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Abstract 

Despite extensive research, the mechanisms underpinning successful emotion recognition 

remain unclear. Constructionist, template-matching, and signal detection theories illuminate 

several emotion-related psychological processes that may be involved – namely the 

conceptualisation, experience, visual representation, and production of emotion – however, this 

requires empirical verification. Therefore, across the six empirical chapters described here, I 

developed and applied several novel experimental paradigms to assess the way in which 

individuals conceptualise, experience, visualise, produce and recognise emotion, and created 

new mathematically plausible, mechanistic models that shed light on the processes involved in 

emotion recognition. In doing so, I identified several candidate mechanisms that may underpin 

the emotion recognition difficulties seen in a range of clinical conditions, including autism 

spectrum disorder, and I (1) determined whether there are differences between autistic and non-

autistic individuals in these emotion-related psychological processes, and (2) ascertained 

whether differences therein underpin emotion recognition challenges for autistic people.  

Ten years ago, it was theorised that the emotion-related difficulties of autistic 

individuals do not stem from autism per se, but rather alexithymia – a subclinical condition 

highly prevalent in the autistic population characterised by difficulties identifying and 

describing emotions. Since its inception, this theory has gained empirical support, with 

multiple studies documenting that alexithymia, and not autism, is associated with emotion-

processing differences. However, to date, this evidence has largely been confined to the domain 

of emotion recognition. As such, it is unclear whether there are differences between autistic 

and non-autistic individuals in the conceptualisation, experience, visual representation, and 

production of emotion, after controlling for alexithymia. Here, I resolved this ambiguity, 

discerning the explanatory scope of the “alexithymia hypothesis”: there were no differences 

between autistic and non-autistic individuals in the understanding or differentiation of emotion 



 

concepts (Chapter 6), the precision or differentiation of emotional experiences (Chapter 6), and 

the speed (Chapter 3) or differentiation of visual emotion representations (Chapter 5), after 

controlling for alexithymia. Nevertheless, there were differences between groups with respect 

to the precision of visual representations (Chapter 5), the production of emotional facial 

expressions (Chapter 7), and recognition of specific emotions (Chapter 2), even after 

accounting for this confound.  

Despite suggestions that autistic individuals adopt alternative strategies to recognise the 

emotions of others, very few studies have examined mechanistic differences in emotion 

recognition between autistic and non-autistic people. Therefore, here I aimed to compare the 

processes involved in emotion recognition for these groups. Across multiple empirical 

chapters, I identified that there are similarities and differences in the processes implicated in 

emotion recognition for autistic and non-autistic people (Chapters 4, 5, 6, and 7), with autistic 

individuals relying on fewer emotion-related psychological processes. By elucidating several 

candidate mechanisms underpinning superior emotion recognition, my doctoral work paves the 

way for future supportive interventions to help both autistic and non-autistic individuals to 

accurately interpret other people’s emotions, thus ultimately fostering more successful and 

fluid social interactions.   
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Chapter 1: General Introduction 
 

1.1. Overview 

My doctoral work featured two primary aims: (1) to elucidate the mechanisms 

involved in, and build empirical models of, autistica and non-autistic emotion recognition, and 

(2) to examine whether there are differences between autistic and non-autistic individuals in 

the conceptualisation, experience, visual representation, production, and recognition of 

emotion, after controlling for alexithymia – an important confound. In doing so, I hoped to 

elaborate on existing theories pertaining to the experience and recognition of emotion, and 

expand upon current knowledge regarding the origin of putative socio-emotional difficulties 

for autistic people. As such, in the current Chapter, I first synthesise the evidence concerning 

theories of human emotion and emotion recognition. In doing so, I highlight several candidate 

mechanisms that may contribute to emotion recognition difficulties in autism spectrum 

disorders – the precision and differentiation of semantic emotion concepts, emotional 

experiences, visual emotion representations, and emotional facial expressions. Second, I 

consider autism, social cognition, and emotion-processing, with a specific focus on these 

factors. Throughout, I discuss a possible role for alexithymia, address shortcomings of previous 

research, and highlight gaps in the literature.  

