-20). To test whether autistic
or alexithymic traits were predictive of the effect of the spatial and kinematic manipulations,
we conducted two multiple regression analyses. For the first analysis, we used the effect of
spatial manipulation (defined as the difference in accuracy between S3 and S1) as the dependent
variable (DV) and AQ and TAS-20 as predictor variables. This analysis resulted in a non-
significant model overall [F(2,57) = .87, p= .425], neither AQ [standardised f =-.17, t(57) = -
1.10, p = .274] nor TAS-20 [standardised B = .19, t(57) = 1.20, p = .236] were significant

predictors of the effect of the spatial manipulation. In the second analysis, we used the effect
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of the kinematic manipulation (defined as the difference in accuracy between K3 and K1) as
the DV and AQ and TAS-20 as predictors. Again, this analysis resulted in a non-significant
model [F(2,57) = 1.63, p = .206], neither AQ [standardised = .20, t(57) = 1.33, p =.189] nor
TAS-20 [standardised B = .05, t(57) = .32 p = .752] were significant predictors of the effect of
the kinematic manipulation. We then conducted a third multiple regression with mean emotion
recognition accuracy (across all trials) as the DV. Once again, neither AQ [standardised B = -
19, 1(57) = -1.24, p = .220] nor TAS-20 [standardised B = .12, t(57) = .81, p = .424] were
significant predictors of mean recognition accuracy and the overall model did not explain a
significant amount of variance in the data [F(2,57) = .78, p = .461]. To explore the possibility
that only extreme scores on the TAS-20 predict performance, we compared mean accuracy for
alexithymic (i.e., TAS-20 > 61) and non-alexithymic (i.e., TAS-20 < 51) participants (according
to the cut-off scores outlined by Bagby, Taylor & Parker***), excluding ‘possibly alexithymic’
individuals. An independent samples t-test confirmed that there was no significant difference
in mean accuracy between these groups [t(48) = -.18, p = .861, mean difference = -.05, BF o=
0.29].

Finally, building on our previous observation that the ASD and control groups differed
in accuracy for angry facial motion at the normal (100%) spatial and speed level we conducted
a multiple regression analysis to identify the extent to which autistic and alexithymic traits were
predictive of accuracy for angry videos at the S2 and K2 levels. This analysis revealed that
autistic [standardised = -.44, t(57) =-3.05, p <.01], but not alexithymic [standardised f = .22,
t(57) = 1.54, p = .130], traits were predictive of accuracy for angry facial motion at the normal
spatial and speed level [overall model statistics: F(2, 57) = 4.67, p < .05, R> = .141]. Bayesian

analyses, using a default prior [Jeffreys-Zellner-Siow prior; r scale = 0.354], revealed that AQ
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[BFinciusion = 4.230] was over 16 times more likely to be included in a model to predict accuracy
for angry videos at the normal spatial and speed level than alexithymic traits [BFinctusion=0.263].

In order to ensure that AQ is not just a significant predictor of accuracy for angry
expressions at the normal spatial and speed level due to variation across other co-variables (e.g.,
age, gender, and non-verbal reasoning), we completed an additional three-step forced entry
hierarchical regression analysis following the procedures of Cook and Brewer et al**. In the
first step, the demographic variables (gender, age and NVR) were entered into the model, which
overall accounted for 16% of the variance in accuracy at the S2K2 level [F(3,56) = 3.56, p <
.05, R? = .160]. Importantly, of the three demographic variables, only NVR was a significant
predictor of accuracy for angry facial motion at the normal spatial and speed level [standardised
B=.35,t56)=2.79, p <.01] (and not gender [standardised B = .15, t(56) = 1.20, p = .233] or
age [standardised B = - .01, t(56) = -.06, p = .950]). In the second step, AQ was added
[standardised B = -.36, t(55) = -3,13, p <.01], producing a statistically significant R? change [F
change (1, 55) = 9.80, p < .01, R? change = .127]. Finally, when TAS-20 was entered into the
model, the analysis revealed it was not a significant predictor of accuracy for angry facial
motion at the normal level [standardised f = .17, t(54) = 1.26, p = .214] and resulted in a non-
significant R? change [F change (1, 54) = 1.58, p = .214, R? change = .020; see Table 2.2].
Hence, this analysis demonstrated that autistic traits (and not alexithymic traits) were a
significant predictor of accuracy for angry facial motion at the normal level (S2, K2) even after
age, gender and NVR have been accounted for.

These analyses suggest that alexithymia accounts for very little variance in accuracy for
angry facial motion at the normal (S2K2) level once autistic traits have been accounted for.
However, since our autism and alexithymia measures were correlated [R = .53, p <.001], when

alexithymia is entered into a multiple regression after autistic traits, it may not be a significant
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predictor due to collinearity. Consequently, we ran one further hierarchical regression, with the
demographic variables entered in Step 1, alexithymia in Step 2 and autistic traits in Step 3.
Alexithymia failed to significantly improve the model [F change (1, 55) = .31, p = .581, R?
change = .005], explaining only 0.5% more variance than that explained by the demographic
variables alone. Despite being highly correlated with alexithymia, autistic traits were again a
significant predictor of accuracy for angry facial motion at the normal level [standardised § = -
45, 1(54) =-3.33, p <.01] when added to the model in Step 3. Adding autistic traits at this step
produced a statistically significant R? change [F change (1, 54) = 11.12, p < .01, R? change =
.143], explaining an additional 14.3% of the variance in accuracy.

Table 2.2.

Results of the forced entry hierarchical regression for accuracy for angry videos at the normal
spatial and speed level.

Model R R? Adjusted R? SEE R? F change Sig. F change
change
1 400 .160 A15 1.82 .160 3.556 .020
536 287 235 1.69 127 9.798 .003
3 554 307 243 1.68 .020 1.581 214

Note. 1. predictors: age, gender, non-verbal reasoning; 2. predictors: age, gender, non-verbal
reasoning, AQ; 3. predictors: age, gender, non-verbal reasoning, AQ, TAS-20.

The above results demonstrate that, compared to NVR, age, gender and alexithymia,
autistic traits account for an additional 14.3% of the variance in the accuracy of anger
recognition from motion cues at the normal (S2K2) level. In principle, autistic traits might
contribute to anger recognition by modulating the magnitude of correct ratings (wherein lower
AQ should be related to higher anger ratings for angry stimuli), the magnitude of incorrect
ratings (wherein lower AQ should be related to lower happy and sad ratings for angry stimuli),

or both. In addition, it is possible that alexithymic traits might contribute to correct and incorrect
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emotion ratings, but not emotion recognition accuracy (e.g., by contributing to both increased
correct and incorrect emotion ratings). To explore these possibilities, and thereby shed light on
the psychological mechanisms by which AQ negatively predicts anger recognition, we
constructed a linear mixed effects model, predicting the magnitude of ratings with AQ score,
TAS-20 score, the interaction between AQ score and rating type (correct vs. incorrect), and the
interaction between TAS-20 and rating type (correct vs. incorrect). This analysis revealed a
significant AQ x rating type interaction [t(180) =2.12, p <.05], wherein AQ predicted incorrect
[t(59.89) = 3.36, p < .01] but not correct [p = .381] emotion ratings for angry facial motion at
the normal level; those with higher AQ gave higher incorrect emotion ratings (i.e., happy and
sad) for angry facial motion at the normal level. Our analysis also identified that the relationship
between TAS-20 and ratings (across correct and incorrect emotions) for angry facial motion at
the normal level approached significance [t(180) = 1.80, p = .074]. Note that no TAS x rating
type interaction was identified [p = .288].

The analyses reported above suggest that autistic traits contribute to anger recognition
by modulating the magnitude of incorrect ratings, but not correct, ratings. In addition, these
analyses revealed an interesting additional finding: alexithymic traits may be positively
predictive of both correct and incorrect emotion ratings. Since the analyses reported above were
restricted to the normal (S2K2) level for angry facial motion, next, we constructed one further
linear mixed effects model (following the procedures outlined above) to investigate whether
autistic and/or alexithymic traits are predictive of higher correct and incorrect emotion ratings
across all emotions and levels of the spatial and kinematic manipulation. This analysis revealed
that TAS-20 score was a significant positive predictor of the magnitude of ratings [t(57.84) =
2.95, p <.01], with those with higher alexithymia giving higher intensity (correct and incorrect)

ratings across all emotions and levels of the spatial and kinematic manipulation. Importantly,
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the TAS x rating type interaction was not significant [p = .125], suggesting that alexithymic
traits were predictive of both correct and incorrect emotion ratings. Our analysis also revealed
that there was a significant AQ x rating type interaction [t(4800.41) = 2.37, p < .05]. In line
with our previous analysis, AQ predicted incorrect [t(49.02) = 2.24, p < .05] but not correct [p
=.175] emotion ratings, such that those higher in autistic traits gave higher incorrect ratings.
Therefore, our results suggest that whilst the level of autistic traits is predictive of
accuracy for angry facial motion at the normal level (by positively predicting incorrect emotion
ratings but not correct emotion ratings), alexithymic traits are not predictive of emotion
recognition accuracy across emotions and manipulations but are positively predictive of both

correct and incorrect emotion ratings.

2.4. Discussion

The current study tested whether autistic individuals, relative to alexithymia-matched
controls, have greater difficulty recognising emotions from facial motion cues. We
hypothesised that emotion recognition would vary as a function of kinematic and spatial
manipulation and that these effects would not interact with diagnostic group, but rather
Bayesian statistics would provide evidence that the groups perform comparably. We also aimed
to explore whether the effects of spatial and kinematic manipulation on emotion recognition
accuracy would covary with scores on a self-report alexithymia measure. In replication of

Sowden et al?*°

, our results indicated that emotion recognition accuracy was affected by both
spatial and kinematic manipulation. In addition, we identified that emotion recognition
accuracy did not covary with alexithymia scores. In conflict with our hypothesis, we observed

a significant emotion x spatial x kinematic x group interaction. Further unpacking this

interaction revealed that autistic, relative to control, adults showed reduced recognition of angry
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facial motion at the normal (100%) spatial (S2) and speed (K2) level. Furthermore, whilst
control participants improved in accuracy across all kinematic levels, autistic participants only
benefitted from the speed increase from the normal (100%) to increased (150%) speed level.
Exploration of the magnitude of ratings further demonstrated that, for non-autistic participants,
speeding up angry PLFs improved accuracy through a combination of increasing anger ratings
and decreasing sad ratings for both the 50-100% and 100-150% increase. In contrast, for autistic
participants speeding up angry facial motion only increased anger ratings and decreased sad
ratings between the 100% and 150% levels (not from 50-100%). In addition, multiple regression
analyses revealed that autistic traits and NVR, but not age, gender or alexithymia, were
significant predictors of recognition accuracy for angry facial motion at the normal spatial and
speed level (where level of autistic traits was a negative predictor and NVR was a positive
predictor). Although alexithymic traits were not associated with accuracy, they were associated
with higher ratings for both the correct and incorrect emotions. Importantly, our results
demonstrate that when autistic and control individuals are matched in terms of alexithymia
there are group differences in recognition accuracy, though these are restricted to angry (not
happy or sad) facial motion.

Of particular note is our finding that differences between autistic and control individuals
are restricted to the recognition of anger from facial motion. This finding is in line with previous
research suggesting that angry expressions are better recognised by non-autistic compared to

autistic individuals!'47-219-222

and is supported by meta-analytic evidence demonstrating greater
differences between ASD and control groups in the recognition of angry compared to happy
and sad expressions!®!. Importantly, however, some of these previous studies did not measure

219-222

alexithymia and in those that did, alexithymic and ASD traits were confounded!*’, making

it impossible to determine whether differences in anger recognition were attributable to
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alexithymia or ASD. The present study resolves this ambiguity and suggests that difficulties
with recognising angry expressions at the ‘normal’ spatial and speed level are related to autism,
not alexithymia.

An important observation is that in the current paradigm both groups performed equally
well for slowed angry facial motion, but whilst the controls benefitted from the K1 to K2 speed
increase (i.e., 50% to 100% speed), the autistic participants only benefitted from the K2 to K3
speed increase (i.e., accuracy only increased when the stimulus was played at 150% of normal
speed). Our analysis of the magnitude of angry, happy and sad ratings for angry PLFs provided
further insight into this effect: for non-autistic participants, speeding up angry PLFs from 50-
100% speed and 100-150% improved accuracy through a combination of increasing anger
ratings and decreasing sad ratings, thereby reducing the confusion between emotions. For
autistic participants, speeding up angry facial motion also increased anger ratings and decreased
sad ratings, however, this only happened between the 100% and 150% levels (not from 50-
100%). This lack of a change in angry and sad ratings from 50 to 100% speed resulted in the
autistic participants displaying significantly lower emotion recognition accuracy for angry
facial motion at the 100% level. Further to this, the lack of a decrease in sad ratings may also
explain why autistic traits were associated with higher incorrect emotion ratings for angry facial
motion at the normal level (as found in our linear mixed effects model).

These findings also raise the possibility that autistic individuals may have a higher
‘kinematic threshold’ for perceiving anger from facial motion (i.e., an angry expression has to
be moving quite quickly before it actually appears angry or angrier to ASD participants). This
idea builds upon the findings of a previous study that used static photographic stimuli at varying
expressive intensities (constructed by repeatedly morphing a full expression with a neutral

expression to result in 9 intensity levels for each emotion) to estimate identification thresholds
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(the intensity at which an expression is identified correctly on two consecutive trials) for autistic
and control participants. The authors found that autistic individuals had significantly higher
identification thresholds than controls, meaning that a higher intensity was necessary before an
expression appeared angry to ASD participants. Importantly, this study also found no
significant group differences in identification thresholds for happiness or sadness??2. Song and
Hakoda’s findings suggest that autistic individuals have a different identification threshold for
static angry expressions???, For dynamic facial expressions, it may be that autistic and control
individuals have a different ‘kinematic identification threshold’ such that the expression must
move more quickly (than would be required for control individuals) before it is identified as
angry. Further research is necessary to investigate whether the group difference in recognising
angry expressions at the S2K2 level is underpinned by a difference in kinematic identification
thresholds.

Another (non-mutually exclusive) explanation for why the autistic individuals may have
particular difficulty recognising angry expressions relates to movement production. Previous
studies have documented differences between autistic and control participants in the production
of facial expressions of emotion!*®!*’ In our study, we used PLF videos that were made by
filming four non-autistic participants posing different emotional states. Given that autistic and
non-autistic individuals may produce different facial expressions and that one’s own movement

patterns influence the perception and interpretation of the movements of others®33-3%,

our
autistic participants might have struggled to read emotion in our PLF videos because the
expressions were dissimilar to expressions that they would have adopted themselves. To date,
studies that have documented differences between autistic and control participants in the

production of facial expressions of emotion have used non-autistic observer ratings as a

measure of the quality of facial expression (i.e., from the perspective of a non-autistic rater
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autistic individuals produce expressions which appear “atypical”’). Consequently, research has
not yet identified what specifically is different about autistic and non-autistic facial expressions.
Importantly, differences might be found in the final arrangement of facial features (i.e., spatial
differences) or the speed/acceleration/jerk with which individuals reach these expressions (i.e.,
kinematic differences). Further research is necessary to a) characterise the expressive
differences between autistic and non-autistic individuals, b) ascertain whether there are greater
expressive differences between the groups for angry compared to happy and sad expressions
and, ¢) confirm whether such differences in movement profile contribute to emotion recognition
difficulties.

Another potential explanation for why autistic individuals have specific difficulties
recognising anger concerns facial information sampling. Autistic individuals are thought to

exhibit a local, rather than global, processing style!¢>-168

, wherein they focus on specific regions
of the face such as the mouth??#22%, Given that the majority of expressive information for anger
is thought to be conveyed around the eyes??’??% the autistic participants may struggle to
recognise this emotional facial expression. Conversely, these individuals may not struggle to
recognise happiness and sadness because, for these emotions, the mouth contains relatively
more expressive information'?!. As such, a local-processing style characterised by a focus on
the mouth region may only impede the recognition of anger, and not happiness or sadness, for
autistic individuals. Further research which employs eye tracking is necessary to determine
whether differences in facial information sampling underpin selective difficulties recognising
anger.

There is growing support for the alexithymia hypothesis, not only with respect to facial
emotion recognition (e.g., 20%21221333%)" but also with vocal and musical emotion

357,358

recognition , and in related domains such as empathy?®®. As these literatures grow,
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establishing what can and cannot be explained by the alexithymia hypothesis is of increasing
importance not only to academics working in the field but also to clinicians for whom it is
important to understand which aspects of behaviour and cognition are indicative of autism, and
which are more representative of alexithymia. In the present study, we found that self-reported
alexithymia was not predictive of the effect of spatial or kinematic manipulation on emotion
recognition from motion cues, emotion recognition accuracy in general, or emotion recognition
accuracy specifically relating to angry videos at the normal spatial and speed level. However,
when we decomposed our accuracy measure into the magnitude of ratings for the correct and
incorrect emotions, we found that elevated alexithymia was associated with increased ratings
for both correct and incorrect emotions. Consequently, these data suggest that, in the context of
our task, individuals with high levels of alexithymic traits can recognise emotion from motion
cues to the extent that they can, for example, rate an angry PLF as more angry, relative to happy
and sad. However, compared to individuals low in alexithymic traits, they are more likely to
rate a PLF high for a/l emotion categories.

One possible explanation for the absence of a significant relationship between
alexithymia and emotion recognition accuracy in our study is linked to the use of degraded
facial motion stimuli. Bird, Press and Richardson®° demonstrated that impairments in emotion
recognition in highly alexithymic individuals may be driven by an avoidance of the eye region.
It is possible that, by using degraded stimuli in which the eye-region is represented by the
kinematics and spatial configuration of only 6 landmarks (white dots), we have changed the
way in which attention is allocated across the face. We know, from previous work, that the
speed of movement of our eye-region landmarks carries emotion-differentiating signal?°.
However, it is possible that when eyes are represented as six white dots, they are no longer

avoided by highly alexithymic individuals. Thus, alexithymic individuals might process
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information from the eye-region of our PLF stimuli more than they would with, for example,
photographic stimuli. It is also conceivable that our PLF stimuli encourage (all) observers’
attention towards the mouth over the eye region. If this were the case, a correlation between
alexithymia and impaired emotion recognition may be hidden since there is no known link
between alexithymia and impaired recognition of emotion from mouth-region cues.

Perhaps of most interest for the field of alexithymia research is our finding that
alexithymic traits are predictive of increased magnitude of both correct and incorrect emotion
ratings. Such results are reminiscent of a literature which concerns increased emotional
reactivity in alexithymic individuals®*°. However, whilst it is tempting to speculate that our
results are indicative of over-attribution of emotion in highly alexithymic individuals, it should
be noted that there is no objective ground-truth with respect to the magnitude of ratings of our
PLF stimuli. Our stimuli were designed to discretely represent happy, angry and sad emotions
thus one may argue that the “ground-truth” for an angry PLF, for example, is that happy and
sad ratings should be zero. However, we cannot guarantee that our PLF actors did not
inadvertently produce mixed emotional expressions. A broader point here is that, given the
paucity of research concerning emotion-related facial motion cues, the extent to which facial
movements overlap between happy, angry and sad expressions is currently unclear. Thus, whilst
it may be that highly alexithymic individuals are over-attributing emotion, an alternative
possibility is that they are more finely tuned to emotion-related motion cues and are in fact
correctly identifying that some motion cues are linked to happy, sad and angry states (though
perhaps with different probabilities). To resolve this interpretational issue, further research is

required to establish the extent of overlap between dynamic happy, angry and sad expressions.
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Limitations

In the present study, we aimed to produce statistically rigorous and replicable results.
The standard alpha level (p < .05) has recently been called into question for its utility and
appropriateness in psychological research?*!-364, Hence, we are reassured to see that our main
findings remain significant, after Bonferroni-correction and, when we set a more conservative
alpha threshold of 0.025. Importantly, substantial effect sizes and Bayes factors support our low
p values, thus providing us with further confidence in our results. Therefore, we believe our
findings make sound contributions to the literatures regarding alexithymia, ASD and dynamic
facial expression recognition, however, there are several limitations to consider.

One potential limitation of this study concerns the way in which emotion recognition
performance has been calculated. By using intensity ratings to calculate emotion recognition
accuracy, we are unable to delineate whether individuals score poorly (1) due to difficulties
distinguishing whether expressions appear angry, happy or sad, or (2) due to them perceiving
the expressions to be less intensely emotional. To illustrate this, consider the following
scenario. Participant A believes that a happy PLF comprises a subtle, but clear, representation
of happiness, thus resulting in the attribution of a low happiness rating (e.g., two out of ten),
and a rating of zero for both anger and sadness. Participant A would only score two points
despite accurately discriminating that the expression is happiness and not anger or sadness.
Now consider Participant B, who believes that the same happy PLF comprises a more intense
version of the expression, thus resulting in a moderate happiness rating (e.g., five out of ten),
and a rating of zero for both anger and sadness. Participant B would score three points higher
than Participant A, however it could be argued that they are no more accurate. Rather, this latter
individual just perceives the expression to be more intensely emotional. To mitigate this

limitation, we also calculated binary accuracy scores, wherein participants scored one point
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when they attributed the highest intensity rating to the correct emotion, and zero points when
they attributed the highest intensity rating to an incorrect emotion. Using these binary scores,
both Participant A and Participant B would score one point for their accurate response. After
calculating these scores, we conducted our analyses again (see Appendix 1.3), finding a highly
similar pattern of results. Most notably, the autistic participants correctly recognised a lower
proportion of angry expressions with normal spatial exaggeration and speed than their non-
autistic counterparts, thus replicating our primary results. Together, these results provide
convincing evidence that the autistic participants have difficulties recognising angry facial
motion at the normal level, irrespective of the way in which emotion recognition accuracy is
calculated.

Another potential limitation is that due to COVID-19-related restrictions on face-to-face
testing, only 22 of our ASD group completed ADOS-2 assessments. As a result, we have limited
information about whether the remaining 9 participants would surpass the threshold for an
autism or autism spectrum diagnosis on the ADOS-2. In addition, of the 22 participants that did
complete the observational assessment, just 16 met criteria for a diagnosis. Hence, it is possible
that our ASD group display less frequent or lower intensity autistic behaviours than would
typically be seen in an ASD population. In spite of this we identified a significant group
difference. Note that this limitation may have resulted in false negatives or an underestimation
of the true effect size. However, it is highly unlikely that it could have resulted in false positives
or inflated effects sizes.

Another potential limitation of this study is that we used the self-report TAS-20 to
measure alexithymia. Whilst 89% of studies comparing the emotional self-awareness of autistic
and non-autistic participants use self-report measures (and 62% use the TAS-20'%), some

authors (e.g., 36>3%) have questioned their utility as “people with alexithymia, by definition,
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should not be able to report their psychological state*%®. However, endeavours to develop
objective measures of alexithymia are in their infancy and early attempts are yet to be replicated
(e.g., *%73%%) and thus self-report measures are necessary. Whilst the TAS-20 has long been the
gold-standard tool for assessing alexithymia, there are some concerns that it might actually be
a measure of psychopathology symptoms or current levels of psychological distress (see
365.366.369-372  Further studies may try to replicate our results using alternative measures of
alexithymia such as the Perth Alexithymia Questionnaire®”® or Bermond Vorst Alexithymia
Questionnaire (BVAQ)37, which have been argued to index an alexithymia construct that is
distinct from individuals’ current level of psychological distress®’!. However, since our aim
was to investigate whether the alexithymia hypothesis applies, not only to emotion recognition
from static face stimuli, but also to recognition from dynamic stimuli, it was crucial for the
design of the current study that we employ the same measure of alexithymia (i.e., the TAS-20)
as has previously been employed in the emotion recognition literature (e.g., 20%-212:213:33),

The results of the current study are informative with respect to the recognition of
emotion from facial motion cues. However, given that surface properties’’>, such as
pigmentation/colouring®’¢ and shading/depth3”’, are implicated in the recognition of emotion,
one should be cautious about assuming that our findings generalise to full dynamic emotional
expressions (e.g., video stimuli). Future research should aim to clarify whether our findings are
specific to the recognition of emotion from facial motion cues, or if they are applicable more
broadly to emotion recognition from full dynamic displays.

Conclusions

The current study tested whether autistic, relative to alexithymia-matched controls, have

greater difficulty recognising emotions from facial motion cues. In conflict with our

hypotheses, we observed that autistic, relative to control, adults showed reduced recognition of
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angry facial motion at the normal (100%) spatial and speed level. Interestingly, whilst for
controls recognition accuracy improved across all levels of the kinematic manipulation for
angry videos, autistic participants only benefitted from the 100% to 150% speed increase.
Alexithymic traits were associated with elevated correct and elevated incorrect emotion ratings,
but not accuracy. Our results draw attention to anger specific differences in emotion recognition
between autistic and non-autistic individuals. Future research should aim to elucidate why

autistic individuals exhibit differences that are specific to angry expressions.
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Chapter 3: Comparing internal representations of facial
expression kinematics between autistic and non-autistic adults

In the previous chapter, we discovered that the autistic participants had higher
kinematic identification thresholds for anger, but not happiness or sadness, than their non-
autistic counterparts. That is, the autistic participants required angry (but not happy or sad)
expressions to be higher in intensity — here, in terms of speed — before the expressions could
be correctly identified. As discussed in Chapter 2, these results raise the possibility that
autistic individuals possess more exaggerated, higher speed, visual representations of anger
than their non-autistic peers. To formally test this possibility, in the following chapter, we
employed the method of adjustment to index and then compare the angry, happy and sad

visual representations of autistic and non-autistic individuals with respect to speed.
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Publication 2:

Comparing internal representations of facial expression kinematics between autistic and
non-autistic adults

Connor T. Keating, Sophie Sowden, and Jennifer L. Cook
(Published in Autism Research)

Reference: Keating CT, Sowden S, Cook JL. Comparing internal representations of facial expression
kinematics between autistic and non-autistic adults. Autism Research. 2022 Mar;15(3):493-506.
https://doi.org/10.1002/aur.2642
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Abstract

Recent developments suggest that autistic individuals require dynamic angry expressions to
have a higher speed in order for them to be successfully identified. Therefore, it is plausible
that autistic individuals do not have a ‘deficit’ in angry expression recognition, but rather their
internal representation of these expressions is characterised by very high-speed movement. In
this study, matched groups of autistic and non-autistic adults completed a novel emotion-based
task which employed dynamic displays of happy, angry and sad point light facial (PLF)
expressions. On each trial, participants moved a slider to manipulate the speed of a PLF
stimulus until it moved at a speed that, in their ‘mind’s eye’, was typical of happy, angry or sad
expressions. Participants were shown three different types of PLFs — those showing the full-
face, only the eye region, and only the mouth region, wherein the latter two were included to
test whether differences in facial information sampling underpinned any dissimilarities in speed
attributions. Across both groups, participants attributed the highest speeds to angry, then happy,
then sad, facial motion. Participants increased the speed of angry and happy expressions by
41% and 27% respectively and decreased the speed of sad expressions by 18%. This suggests
that participants have ‘caricatured’ internal representations of emotion, wherein emotion-
related kinematic cues are over-emphasised. There were no differences between autistic and
non-autistic individuals in the speeds attributed to full-face and partial-face angry, happy and
sad expressions respectively. Consequently, we find no evidence that autistic adults possess

atypically fast internal representations of anger.
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3.1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by
difficulties in social communication, and restricted and repetitive interests!>!. The question of
whether autistic individuals exhibit atypical facial emotion recognition has been debated for
over 30 years (see 46219217 for reviews). However, to date this literature has largely focused on
the recognition of emotion from static face stimuli. This bias in the literature potentially reflects
a broader bias across the entirety of the emotion perception literature. Indeed, it is well
established that the spatial features of facial expressions (i.e., the configuration of facial features
relative to one another) are important for emotion recognition and thus that emotion can be
recognised from static snapshots of faces*’®38!, In contrast, a limited number of studies have
investigated the influence of dynamic (changing over time) emotion cues such as the temporal
order of face actions within a sequence (see 80382-3%4) "and facial movement kinematics, where
kinematic information concerns all properties of movement except force and in the context of
facial movement typically refers to speed, acceleration, and jerk (change in acceleration).

Recent developments in the facial emotion literature have started to tip this balance
(e.g., 80239382381 " Consequently, dynamic information is increasingly considered a valuable
source of cues with respect to emotion recognition. For instance, in a series of experiments with
non-autistic participants, Sowden et al*** demonstrated that facial movement kinematics (in this
instance, speed) comprise important cues for emotion recognition. More specifically, these
authors showed that across different facial actions (i.e., eyebrow widening, nose lengthening,
lip raising, mouth widening and mouth opening) and emotional expression contexts (i.e., posed,
spontaneous and communicative), happy and angry expressions were typically fastest, and sad
expressions were slowest?*°. Importantly, Sowden et al**® also demonstrated that kinematic

cues play a causal role in facial emotion judgements. Their paradigm employed point-light
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displays (a series of dots that convey biological motion) of the face (point light faces; PLFs)
that had been manipulated to achieve three spatial levels, ranging from reduced to increased
spatial movement (50% spatial; 100%; 150%), and three kinematic levels, ranging from
reduced to increased speed (50% speed; 100%; 150%). Sowden et al**° demonstrated that
speeding-up facial expressions promoted anger and happiness judgements and slowing-down
expressions encouraged sadness judgments, thus the speed of movement of internal facial
features influences observers’ judgements of emotion.

In order to redress the bias towards the use of static stimuli in the ASD emotion
recognition literature, our most recent work employed the paradigm developed by Sowden and
colleagues to investigate emotion recognition from facial motion cues in ASD3*°, There were
two key findings from our recent study. Firstly, autistic adults (relative to non-autistic controls
who were matched on age, gender, non-verbal reasoning and alexithymia) had significantly
lower emotion recognition accuracy for angry, but not happy or sad, facial motion when PLFs
were unmanipulated (i.e., when they were played at their normal (100%) speed and with normal
(100%) degree of spatial movement across frames)®®>. Secondly, whilst for controls,
recognition accuracy increased when angry facial motion was sped up from 50% to 100% speed
and from 100% to 150% speed, the recognition accuracy of autistic participants only increased
from 100% to 150% (and not from 50% to 100%)%>. Note that since our groups were matched
in terms of alexithymia (a subclinical condition, characterised by difficulties identifying and
expressing emotions'**) differences between our groups were related to autistic, not
alexithymic, characteristics (for further discussion of this issue see 207-2%%), In sum, we observed
that autistic adults exhibited typical anger recognition for high speed (150%) PLFs, but reduced

accuracy (relative to non-autistic adults) at a lower speed (100%).
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Our recent findings therefore illustrate differences between autistic and non-autistic
adults in emotion recognition from facial kinematic information®®>. However, these differences
are specifically restricted to anger and do not extend to happiness and sadness®®®. Interestingly,
this anger-specific difficulty is also mirrored in the static emotion recognition literature. A
number of empirical studies indicate that the recognition of anger is particularly challenging
for autistic individuals®!*-??2, Indeed, a meta-analysis of this literature suggests that there are
greater differences between autistic and non-autistic individuals in the recognition of angry than
there are for happy and sad expressions!®!. Further to this, Song and Hakoda demonstrated that
autistic children (relative to non-autistic children) require angry, but not happy or sad,
expressions to have higher emotional intensity in order for them to be correctly identified*?.
More specifically, to estimate ‘identification thresholds’ (the intensity at which an expression
is identified correctly on two consecutive trials) Song and Hakoda used static photographic
stimuli at varying expressive intensities (constructed by repeatedly morphing a full expression
with a neutral expression to result in 9 intensity levels for each emotion) and asked participants
to select which emotion most effectively described the emotion shown (out of six possible
options)?*?. They found that, compared to non-autistic counterparts, autistic children had
significantly higher identification thresholds for angry expressions, meaning that a higher
intensity was necessary before an expression could be reliably identified as angry. Importantly,
there were no significant differences between the groups for identification thresholds for
happiness or sadness??2. These findings suggest that autistic individuals require a higher
intensity of emotion before a static facial expression can be reliably identified as angry. At
present there is no equivalent study for dynamic facial expressions.

385

Our recent results’ raise the hypothesis that autistic adults may require a higher

intensity of emotion before a dynamic facial expression can be reliably identified as angry. That
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is, our results clearly illustrated that autistic adults did not have a categorical ‘deficit’ in the
recognition of anger’®®. Rather, relative to controls, autistic participants required a higher speed
before they could accurately identify angry expressions®®. It is therefore plausible that autistic
adults do not have a ‘deficit’ in the recognition of angry expressions, but rather their internal
representation of angry facial expressions (i.e., the speeds at which they would visualise these
emotions in their “mind’s eye”) is characterised by very high-speed movements*®>.

Atypical internal representations of facial expressions could influence the accuracy of
emotion recognition via multiple potential mechanistic pathways. For example, according to
“template matching” models of emotion labelling (see !47-%6), when trying to interpret an
expression, one compares the physical features of the observed expression to one’s own internal
representations or expression “templates” and “reads off” the corresponding emotion label!'¥’.
Consequently, correct labelling of the observed expression is more likely if the “sender” and
“receiver” have matching internal representations of emotions (see '47-87). Thus, individuals
with internal representations of emotion that are very common within the general population
are more likely, on average, to correctly label observed expressions. Whereas correct emotion
labelling may be reduced in individuals with uncommon internal representations. In this case,
an abnormally high-speed representation of anger may lead to reduced accuracy in recognising
“normal speed” angry stimuli because only high-speed angry expressions match the observer’s
internal representation of anger. In addition, internal representations of facial expressions
provide predictive information based on previous experience (i.e., ‘priors’)30-388.389,
Consequently, an abnormally high-speed representation of anger may lead to reduced accuracy
in recognising “normal speed” angry stimuli by acting as an atypical prior which biases

subsequent perception of incoming face stimuli®®’,
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The question of why differences in autistic facial emotion recognition are specific to
anger is a difficult one. If autistic individuals have internal representations of anger that are
characterised by atypically high-speed movement, why would this be selective to anger, why is
this not also the case for emotions such as happiness? One potential explanation relates to
differences in facial information sampling. There is evidence to suggest that autistic individuals
tend to avoid looking at the eye region of the face, and instead preferentially look at the mouth
region??*22% (though also see ¥ for a debate concerning the role of alexithymia in explaining
differences in autistic facial information sampling). Some researchers believe that this is a

390-392

strategy that autistic individuals adopt to modulate amygdala activation , which is often

229, 393-399

atypical in ASD in response to faces , as the amygdala is highly responsive to the eye

region of emotional facial expressions*®’. Given that for anger the majority of expressive
information is thought to be conveyed in the upper half of the face, around the eye region??7-22%,
autistic participants may require greater “signal” (i.e., faster movement) when recognising
anger because they are focusing on an information-poor part of the face (i.e., the mouth). This
would not be the case for happy and sad because, for these emotions, the mouth comprises a
more information rich part of the face3740!,

To investigate whether, compared to non-autistic adults, autistic adults have different
internal representations of anger that are characterised by higher mean speed, the current study
employed a novel emotion-based task which we refer to as the “PLF slider task”. Using a
method of adjustment design, participants were required to manipulate a sliding scale in order
to speed-up or slow-down PLF stimuli until the stimuli matched their internal representation of
anger, happiness and sadness. PLF stimuli were employed to facilitate comparisons between

the current study and our previous study>%’, to draw participants’ attention to facial motion cues

as opposed to static cues such as texture, luminance, and contrast, and because the use of point
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lights to represent particular facial landmarks simplifies the task of modulating facial speed in
real time. This method estimates, for each participant, an index of mean percentage speed
attribution. We hypothesised that, relative to control participants, autistic adults would attribute
higher mean speeds to angry, but not happy or sad, stimuli. Furthermore, we reasoned that, if
higher speed thresholds for anger, are driven by a focus on the mouth region — an information-
poor part of the face with respect to anger recognition — differences between the ASD and
control groups should disappear if participants are required to focus on information-rich parts
of the face (i.e., the eye region). To test this hypothesis, we included a partial face condition, in

which participants saw only the upper or lower face of the face on each trial.

3.2. Method

See https://osf.io/sgxum for the pre-registration relating to this report.

3.2.1. Participants

A total of 25 autistic and 25 non-autistic participants were recruited from a local
database held by the Birmingham Psychology Autism Research Team and Prolific. The study
was approved by the Science, Technology, Engineering and Mathematics (STEM) ethics
committee at the University of Birmingham (ERN_16-0281AP9B) and was conducted in
accordance with the principles of the revised Helsinki Declaration.

The pre-registered sample size was based on an a priori power analysis conducted using

3 in recognition accuracy

G*Power*?2, which focuses on replicating the group-difference?®
(between ASD and control individuals) for angry videos at the normal spatial and speed level.
Using data from our previous study®®, 25 participants are required in each group in order to

have 80% power to detect an effect size of 0.719 (Cohen’s d) at alpha level 0.05 for this group-

difference in accuracy.
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All participants in the ASD group had previously received a clinical diagnosis of ASD
from an independent clinician. The level of autistic traits of 21 individuals in the ASD group
was assessed using the Autism Diagnostic Observation Schedule (version 2)*+. Of those who
did complete the ADOS assessment, 16 met criteria for ASD (5 autism, 11 autism spectrum,;
mean ADOS-2 score = 9.62). Although, five individuals in the ASD group did not meet criteria
for diagnosis according to the ADOS, they had previously received a clinical diagnosis of ASD
and thus still participated in the study. Unfortunately, it was not possible to complete
observational assessments on four ASD participants due to restrictions on face-to-face testing
during the COVID-19 pandemic. The participants in the ASD group had significantly higher
Autism Quotient scores*** than those in the non-autistic group (see Table 3.1).

3.2.2. Procedures

Participants completed our group-matching measures followed by the PLF slider task,
which were both administered online via Qualtrics and Gorilla.sc.
Group-matching measures

To facilitate group-matching, participants provided information concerning their age
and gender, and completed the Toronto Alexithymia Scale (TAS-20)*** and the Matrix
Reasoning Item Bank (MaRs-IB)*#, an 8-minute assessment of non-verbal reasoning ability.
The Autism Quotient (AQ)*** was also completed to ensure that the autistic group were
significantly higher in autistic traits. All of these measures were completed online.

PLF slider task

The PLF slider task is a novel tool for the estimation of the mean speed of a participant’s
internal representation of emotional expressions. In this task, on each trial, participants are
presented with a PLF stimulus video (on average, approximately 6 seconds in length) which

was looped such that when the stimulus reached the end it played again from the beginning.
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Participants were instructed to “move the slider to change the speed of this video until it matches
the speed of a typical ANGRY/HAPPY/SAD expression” (note that participants were only
asked to change the speed of the expression to match the emotion that was displayed in the
stimulus video, i.e., on a trial where an angry facial expression was presented, participants were
only asked to manipulate the speed of the video so that it matched the speed of a typical angry
expression). Consequently, participants were matching the speed of the displayed PLF to their
internal representation of that expression. Participants could change the speed of the video by
moving a slider to the left (decrease speed) or right (increase speed) on a visual analogue scale
ranging from 25% to 200% of the recorded speed. Once participants were satisfied that the
speed of the video matched that of a typical angry/happy/sad expression, they could press the
spacebar to continue. There was no time limit for participants to respond on each trial. This task
indexes the percentage speed attributed, by participants, to each of the PLF stimulus videos
(e.g., 125% speed).

The PLF stimulus videos (taken from Sowden et al?*) were originally created by taking
video recordings of four actors (two male, two female) verbalising sentences whilst posing the
three target emotions (angry, happy and sad). These recordings were then fed into OpenFace*??
from which the x and y coordinates of 68 facial landmarks were extracted at 25 frames per
second (FPS). To create the PLF stimuli, Sowden and colleagues?®® displayed successive frames
of these coordinates as white dots on a black background (using Cogent graphics for MATLAB)
and saved these displays as video files. This resulted in four videos per emotion (i.e., one for
each actor).

There were two main sections of the PLF slider task. In the first part of the task (the
full-face condition), participants were shown full PLF stimuli made up of 68 white dots on a

black background (see Appendix 2.1). In the second part of the task (partial face condition),
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participants were shown partial PLF stimuli comprising 32 dots on a black background
displaying either the eye or mouth region (see Appendix 2.1). In the first part of this task (the
full condition), participants were shown four repetitions of full-face PLF stimuli for each of the
four actors, however, each repetition had a different starting speed (80%, 90%, 100% and 110%
speed). The starting speed manipulation ensured that the point on the scale relating to the
normal recorded (100%) speed was not always in the same spatial location. This resulted in 16
full-face videos per emotion (4 actors x 4 starting speeds x 3 emotions = 48 trials in total).
Participants completed three practice trials (one for each emotion at 100% starting speed) and
then the 48 randomly ordered experimental trials across three blocks. In the second part of the
task (the partial face condition), participants were shown two repetitions of eye PLF stimuli,
and two repetitions of mouth PLF stimuli, for each actor. The starting speeds for these
repetitions were 80% and 100% speed respectively. This resulted in 8 eye and 8 mouth PLF
stimulus videos per emotion. Participants completed 48 randomly ordered experimental trials
(4 actors x 2 face areas x 2 starting speeds x 3 emotions = 48 trials in total) across three blocks.
3.2.3. Score Calculations
Group-matching measures

Scores on the AQ and TAS-20 were calculated as a sum of participants’ responses
whereby, in line with published standards for each questionnaire, some questions were reverse
scored. Higher scores on the AQ (maximum score: 50) and TA-20S (maximum score: 100)
reflect higher levels of autistic and alexithymic traits respectively. Scores on the Matrix
Reasoning Item Bank (NVR) were calculated as the percentage of correct responses within 8

minutes.
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PLF slider task

Before calculating percentage speed change and attributed speed (see below), we
adjusted for the PLF starting speed. To do so, we multiplied the percentage speed attributed to
the videos moving at 80% speed by 0.8, 90% speed by 0.9, and 110% speed by 1.1 (if a
participant attributed 125% speed to a video with 80% starting speed, they actually attributed
100% speed to the video; 125 x 0.8 = 100; that is, they adjusted the speed of the video such that
it played back at 100% of the speed at which it was recorded). This gave us ‘adjusted percentage
speed attributions’.

Percentage speed change. In order to index whether participants’ internal
representations of emotion were faster or slower than the 100% (natural) speed of the stimulus
videos, we calculated percentage speed change. This index was calculated by subtracting 100
from all of the adjusted percentage speed attributions made by participants (e.g., if a participant
attributed 73% speed to a video (after adjusting for starting speed), the percentage speed change
would be -27%). Therefore, this index of percentage speed change reflects how much
participants changed the speed of the PLF stimulus video relative to the speed it was recorded
at (since we had already corrected for starting speed).

Attributed speed. In order to answer the question of whether autistic and non-autistic
individuals have differing internal representations of angry, happy and sad dynamic facial
motion in terms of speed, we needed to calculate the speed (in pixels per frame) that participants
attributed to each of these emotions. We did this via three steps; (1) calculating the recorded
speed in pixels per frame for each PLF stimulus; (2) calculating an attribution multiplier based
on the participants’ responses (i.e., based on percentage speed change) and finally (3)
calculating attributed speed by multiplying the recorded speed of the PLFs with this attribution

multiplier.
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For step one, we followed procedures outlined in Sowden et al. (2021). The 12 different
PLF videos (4 actors x 3 emotions) were fed into the open-source software OpenFace*® to
identify the x and y coordinates (in pixels) of 68 facial landmarks, sampled at a rate of 25Hz.
Subsequently, key points (e.g., inner eyebrow) were identified and distances between these key
points were calculated as the square root of the sum of squared differentials of the x and y co-
ordinates of each key point. Next, these face distances were summed to create five face
“actions” (as in 2**277) including inner eyebrow widening, nose lengthening, lip raising, mouth
widening and mouth opening. Speed was calculated as the absolute value of the average change
in distance between relevant points on the face for each face action across the whole video clip,
and thus represents the absolute mean speed (pixels/frame) for each facial action, within the
whole recording window. These speed vectors were low pass filtered at 10 Hz to include human
movement signal and exclude noise associated with the MATLAB diff function. Since our
speed measure concerns the movement of face actions (such as eyebrow widening) it represents
the speed of movement of the internal features of the face, not the speed of rigid-body head
movement. We focus on the internal features because we know that their movement speed is
important in emotion recognition?*°. For the full-face videos, we calculated mean speed by
taking an average for each video across all 5 facial actions. For videos in the partial face
condition, we took an average of speed across the relevant facial action regions (e.g., averaging
across eyebrow widening and nose lengthening for PLFs displaying the eyes, and averaging
across lip raising, mouth widening and mouth opening for PLFs displaying the mouth).

Next, we transformed participants’ responses to each of the full-face and partial face
emotional videos into “attribution multipliers” by dividing percentage speed change by 100 and
then adding 1 to all the values (e.g., for a trial in which a participant has increased the speed of

a video relative to the speed at which it was recorded by 40%, the attribution multiplier would
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be 1.4. For a trial in which a participant decreases the speed by 27%, the attribution multiplier
would be 0.73). Following this, we calculated attributed speed by multiplying the “attribution
multiplier” by the mean speeds that we calculated (see above) for each of the full-face/partial-
face emotional videos. Finally, we calculated the mean speeds attributed to the angry, happy
and sad videos by taking an average across the videos for each emotion respectively.

3.2.4. Statistical Analyses

Preregistration, data, and analysis files are available online at https://osf.io/xa23h/. For

all analyses, we used a p = .05 significance threshold to determine whether to accept or reject
the null hypothesis. The frequentist approach was also supplemented with the calculation of
Bayes Factors, which quantify the relative evidence for one theory or model over another. For
all Bayesian analyses, we followed the classification scheme used in JASP3%2: BFjo values
between one and three represent weak evidence, between three and ten moderate evidence, and

greater than ten strong evidence, for the experimental hypothesis. Similarly, BFio values

1 . 1 1 .
between 1 and 3 reflect weak evidence, between 3 and o moderate evidence, and smaller than

1—10 strong evidence, for the null hypothesis respectively>2. For all Bayesian ANOVAs, a default

Uniform prior was used. For all Bayesian independent samples t-tests, a default prior was used
(Cauchy width = 0.707).
PLF slider task

To test our first hypothesis, we conducted two mixed 2 x 3 Analysis of Variance
(ANOVA), with the between-subjects factor group (ASD, control) and the within-subjects
factor emotion (angry, happy, sad). In the first of these ANOVAs, we used percentage speed
change as our dependent variable (DV), and in the second we used mean attributed speed as
our DV. To test our second hypothesis, we conducted two mixed 2 x 2 x 3 ANOVAs with the

between-subjects factor group (ASD, control), and the within-subjects factors face area (eyes,
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mouth) and emotion (angry, happy, sad). As before, in the first of these ANOVAs, we used

percentage speed change as our DV, and in the second we used mean attributed speed.

3.3. Results

3.3.1. Group Demographics

Participants were matched on age, gender, NVR and alexithymia. The ASD group were
significantly higher in autistic traits. In order to ensure that there were no outliers in survey
scores, we verified that each of the participants’ scores on the AQ, TAS-20 and MaRs-IB were
no more than three standard deviations away from their group mean. Descriptive statistics for
these groups, in addition to the statistics pertaining to group comparisons are presented in Table
3.1. Information about participants’ ethnicities is reported in Appendix 2.2.

Table 3.1.

Means, standard deviations and group differences of participant characteristics. In the central
columns, means are followed by standard deviations in parentheses.

Control (n=25) ASD (n=25) Significance
Gender 9 Female, 15 Male, 1 Other 11 Female, 13 Male, 1 Other p=.842
Age 27.57 (9.70) 31.98(9.88) p=.118
NVR 63.31(15.75) 55.59(17.81) p=.111
TAS-20  56.00(12.97) 57.96(12.03) p=.582
AQ 20.04(7.17) 34.60(9.40) p <.001

Note. Non-verbal reasoning (NVR), Toronto Alexithymia Scale (TAS-20), Autism Quotient
(AQ). Age is in years.

3.3.2. Percentage Speed Change Analyses
In order to compare the extent to which autistic and non-autistic individuals
increased/decreased speed of emotional expression PLFs, we conducted a mixed 2 x 3 ANOVA

with the between-subjects factor group (ASD, control) and the within-subjects factor emotion
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(angry, happy, sad), and with percentage speed change as the dependent variable (DV). This
analysis revealed a main effect of emotion [F(2,96) = 84.78, p < .001, np° = .64, BF o= 2.58¢%;
Figure 3.1], with participants speeding up angry expressions the most [mean(standard error of
the mean (SEM)) = +41.10% (3.33)], followed by happy expressions [mean(SEM) = +26.78%
(2,47)], and slowing down sad expressions [mean(SEM) = -17.64% (3.37)]. Importantly, we
identified no main effect of group [t(48) = 0.67, p = .669, mean difference = 1.26%, BF10=
0.20] and, contrary to our hypothesis, no emotion x group interaction [F(2,96) = 2.14, p = .135,
np’ =.04, BF10=0.90; Figure 3.1]. Since our BF ¢ value only provided weak evidence to support
the null hypothesis, we proceeded to unpack this interaction. This showed that there were no
significant differences between the groups in the percentage speed change (even before
Bonferroni-correction) for angry [t(48) = 0.99, p = .326, mean difference = 6.60%, BF10=0.42],
happy [t(48) = 1.45, p = .154, mean difference = 7.15%, BF10=0.67] or sad [t(48) =-1.48,p =
.145, mean difference = -9.99%, BFi0 = 0.69] facial motion. Notably, in conflict with our
hypothesis, percentage speed change for anger was numerically higher in the non-autistic
relative to autistic participants [non-autistic mean(SEM) = +44.40%(4.70%); autistic

mean(SEM) = +37.79%(4.70%)].
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Figure 3.1.

Mean percentage speed change attributed to each target emotion for all participants (4) and
for control and autistic participants respectively (B).
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Note. In both graphs, the black line represents the mean, the shaded region represents one
standard deviation. The coloured box represents one standard error around the mean and the

dots represent individual datapoints.
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In the following additional analyses, the dependent variable (percentage speed change)
is calculated only from the trials in the partial face condition. To analyse this data, we conducted
a mixed 2 x 2 x 3 ANOVA with the between-subjects factor group (ASD, control), and the
within-subjects factors face area (eyes, mouth) and emotion (angry, happy, sad) in order to
compare the percentage speed change for the eye and mouth regions of the emotional
expressions across groups. Once again we identified a main effect of emotion [F(2,96) =75.464,
p <.001, 5P’ = .61, BF o= 2.65¢%], with participants speeding up the eye and mouth regions
most for angry [mean(SEM) = +31.84% (3.61)], followed by happy expressions [mean(SEM)
=+20.97% (2.54)], and slowing down these regions for sad expressions[mean(SEM) =-23.77%
(3.61)]. In addition, this analysis found no main effect of group [t(48) = 0.56, p = .575, mean
difference = 2.01%, BF19=0.17], or face area [F(1,48)=3.75,p =.059, nr’ = .07, BF19o=0.14],
no face area x group interaction [F(1,48) = 0.02, p =.900, #7° = .00, BF1o= 0.17], or face area
x emotion interaction [F(2,96) = 1.34, p =.266, np = .03, BF10=0.07], and finally no face area
x emotion x group interaction [F(2,96) = 0.27, p = .270, n#° = .01, BF10= 0.12]. Our analysis
also revealed that the emotion x group interaction was not significant [F(2,96) = 1.81, p=.178,
np* = .04, BF1p = 2.43] however since Bayesian statistics provide weak evidence for the
presence of an emotion x group interaction, we ran post-hoc independent samples t-tests. This
identified that there were no significant differences between autistic and control participants in
percentage speed change (before Bonferroni-correction) for angry [t(48) = 1.28, p =.205, mean
difference = 9.27%, BF10= 0.55], happy [t(48) = 0.99, p = .330, mean difference = 5.00%, BF 19
=0.42], or sad [t(48) = -1.14, p = .260, mean difference = -8.24%, BF1o= 0.48; see Figure 3.2]
displays when the eyes and mouth were grouped together (as would be the case in the emotion

X group interaction). Once again, contrary to our hypothesis, percentage speed change for anger
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was numerically higher in non-autistic relative to autistic participants [non-autistic mean(SEM)
=+36.48%(5.11%); autistic mean(SEM) = +27.21%(5.11%)].
Figure 3.2.

Mean percentage speed change attributed to each target emotion for the eyes (panel A) and
mouth (panel B) for control and autistic participants.
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Note. In both graphs, the black line represents the mean, the shaded region represents one
standard deviation. The coloured box represents one standard error around the mean and the
dots represent individual datapoints.
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3.3.3. Attributed Speed Analyses

In order to compare the mean speed attributed to the emotional expressions by autistic
and non-autistic individuals, we conducted a mixed 2 x 3 ANOVA with the between-subjects
factor group (ASD, control) and the within-subjects factor emotion (angry, happy, sad), and
with mean attributed speed as the DV. This analysis revealed a main effect of emotion [F(2, 96)
=254.61,p <.001, np’ = .84, BF o= 5.46e*], with participants attributing the highest speeds to
angry [mean(SEM) = 3.18(0.08) pixels/frame], followed by happy [mean(SEM) = 2.21(0.04)
pixels/frame], and finally sad [mean(SEM) = 1.18(0.05) pixels/frame] expressions.
Importantly, we identified no main effect of group [t(48) = 0.721, p = .475, mean difference =
0.04 pixels/frame, BF10= 0.20] and, contrary to our hypothesis, no emotion x group interaction
[F(2,96) = 1.74, p = .189, n#* = .04, BF 9= 0.60]. Since our Bayes Factor only provided weak
evidence to support the null hypothesis, we proceeded to unpack this interaction. This showed
that there were no significant differences between the groups in the speeds attributed to angry
[t(48) = 0.97, p = .337, mean difference = 0.15 pixels/frame, BF10= 0.42], happy [t(48) = 1.38,
p = .172, mean difference = 0.12 pixels/frame, BFio= 0.61] or sad [t(48) = -1.55, p = .128,
mean difference = -0.15 pixels/frame, BF1o= 0.75] facial motion (note that the stats shown are
before Bonferroni-correction). Notably, in conflict with our hypothesis, autistic participants
attributed numerically lower speeds to angry facial motion than their non-autistic counterparts
[autistic mean(SEM) = 3.11 pixels/frame(0.11 pixels/frame); non-autistic mean(SEM) = 3.26
pixels/frame(0.11 pixels/frame)].

In the following additional analyses, the dependent variable is calculated only from the
trials in the partial face condition. To analyse this data, we conducted a mixed 2 x 2 x 3 ANOVA
with the between-subjects factor group (ASD, control), and the within-subjects factors face

area (eyes, mouth) and emotion (angry, happy, sad) in order to compare the mean speed
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attributed to the eye and mouth regions of the emotional expressions across groups. Once again
we identified a main effect of emotion [F(2,96) = 221.54, p < .001, nr° = .82, BF 9= 9.60¢'"],
with participants attributing the highest speed to angry [mean(SEM) = 2.70(0.07) pixels/frame],
followed by happy [mean(SEM) = 1.96(0.04) pixels/frame], and finally sad [mean(SEM) =
1.01(0.05) pixels/frame] expressions. In addition, this analysis identified a main effect of face
area [F(1,48) =3732.59, p <.001, n7° = .99, BF o= 1.25¢*¢], with the highest speeds attributed
to the mouth region [mean(SEM) = 2.85(0.04) pixels/frame], and the slowest speeds attributed
to the eye region [mean(SEM) = 0.93(0.02) pixels/frame]. We also found a significant emotion
X face area interaction [F(2, 96) = 262.38, p <.001, 77’ = .85, BF10=4.99¢*!], which suggested
that there was a larger effect of face area for happy [F(1,48) =1922.89, p <.001, 5’ = .98, BF o
=4.17¢%] and angry [F(1,48) = 1266.40, p <.001, nr° = .96, BF 1o = 7.56¢*] than sad [F(1,48)
=331.58, p<.001, np* = .87, BF1o= 1.42¢e*}] facial motion. Taken together, higher speeds were
attributed to the mouth than eye region across all emotions, but this difference was greater for
happy and angry than sad facial motion (see Figure 3.3). There was no main effect of group
[t(48) = 0.98, p = .334, mean difference = 0.06 pixels/frame, BFi9= 0.16], no emotion x group
interaction [F(2,96) = 1.75, p = .188, 5’ = .04, BF19= 0.09] or face area x group interaction
[F(1,48) = 1.70, p = .199, n#* = .03, BF 9= 0.18], and finally no face area x emotion x group

interaction [F(2,96) = 1.71, p = .196, n#* = .03, BF 9= 0.24].
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Figure 3.3.

Mean attributed speed (pixels/frame) to each target emotion for the eyes (orange) and mouth

(blue).
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Note. For each condition, the black line represents the mean and the shaded region represents
one standard deviation. The coloured box represents one standard error around the mean and
the dots represent individual datapoints.

3.4. Discussion

The current study used a novel PLF slider task to investigate whether autistic and non-
autistic individuals have differing internal representations of angry, happy and sad dynamic
facial motion in terms of speed. In doing so, we identified that the participants, as a whole,
attributed the highest speeds to angry, followed by happy, followed by sad expressions for both
full-face and partial-face (eye and mouth) PLFs. More specifically, we found that on average,
participants increased the speed of full angry expressions by 41%, increased the speed of full

happy expressions by 27%, and finally decreased the speed of full sad expressions by 18%.
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Our primary concern, however, was whether autistic and non-autistic individuals
possess differing internal representations of the speeds of dynamic emotional expressions. We
hypothesised that the ASD and non-autistic control group would attribute different mean speeds
to full-face angry (and not happy or sad) expressions, that is we predicted an interaction
between group and emotion. Our frequentist analyses showed that there was no significant
group by emotion interaction in both the percentage speed change and attributed speed analyses.
However, Bayesian analyses indicated that our data only provided anecdotal evidence in
support of the null hypothesis (that there is no group x emotion interaction). To explore whether
there was a trend towards a difference between the groups in the speeds attributed to angry
expressions we unpacked the interaction. This revealed that there were no group differences in
the speeds attributed to full-face happy, sad and, importantly, angry facial motion in both the
frequentist and Bayesian analyses. Contrary to our hypothesis, for angry expressions thresholds
were numerically higher for the non-autistic than for the autistic group. Thus, the evidence
suggests that autistic and non-autistic individuals do not differ in their internal representations
of the speed of angry facial motion.

In addition, in the partial-face condition (when participants either saw the mouth or eyes
alone), our frequentist analyses identified that there was no group x emotion interaction.
However, our Bayesian analyses indicated that our data provided anecdotal evidence for the
presence of this interaction in the percentage speed change analysis. Importantly, unpacking
this interaction demonstrated, once again, that there were no group differences in how much
participants increased or decreased the speed of partial-face angry, happy and sad facial motion
(in both frequentist and Bayesian analyses). Notably, in conflict with our hypothesis, percentage
speed change for anger was numerically higher in the non-autistic relative to autistic

participants. In addition, in our attributed speed analysis, our data provided strong evidence for
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the absence of a group x emotion interaction (BFio = 0.09) in the partial-face condition. As
such, it was apparent that when we accounted for the recorded speed of the eye and mouth
expressions, the group x emotion interaction disappeared. Taken together, there were no group
differences in how much participants increased or decreased the speed of partial-face angry,
happy and sad facial motion, nor were there group differences in the speeds attributed to these
partial-face expressions.

Our secondary concern was whether there would be significant group differences in the
speeds attributed to the mouth, and not the eye, region for angry facial motion. We reasoned
that if higher speed thresholds for anger were driven by a focus on the mouth region - an
information-poor part of the face with respect to anger recognition - differences between the
autistic and non-autistic participants should disappear if participants are required to focus on
information-rich parts of the face (i.e., the eye region). Our results demonstrate that autistic and
non-autistic participants attributed comparable speeds for all emotional expressions,
irrespective of whether they saw information from the eye region, or mouth region alone.
Indeed, our Bayesian analyses provide moderate evidence to support the null hypothesis, as
shown by the Bayes Factors for the face area x emotion x group interaction in both the
percentage speed change (BFio = 0.12) and attributed speed (BF1o = 0.24) analyses. Therefore,
we found no evidence to support our hypothesis that autistic and non-autistic participants would
attribute different speeds for angry expressions in the mouth, but not eye, partial face condition.

One may query whether the current study would have observed significant differences
between the groups if we had recruited an ASD sample that scored more highly in terms of
autistic traits. We do not believe this to be the case for several reasons. Firstly, the mean AQ
score in this study was comparable to that in a large-scale study with over 800 autistic

participants (34.60 in the present study and 33.73 in “*%) and therefore, our sample is
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representative of the broader population in terms of autistic traits. Secondly, there was no
correlation between autistic traits (as measured by the AQ) and mean percentage speed change
[p=.287, BFio=0.31] or attributed speed [p = .247, BF 1o = 0.34] within our sample. Therefore,
even if we recruited participants who scored more highly in terms of autistic traits, it is unlikely
that larger group differences would emerge. Finally, our autistic participants have comparable
AQ, and ADOS scores to those in other studies (e.g., 2!%3834%%) in which significant group
differences in facial emotion recognition have been found.

Taken together, our results suggest that autistic and non-autistic individuals do not
significantly differ in their internal representations of full and partial (eye or mouth region)
angry, happy, and sad facial motion in terms of speed. Importantly, these results suggest that
the finding from our previous study wherein autistic participants were less accurate (relative to
alexithymia-matched non-autistic participants) in recognising angry expressions when stimuli
were played at 100% of their recorded speed (but not if they were played at 150% of recorded
speed), is unlikely due to differing internal representations in the speed domain. Consequently,
these results force us to question other processes which may be contributing to differences in
the recognition of anger in autistic samples.

One potential explanation is that whilst autistic and non-autistic individuals do not differ
in their internal representations (at least in the speed domain), autistic people may be /ess
affected/guided by these internal representations, and thus may exhibit differences in emotion
recognition. As discussed above, template matching models of emotion recognition emphasise
that, to label an expression, one must compare the incoming sensory stimulus (i.e. the facial
expression) to one’s internal representations of emotion and “read off” the corresponding
emotion label. However, such explanations overlook the effect that prior expectations have on

the perception of incoming sensory information. For example, if one expects to observe a happy
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expression one will attend more to features that generally signal happiness and less to features
that tend to signal sadness**S. According to Bayesian accounts, autistic people may be less

affected by their priors than neurotypical people?>%-26

and place greater emphasis on incoming
sensory information (see 2¢!). Thus, for non-autistic people, expectations can bias the perception
of expressions (i.e. incoming sensory stimuli) such that they better match internal
representations of expected emotions. For autistic people the perception of expressions may be
less affected by prior expectations. In cases where non-autistic people have informative priors
(which faithfully represent statistically regularities in the environment), this process should
improve emotion recognition. Thus, autistic individuals would exhibit a comparative reduction
in the accuracy of emotion recognition. That is, although autistic and non-autistic people may
have comparable internal representations, for non-autistic people only, expectations may bias
the perception of expressions to bring them “closer” to their internal templates. For comparable
emotion recognition, autistic people may require the incoming stimulus itself to be closer to
their internal representation. In line with this, in our previous work®®*, we observed that autistic
individuals had difficulty recognising normal speed (100%) angry expressions, which are
further away from the average internal representation speed (137.79%), but not those with a
higher speed (150%), which are closer to the average internal representation speed for anger.
Emotion recognition difficulties would be more likely for anger because, for both happy and
sad expressions, there is less of discrepancy between the normal (100%) speed that expressions
were displayed at and the average internal representation speed (happy = 123.19%; sad =
87.35%).

Another possible explanation for why autistic individuals have a particular difficulty
recognising angry expressions relates to movement production. In our previous study®®>, we

used PLF videos that were created by filming four non-autistic participants posing different
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emotions. Given that autistic and non-autistic individuals may produce different facial

expressions of emotion!46147

, and that one’s own movement patterns influence the
interpretation of the movement of others®>3-3%, the autistic participants in our previous study
might have exhibited reduced emotion recognition accuracy because the non-autistic
expressions were dissimilar to expressions that autistic individuals would adopt themselves.
That is, in addition to the process (outlined above) of matching visual expression stimuli to
internal templates, participants may motorically simulate observed expressions and “read off”
the corresponding emotion label*?7-4%° (though note that this process is not essential for emotion
recognition*!?). If the motoric simulation is associated with an unsuitable emotion label emotion
recognition accuracy would be reduced. Since internal visual representations and motor
programs are formed through different experiences (primarily the experience of observing
others’ expressions, and the experience of executing and refining actions until they achieve the
desired goal) and one has relatively little experience of observing (and therefore forming visual
representations based upon) one’s own facial expressions, it is possible that autistic individuals
could have internal motor programs for angry expressions that differ from those in the general
population, without have differing internal visual representations. If a mismatch in the
production of facial expressions is to explain autistic individuals’ difficulty recognising angry
expressions, one would expect to see that these groups differ more in their production of angry
relative to happy and sad expressions. This seems plausible since Faso and colleagues®%
identified that the angry expressions posed by autistic, relative to non-autistic, individuals were
rated (by non-autistic raters) as more intense (and there were no group differences in the
intensity of posed happy and sad expressions). Therefore, it could be the case that autistic angry
expressions are more intense (e.g., are faster or jerkier), and therefore this group struggle to

read the less intense non-autistic expressions. Further research is necessary to a) characterise
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the expressive differences of autistic and non-autistic individuals, and b) ascertain whether
these differences underpin an emotion-specific difficulty with angry expressions. In addition,
this line of investigation requires further work to determine the direction of causality. It could
be the case that autistic and non-autistic individuals produce different facial expressions and
this leads to bidirectional emotion recognition difficulties, but it is also possible that difficulties
with perceiving and labelling emotional facial expressions impacts on the production of
emotional expressions.

In addition to the implications for the autism literature, we believe that our results have
important implications for the study of emotion recognition more generally. Previous research
has demonstrated that when experimenters speed-up PLF expressions, observers are more
accurate in anger and happiness judgements and, when experimenters slow-down PLFs,
observers are more accurate in their judgments of sadness?*°. To date, however, no research has
investigated the speed of observers’ internal representations of dynamic emotional expressions.
Our findings, that participants increased speed (relative to the natural speed at which actors
executed these expressions) for happy and angry, and decreased speed for sad expressions,
suggest that people may have “caricatured” internal representations of emotion. In these
caricatures, emotion-related kinematic cues are over-emphasised such that sad expressions
appear extremely slow, and angry expressions appear extremely fast. Our results build on
findings from the static emotion recognition literature wherein exaggerated internal
representations of static expressions are common®®®, Our results also suggest a possible
psychological mechanism for Sowden et al’s observation that participants are more accurate in
their recognition of slowed sad expressions and speeded happy and angry expressions®*:
slowed sad expressions and speeded happy/angry expressions may comprise a better match to

participants’ internal representations of these emotions, thus facilitating emotion recognition.
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Limitations

The results of the current study are informative with respect to understanding emotion
representations from facial motion cues alone. However, since many features of expressions
are implicated in emotion processing, such as shading/depth?’” and pigmentation/colouring37S,
one should be cautious to assume that our findings generalise to full dynamic emotional
expressions (e.g., video recordings of facial expressions). It could be, for instance, that autistic
and non-autistic individuals differ in the speeds they attribute to full emotional expressions but
not point-light displays. However, given that our study was motivated by the observation of
group differences in emotion recognition from facial motion cues (as isolated by PLF
stimuli)*®, it was crucial to our overall research question that we used PLF stimuli in the current
study. It is also important to note that autistic and non-autistic groups could in principle differ
in their internal representations of facial expressions in the spatial (i.e., the configuration of
facial features relative to one another) but not speed dimension. In line with this, Song and
Hakoda??? demonstrated that autistic individuals required a higher intensity of static angry, but
not happy or sad, expressions in order for them to be correctly identified. Our choice to focus
on the speed, rather than spatial, domain was driven by our empirically grounded a priori
hypothesis that representations of anger would be characterised by higher speed movement.

With respect to the current studys, it is also important to note that whilst we tested adults,
the study by Song and Hakoda??? focused on children (mean age was approximately 11.5 years).
It is possible that there are developmental effects such that internal representations of emotion
differ between autistic and non-autistic children but not between autistic and non-autistic adults.
This is plausible since autistic children show less attention to faces than non-autistic children
(as shown by a lack of an attentional bias to faces, less distraction by faces in visual search

tasks, and lower fixation times 2°>>#11:412) and spend less time looking at heads/faces in a social
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413 Consequently, one may speculate that autistic children have

scene than autistic adults
atypical internal representations of emotion (at least in part due to reduced attention to faces),
however, by the time they reach adulthood, they have gathered enough information about faces
to have ‘typical’ emotion representations. At present, we cannot say whether we would have
found group differences if our sample was made-up of children. Since the current study was

385 our focus on an adult sample

motivated by our previous work with adult autistic participants
was necessary. To establish whether there are developmental changes in internal
representations of emotional expressions further work, which compares the development of
autistic and non-autistic children, is necessary.
Conclusions

The current study aimed to estimate the speeds that autistic and non-autistic individuals
attribute to angry, happy and sad dynamic facial motion. Whilst we found no group differences
in the speeds attributed to happy and sad expressions (thus supporting our hypothesis), we also
found no group difference for angry expressions (in conflict with our hypothesis).
Consequently, we find no evidence to support the idea that particular difficulties with
expression recognition from angry facial motion®®> are due to atypically fast (or slow) internal

representations of anger. Future research is necessary to further unpack why autistic individuals

display difficulties that are specific to angry expressions.
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Chapter 4: The inside out model of emotion recognition: how the
shape of one’s internal emotional landscape influences the
recognition of others’ emotions

The previous chapter provided convincing evidence that there are no group differences
in angry, happy and sad visual representations with respect to speed. These results force us to
consider other factors which may be contributing to emotion recognition difficulties for
autistic individuals. As discussed in the Introduction, constructionist!>*, template-

108-112 "and signal detection theories!* raise the possibility that individuals with

matching
precise and differentiated information within their emotion concepts — for instance with
respect to affective experiences and visual representations — may have a superior ability to
recognise the emotions of other people. However, at present, research has not tested this idea.
To investigate this possibility, it is necessary to first develop experimental tasks which
facilitate measurement of the precision and differentiation of one’s emotional experiences and
visual emotion representations, and second assess the contribution of these factors to emotion
recognition in the general population. If these variables predict emotion recognition
performance, an important next step will be to compare autistic and non-autistic individuals
on these factors (i.e., the precision and differentiation of emotional experiences and visual
emotion representations), and to determine whether differences therein contribute to emotion
recognition challenges for autistic people. Therefore, in the following chapter, across a series
of experiments, we first develop and validate two novel paradigms examining the precision
and differentiation of emotional experiences and visual emotion representations, and second

build a mechanistic model linking the experience, visual representation and recognition of

emotion, in a general population sample.
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Abstract

Some people are exceptional at reading emotional expressions, while others struggle. Here we
ask whether the way we experience emotion “on the inside” influences the way we expect
emotions to be expressed in the “outside world” and subsequently our ability to read others’
emotional expressions. Across multiple experiments, incorporating discovery and replication
samples, we develop EmoMap (N=20; N=271) and ExpressionMap (N=98; replication N=193)
to map adults’ experiences of emotions and visual representations of others’ emotions. Some
individuals have modular maps, wherein emotional experiences and visual representations are
precise and distinct- anger looks and feels different from happiness, which looks and feels
different from sadness. In contrast, others have experiences and representations that are variable
and overlapping- anger, happiness, and sadness look and feel similar and are easily confused
for one another. Here we illustrate an association between these maps: those with precise and
distinct experiences of emotion also have precise and distinct visual representations of emotion.
Finally (N=193), we construct the Inside Out Model of Emotion Recognition, which explains
60.8% of the variance in emotion recognition and illuminates multiple pathways to emotion
recognition difficulties. These findings have important implications for understanding emotion

recognition in numerous clinical populations.
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4.1. Introduction

Some people are exceptional at navigating the social world: the considerate concierge
rapidly reads facial expressions and anticipates every desire; the perceptive companion
accurately detects the sadness behind their friend’s smile; the skilled negotiator notices a telling
tightness around the eyes and knows just the right time to apply pressure. Other individuals
struggle: as Parkinson’s Disease progresses, people with this condition increasingly report
challenges with reading others’ emotional expressions*'4, and similar difficulties predict
negative social and wider health outcomes across a range of psychiatric and mental health

conditions*!3-417

. Despite clear individual differences in the ability to read others’ emotional
expressions, little is known about why these individual differences exist. Here we ask whether
individual differences in navigating the social world of others’ facial expressions are related to
individual differences in the shape of one’s own internal emotional landscape. In other words,
is there a relationship between our experience of emotion “on the inside” and our ability to
identify emotions in the “outside world”?

Internal “maps” of concepts - such as personality traits - can exert a considerable
influence on judgments we make about others. Stolier and colleagues*'® for instance, mapped
internal conceptual-trait maps by asking participants to rate the similarity of 13 different
personality traits. They also mapped representations of how these traits are depicted on people’s
faces by asking participants to rate various face images with respect to these 13 traits*'®. Both
internal (semantic) conceptual maps and external maps of facial representations, tended to
exhibit a modular structure with particular traits - such as aggressive, mean, dominant and
egotistical— clustering together*'®. Importantly, the shape of an individual’s map of others’

facial representations was highly correlated with the shape of their internal conceptual

landscape such that a perceiver who believed aggression and dominance to be closely related
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in conceptual space would be more likely (compared to a perceiver with a weak link between

t*18, Thus, Stolier and colleagues

the two concepts) to see an aggressive face as dominan
illustrate that, for trait judgements, internal conceptual maps and judgements we make about
others in the outside world are tightly related*'%.

Stolier and colleagues' work pertains to traits. Here we focus on emotions. Preliminary
evidence provides initial support for a link between the experience and recognition of emotion.
Israelashvili and colleagues®> for example, illustrated that individuals who are good at
differentiating their own experiences of distinct emotions are more accurate in reading others'
emotional facial expressions. Nevertheless, although preliminary evidence indicates that
individuals who are better able to identify how they feel “on the inside” are also better able to
recognise emotions in the “outside world”, it is unclear why this relationship exists. Afterall,
recognising one’s own emotions primarily depends upon the labelling of internal signals,
whereas recognising others’ emotions principally consists of categorizing incoming sensory
information. The psychological mechanisms supporting superior emotion recognition in
individuals with superior (own) emotion differentiation are currently unknown.

The face identity literature provides a candidate mechanism: studies from this field have
illustrated that individuals who are good at face identity recognition tend to have robust visual
representations (also referred to as templates and/or abstracted structural representations) of
others’ identities, in their minds eye*'®*?!. Such representations are thought to be constructed
via experience wherein exposure to different views of a face updates the abstracted structural
representation of this identity and, over time, the representation comes to emphasise diagnostic
aspects of the face (that differentiate this face from another) and minimise non-diagnostic
aspects*?!. Signal detection theory (see !4°) also tells us that distinguishing between signal and

noise (e.g., correct and incorrect facial identities) is easier if the signal and noise distributions
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are distinct and precise — when these channels are not overlapping, and when they are consistent
across numerous instances or samples (i.e., narrow). In line with this, Etchells, Brooks and
Johnston*?! found that participants were better at recognising faces from a novel view when
they had built up a more precise representation of that face from multiple views, relative to a
single view, during a preceding learning phase. Furthermore, it is well documented that faces
that are more overlapping in appearance are more difficult to differentiate?®. Therefore, the
face identity literature raises the hypothesis that individuals who are adept at reading others’
emotions will have precise and distinct visual representations (in their ‘mind’s eye’) of
emotional facial expressions. This hypothesis is yet to be tested.

If we are to understand why people who are better at recognising others’ emotions tend
to be good at identifying their own, and if this is related to the precision of visual representations
of others’ emotional expressions, we must also explain why representations would be more
precise and distinct for individuals who are better able to differentiate their own emotions.
Models of conceptual learning suggest that robust concepts facilitate learning: Having a
(semantic) concept that a table has a flat top and four legs encourages a learner to focus on these
invariant features when encountering new table exemplars and ignore variant features such as
colour or texture*?>423, thus minimizing within-category differences and maximizing between-
category differences*?*. Similarly, having precise and distinct concepts of one’s own emotions
(which may be multidimensional including semantic, interoceptive and sensory information
44.52-55:425) may encourage a learner to focus on invariant features of facial expressions and
ignore between expression variation, thus encouraging the formation of precise and distinct
visual representations of others’ facial expressions. However, despite theoretical justification
for a link between the experience and representation of emotion, research has not yet tested this

idea.
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Here we ask whether the experience of emotion “on the inside” influences the way in
which one represents the dynamic emotional facial expressions that one would encounter in the
“outside world” and whether this, in turn, affects emotion recognition accuracy. Specifically,
we predict that some individuals will have internal emotion maps with a clear modular structure,
wherein emotional experiences are precise and distinct: happiness feels very different from
anger, which feels very different from sadness. We predict that these individuals will also have
precise and distinct representations of the way in which emotions are expressed on others’ faces
and, correspondingly, will be adept at recognising expressions. Other individuals, however,
may have variable and overlapping experiences of emotion wherein anger, happiness and
sadness feel relatively similar and are easily confused for one another. We predict that these
individuals will have more variable and overlapping visual representations of others’
expressions such that, in their mind’s eye, anger, happiness and sadness look relatively similar.
Thus, resulting in emotion recognition difficulties.

Across a series of experiments, we first develop and validate “EmoMap”, a novel
method to map the shape of individuals’ emotional experience landscapes (Experiment 1).
Second, we develop “ExpressionMap” to map the landscape of participants’ visual
representations of emotional expressions (Experiment 2). Following this, we test for a mapping
between the experience of emotion “on the inside” and representations of the way emotions are
expressed in the “outside world”. That is, we ask whether those with modular internal emotional
maps, who have precise and distinct experiences of anger, happiness and sadness, also tend to
have precise and distinct visual representations of angry, happy and sad facial expressions (note
that these emotions were selected as they correspond to different regions in the circumplex
model of emotion*!, varying in both and valence). Throughout these analyses, we control for

clinically relevant demographic factors known to be associated with the experience and
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perception of emotion (e.g., the level of autistic traits, the level of alexithymic traits, and non-
verbal reasoning ability; e.g., 148:209.213.385.426-428) {4 engure that any relationships we discover
exist even after accounting for these variables. Finally, we assess the contribution of the
precision and differentiation (i.e., distinctness) of emotional experiences and representations to
the recognition of anger, happiness and sadness, and use structural equation modelling to
construct the ‘Inside Out Model” of emotion recognition; a model which provides insight into
the psychological mechanisms by which one’s experience of emotions “on the inside”

influences one’s ability to identify emotions in the “outside world”.

4.2. Results

4.2.1. Study 1: Developing EmoMap

Participants (N=271) completed our EmoMap paradigm - a two-part task that assesses
the differentiation and precision of emotional experiences. In the first part, on each trial,
participants viewed pairs of images (from the Nencki Affective Picture System**) each known
to selectively induce either anger, happiness or sadness*°, and were asked to rate how similar
the emotions evoked by the images were on a scale from 0, ‘Not at all similar’, to ten, ‘Very
similar’ (to 4 decimal places). These similarity scores were then transformed into distance
scores via multidimensional scaling, a statistical technique that represents objects (emotional
images, lexical items) as points in multidimensional space, wherein close similarity between
objects corresponds to small distances between the points in the representation. Distance scores
were then used to a) calculate the mean distances between (e.g., distance between angry and
happy clusters, angry and sad clusters, and happy and sad clusters) and within emotion clusters,

and b) plot multidimensional scaling maps.
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The multidimensional scaling maps confirmed that the internal emotional landscape had
a modular structure for some participants (Figure 4.1, left panel) and a less modular, more
overlapping, structure for others (Figure 4.1, right panel). EmoMap was validated by
illustrating that individuals high in alexithymic traits, who by definition have difficulties
differentiating their own emotions'®*, tended to have emotional landscape maps with a less
modular, more overlapping structure, whereas those low in alexithymic traits had modular
emotional landscapes. That is, linear mixed effects models predicting mean distance between
clusters and mean distance within clusters with TAS score, AQ score, non-verbal reasoning
ability (clinically relevant demographic variables known to be associated with the experience
and perception of emotion; e.g., '48:209213,385.426-428) " and with subject number as a random
intercept revealed alexithymic traits as a significant negative predictor of distance between
emotion clusters [F(1,267) = -5.92, p<.05] and distance within emotion clusters [F(1,267) = -
6.16, p<.05]. In general, greater overlap was seen between anger and sadness [mean distance
(SEM) = 14.39(0.21)], than happiness and anger [mean distance (SEM) = 20.79(0.29)], and
happiness and sadness [mean distance (SEM) = 20.70(0.29)] in participants’ internal emotional
landscapes (see Appendix 3.1 for a full discussion). These results validate EmoMap by
confirming that individuals who, by definition, have difficulties differentiating their own
emotions exhibit higher EmoMap emotion confusion as indexed by smaller distances between-
and within- emotion clusters (suggesting they have difficulties differentiating distinct and more

similar emotional states).
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Second Dimension

Figure 4.1.

Examples of precise and distinct (left), and variable and overlapping (right) emotional
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Note. The dimensions illustrated here may somewhat reflect the two dimensions outlined in the

circumplex model of affect*! — arousal and valence. The first dimension may correspond to

valence, with high values reflecting negative valence and low values reflecting positive valence
(see left). The second dimension may correspond to arousal; high scores reflect high activation,
and low scores reflect low activation (see left). This may be an appropriate interpretation of the
internal emotional landscape of Participant A (left).

In the second part of EmoMap, on each trial participants were required to make
decisions about three images (also from the Nencki Affective Picture System*?®). There were
four conditions: one non-emotional control condition, and three emotional experimental
conditions exploring the experience of anger, happiness and sadness respectively. Participants
completed the control condition first. In this condition, participants were required to select
which of the three (emotionally neutral) images they found most colourful using their mouse
cursor. Two of these images were in colour and one was in grayscale, thus serving as an
attention check. Following this, participants completed the three experimental conditions in a

random order. In these conditions, participants were required to select which of the three images
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made them feel most angry, happy or sad using their mouse cursor (i.e., in the ‘angry condition’
participants would have to decide which image made them most angry). As in the control
condition, there was a ‘trap’ image on each trial such that two of the images were strong
inducers of the target emotion (e.g., sadness), and one was a strong inducer of another emotion
(e.g., happiness), thus serving as an attention check. Emotional precision was calculated, for
each emotion, based on the logical consistency of decision-making: if a participant selected
image one over image two and image two over image three, but then selected image three over
image one, this would be considered an inconsistent decision and would result in a reduction in
their precision score?®?> (see Methods for further details on scoring). Precision requires
participants to differentiate between the intensity of emotion evoked by each image®?2.
Therefore, inconsistent decisions are likely to stem from imprecision in an individual’s
emotional experience across repeated instances®2.

Using scores from this task, we aimed to determine whether there is a link between the
precision and differentiation of emotional experiences. Our results illustrate that individuals
with modular landscapes are more likely to have precise emotional experiences, whereas those
with more overlapping emotion landscapes have less reliable emotional experiences. That is, a
linear mixed effects model of emotional precision as a function of between-cluster distances,
within-cluster distances, the interaction between emotion and between-cluster distances, the
interaction between emotion and within-cluster distances (independent variables), AQ, TAS,
non-verbal reasoning and colour (control) precision (control variables), with subject number as
a random intercept revealed that emotional precision was positively predicted by between-
cluster distances [F(1,786.1) = 9.58, p<.01], and negatively predicted by within-cluster
distances [F(1,785.9) = -10.30, p<.01]. Since the emotion that was displayed (angry, happy or

sad) did not interact with between- or within-cluster distances to predict emotional precision,
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our results suggest that those with larger distances between clusters and smaller distances within
their emotion clusters typically had greater emotional precision for anger, happiness and
sadness. Emotional precision was also positively predicted by non-verbal reasoning ability
[F(1,264) = 12.83, p<.001] but not by any other variables, including colour control precision
[all p>.05]. Hence, our results demonstrate that the distances between and within emotion
clusters predict the precision of emotional experiences.
4.2.2. Study 2: Developing ExpressionMap

To map visual representations of the external expression landscape, participants (N=98;
replication N=193) completed our ExpressionMap paradigm. On each trial participants were
asked to move a dial to change the speed of an emotional point light display of the face (a PLF)
until it matched the speed they typically associated with an angry, happy or sad expression.
That is, participants were matching the speed of the displayed PLF to their visual representation
of that expression. The precision of visual representations was indexed as the standard deviation
of the speeds attributed to each repetition of the angry, happy and sad expressions respectively,
multiplied by -1 (see Methods for full details). Mean representational precision was calculated
by taking a mean of the precision scores for the angry, happy and sad PLFs. In addition, this
task also provides an index of the ‘distance’ between emotions in participants’ visual
representations of facial expressions. Distance scores were calculated as the absolute difference
in speed attributed to two different emotions. For example, to calculate distance between happy
and angry, we subtracted the mean speed attributed to happy from the speed attributed angry,
and then took the absolute value. Mean distance was calculating by taking a mean of the scores
for the angry-happy, angry-sad, and happy-sad distances.

To visualise representations of the external emotional landscape, we produced density

plots displaying the speeds attributed to angry, happy and sad expressions respectively. Density
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plots confirmed that for some individuals, visual representations of emotion are precise and
distinct (Figure 4.2, left panel), and for others they are variable and overlapping (Figure 4.2,
right panel). Across participants, the precision and differentiation of such representations
differed as a function of emotion/emotion pair — these results are reported in Appendix 3.1 as
they are outside the scope of the current study.

Figure 4.2.

Examples of precise and distinct and variable and overlapping visual emotion representations.
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4.2.3. Mapping between the experience of emotion “on the inside” and their
representations of emotional expressions in the “outside world”

A subset of participants (N =193) completed both EmoMap and ExpressionMap. To
probe the existence of a mapping between the experience of emotion “on the inside” and
representations of the way emotions are expressed in the “outside world”, we constructed two
separate linear mixed effects models to predict metrics of ExpressionMap (representational

precision and distance between representations) from metrics derived from EmoMap
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(emotional precision, distance between emotion clusters respectively), with AQ score, TAS
score, non-verbal reasoning, and control precision as control variables, and with subject number
as a random intercept. Representational precision was positively predicted by emotional
precision [F(1,186) = 5.15, p<.05] but not colour control precision [p > .05]: individuals with
more precise experiences of emotion also had more precise visual representations of emotion
(while the precision of colourfulness judgments did not contribute to the precision of visual
representations). Non-verbal reasoning was also a significant predictor of representational
precision [F(1,186) = 30.71, p<.001]: those with higher non-verbal reasoning had greater
representational precision. In addition, distance between emotion representations was predicted
by distance between emotion clusters [F(1,186) = 8.19, p<.01]: those with more distinct
experiences of emotion also had more distinct representations. Thus, precision and
differentiation within internal emotional landscapes is linked to precision and differentiation in
visual representations of the external world (even after controlling for relevant participant

demographics; see Figure 4.3).
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Figure 4.3.

A diagram demonstrating that precision and differentiation within internal emotional
landscapes (left) is linked to precision and differentiation in visual models of the external world

(right).
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Note. Figure 4.3 top shows the modular emotion and representation maps of one participant.
Figure 4.3 bottom shows the overlapping emotion and representation maps of another
participant.

4.2.4. Predicting emotion recognition ability
The above analyses illustrate a mapping between the experience of emotion “on the
inside” and visual representations of the way emotions are expressed in the “outside world”,

but how do these inside and outside maps influence emotion recognition accuracy? To answer
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this question, we first focused on asking how the shape of ExpressionMaps relate to individual
differences in emotion recognition as indexed by our previously validated PLF Emotion
Recognition Task?*-3°, On each trial in this task, participants viewed an angry, happy or sad
PLF and rated how angry, happy and sad the expression appeared. Emotion recognition
accuracy was calculated as the correct emotion rating minus the mean of the two incorrect
emotion ratings.

419-421 and principles of signal detection theory!'4

Building on the face identity literature
our a priori hypothesis was that emotion recognition accuracy would be positively predicted
by the precision of emotion representations and by distance between emotion representations.
To test this, we constructed a linear mixed effects model with accuracy as the outcome variable,
representational precision, distance between emotion representations, the interaction between
representational precision and distance, AQ score, TAS score and non-verbal reasoning as
predictors (clinically relevant participant characteristics known to be involved in the experience
and perception of emotion; e.g., !48:209:213.385.426-428) "and subject number as a random intercept.
Across both our original (N=98) and replication (N=193) sample, representational precision
was a significant positive predictor of accuracy [original sample: F(1,91) = 4.19, p<.05;
replication sample: F(1,186) = 13.86, p<.001; see Figure 4.4]: those with more precise visual
emotion representations typically achieved higher accuracy (i.e. identified the emotion that the
actor intended to convey) on the PLF Emotion Recognition Task. In conflict with our

hypothesis, accuracy was not predicted by distance in either sample [all p>.05]. There were also

no other significant predictors of accuracy across both samples [all p>.05].

127



Figure 4.4.

The relationship between mean accuracy and mean representational precision in original
sample (left [R = -.311, p = .002, BF 19 = 15.32]) and replication sample (right [R = -.399, p
<.001, BF1p = 1.21¢%)).
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Since it is likely that emotion recognition is contingent not only on the clarity of emotion
representations but also on the ability to match a displayed expression to one’s visualization,
we also included a visual matching task in our battery. This task assesses how well participants
can visually match the speed of one expression to another displayed expression. Each trial
began with a PLF stimulus video on the left-hand side of the screen. After this video had played
once, the same PLF stimulus video also appeared on the right-hand side of screen (moving at a
random speed) and continued to play in a loop. Participants were instructed to “move the dial
to change the speed of the video on the right until it matches the speed of the video on the left”.
Consequently, participants were visually matching the speed of one PLF to another. Deviation
scores (the distance between the speeds of the two animations) comprised the absolute value of

the percentage speed attributed to the leftward expression minus that attributed to the rightward
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expression. Mean deviation scores comprised a mean of all of the absolute deviation scores.
Higher deviation scores represented greater difficulties matching the two expressions.
Subsequently, visual matching difficulty and the interaction between representational
precision and matching difficulty were added to the linear mixed effects model described above.
In our larger sample, we found that the main effect of representational precision on emotion
recognition accuracy was moderated by matching difficulty [F(1,184) = 12.26, p<.001]. To
unpack this interaction, we conducted a median half split analysis, dividing participants into a
high matching group (matching deviation scores <27.75%) and a low matching (matching
deviation scores >27.75%) group. Representational precision was only a significant predictor
of accuracy for those with lower matching ability [F(1,89) = 7.16, p<.01], and not those with
higher matching ability [F(1,90) = 0.44, p=.507] (see Figure 4.5). This interaction was also
evident in our original sample [low matching: F(1,42) = 4.18, p<.05; high matching: F(1,42) =
0.44, p=.513]. Hence, across both samples, for participants with a lower ability to match
expressions, representational precision was a significant predictor of emotion recognition
ability. This potentially indicates that when one’s ability to match two representations is

compromised, having clear and precise visual representations becomes particularly important.
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Mean accuracy

Figure 4.5.

The relationship between mean accuracy and representational precision within the high
(original sample: R = .148, p = .310, BF19 = 0.294; replication sample: R = .004, p = .972,
BF190= 0.13) and low matching groups (original sample: R = 0.324, p < .05, BFjp = 2.18;
replication sample: R =.379, p <.001, BF19= 176.06).
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In sum, emotion recognition ability is predicted by the precision of imagined visual
representations of others’ emotions and one’s matching ability, such that — for individuals
with lower ability to match two visually displayed expressions - the more precise one’s
representations the better one’s emotion recognition accuracy.

4.2.5. Building the Inside Out Model of Emotion Recognition (N = 193)

For the following analyses, we focused on the 193 participants that had completed all
four tasks (EmoMap, ExpressionMap, Visual Matching and PLF Emotion Recognition), thus
allowing us to build a comprehensive model incorporating the experience, representation and
recognition of emotion. Model construction comprised a four-step process. First, since we had
many potential variables of interest, we determined their relative importance for emotion

recognition using a random forests analysis**! employing the Boruta wrapper algorithm**. In
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this analysis, representation matching, matching difficulty, representational precision, distance
between emotion clusters, and emotional precision were deemed important for emotion
recognition. Here, ‘representation matching’ reflects the interaction between representational
precision and matching difficulty, which was found to be a significant predictor of emotion
recognition in our previous analyses. ‘Representation matching’ was computed by multiplying
the representational precision scores for angry, happy and sad expressions with their
corresponding matching difficulty scores (e.g., angry representational precision X angry
matching difficulty; happy representational precision x happy matching difficulty; sad
representational precision x sad matching difficulty). Higher representation matching scores
indicate superior representational precision, matching ability, or both. Following our random
forests analysis, we added variables classified as “important” into a structural equation model
predicting emotion recognition accuracy, sequentially (starting with the most important
variable), until there was no longer a significant improvement (or our goodness of fit index
exceeded the specified threshold). Third, to determine the most mathematically plausible path
directions in our structural equation model, we systematically reversed each path and compared
the Bayesian Information Criterion (BIC) scores for the original and reversed models (see
Appendix 3.2 for the steps listed above). Lastly, we built one final structural equation model in
which we included the path directions that were mathematically most plausible. There was
moderate to very strong evidence that this final model was better than all previous models (BIC
difference > 6). Fit indices demonstrated that our final model was a good fit for the data [Root
Mean Square Error of Approximation (RMSEA) = 0.055; Standardized Root Mean Square
Residual (SRMR) 0.071; Comparative Fit Index (CFI) = 0.954].

In our final structural equation model (see Figure 4.6 and Table 4.1), which accounted

for 60.8% of the variance in emotion recognition accuracy, there were two component processes
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that contributed to individual differences: the precision component and the differentiation
component. With respect to the former, emotional precision exerted an indirect effect on
emotion recognition [z = 2.05, b = 0.53, p<.05], by influencing representation matching ability
[z=2.06,b=0.75, p<.05], which had a direct effect on emotion recognition accuracy [z = 6.93,
b =0.70, p<.001]. With respect to the latter, our analysis revealed that there were significant
direct effects of (1) distance between emotion clusters on emotion recognition accuracy [z =
2.18, b = 0.20, p<.05], and (2) emotion recognition accuracy on distance between emotion
clusters [z=2.47, b =0.24, p<.01], thus suggesting a bidirectional feedback loop between these
variables. In addition, whilst distance between representations had a direct effect on distance
between emotion clusters [z = 2.93, b = 0.28, p<.01], it did not exert an indirect effect on
accuracy [z = 1.80, b = 0.05, p=.072]. Finally, our analysis also identified a significant direct
effect of emotional precision on non-verbal reasoning ability [z = 2.21, b = 0.63, p<.05], and
of alexithymia on distance between clusters [z = -2.27, b = -0.15, p<.05; see Appendix 3.3 for
the inter-relationships between all variables in the model].

Table 4.1.

Parameter estimates for our final structural equation model. Standardised betas are shown in
the final column (Std. b).

Path Estimate  z-value  p-value Std. b
Representation Matching — Accuracy 0.021 6.932 <.001 0.700
Emotional Precision — Representation Matching 4.393 2.137 =.033 0.754
Emotional Precision — Representation Matching — Accuracy * 0.090 2.052 =.040 0.527
Emotional Precision —» NVR 0.018 2.205 =.027 0.633
Distance between clusters — Accuracy 0.039 2.179 =.029 0.197
Accuracy — Distance between clusters 1.193 2.466 =.014 0.236
Distance between representations — Distance between clusters 2.611 2.932 =.003 0.275
Distance between representations — Distance between clusters — Accuracy *  0.102 1.800 =.072 0.054
TAS — Distance between clusters -0.058 -2.269 =.023 -0.150

Note. Indirect effects are labelled with an asterisk (*)
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Figure 4.6.

The final structural equation models exploring the experience, visualization and recognition
of emotion.
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4.3. Discussion

Here we illustrated that individual differences in the experience of emotion “on the
inside” are interrelated with individual differences in representations of emotional expressions,

and that these sources of individual differences predict 61% of the variance in accuracy on a
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dynamic emotion recognition task. In Experiment 1 we developed (N=20) and validated
(N=271) “EmoMap”, a novel method to map the shape of individuals’ emotional experience
landscapes. In Experiment 2 we developed “ExpressionMap” to map the landscape of (N=98;
replication N=193) participants’ representations of how emotions are expressed in the outside
world. Subsequently we tested for a mapping between the experience of emotion “on the inside”
and their representations of the way emotions are expressed in the “outside world”. Individuals
with modular internal emotional maps, who had precise and distinct emotional experiences,
tended to have precise and distinct visual representations of other people’s dynamic emotional
facial expressions. Structural Equation Modelling further illustrated that such individuals
tended to have correspondingly enhanced emotion recognition accuracy. Therefore, our “Inside
Out Model of Emotion Recognition” provides new insight into the psychological mechanisms
underpinning individual differences in the recognition of emotion from dynamic facial
expressions.

In our final model, which explained 60.8% of the variance in emotion recognition
accuracy, there were two component processes that contributed to individual differences: the
precision component and the differentiation component. Within the precision component,
which explained a larger proportion of the variance in emotion recognition, those with less
precise emotional experiences also had less precise visual emotion representations, and
correspondingly low emotion recognition accuracy. Interestingly, representational precision
only contributed to emotion recognition for those with a lower ability to match two visually
displayed expressions. With respect to the differentiation component, having poorly
differentiated representations of others’ expressions, predicted poorly differentiated
experiences of anger, happiness and sadness and corresponding difficulties with emotion

recognition (note that this later link between experience and recognition of emotion was bi-
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directional). The direction of all the paths in our model was determined through systematic
comparison of BIC scores. BIC comparisons revealed moderate to very strong evidence that
the directions in our final model were the most mathematically plausible. Nevertheless, it is
important to note that structural equation modelling cannot definitively determine causality*>.
Thus, any directions of causality suggested by our model are merely hypotheses that should be
tested via causal manipulation®6.

Taking a step back from the individual path directions, it is pertinent to consider the
component processes outlined in our final model. Although our modelling allowed for other
pathways to emotion recognition difficulties — for example an emotion pathway (emotional
precision, distance between clusters) and a representation pathway (representational precision,
distance between representations) — our analyses demonstrated that the precision and
differentiation component processes were the most mathematically plausible. The emergence
of these components is somewhat surprising given that EmoMap and Expression map were
completed in two separate sittings (on two separate days) and that different methods were used
to calculate their corresponding variables (see Method). The emergence of these components
despite their corresponding variables being calculated differently and measured across different
sittings suggests that they are meaningful components of emotion recognition rather than
methodological artefacts.

More generally, it is useful to consider alternative explanations for our conclusion that
individual differences in emotion recognition from dynamic stimuli can, in part, be explained
by individual differences in the way emotions are experienced and the way expressions are
represented. A primary question concerns whether a third variable unrelated to emotion, such
as participants’ motivation to do well, underpins the relationships between the experience,

representation and recognition of emotion. In other words, do those with more precise
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experiences of emotion also have more precise visual emotion representations and more
accurate emotion recognition simply because these individuals tried harder on all tasks? Our
findings suggest that this is unlikely: self-reported effort was not significantly associated with
emotional precision, representational precision, distance between representations, matching
difficulty, or representation matching, respectively (all p > .05; see Appendix 3.4). In addition,
although there were small-moderate correlations between effort and distance between clusters
[R = .272, p < .001], and effort and emotion recognition accuracy [R = .236, p = .001]
respectively, our Bonferroni-corrected partial correlations demonstrated that all the
relationships we discovered remained significant after controlling for self-reported effort (see
Appendix 3.4). Hence, the relationships we found between the experience, representation and
recognition of emotion are not underpinned by self-reported effort. Similarly, since each of our
paradigms included intricately designed attention checks, it is unlikely that differences in
attention underpin the associations between these variables. Finally, one may ask whether the
relationships documented here pertain specifically to the processing of emotion. That is, could
it be that some individuals have precise and distinct concepts in general and hence they are
good at recognising any complex stimuli. Our results suggest that this possibility is also
unlikely: only those with precise experiences of emotion, and not those with precise concepts
of colour, had greater representational precise and emotion recognition accuracy (see Appendix
3.2). Hence overall, it is unlikely that effort, attention, or another domain general process (e.g.,
having distinct concepts in general) underpins the associations found here. Rather our results,
which have been acquired across several experiments with large samples (involving built-in
replications), provide convincing evidence for links between the experience, representation,

and recognition of emotion.
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But how do such links come about? For example, why would having imprecise
emotional experiences lead to imprecise expression representations? As noted in our
Introduction section, constructionist theories offer a theoretical framework that may help
answer such questions. Constructionist theories of emotion (e.g., *+¥2-5342%) propose that
children are continually constructing multimodal representations of emotions. For example,
when hearing a caregiver describe a situation as “anger inducing” a child may associate their
current internal sensations and prevailing visual/auditory/tactile inputs with the word “angry”.
Over time “angry” ceases to be just a word and becomes a multimodal concept** and once the
concept is acquired, it may function to sharpen its own conceptual boundaries***. That is, having
precise and distinct emotion concepts may help a learner focus on invariant features of facial
expressions and ignore between expression variation, thus encouraging the formation of precise
(i.e., reliable) and distinct visual representations of others’ expressions. Note that the reverse
direction of causality is also possible: a child with precise visual representations of others’
expressions may be better able to recognise when others are angry thus providing the child with
a label with which to categorise their own internal states. Such a child may have more
opportunities for labelling their internal states, potentially resulting in more precise and distinct
emotional experiences. As mentioned previously, further work must test the Inside Out Model’s
directions of causality if we are to make more confident claims about the causal role of
emotional experience in the precision of visual emotion representations, and develop richer
theoretical models of the developmental experiences that give rise to such links.

In addition to contributing to constructionist theories of emotion, our findings are also
relevant to the face identity and signal detection literatures*!*-**!. By demonstrating that precise
visual representations of emotional expressions facilitate recognition of emotional expressions,

we illustrate an important role for stored visual representations in emotion recognition, that
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extends beyond the known role of representations in facial identity recognition. Our findings
are also partially in line with signal detection theory!'#°. That is, we identified that emotion
recognition was directly predicted by the precision, but not the differentiation, of visual emotion
representations. These findings raise the possibility that there are independent contributions of
these factors to emotion recognition. The lack of a significant (direct) effect of the
differentiation of visual emotion representations (i.e., the distance between attributed speed) on
recognition may be due to the presence of large differences in the speeds attributed to angry,
happy, and sad facial expressions [angry mean(SEM) = 3.85(0.06); happy mean(SEM) =
2.80(0.04); sad mean(SEM) = 1.63(0.03)], meaning that on average the representations are ‘far
apart’ and instances of overlap between the signal and noise distributions are relatively
uncommon. Independent of this there may feasibly be an additional effect of the precision of
visual emotion representations (variation in attributed speeds). For example, the expectation
literature would predict that more precise (i.e., a representation that is precise in appearance
across instances) representations of upcoming stimuli would precipitate increased recognition
accuracy (see ¥*+%7). Future research should aim to include other emotions (e.g., surprise,
disgust, and fear), likely to populate other points on the speed continuum, to identify whether
this illuminates an effect of the differentiation of visual emotion representations. In the current
study, we were unable to include additional emotions due to testing constraints. Including
surprise, disgust and fear would have increased the duration of our test battery to over eight
hours (doubling the current testing time of four hours) and compromised our ability to test such
large samples (due to limits on resources). We selected high and low arousal (anger/ happiness
and sadness), and positively and negatively valenced (happiness and anger/sadness) emotions

to cover different regions in arousal-valence space®*!.
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Implications

Our Inside Out Model raises a number of testable hypotheses that may help us better
understand the aetiology of the emotion recognition difficulties documented in numerous
clinical conditions (e.g., depression, anxiety, psychosis, eating disorders, Parkinson’s disease,
and autism spectrum disorder; see 41-14643%) In the current study, we have illuminated two
component processes that may contribute to these difficulties: the differentiation component
and the precision component. With respect to the former, differences in recognising others’
emotions may be linked to difficulties differentiating one’s own emotional states; indeed
preliminary evidence supports this pathway in the context of depression, anxiety,
schizophrenia, anorexia nervosa and autism (as found in #8439-443) The precision component,
on the other hand, suggests the testable hypothesis that emotion recognition difficulties in
clinical conditions linked to imprecise emotional experiences — such as bipolar disorder and

psychosis, which are associated with mood fluctuations!>!:#44 —

may be mediated by the
(im)precision of visual representations of emotional expressions. Identifying mechanistic
pathways that explain variation in emotion recognition may help us design tailored support
systems with potential impacts upon psychosocial adjustment®** and psychological health and
wellbeing?>. Hence, future studies should aim to test these predictions.
Limitations

The results of the current study are informative with respect to understanding the links
between the experience, visual representation, and recognition of emotion from facial motion
cues alone. Here, we have employed point-light displays, which provide a way of studying core

445,446

dynamic cues (e.g., speed), while controlling other perceptual dimensions , such as identity

(e.g., gender, age, ethnicity, face attractiveness), depth, and pigmentation, which are all known

376,377,447

to influence emotion recognition . Although this allowed us to accurately assess the
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contribution of kinematic cues to visual emotion representations, and their subsequent effect on
emotion recognition accuracy (without these other cues confounding the results), such tight
control may limit the extent to which our findings generalise to full dynamic emotional
expressions (e.g., full video recordings of facial expressions). It could be, for example, that the
links we have demonstrated between the experience, representation and recognition of emotion
exist for point-light displays, but not full emotional expressions. However, since individuals
compare incoming facial expressions to stored templates, which represent the average facial
expressions they have encountered previously (e.g., the average angry expression across all
previous encounters! 9111448 'it seems unlikely that the precision of such templates would only
be important when recognising emotion from point-light displays (which are not typically
encountered). Concurrently, there is no clear reason why an individual would draw on their
own emotional experiences to recognise emotion, specifically in point light displays, and not in
full dynamic expressions. Nevertheless, future studies are necessary to confirm whether our
results generalise to full emotional expressions.

Relatedly, it is also worth noting that here we examine the precision and differentiation
of visual emotion representations specifically in the speed domain. This was an active design
choice, motivated by previous evidence demonstrating the critical role of speed cues in the

239385 of emotion. Nevertheless, in future work, we will

visual representation** and recognition
expand our paradigms to encompass other spatiotemporal emotion cues (e.g., degree of spatial
exaggeration, movement onset/offset, texture, colour, etc.), thus facilitating investigations into
the precision and differentiation of visual emotion representations in other domains.

It is also important to consider the limitations of our EmoMap paradigm for assessing

the experience of emotion. Although his paradigm has several methodological advantages — it

can be completed online in just 25-35 minutes and does not require participants to translate
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their emotional experiences into words (see *%) —

there are disadvantages of using such
computer-based assessments. For example, by employing images to elicit emotional reactions
(as is common in the literature e.g., 143:293:428:451:452) " participants may respond based on how
they think they should feel, rather than how they truly feel. Whilst this is a possibility, we
specifically addressed this issue in our task instructions, thus minimizing the likelihood of
participants responding in this way: when describing EmoMap, we told participants that “this
isn’t about what the image represents, or how you think other people, on average, respond to
the images. It is about your own personal response” (as in Huggins et al*?). Nevertheless, future
investigations could benefit from employing more ecological methods such as experience
sampling (e.g., ¥*3%%), wherein participants label or rate their emotional state on several
occasions throughout the day for multiple days. Using these methods, emotion differentiation
can be calculated by computing intra-class correlations, measuring consistency between
emotion ratings across occasions, for each participant (see 2°%). Such studies could then aim to
test whether the ability to differentiate emotions in everyday life is associated with more
differentiated visual emotion representations, and enhanced emotion recognition.

Finally, it is important to highlight the limitations of our study with respect to sample
generalizability. Across both experiments discussed here, the samples were predominantly
female (74.91, 46.94, and 78.76% respectively), white (58.67, 83.67, and 56.48% respectively),
and from the United Kingdom (37.27, 64.29, and 41.97% respectively). Since there may be
differences in the experience and recognition of emotion between males and females*>>%7, it
may be that the results discussed here are not representative of males. Although this is possible,
the evidence from our post-hoc analyses suggest that our primary effects are not moderated by

sex (see Appendix 3.5). Thus, it seems that for both males and females the experience, visual

representation, and recognition of emotion are all linked. Nevertheless, further work should aim
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to verify our results in more balanced, and/or male, samples. In addition, previous studies have
found that experiences (e.g., ¥°8462) and visual representations (e.g., 383-389463-465) of emotion
vary across cultures. Many of these studies suggest that there may be differences specifically
in the appearance of visual representations (e.g., individuals from Western Cultures emphasise
the eyebrows and mouth in their visual representations, while those from East Asian cultures
the eye region®®®). Although this is an important consideration, it is worth noting that, in the
current study, we specifically focus on the precision and differentiation of visual
representations, rather than on the appearance of them. Since individuals across numerous
cultures employ template-matching techniques (i.e., comparing incoming facial expressions to

stored ‘templates’) to recognise the emotions of others!08-111448

, it seems unlikely that the
precision of such templates would be important in one culture but not another. Nevertheless,

future studies should aim to the Inside Out Model across different cultures.

4.4. Method. Experiment 1: Developing EmoMap

This study was approved by the Science, Technology, Engineering and Mathematics
(STEM) ethics committee at the University of Birmingham (ERN_16-0281AP9D) and was
conducted in accordance with the principles of the revised Helsinki Declaration. Informed
consent was obtained from all participants.

4.4.1. Participants

271 participants were recruited via the School of Psychology’s Research Participation
Scheme database and Prolific. Individuals were eligible to take part in the study if they were
between the ages of 18 and 65, fluent in English, had normal or corrected-to-normal vision, and
had access to a computer/laptop with an internet connection. The sample size was based on an

a priori power analysis conducted using G*power*?2. To replicate the association between
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alexithymia and emotion differentiation in Erbas et al*?8, 97 participants were required to have
95% power at alpha level 0.05. However, since effect sizes are commonly inflated®**, and we
were utilizing a more complicated analysis (a linear mixed effects model in which we control
for the other relevant demographic variables known to be associated with the experience and
perception of emotion), we recruited a larger number of participants (N = 271; almost triple the
sample size generated in our power calculation).

Participant characteristics are displayed in Table 4.2. Information regarding
participants’ ethnicities is reported in Appendix 3.6. Notably, four participants in the sample
(1.48%) reported that they had a diagnosis of autism spectrum disorder. Therefore, we
conducted our analyses twice, first including these participants and then excluding them. Since
the general pattern of results was unaffected by their removal, we included these participants in
our final statistical analyses.

Table 4.2.

Means and standard deviations of participant characteristics. In the column on the right-hand
side, means are followed by standard deviation in parentheses.

Variable Participants (N=271)
Sex 68 Male, 203 Female
Age 24.00 (9.16)

NVR 60.22% (15.35%)
AQ-50 19.11 (6.85)
TAS-20 48.17(12.08)

4.4.2. Procedures
Participants completed demographics questions, followed by the Autism Quotient’%*

(see Chapter 2 for a description) and Toronto Alexithymia Scale*** (see Chapter 2) on Qualtrics

(https://www.qualtrics.com). Subsequently, participants completed our EmoMap paradigm

(openly available at https://app.gorilla.sc/openmaterials/447800) followed by the Matrix
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Reasoning Item Bank** (see Chapter 2) on Gorilla (https:/gorilla.sc). All participants

completed the study online.
4.4.3. Materials and Stimuli
EmoMap Task

There were two key parts of the EmoMap task. In the first part, on each trial participants
viewed pairs of images from the Nencki Affective Picture System*?°, and were instructed to
“think about what feelings arise when you look at each of these images. Now please rate how
SIMILAR those two feelings are”. Participants made their ratings on a visual analogue scale
(with a step size of 0.0001) ranging from 0, ‘Not at all similar’ to 10, ‘Very similar’. An
advantage of the EmoMap paradigm is that it provides a tool to measure emotion differentiation
without requiring participants to produce emotion labels, unlike existing tasks (see 4*° for a for
a full discussion).

The chosen images were known to be effective at selectively inducing anger, happiness
or sadness across large samples (N = 124)*°, and generated distinct emotion clusters based on
graph theory analyses with pilot study data (see Appendix 3.7). In this task, there were five
images for each emotion (anger, happiness and sadness) resulting in 15 different images and
105 unique image combinations (and therefore 105 trials): 30 within emotion-category
combinations (10 for anger, 10 for happiness and 10 for sadness) and 75 between emotion-
category combinations (25 angry-sad, 25 angry-happy, 25 happy-sad). A reaction time check
was incorporated to prevent participants responding too quickly (i.e., without thinking).
Responses faster than 1000ms resulted in an error message (“Too Fast. Our algorithm has
detected that you might need to take longer to think through your answer. You will now incur
a 5 second penalty and then will be asked to do the trial again”), a 5-second penalty, and then

the trial was re-started. This threshold was selected to give participants sufficient time view the
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images, detect and compare the emotions evoked each by them, and then respond by clicking
on the scale.

To map the shape and size of participants’ internal emotional landscapes, similarity
ratings were transformed into (Euclidean) distance scores through multidimensional scaling
(using the Scikit-learn library in Python). Multidimensional scaling (MDS) is a statistical
technique that represents objects (emotional images, lexical items etc.) as points in
multidimensional space wherein close similarity between objects corresponds to close distances
between the corresponding points in the representation?®®. The distance between points in
multidimensional space can then be plotted (see Figure 4.1). Mean distances within specific
emotion clusters comprised the average of the Euclidean distances for the 10 angry-angry, 10
happy-happy and 10 sad-sad image pairs, respectively. Mean distances between specific
emotion clusters comprised the mean of the Euclidean distances for the 25 angry-happy, 25
angry-sad, and 25 happy-sad image pairs, respectively. We then computed mean distances
within and between clusters by averaging across emotions/emotion pairs. Larger distances
between and within emotion clusters reflect greater emotion differentiation.

The second part of our EmoMap paradigm was inspired by the work of Huggins and
colleagues®?. In this part of the task, on each trial, participants were presented with three
images from the Nencki Affective Picture System*?, and were required to make a decision.
This task involved four conditions: one non-emotional control condition, and three emotional
experimental conditions exploring the experience of anger, happiness and sadness respectively.
First, participants completed the non-emotional control condition. In this condition, participants
were required to select which of the three (neutral) images they found most colourful using
their mouse cursor. Two of these images were in colour and one was in grayscale, thus serving

as an attention check. If participants selected the grayscale image, they were presented with an
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error message, incurred a 5-second penalty, and then were asked to do the trial again. Following
this, participants completed the three experimental conditions in a random order. In these
conditions, participants were required to select which of the three images made them feel most
angry, happy or sad (e.g., in the angry condition, participants had to decide which of the three
images made them most angry) using their mouse cursor. As was the case in the control
condition, there was a ‘trap’ image on each trial in the emotional conditions. On each trial, two
of the images were strong inducers of the target emotion (e.g., sadness), and one was a strong
inducer of another emotion (e.g., happiness), thus serving as an attention check. If participants
selected the image that strongly induced the non-target emotion, they were presented with the
error message discussed above, incurred a 5-second penalty, and then were asked to do the trial
again. Within each condition, there were 11 target (i.e., non-trap) images which were presented
in all possible unique pairs across 55 trials. The images that were selected had previously been
identified as successful inducers of the target emotion**’. In addition, in order to make the
experimental conditions comparable, we ensured that the mean intensity ratings (angry = 3.53;
happy = 3.50; sad = 3.56) and standard deviation of intensity ratings across images within a
condition (angry = 0.80; happy = 0.80; sad = 0.81) were similar for each emotion.

Precision scores were calculated for each condition in line with the logical consistency
of a participants’ decisions. To demonstrate this, consider a participant that selects image one
over image two and image two over image three; both of these decisions are consistent with
one another. However, if the participant then selected image three over image one, this would
be considered inconsistent with their previous judgments®2. Precision requires participants to

292 Thus, here inconsistent

differentiate between the intensity of emotion evoked by each image
decisions likely stem from imprecision in how individuals experience an emotion across

multiple instances®*2.
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We followed the procedures of Huggins et al> to calculate precision. We first
quantified each participant’s image rankings by summing the number of times they chose each
image. If a participant was completely consistent in their decisions within a condition, rank
scores would follow a linear hierarchy: the image that was most emotionally evocative (or
colourful) should be chosen in all ten trials it appeared (scoring 10), the second-highest should
be chosen in nine of ten trials (scoring 9), and so on, the image they found least emotionally
intense (or colourful) should never be chosen (scoring 0). Subsequently, we examined how
image rankings related to the decisions made on each trial. Images with higher ranks should
evoke stronger emotional reactions than those with lower ranks. Thus, inconsistent decisions
occur when an image with a lower ranking is chosen over an image with a higher ranking. For
each trial, item differences were calculated as the rank score for chosen item minus the rank
score for the unchosen item. For inconsistent decisions, the item difference score would be
equal to or less than zero. More extreme inconsistencies (e.g., selecting the image with the
lowest ranking over the one with the highest ranking) resulted in more negative item
differences. We then summed the item differences for each condition, to produce total precision
scores, with greater scores reflecting higher precision. If a participant made completely

consistent decisions within a condition, their score would be 220.

4.5. Method. Experiment 2: Developing ExpressionMap

4.5.1. Participants

The first (“original”) sample for Experiment 2 comprised 98 participants recruited via
Prolific. The second, replication, sample comprised 193 participants recruited via the School of
Psychology’s Research Participation Scheme database and Prolific. For both samples,

individuals were eligible to take part if they were between the ages of 18 and 65, fluent in
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English, had normal or corrected-to-normal vision, and had access to a computer/laptop with
Google Chrome and an internet connection. The sample size for our replication sample was
based on an a priori power calculation using GLIMMPSE?**!, To have 90% power to replicate
our finding from sample one that representational precision predicted emotion recognition
accuracy, 68 participants were necessary (alpha level = 0.05). Since effect sizes are commonly
inflated®*** and using larger samples improves the precision of parameter estimates*’, we
recruited a larger number of participants (N = 193; almost triple the sample size generated in
our power calculation).

Participant characteristics are displayed in Table 4.3. Information regarding
participants’ ethnicities is reported in Appendix 3.5. Notably, one participant in the original
sample (1.02%) and two participants in the replication sample (1.02%) reported that they had a
diagnosis of autism spectrum disorder. Therefore, we conducted our analyses both including,
and then excluding, these participants. Since the general pattern of results was unaffected by

their removal, we included these participants in our final statistical analyses.

Table 4.3.

Means and standard deviations of participant characteristics. In the column on the right-hand
side, means are followed by standard deviation in parentheses.

Variable Experiment 2, Original sample (n=98)  Replication sample (n=193)
Sex 52 Male, 46 Female 41 Male, 152 Female

Age 33.34(9.79) 23.41 (9.04)

NVR 58.45% (16.62%) 61.24% (14.79%)

AQ-50 18.65 (7.64) 18.94 (6.79)

TAS-20 46.00(11.82) 48.13 (11.58)

4.5.2. Procedures
First, informed consent was obtained from all participants before conducting the study.

Participants in the original sample completed demographics questions, followed by the 50-item
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Autism Quotient’™, and the 20-item Toronto Alexithymia Scale on Qualtrics

(https://www.qualtrics.com). Following this, these participants completed three tasks that
employed dynamic point light displays (a series of dots that convey biological motion) of angry,

happy and sad facial expressions (PLFs) on Gorilla (https://gorilla.sc). Participants completed

ExpressionMap followed by the Visual Matching task, followed by the PLF Emotion
Recognition task (see Chapter 2 for a full description). Finally, participants completed the
MaRs-IB3# (see Chapter 2 for a full description). For those in the replication sample,
participation was split across two parts. In part one, participants completed demographics
questions, the AQ, TAS and EmoMap paradigm. In part two, which was completed in a separate
sitting at least 24 hours after finishing part one, participants completed ExpressionMap, the
Visual Matching Task, the PLF Emotion Recognition task, and the MaRs-IB. For both samples,
all parts of the study were completed online.

4.5.3. Materials and Stimuli

ExpressionMap

In this task, on each trial, participants were presented with a dynamic point light display of the
face (PLF; on average approximately 6 seconds in length) that looped such that it played
continuously. Participants were instructed to “move the dial to change the speed of this video
until it matches the speed of a typical ANGRY/HAPPY/SAD expression”.

The PLFs were originally created by asking actors to read a sentence (“my name is John
and I’m a scientist”) in a happy, angry or sad manner®*. The emotion depicted in the stimulus
video matched the instructed emotion, i.e., on a trial where an angry facial expression was
presented, participants were only asked to manipulate the speed of the video so that it matched
the speed of a typical angry expression. Consequently, participants were matching the speed of

the displayed PLF to their imagined visual representation of that expression (the speed they
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would imagine “in their mind’s eye”). Participants could change the speed of the video by
moving a dial clockwise to increase the speed of the animation or anticlockwise to decrease the
speed of the animation. The minimum and maximum point on the dial corresponded with 25%
and 300% of the recorded speed respectively. Once participants were satisfied, they pressed the
spacebar to continue. There was no time limit for participants to respond on each trial.
Participants were shown four repetitions of each PLF stimulus video (each one starting at a
random speed) across four actors. This resulted in 16 videos per emotion (4 actors x 4
repetitions x 3 emotions = 48 trial in total). Participants completed three practice trials (one for
each emotion at 100% starting speed) and then the 48 randomly ordered experimental trials
across three blocks. Participants were encouraged to take breaks between blocks.

The ExpressionMap task was adapted from Keating, Sowden and Cook**’ (Chapter 3).
In the current study we improved the task by a) using a dial, instead of the slider used
previously, thus making the minimum and the maximum points on the scale more ambiguous,
b) starting each video at a random speed thus reducing potential response biasing, ¢) setting the
initial dial position to a random orientation that did not correspond to starting speed, thus
ensuring that the minimum and maximum points, and the point of the 100% recorded speed
were at different spatial locations on the dial — as a result, participants were unable to be
consistent simply by selecting a similar location on the scale each time —, d) incorporating a
reaction time check- when participants responded faster than 5 seconds on a trial, they were
presented with an error message, incurred a 5 second penalty, and then were asked to do the
trial again and, e) incorporating a walk-through video to facilitate comprehension of task
instructions.

Whereas existing methods aim to construct comprehensive representations of emotional

expressions (e.g., #4634 ExpressionMap seeks to assess accompanying features of those
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representations (e.g., speed, precision and differentiation; see 46%). ExpressionMap provides an
index of the percentage speed attributed to each of the stimulus videos by participants (e.g., if
a participant attributes 130% speed to an expression, their representation for that expression is
1.3 times faster than the recorded speed). Following the procedures outlined in Keating,

Sowden and Cook**’

, we calculated the true speed attributed to each of the PLFs (in pixels per
frame) by multiplying the percentage speed attributed, divided by 100, with the speed of the
actor’s facial movement in the original video. For example, for a trial in which a participant
attributed 200% speed to a face moving at 2.5 pixels/frame, the true speed attributed to the
expression would be 5 pixels/frame [i.e., (200 + 100) X 2.5] (see **° for more information).
This task operates on the premise that, compared to participants with precise visual
representations, those with less precise representations of emotion would attribute more
variable speeds to the expressions*®®. For instance, someone with a precise visual representation
of anger would attribute similar speeds across repetitions (e.g., by attributing 120% speed,
121% speed and 119% speed to the angry expression). In contrast, someone with a less precise
visual representation would be more variable (e.g., by attributing 120% speed, 60% speed and
180% speed to an angry expression). Therefore, to index the precision of visual emotion
representations, we took the standard deviation of the speeds attributed to one emotion for one
actor (i.e., actor 1, angry expression) across the 4 video repetitions. Following this, we
multiplied standard deviation scores by -1 so that our variable would now represent precision
(note that in Figures 4.4 and 4.5 we also added a constant of 2.52, since the lowest score was -
2.52, to facilitate interpretation). We then calculated mean representational precision for each
of the emotions (angry, happy and sad) by taking a mean of the precision scores for each actor

within an emotion (e.g., taking a mean of the precision scores for angry expressions across
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actors 1, 2, 3 and 4). Mean representational precision was calculated by taking a mean of the
precision scores for the angry, happy and sad PLFs.

Finally, this task also provides an index of the ‘distance’ between emotions in
participants’ visual representations of facial expressions. To calculate distance scores, we
subtracted the speed attributed to one emotion from the speed attributed to another and then
took the absolute value of this number. For example, to calculate distance between happy and
angry, we subtracted the speed attributed to happy from the speed attributed angry, and then
took the absolute value. Mean distance was calculated by taking a mean of the scores for the
angry-happy, angry-sad, and happy-sad distances.

Visual Matching Task

We reasoned that an individual might have beautifully precise mental representations
of others’ expressions and still struggle to recognise others’ emotions due to an inability to
match the incoming expression data with the stored representation. Thus, we developed the
Visual Matching task to assess how well participants can visually match the speed of one
expression to another (displayed) expression. Each trial began with a PLF stimulus video on
the left-hand side of the screen. After this video had played once, the same PLF stimulus video
also appeared on the right-hand side of screen, moving at a random speed, and continued to
play in a loop. Participants were instructed to “move the dial to change the speed of the video
on the right until it matches the speed of the video on the left”. Turning the dial clockwise
increased speed, anticlockwise movements decreased speed. The minimum and maximum
points on the dial corresponded with 25% speed and 300% of the recorded speed respectively
(participants were not explicitly informed about this). Once the participant was satisfied, they
pressed spacebar to continue. Participants were shown four repetitions of each PLF stimulus

video for each of the four actors; each repetition had a different starting speed. In each full set
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of 16 (4 actors x 4 repetitions) stimulus videos for an emotion, the starting speed ranged from
50% to 200% of the recorded speed, in 10% increments (i.e., 50%, 60%, 70%, 80%, 90%,
100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%). This range of
starting speeds ensured that participants were able to match across a variety of speeds.
Participants completed three practice trials (one for each emotion at 100% starting speed) and
then the 48 randomly ordered experimental trials across three blocks. Participants were given
the opportunity to take breaks between blocks.

The Visual Matching task provides an index of how well participants can visually match
the speed of one expression to another. To calculate deviation scores, we subtracted the
percentage speed attributed to the expression on the right from the percentage speed of the video
on the left and took the absolute value of this deviation score as a measure of how far away the
speeds of the two animations were (irrespective of whether they attributed too high or too low
speed). Finally, we calculated mean deviation scores by taking a mean of all of the absolute
deviation scores. Higher deviation scores representation greater difficulties matching the two
expressions.

4.5.4. Transparency and openness

In this manuscript, we report how we determined our sample sizes, all data exclusions,

all manipulations, and how we calculated all measures. All datafiles, data-processing code,

analysis scripts, and tasks are openly available at https://osf.io/hd8u2/wiki/home/. The data

were processed and analysed using R (R Studio version 2021.09.2), Python (Jupyter Notebook
version 6.4.8), and JASP (version 0.16). All our linear mixed effects models were conducted in
R Studio using the Imer function (from the /me4 package). For these models, we also used the
Anova function (from the car package) to conduct a Type III ANOVA with a Kenward-

471

Roger*’? approximation for degrees of freedom, as supported by Luke*’!. For all linear mixed
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effects models, the relationships between the experience, representation, and recognition of
emotion hold when the control variables are included (as reported in the Results section) and
excluded, thus affording us greater confidence in our findings. In R Studio, we also conducted
a random forest analysis**! employing the Boruta wrapper algorithm (Boruta function from
Boruta package*?), and structural equation modelling using the sem() function (from the
lavaan package). In JASP, we conducted Bayesian linear regressions (using a default Jeffreys-
Zellner-Siow prior; r scale = 0.354) to determine the relative strength of evidence for the
experimental versus null hypotheses. For these analyses, we followed the classification scheme
used in from Lee and Wagenmakers*2: BF o values between one and three represent weak

evidence, between three and ten moderate evidence, and greater than ten strong evidence, for

the experimental hypothesis.
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Chapter 5: Autistic adults exhibit highly precise representations of
others’ emotions but a reduced influence of emotion
representations on emotion recognition accuracy

In Chapter four, we demonstrated that the ability to precisely visualise and match
facial expressions contributed to emotion recognition for non-autistic people. As such, our
results illuminate potential candidate mechanisms that may underpin the emotion recognition
difficulties of autistic individuals. It could be, for example, that autistic individuals have less
precise visual emotion representations, a poorer ability to visually match two expressions, or
both, thus leading to emotion recognition difficulties (e.g., with anger!'47-191:219-223) The
following chapter tests this possibility, first comparing the precision and differentiation of
visual emotion representations and matching ability between groups (after controlling for

alexithymia), and second assessing the contribution of these factors to emotion recognition for

both autistic and non-autistic people.
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Publication 4:

Autistic adults exhibit highly precise representations of others’ emotions but a reduced
influence of emotion representations on emotion recognition accuracy

Connor T. Keating, Eri Ichijo, and Jennifer L. Cook
(Published in Scientific Reports)

Reference: Keating CT, Ichijo E, Cook JL. Autistic adults exhibit highly precise representations of
others’ emotions but a reduced influence of emotion representations on emotion recognition accuracy.
Scientific Reports. 2023 Jul 22;13(1):11875. https://doi.org/10.1038/s41598-023-39070-0
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Abstract

To date, studies have not yet established the mechanisms underpinning differences in autistic
and non-autistic emotion recognition. The current study investigated whether autistic and non-
autistic adults differed in terms of the precision and/or differentiation of their visual emotion
representations and their general matching abilities, and second, explored whether differences
therein were related to challenges in accurately recognising emotional expressions. To fulfil
these aims, 45 autistic and 45 non-autistic individuals completed three tasks employing
dynamic point light displays of emotional facial expressions. We identified that autistic
individuals had more precise visual emotion representations than their non-autistic
counterparts, however, this did not confer any benefit for their emotion recognition. Whilst for
non-autistic people, non-verbal reasoning and the interaction between precision of emotion
representations and matching ability predicted emotion recognition, no variables contributed to
autistic emotion recognition. These findings raise the possibility that autistic individuals are
less guided by their emotion representations, thus lending support to Bayesian accounts of

autism.
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5.1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by
restricted and repetitive interests and difficulties with social communication and interaction!>!,
While not considered a core diagnostic feature, emotion recognition has been a topic of interest
in autism research for over 30 years because it is often thought that challenges in this area might
be an underlying cause for social difficulties. However, findings in this literature are famously
mixed (see '%¢ for a review): some studies find differences in emotion recognition between
autistic and non-autistic people, some studies find no differences and some find quite specific
difficulties (e.g. with angry expressions !47:191:219-222.385) 'Tp this literature it is often the case that
“emotion recognition” is treated as a unitary or modular ability. However, recent work has
begun to elucidate several component processes that contribute to individual differences in
emotion recognition. Here we 1) compare autistic and non-autistic individuals on various
abilities which we know to be involved in (non-autistic) emotion recognition, and 2) test
whether these processes also contribute to emotion recognition in autistic adults. Understanding
the extent to which different tasks rely on these factors might help us to disentangle the mixed
findings in this literature.

Recent work has highlighted that a person’s internal templates - that is the way one
pictures emotional expressions in the “minds’ eye” (also known as a visual representations of

emotion; e.g., 384,388,463,464,472) _

are important contributors to emotion recognition accuracy
(Chapter 4)*7°. Signal detection theory (see '%°) tells us that at least two properties of visual
representations should predict emotion recognition accuracy: precision and differentiation. That
is, a ‘signal’ distribution and a ‘noise’ distribution that are both imprecise (wide) and indistinct

(overlapping) provide low sensitivity to discriminate between ‘signal’ and ‘noise’. Thus, an

individual with an imprecise visual representation of anger, which overlaps with the
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representation of sadness should find it difficult to discriminate between the two emotions. Our
recent work tested this hypothesis by asking (non-autistic adult) participants to manipulate a
dial to change the speed of a dynamic point light face (PLF) stimulus (depicting an actor
speaking in a happy, angry or sad fashion) until it moved at a speed they typically associated
with an angry, happy or sad expression*’®. Thus, providing us with an estimate of the speed of
participants’ internal visual representations of emotional expressions. Participants also
completed an emotion recognition task in which they rated the extent to which PLF stimuli
depicted different emotional expressions*’®. Although we did not confirm a role for
differentiation in emotion recognition, we did find (across two samples with a total N = 281)
that adults with less precise emotion representations typically exhibited lower emotion
recognition accuracy scores*®43, Thus, signal detection theory highlights two features of
visual emotion representations that may be important in emotion recognition: 1) the precision,
and 2) the differentiation of these visual representations. Our empirical work to date has
confirmed an important role for precision.

In addition to precision, our previous work showed that the general ability to match two
images also plays an important role in emotion recognition. We theorized that to have superior
emotion recognition, one may need to have a) precise representations of facial expressions, and
b) the ability to match incoming expression stimuli to internal representations. To test matching,
we asked participants to alter the speed of a PLF until it matched the speed of a second PLF*7,
Across both a discovery and replication sample, we found an interaction between
representational precision and matching ability. That is, for participants with a good ability to
visually match two expressions, representational precision was less important for emotion
recognition. In contrast, if participants had a poorer ability to match expressions,

representational precision played an important role.
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In a parallel literature, there is preliminary evidence that autistic individuals struggle to
differentiate their own emotions!“®. Since autistic individuals may struggle with emotion
differentiation they may also struggle to differentiate visual representations of emotion. That
is, autistic individuals may picture emotional expressions in their mind’s eye as more similar
and overlapping than their non-autistic peers (e.g., the angry and sad expressions they imagine
look very similar and are easily confused for one another). This is particularly plausible given
that individuals with less differentiated experiences of emotion typically have less
differentiated visual representations t0o*’3. As mentioned previously, since overlapping
‘signal’ and ‘noise’ distributions may make it difficult to discriminate the ‘signal’ from the

‘noise’ 40

, it may be that difficulties differentiating visual representations are responsible for
emotion recognition differences in autism. However, research has not yet tested this idea.

In sum, recent work has begun to elucidate a number of factors that could account for
individual differences in emotion recognition, including the precision and differentiation of
visual representations of expressions and visual matching ability. It follows that emotion
recognition difficulties in autism could be due to differences in one, or many, of these factors.
For instance, autistic individuals may have more imprecise and/or overlapping visual
representations of emotional expressions. Unpacking this may help to explain why not all
studies find differences between autistic and non-autistic people with respect to emotion
recognition: perhaps some emotion recognition tasks rely more on either the precision or
differentiation of visual emotions representations, or more on these representations in general,
than others. For example, affect matching paradigms, in which participants judge whether two

expressions show the same or different emotions may place less emphasis on visual emotion

representations (as participants compare expressions that are presented to them sequentially or
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simultaneously) than labelling paradigms, where participants may have to compare to their
visual representations in order to produce the correct emotion label.

The current study therefore, first investigated whether autistic and non-autistic adults
differed with respect to the precision and/or differentiation of their visual representations of
emotion and their general matching abilities (in the speed domain), and second explored
whether differences therein were related to individual differences in accurately recognising
emotional expressions. In our study, we also controlled for alexithymia — a subclinical condition
wherein individuals experience difficulties in identifying their own emotions!** — to ensure that
any differences between the groups relate to autism, and not to alexithymia, as has been found
in previous work?07-209.212.213,

Recent Bayesian accounts of autism propose another possible source of differences in
emotion recognition in autism. According to Bayesian accounts, prior expectations bias the
perception of incoming sensory information. With respect to emotion recognition, if one
expects to observe a happy expression, one will attend more to features that generally signal
happiness and less to features that tend to signal other emotions*°®. Bayesian theories of autism
argue that autistic people are less affected by prior expectations than neurotypical people?>*-260
and place greater emphasis on incoming sensory information (see 2¢!). Therefore, for non-
autistic people, expectations can bias the perception of expressions (i.e., incoming sensory
stimuli) such that they better match visual representations of expected emotions. For autistic
people the perception of expressions may be less affected by prior expectations, and therefore
their perception of the incoming expression may be less biased towards their visual emotion
representation. If it is the case that autistic individuals are less affected by their visual

representations of emotion (relative to non-autistic people), we would expect emotion

recognition accuracy to be predicted by the precision and differentiation of these
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representations to a lesser extent than for non-autistic individuals. Consequently, in addition to
investigating whether autistic and non-autistic adults differ in terms of matching abilities, the
precision and/or differentiation of visual emotion representations, we also assessed the extent
to which a number of different abilities were implicated in autistic and non-autistic emotion

recognition.

5.2. Results

To determine whether there are differences between autistic and non-autistic individuals
in these abilities, the current study employed three tasks involving dynamic point light displays
of angry, happy and sad facial expressions. The first task was an adapted version of our

“ExpressionMap” task*49-468.473

which uses a method of adjustment design. On each trial,
participants were required to manipulate a dial to speed-up or slow-down PLF stimuli until they
matched their visual representation of anger, happiness, and sadness. This task assesses how
precise (by assessing variability, across trials, in attributed speed) and overlapping (via
assessing the mean distance between emotions in terms of speed) participants’ visual emotion
representations are. In the second task, known as the “Visual Matching Task™*73, participants
were required to match the speed of a PLF to another displayed PLF. Since participants are
provided with a visual representation to match to, they do not need to imagine anything,
therefore this task indexes visual matching ability independent of imagination ability. Finally,
we used our previously validated task?**-3#° to index emotion recognition ability. On each trial,
participants viewed an angry, happy, or sad PLF and rated the extent to which the expression

looked angry, happy and sad on visual analogue scales. Emotion recognition accuracy was

calculated as the correct emotion rating minus the mean of the two incorrect emotion ratings.
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In the following section, we (1) compare autistic and non-autistic participants on the
precision and differentiation of visual emotion representations, matching abilities, and emotion
recognition, and (2) determine whether the same processes are implicated in autistic and non-
autistic emotion recognition.

5.2.1. Analyses comparing autistic and non-autistic participants

First, to compare the precision of visual emotion representations (as measured by the
ExpressionMap task) across participant groups, we conducted a linear mixed effects model with
representational precision as the dependent variable, emotion (angry, happy, sad), group
(autistic vs non-autistic), the interaction between emotion and group [independent variables],
age, sex, non-verbal reasoning ability and alexithymia [control variables] as predictors, and
subject number as a random intercept. This revealed that there was a significant main effect of
emotion [F(2,176) = 87.13, p < .001]: precision scores were highest for sad [mean(standard
error of the mean; SEM) = -0.52(0.03)], followed by happy [mean(SEM) = -0.68(0.04)],
followed by angry expressions [mean(SEM) = -0.91(0.04)]. In addition, both age [F(1,83) = -
18.23, p < .001], and non-verbal reasoning [F(1,83) = 18.10, p < .001] predicted
representational precision. Most importantly, however, we identified a main effect of group
[F(1,83) = 6.25, p = .014]: in contrast to our hypothesis, the autistic participants [mean(SEM)
= -0.64(0.04) exhibited significantly higher precision than the non-autistic [mean(SEM) = -
0.77(0.04)] participants, suggesting that autistic individuals have more precise visual
representations of emotion. The emotion x group interaction [p = .594], sex [p = .207], and
alexithymia [p = .469] were not significant predictors of representational precision.

Next, to compare the distances between emotion representations across participant
groups, we constructed a linear mixed effects model with distance as the dependent variable,

emotion pair (angry-happy, angry-sad, happy-sad), group (autistic, non-autistic), the interaction
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between emotion pair and group [independent variables], age, sex, non-verbal reasoning, and
alexithymia [control variables] as predictors, and subject number as a random intercept. In line
with the results from our previous study [30], this analysis found that there was a significant
main effect of emotion [F(2,176) =74.31 p <.001]: the distance between angry and sad emotion
representations was largest [mean(SEM) = 2.25(0.11)], followed by angry and happy
[mean(SEM) = 1.21(0.09)] and happy and sad [mean(SEM) = 1.14(0.07)]. There was no main
effect of group [p = .117], nor an interaction between emotion pair and group [p = .317], thus
autistic and non-autistic individuals do not significantly differ in the differentiation of visual
emotion representations. Finally, age [p =.080], sex [p = .174], non-verbal reasoning [p = .390]
and alexithymia [p = .594] did not predict the distance between emotion representations.

Next, to compare the matching difficulty of the autistic and non-autistic participants, we
ran a linear mixed effects model of matching difficulty as a function of emotion (angry, happy,
sad), group (autistic, non-autistic), the emotion x group interaction [independent variables], age,
sex, and non-verbal reasoning [control variables] as predictors, and subject number as a random
intercept. This analysis revealed that non-verbal reasoning ability was a significant negative
predictor of matching difficulty [F(1,83) = -15.75, p < .001]: those with higher non-verbal
reasoning had a greater ability to match two visually displayed expressions on speed.
Importantly, there was no significant main effect of group [p = .255] or an emotion X group
interaction [p = .795], indicating that autistic and non-autistic individuals had similar matching
ability across all emotions. There was also no significant main effect of emotion [p = .058].
Age [p = .188], sex [p = .388], and alexithymia [p = .149] were also not significant predictors
of matching difficulty.

Finally, we constructed a linear mixed effects model of emotion recognition accuracy

(as measured by the PLF emotion recognition task) as a function of emotion (angry, happy,
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sad), spatial level (50%, 100%, 150% spatial exaggeration), kinematic level (50%, 100%, 150%
speed), group (autistic, non-autistic), the interaction between these variables [independent
variables], age, sex, non-verbal reasoning, and alexithymia [control variables] as predictors,
and subject number as a random intercept. This revealed that there was no significant main
effect of group or any significant interactions with group (all p > .05). Therefore, the autistic
and non-autistic participants exhibited comparable levels of accuracy across different emotions,
speeds, and levels of spatial exaggeration. The remaining results from this analysis are reported
in Appendix 4.1 as they are outside the scope of the current study.
5.2.2. Determining the contributors to autistic and non-autistic emotion recognition

To determine the relative importance of our variables of interest for autistic and non-
autistic emotion recognition, we conducted a random forests analysis**! in each group using the

432 wrapper algorithm (version 7.7.0; as in #7°). Random forest regression is a supervised

Boruta
machine learning technique that constructs a large number of decision ‘trees’, each predicting
a continuous outcome variable with a collection of factors, and then aggregates these
predictions into one final result (by taking a mean of the predictions from the individual tress).
The Boruta wrapper algorithm starts by randomly shuffling each predictor variable and adding
these shuffled variables (termed “shadow features”) to the dataset. Following this, across many
iterations (here, 1500), the algorithm trains a random forest regression on all the predictors, as
well as their shuffled copies (i.e., “shadow features™), and categorises a variable as important
(i.e., useful for predicting a target variable) when its importance score is higher than the highest
importance score for a shadow feature (termed “shadowMax” in the analysis; see *7* for an
accessible summary of the Boruta wrapper algorithm). In this analysis, our outcome variable

was mean accuracy and our predictor variables were total AQ score, total TAS score, the AQ

and TAS subscales (i.e., AQ Social Skills, AQ Attention Switching, AQ Attention to Detail,
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AQ Communication, AQ Imagination, TAS Difficulties Describing Feelings, TAS Difficulties
Identifying Feelings, and TAS Externally Oriented Thinking), non-verbal reasoning ability,
age, mean representational precision, mean distance, and the interaction between
representational precision and matching (‘representation matching’), (thus following similar
procedures to 473).

For non-autistic participants, of the 15 variables tested, two were confirmed important,
one was tentative, and 12 were confirmed unimportant. Figure 5.1 (left) illustrates that the
interaction between representational precision and matching and non-verbal reasoning were
classed as important for non-autistic emotion recognition, with mean importance scores of 6.57
and 13.88 respectively. AQ Imagination score was classified as tentatively important with a
mean importance score of 3.78. All other variables were deemed unimportant. In contrast, for
autistic participants all 15 of the tested variables were confirmed unimportant (see Figure 5.1

right).
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Figure 5.1.

Random forest variable importance scores for non-autistic (left) and autistic (right)
participants.
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Note. Variable importance scores for all 15 variables included in the Boruta random forest
regression model, displayed as boxplots. Box edges correspond to the interquartile range
(IQR); whiskers represent 1.5 X IQR distance from box edges; circles denote outliers. Box
colour reflects the decision made by the algorithm: Green = confirmed important, yellow =
tentative, red = rejected; grey = shadow features — shadowMin, shadowMean, shadowMax
(minimum, mean and maximum variable importance scores of shadow features, respectively).

Following this, to verify the result from our random forests analysis for non-autistic
individuals, we constructed a Bayesian linear regression model (using a default Jeffreys-
Zellner-Siow prior; r scale = 0.354) of accuracy as a function of non-verbal reasoning, the

interaction between representational precision and matching (‘representation matching’), and
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AQ Imagination score. The strongest model that emerged from this analysis included just non-
verbal reasoning ability and the representational precision x matching interaction as predictors
of emotion recognition accuracy (and not AQ I score) [BF 10 = 149.64, R? = 33.5%]. According
to the model, there was very strong evidence that both of these factors contribute to emotion
recognition accuracy for non-autistic individuals. When this analysis was conducted with
autistic participants, there was moderate evidence that these variables did not predict emotion
recognition accuracy [i.e., the null hypothesis; BFio = 0.15, R? = 1.00%], thus confirming the

results from our previous analysis.

5.3. Discussion

The current study compared autistic and non-autistic adults on features of visual
representations thought to be implicated in emotion recognition (e.g., precision and
differentiation of visual emotion representations, general matching ability), and investigated
the contribution of these factors to emotion recognition in both groups. We found that the
autistic participants had more precise visual emotion representations (in the speed domain)
across all three emotions, thus contradicting our expectations. In addition, we identified that
there were no significant differences between groups in emotion recognition accuracy. This was
true across all levels of the spatial and kinematic manipulations. This finding contradicts
previous studies identifying group differences in emotion recognition (e.g., '°1:383475476) and
instead supports literature suggesting emotion recognition performance is comparable between
autistic and non-autistic people (e.g., 207-243-244477:478) " Fyrthermore, there were no significant
differences between groups in differentiation — as indexed by the distance between emotion
representations - or matching ability. Hence, although autistic individuals may have less distinct

emotional experiences (as in '*%), they have comparably distinct visual representations (at least
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in the speed domain) to their non-autistic counterparts. In sum, these results show that the
autistic participants had more precise emotion representations (in terms of speed), but that this
did not confer any benefit in terms of accuracy on our task which indexed emotion recognition
from dynamic stimuli (although it is possible that having more precise visual emotion
representations benefits autistic individuals on other types of tasks).

Here, it is important to consider alternative explanations for our conclusion that the
autistic participants had more precise visual emotion representations (relative to their non-
autistic peers). A primary question concerns whether the autistic participants achieved higher
representational precision simply due to a focus on local details of the PLF expressions (i.e., a
small number of points in the PLFs), thus facilitating more consistent speed attributions. Our
findings suggest that this is unlikely: post-hoc correlations demonstrate moderate evidence [r =
-0.071, p = .509, BF10= 0.181] for a null relationship between representational precision and
the attention to detail subscale of the AQ. Therefore, it is unlikely that the autistic participants
had more precise visual emotion representations simply due to a focus on local details in our
ExpressionMap paradigm. Another explanation is that the autistic individuals have lower
cognitive flexibility, resulting in these individuals approaching each trial in a similar way each
time, leading to more precise visual representations. Again, this explanation is not probable
since there is moderate evidence [r = 0.097, p = .364, BFio = 0.152] for a null relationship
between representational precision and the attention switching subscale of the AQ (a proxy for
cognitive flexibility). As such, it is not the case that the autistic participants exhibited greater
representational precision due to a focus on local details or reduced cognitive flexibility. Rather,
our results suggest that autistic individuals truly have more precise representations of facial

expressions in their mind’s eye (with respect to speed).
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To determine the relative importance of various abilities (e.g., precision of
representations, distance between representations, general matching ability) and clinically
relevant individual differences (e.g., non-verbal reasoning, AQ, TAS) to autistic and non-
autistic emotion recognition, we conducted random forest analyses employing the Boruta
wrapper algorithm. Whilst for non-autistic individuals, non-verbal reasoning ability and the
interaction between representational precision and matching were classified as important, and
AQ Imagination score was classified as tentatively important for emotion recognition, no
variables were deemed important for autistic emotion recognition. Of particular note, none of
the variables corresponding to features of emotion representations contributed to autistic
emotion recognition (i.e., precision of representations, distance between representations, the
representational precision x matching interaction). That is, these factors were no better than
randomly shuffled data at predicting emotion recognition accuracy. Thus, aside from precision
(where autistic participants exhibited more precise emotion representations in terms of speed)
there were minimal differences between the groups (matching, distinctness and accuracy did
not significantly differ); nevertheless, there were differences in the way these variables were
related such that autistic participants did not exhibit the predictive relationship between features
of representations and emotion recognition accuracy that is exhibited by non-autistic people.
These results suggest differences in the psychological mechanisms underpinning emotion
recognition from dynamic stimuli in autism.

One possible mechanistic difference is that autistic individuals may not be ‘using’ their
(precise) emotion representation (or ‘using’ them to a lesser extent) to help them recognise
emotional expressions. This idea aligns well with Bayesian accounts of autism which posit that
autistic individuals are less influenced by priors than non-autistic people (see 2°!). To date, there

is mixed evidence in relation to these Bayesian accounts, with some studies suggesting weaker
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prior influences, others suggesting no differences, and a handful suggesting larger prior
influences in autism (see *’°). Furthermore, there is variance across domains: for ‘social priors’,
the evidence is almost evenly split between suggesting weaker prior influences and no
differences, while for simpler perceptual priors there are usually no differences between autistic
and non-autistic people (see 4”). One issue that is unresolved in this field is the question of
whether autistic individuals possess weaker priors and/or whether autistic individuals are /ess
influenced by priors. The two are orthogonal to each other so that, in theory one could have
strong priors but nevertheless be weakly influenced by them. Our results raise the hypothesis
that - at least in the domain of emotion recognition — autistic individuals have strong priors (i.e.,
precise emotion representations in the speed domain) but are, nevertheless weakly influenced
by them (i.e., the relationship between the priors and on emotion recognition accuracy is
minimal). Future research is required to test this hypothesis.

If it is true that autistic individuals are less guided by their visual emotion
representations, we might expect these individuals to perform better on tasks that do not require
a comparison between incoming facial expressions and internal templates. For example, they
may perform better on affect matching paradigms, wherein participants have to judge whether
two expressions show the same or different emotions (i.e., differentiate emotional expressions
that are presented to participants sequentially or simultaneously), rather than labelling
paradigms, where participants may have to compare to their visual representations in order to
produce the correct emotion label. In line with this, whilst numerous studies employing
matching paradigms show comparable emotion recognition performance between autistic and
non-autistic people (e.g., 24480482 " those employing labelling paradigms often document

differences between these groups (e.g., 22%*83-488) " As such, our findings may help disentangle
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mixed findings regarding emotion recognition in autism by suggesting that autistic individuals
may have particular difficulties on tasks that mandate comparison to their internal templates.
If autistic individuals are less guided by their visual representations of emotion, how are
they able to achieve high levels of accuracy on our emotion recognition task? One plausible
explanation is that autistic individuals have developed compensatory strategies that allow them
to achieve comparable accuracy to non-autistic participants on certain tasks (e.g., in the current
study; see 2!%). The nature of these compensatory strategies may vary from person to person,
but one possibility is that autistic people use explicit cognitive or verbally mediated strategies
to help them recognise emotions (in contrast to more automatic processing in non-autistic
individuals?!62°6257) " Here, rather than automatically comparing their visual emotion
representations to incoming facial expressions, the autistic participants may instead follow a
“rule-based strategy” where they assess the degree to which the expression matches a list of
features they have learnt to be associated with anger (e.g., “furrowed eye-brow”, “fast-moving”,

9 ¢

etc.), happiness (“lip raising”, “teeth showing”, etc.), and sadness (“downturned mouth”, “slow-
moving”, etc), along with other emotions?>%%7,

If autistic participants are using an alternative, cognitive or verbal, strategy we might
expect emotion recognition performance to be more related to general cognitive or verbal ability
for autistic people than for non-autistic people. Supporting this idea, studies have found that
mental age?!>, and receptive and expressive language®® predict emotion recognition ability in
autistic, but not non-autistic, children. Concurrently, if autistic individuals are less reliant on
visuo-spatial cues (such as visual emotion representations), we might also expect non-verbal
reasoning ability to be less associated with emotion recognition performance in the autistic than

non-autistic group. In line with this, here we found that non-verbal reasoning ability was a

significantly stronger predictor of emotion recognition accuracy [z = -2.251, p < .05] for the
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non-autistic [t = 3.88, p <.001, BFio = 74.16, R>= 0.259], than autistic [t = -0.46, p = 0.650,
BF10=0.321, R? = 0.005], participants. Third, if it is true that autistic individuals employ more
effortful cognitive/verbally mediated mechanisms to recognise emotions (rather than a more
automatic processing style), this could explain why autistic individuals typically exhibit longer
emotion recognition response latencies than non-autistic individuals (e.g., *>-2%; though note
there could be other explanations for longer response latencies). Here, the PLF stimuli were
presented for relatively long durations (approximately 6 seconds on average), thus providing
the autistic participants sufficient time to employ their compensatory strategies (and hence they
were able to reach comparable accuracy scores). Further research is necessary to confirm
whether autistic individuals adopt a rule-based strategy to read emotional facial expressions.
Limitations

The results of the current study are informative with respect to understanding the
emotion representations of autistic and non-autistic individuals from facial motion cues alone.
However, since many features of expressions are involved in emotion processing, such as
shading/depth?”7 and pigmentation/colouring®’®, one should be cautious to assume that our
findings generalise to full dynamic emotional expressions (e.g., full video recordings of facial
expressions). It could be, for instance, that the precision of emotion representations and
matching ability are important for autistic emotion recognition for full dynamic expressions,
but not point-light displays. However, since our study was motivated by the observation of
group differences in emotion recognition®®, and links discovered between emotion
representations and emotion recognition from facial motion cues alone (as in *°47), it was
crucial to our overall research question that we used PLF stimuli in the current study. Although
this was an active design choice, motivated by previous research demonstrating a causal role of

speed cues in emotion recognition?*? and other a priori hypotheses (see *4), in future work we
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will develop our paradigms to encompass other spatiotemporal emotion cues. Thus, facilitating
comparisons of visual emotion representations between autistic and non-autistic individuals
with respect to other cues such as the degree of spatial exaggeration, movement onset/offset,
texture and colour.

It is also important to address the limitations of our study with respect to
generalizability. Notably, the participants in our sample were predominantly white (86.67%;
see Appendix 4.2), highly educated (see Appendix 4.3), English-speaking individuals from
highly developed countries. As such, our sample may not be representative of those with
lower levels of education or intellectual disabilities, or those from different racial, ethnic,
cultural, or socioeconomic backgrounds. With respect to the former, whilst autistic
individuals with average to high IQs often have comparable emotion recognition performance
(e.g., 209244477478) "those with co-occurring intellectual disabilities appear to struggle with
emotion recognition (e.g., 213489490 relative to IQ or mental age-matched comparison groups
(though see *°!). Hence, we may not have found emotion recognition difficulties here due to
our autistic participants possessing high levels of intelligence (as demonstrated by their high
level of education). With respect to the latter, since the participants in our sample are
predominantly from developed countries, where emotion recognition interventions are
increasingly being offered to autistic individuals (e.g., 47%4°24%%) it may be that some of our
autistic participants have undergone training in the past, thus improving their emotion
recognition scores. Hence, our findings may not represent the emotion recognition
performance of autistic individuals from less developed countries. Future studies should aim
to dismantle barriers to inclusion to boost the representativeness of their samples, thus

allowing us to identify whether specific subgroups of autistic individuals (e.g., those with
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intellectual disabilities) have difficulties with emotion recognition (and other emotion
processes).
Conclusion

The current study aimed to compare autistic and non-autistic participants on features of
their emotion representations, and determine whether the same processes are implicated in
autistic and non-autistic emotion recognition. Using a method of adjustment design, we found
that autistic individuals had more precise visual emotion representations than their non-autistic
counterparts (in the speed domain). That is, the autistic participants were more precise (i.e.,
consistent) in the speeds they attributed to angry, happy and sad facial expressions across
repetitions. Nevertheless, this enhanced precision did not confer any benefit for their emotion
recognition. Whilst for non-autistic people, non-verbal reasoning and the interaction between
precision of emotion representations and matching ability predicted emotion recognition, no
variables contributed to autistic emotion recognition. These findings highlight the possibility
that autistic individuals are less guided by their emotion representations (a form of prior). Future
research is necessary to identify what traits, processes, and strategies are implicated in autistic

emotion recognition.

5.4. Method

This study was approved by the Science, Technology, Engineering and Mathematics
(STEM) ethics committee at the University of Birmingham (ERN_16-0281AP9D) and was
conducted in accordance with the principles of the revised Helsinki Declaration. Informed

consent was obtained from all participants.
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5.4.1. Participants

A total of 45 autistic and 45 non-autistic participants were recruited from the
Birmingham Psychology Autism Research Team (B-PART) database, the Centre for Autism
Research Oxford database, and Prolific. All participants in the ASD group had previously
received a clinical diagnosis of ASD from an independent clinician. As expected, the
participants in the ASD group had significantly higher AQ scores than those in the non-autistic
group (see Table 5.1.).

The sample size was based on an a priori power analysis conducted using G*Power*’?,
which focuses on replicating the group-difference in recognition accuracy (between autistic and
non-autistic individuals) for angry videos at the normal spatial and speed level*®. Using data
from Keating et al*, 25 participants are required in each group in order to have 80% power to
detect an effect size of 0.719 (Cohen's d) at alpha level 0.05 for this group-difference in
accuracy. Since Button and colleagues®*? argue that sample size calculations are likely to be
optimistic, we recruited 45 participants in each group in order to ensure we obtained adequate
power.

Table 5.1.

Means, standard deviations, and group differences of participant characteristics. In the central
columns, means are followed by standard deviation in parentheses.

Variable ASD (n=45) Non-ASD (n = 45) Significance
Sex 30 Female, 14 Male, 1 Prefer not to say 26 Female, 19 Male p=.360
Age 35.51 (14.06) 34.87(9.01) p=.398
NVR 65.83%(15.31%) 63.70%(15.20%) p=.255
AQ-50 37.31(7.64) 21.44(7.34) p <.001
TAS-20 64.60(12.46) 57.49(11.99) p=.004

Note. Age is in years.
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5.4.2. Procedures

Following participatory research guidelines®!®31?

, prior to conducting this study, a group
of individuals from the autism community (from the Birmingham Psychology Autism Research
Team Consultancy Committee) provided feedback on our research (e.g., about task design and
instructions, frequency of breaks, and suggested routes for dissemination, etc.). Following this
consultation, we made a number of changes (e.g., added instruction videos for the
ExpressionMap and Visual Matching task to promote understanding and accessibility) before
starting to recruit participants.

Participants completed demographics questions, followed by the 50-item Autism
Quotient*** (as in Chapter 2), and the 20-item Toronto Alexithymia Scale*** (as in Chapter 2).
Following this, participants completed three tasks that employed dynamic point light displays
(a series of dots that convey biological motion) of angry, happy and sad facial expressions
(PLFs). Participants completed the ExpressionMap paradigm®*’ (as in Chapter 4), followed by
the Visual Matching task*”? (as in Chapter 4), followed by the PLF Emotion Recognition task
(as in Chapter 2). Finally, participants completed the Matrix Reasoning Item Bank (MaRs-
IB)** (as in Chapter 2). Within each task, participants were encouraged to take regular breaks
in between blocks. All parts of the study were completed online in one sitting. Together, these
questionnaires and tasks took approximately two hours and 30 minutes to complete.

5.4.3. Statistical analyses

All frequentist analyses were conducted using R Studio (version 2021.09.2) and all
Bayesian analyses were conducted using JASP (version 0.16). For all frequentist analyses, we
used a significance threshold of p = 0.05 to determine whether to accept or reject the null
hypothesis. The frequentist approach was supplemented with the calculation of Bayes Factors,

which quantify the relative evidence for one theory or model over another. For all Bayesian
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analyses, we followed the classification scheme used in JASP332: BF g values between one and
three reflect weak evidence, between 3 and 10 as moderate evidence, and greater than ten as
strong evidence for the experimental hypothesis. Conversely, BFio values between 1 and 1/3
reflect weak evidence, between 1/3 and 1/10 as moderate evidence, and smaller than 1/10 as

strong evidence for the null hypothesis respectively*>2.
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Chapter 6: Similarities and differences in the psychological
mechanisms involved in autistic and non-autistic emotion
recognition

In Chapter 4, in addition to showing that the precision of visual representations
contributes to emotion recognition, we also demonstrated that (for non-autistic people) the
precision and differentiation of emotional experiences is linked to emotion recognition
performance. Hence, our results reveal additional potential candidate mechanisms that may
underpin the emotion recognition difficulties of autistic individuals: they may have less
precise and/or less differentiated emotional experiences than their non-autistic counterparts,
leading to challenges interpreting other people’s emotions. This is particularly plausible given
that previous studies have found autistic individuals have greater difficulties differentiating
their own emotions than their non-autistic peers!“®. The following chapter tests this
possibility, first by comparing the precision and differentiation of emotional experiences
between groups after controlling for alexithymia, and second by examining the contribution

of these factors to emotion recognition in each group, respectively.
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Publication 5:

Similarities and differences in the psychological mechanisms involved in autistic and
non-autistic emotion recognition

Connor T. Keating, Carmen Kraaijkamp, and Jennifer L. Cook
(Published in PsyArXiv, under review)

Reference: Keating CT, Kraaijkamp C, Cook J. Similarities and differences in the psychological
mechanisms involved in autistic and non-autistic emotion recognition.
https://doi.org/10.31234/0sf.io/6deqs
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Abstract

The extant literature hints at the idea that differences in the autistic population in the recognition
of others’ emotions might be related to differences in the way emotions are experienced.
Specifically, autistic individuals may differ in the precision of emotional experiences, ability to
differentiate between emotions, and/or semantic conceptions of emotions. Here, we empirically
tested this claim by (1) investigating whether autistic and non-autistic adults differed in the
precision and/or differentiation of their emotional experiences, and their understanding and
differentiation of emotion concepts, after controlling for alexithymia, and (2) assessing the
contribution of these emotional abilities to emotion recognition. Hence, 50 autistic and 50 non-
autistic individuals, matched on age, sex, and non-verbal reasoning completed several
computer-based tasks. We found no group differences in emotional precision, emotion
differentiation, and the understanding or differentiation of emotion concepts after controlling
for alexithymia. For both groups, the ability to differentiate one’s own emotions contributed to
enhanced emotion recognition. Whilst having more differentiated emotion concepts contributed
to elevated emotion recognition for non-autistic people, having a more precise understanding
of emotion concepts contributed for autistic people. These findings highlight similarities and

differences in the mechanisms involved in autistic and non-autistic emotion recognition.
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6.1. Introduction

Autism spectrum disorder (hereafter ‘autism’) is a neurodevelopmental condition,
characterised by restricted and repetitive interests and difficulties with social communication
and interaction'>!. Although not considered a diagnostic feature, emotion recognition has been
a topic of interest in autism research for over three decades because it is thought that difficulties
in this area may contribute to social challenges (e.g., 2!°). To date, the majority of emotion
recognition research has aimed to determine whether differences exist between autistic and non-
autistic individuals (see '46:191216) This literature is famously mixed (see 46213 for reviews):
some studies show differences in emotion recognition between groups, while others find no
differences, or emotion-specific difficulties (for example in recognising angry
expressions!47-191:219-222.385) "Here, instead of focusing on assessing whether there are group
differences in emotion recognition, we explore whether there are differences in the way in which
autistic people read emotional expressions. That is, we ask whether autistic and non-autistic
people typically employ different mechanisms to recognise the emotions of others.

One potential candidate mechanism concerns the way in which autistic and non-autistic
people use their experiences of their own emotions when recognising others’ emotions. A
person’s internal emotional landscape is an important contributor to how well they can
recognise the emotions of others (see 47°). For instance, individuals who have more precise and
differentiated emotional experiences typically find it easier to successfully recognise other
people’s emotions. Our previous work provided empirical support for this in a large (N = 193)
sample of non-autistic participants*’3. Participants completed a two-part “EmoMap” paradigm
wherein they first viewed pairs of images each known to selectively induce either anger,
happiness or sadness*’, and rated how similar the evoked emotions felt. They subsequently

selected the image that made them feel the most angry, happy, or sad. Emotion differentiation
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was calculated using a multidimensional scaling algorithm to transform similarity scores into
‘distances’ between emotions. Emotional precision was calculated based on the logical
consistency of participants’ responses: if a participant selected image A over image B, and
image B over image C, but then selected image C over image A, this would comprise an
inconsistent decision and would indicate imprecision in their emotional experience. Thus,
individuals with highly precise and differentiated emotions are precise in their emotional
responses to the images and feel very different inside when they experience anger, happiness
and sadness. Previously we found that (non-autistic) participants with more precise and
differentiated emotional experiences typically had greater emotion recognition accuracy on an
independent test*’3. At present, it is not known whether the same is true for autistic individuals.

Another potential contributing factor to emotion recognition concerns how well
individuals understand semantic emotion concepts (i.e., the semantic meaning associated with
the emotion) and are able to differentiate these from one another (e.g., differentiating the
concept of sadness from disappointment). Contemporary theories of emotion and emerging
evidence suggest that semantic emotion concepts shape how individuals “construct” both
emotional experiences (i.e., inferences about how oneself is feeling) and emotion perceptions
(i.e., inferences about how others are feeling)!~°. Specifically, these theories suggest that from
childhood through adulthood, emotion concepts evolve from a “positive vs. negative”
dichotomy into increasingly differentiated multidimensional representations, producing
concomitant shifts in the experience and perception of emotion’!. That is, possessing emotion
concepts that are differentiated across more dimensions will encourage individuals to
differentiate between their own affective experiences, and others’ emotional facial expressions,
across more dimensions (e.g., arousal and context in addition to valence). Hence, as we develop,

we move away from conceptualizing, experiencing and perceiving, emotions as “good” and
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“bad”, to conceptualizing, experiencing, and perceiving them more precisely (e.g., based on
arousal, context, etc.).

Although theories to date are highly informative, they have not yet specified whether
emotion concepts influence experiences and perceptions independently and directly, or whether
there are indirect effects amongst these variables (one variable influences another, which
influences a third variable). It could be, for example, that having precise and distinct semantic
emotion concepts helps an individual to differentiate between their own emotional states, which
in turn helps them to tell apart others’ emotional expressions. To determine the mechanistic
pathways amongst these variables, studies employing causal manipulation are necessary.
However, at present, the putative direction of causality is unknown, thus making it impossible
to determine which factor should be the target for manipulation. Here, research employing
mediation analyses offer a potential solution, identifying the most mathematically pathways,
and thus opening avenues to future studies formally testing the degree of causality and
directionality between these variables.

Preliminary work suggests that there may be differences between autistic and non-
autistic people in their ability to differentiate experiences and semantic concepts of emotion.
Erbas and colleagues'#®, for example, have argued that autistic adults have less differentiated
experiences and concepts of emotion than their non-autistic counterparts. In support of this,
Erbas and colleagues found that the autistic participants sorted emotion terms into fewer
conceptual groupings, suggesting these individuals make less fine-grained distinctions between
emotion concepts. Autistic adults also had less differentiated emotional responses to emotion-
inducing images'*®. Importantly, however, this study did not control for alexithymia - a

199

subclinical condition, highly prevalent in autistic people'”, characterised by difficulties

identifying and describing one’s own emotions!**. This could be problematic as it is thought
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that autistic individuals’ challenges with emotion-processing (including emotion
differentiation) may be underpinned by alexithymia, and not autism (see 2°7). Further research
is necessary to understand whether autistic people have less differentiated experiences and
concepts of emotion after controlling for alexithymia.

Although research has demonstrated a role for both emotion differentiation and
emotional precision in the recognition of emotion*’?, studies have not yet examined emotional
precision in the context of autism. However, it could be that emotional precision is lower in
autism (in addition to emotion differentiation as described above), thus contributing to emotion
recognition difficulties. Alternatively, given that different traits and processes appear to be
involved in autistic and non-autistic emotion recognition!4’-246426 this factor may not contribute
to emotion recognition for autistic individuals at all.

In sum, it is unclear whether there are differences between autistic and non-autistic
individuals in emotional precision, and/or in the differentiation of experiences and semantic
concepts of emotion, after controlling for alexithymia. Such differences could conceivably feed
into challenges with recognising other’s emotional expressions. As such, the current study had
two primary aims: (1) to investigate whether autistic and non-autistic adults differed in the
precision and/or differentiation of their experiences and semantic conceptions of emotion, and
(2), to assess whether differences therein were related to individual differences in emotion
recognition. Additionally, in order to identify putative mechanistic pathways, we conducted
exploratory post-hoc analyses to identify whether the ability to differentiate one’s own
emotions mediates the relationship between the differentiation of emotion concepts and
emotion recognition. Importantly, throughout, we control for alexithymia to ensure that any
differences between the groups arise due to autism, and not alexithymia, as has been found in

previous Work207,209,212,2 13
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6.2. Method

This study was approved by the Science, Technology, Engineering and Mathematics
(STEM) ethics committee at the University of Birmingham (ERN 16-0281AP9D) and
conducted in line with the principles of the revised Helsinki Declaration.

6.2.1. Participants

58 autistic and 59 non-autistic participants were recruited from the Birmingham
Psychology Autism Research Team (B-PART) database, the University of Birmingham
Research Participation Scheme, and Prolific. All participants in the ASD group had previously
received a clinical diagnosis of ASD from an independent clinician. As expected, the autistic
participants had significantly higher Autism Quotient (AQ)*** scores than the non-autistic
participants [U = 384.5, Z = -7.24, p <.0001]. We employed a 2 standard deviation cutoff for
identifying and excluding outliers as recommended by Berger and Kiefer***, due its low
absolute bias (i.e., low risk of type-I and type-II errors***). That is, we excluded participants
with AQ scores that were over 2 standard deviations higher or lower than their group mean, and
those with performance on the emotion-based tasks over 2 standard deviations worse than their
group means since it is likely that such low performance levels are due to attentional lapses and
not representative of true ability. Reassuringly we observed that many of the excluded
participants also failed multiple attention checks and that the exclusion of participants did not
affect the results of the group comparisons on our main measures (i.e., no significant group
differences were found in emotional precision, the differentiation of experiences and concepts
of emotion, or understanding of emotion concepts regardless of whether these participants were
included or excluded). After the exclusions, our final sample comprised 50 autistic and 50 non-
autistic participants that were matched on age, sex, and non-verbal reasoning ability (see Table

6.1.). The ethnicities of these participants are reported in Appendix 5.1.
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Table 6.1.

Means, standard deviations, and group differences of participant characteristics. In the central
columns, means are followed by standard deviation in parentheses.

Variable Non-autistic (n=50) Autistic (n = 50) Significance
Sex 30 Female, 20 Male 26 Female, 22 Male, 2 Prefer not to say p =.304
Age 31.64 (15.08) 32.42 (10.42) p=.382
NVR 58.83% (13.81%) 61.80% (18.49%) p=.183
AQ-50 20.04 (7.53) 36.66 (5.51) p <.001
TAS-20 47.62 (13.20) 62.66 (10.11) p <.001

Note. Age is in years.

The chosen sample size was based on an a priori power analysis conducted using
G*Power**2, To have 80% power to detect emotion differentiation as a significant predictor of
emotion recognition accuracy (effect size f2=0.159), at alpha level 0.05, 41 participants in each
group are required. However, since Button and colleagues®#? argue that sample size calculations
are likely to be optimistic, we ensured that we had at least 50 participants in each group.

6.2.2. Procedures

Following participatory research guidelines®!331°

prior to conducting the study,
members of the autism community (from the Birmingham Psychology Autism Research Team
Consultancy Committee) provided feedback on our research (e.g., on task design and
instructions, suggested dissemination routes, etc.). Following this consultation, we made
several changes before starting data collection.

Participants provided informed consent and then completed demographics questions,

the Autism Quotient***, and the Toronto Alexithymia Scale***

on Qualtrics (see Chapter 2 for
a description of these questionnaires). Following this, participants completed EmoMap*”? (see

Chapter 4), the Point Light Face (PLF) Emotion Recognition Task?* (see Chapter 2), the
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emotional vocabulary test (inspired by Nook et al') and the Matrix Reasoning Item Bank3#}
(see Chapter 2) on Gorilla.sc. All parts of the study were completed online.
6.2.3. Materials and Stimuli
EmoMap

A full description of our EmoMap paradigm can be found in Chapter 4. An advantage
of this paradigm is that it allows us to measure emotion differentiation without requiring
participants to translate their emotional experiences into words, unlike existing tasks (see >°
for a full discussion). This is particularly beneficial for the current study as autistic individuals
sometimes have different language and communication profiles to non-autistic individuals (see
495.496) Removing the requirement to translate their emotional experiences into words means
that our task focuses on participants’ ability to differentiate their emotional signals, rather than
their ability to produce emotion labels.
Emotional Vocabulary Test

We assessed participants’ semantic conceptions of 20 different emotions (i.e., affection,
amusement, anger, anxiety, awe, contentment, depression, desire, disgust, embarrassment,
excitement, fear, guilt, happiness, interest, irritation, loneliness, peaceful, sadness, surprise)
using an adapted version of the emotional vocabulary test (from 7). The list of emotions was
selected to include a) the six basic emotions*®, b) emotions that occupy all four quadrants of
the circumplex dimensions of arousal and valence*!, and ¢) emotions that are most frequently
evoked by standardised databases of images (e.g., the Nencki Affective Picture System, the
International Affective Picture System)**°. In this task, on each trial, participants were required
to type a definition of an emotion word that was presented on screen. In order to ensure data
validity, we 1) explicitly instructed participants to come up with definitions themselves (rather

than searching for them online), ii) forced the task into full-screen so that we could tell if
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participants minimised the page to look-up definitions, and iii) excluded any definitions that
matched those provided by the Oxford, Cambridge, and Meriam Webster dictionaries.

In the current study, we consider how well participants understand the meaning (i.e.,
the semantic content) of emotion concepts, and how these meanings overlap between emotions.
To this end, we calculated two types of scores using the definitions provided by participants -
emotional vocabulary test scores, which pertain to the accuracy of participants’ definitions, and
conceptual distance scores, which reflect the conceptual overlap in participants’ own
definitions. To calculate emotional vocabulary scores, first, a trained experimenter assigned
each definition a score of zero, one, or two (as in a WASI vocabulary test and in Nook et al’!).
A score of two was awarded if the participants provided 1) a plausible and specific definition of
the emotion, ii) a direct synonym of the emotion, or iii) a scenario that would conceivably evoke
the given emotion and not other emotions. We assembled a list of definitions and synonyms
(taken from the Oxford and Cambridge Dictionaries and from Nook et al’') which the
experimenter referred to when scoring the responses. A score of one was awarded if the
participant provided a definition that was of the correct valence or situation, but too vague to
meet criteria for a two-point response. For example, if a participant defined loneliness as “the
feeling of being alone”, or “a sad feeling”, they would score one point for this definition. To
score two points, participants would need to include both parts of this definition: e.g., “the sad
feeling you get when you are alone”.