 

1.2. Theories of human emotion  

Humans are emotional creatures. Emotions shape our relationships throughout our 

lives1,2, influence attention, memory and decision making3-6, and contribute to our physical 

 
a In line with language preferences of the majority of the autistic community586,587, identity-

first language is used throughout.  
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health7 and psychological wellbeing8. Due to its role in numerous aspects of our lives, it is 

unsurprising that emotion has been a topic of scientific enquiry for over 150 years9-11. However, 

despite extensive research by psychologists, anthropologists and sociologists over this period, 

researchers still cannot agree on the definition of emotion, and the process by which it is 

experienced (see 12-14). For the purpose of this thesis, I consider emotions to be short-lived 

psychological phenomena that are constructed when the brain makes predictions about our 

neurophysiological state based on previously acquired knowledge and experiences (taking 

influence from constructionist theories14; see below).  

Perhaps, the earliest theory of emotion was devised by Charles Darwin in The 

Expression of the Emotions in Man and Animals9. In this book (and others), Darwin proposed 

that facial movements, gestures, and physiological changes that accompany expressed emotions 

are largely universal, instinctive, and inherited, as such behavioural modifications were 

adaptive in our early evolutionary environment9,15. These ideas were highly influential in 

shaping contemporary theories of emotion.  

Approximately ten years later, William James and Carl Lange proposed their theory 

(James-Lange theory10), delineating the process by which emotion is experienced. According 

to this theory, a stimulus activates the sensory cortex which directly evokes physiological 

and/or motor responses10. Following this, the feedback from these responses travels back to the 

sensory cortex where it generates an experience of emotion10. In essence, this theory proposes 

that the conscious awareness of a physical sensation results in (and equates to) an experience 

of emotion10. To illustrate this idea, imagine that you encounter a threat in your environment, 

for example a venomous snake. Upon detecting this threat, your sympathetic nervous system 

initiates physiological arousal, making your heart race. Under the James-Lange theory, you 

would experience ‘fear’ after recognising these physiological changes in your body. According 
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to James10, each specific emotion has its own unique set of physiological and neural responses; 

the response signature associated with excitement differs from that of fear, which differs from 

that of anger.  

Although this theory was prominent during its time, it was criticised by Walter Cannon 

for several reasons. Firstly, Cannon11 highlighted that each emotion does not have its own 

unique response signature as the physiological responses accompanying distinct emotions lack 

specificity (e.g., fear and excitement are both associated with elevated heart rate). Second, 

Cannon11 argued that artificial elicitation of physical arousal, for example via injections of 

adrenaline, does not generate real emotional experiences, as would be predicted by James’ 

account. Finally, Cannon11 noted that disrupting feedback (e.g., via disconnection of the central 

nervous system from peripheral organs), does not eliminate emotion, suggesting feedback 

between these systems is not integral to affective experiences. On the theoretical side, James10 

reduced emotions to experiences of bodily responses and thus did not account for the fact that 

emotions can have a cognitive component, being intentional and object-directed16-18. 

Mitigating some of these limitations, Cannon and Bard came up with their own theory 

(Canon-Bard theory11). They proposed that physiological arousal and the experience of emotion 

occur simultaneously, yet independently11. According to this theory, when you see the 

venomous snake, you feel fear at the exact same time that your sympathetic nervous system 

prepares your fight or flight response11. That is, the emotional experience of fear is separate 

and independent of the physiological arousal, even though they co-occur. Critics of this theory 

argue that the experience of emotion cannot be separated entirely from the physiological 

component19.  

With the growth of cognitive psychology in the 1950s, cognitive theories of emotion 

became the prevailing viewpoint. One highly influential cognitive theory is the Two-Factor 



 4 

Theory, as proposed by Schachter and Singer in 196220,21. This theory combines elements of 

both previous theories and addresses their main limitations12. As the name suggests, this theory 

proposes that there are two steps to emotion: first, an individual experiences physiological 

arousal, and second the individual consciously interprets the response based on the situational 

context20,21. Revisiting the previous example, the two-factor theory asserts that the snake evokes 

activation of the sympathetic nervous system which is subsequently labelled as fear given the 

context. Importantly, this theory can allow for similar autonomic nervous system (ANS) 

responses for different emotions (as similar ANS responses could be interpreted differently 

based on context), thus mitigating the limitations of James-Lange12. Concurrently, this theory 

maintains the connection between physiological reactions and emotional experiences, thus 

addressing the pitfalls of Canon-Bard22.  

Schachter and Singer19 found support for their theory by demonstrating that injections 

of adrenaline (causing physical arousal) resulted in experiences of joy or anger depending on 

the presence of a happy or angry bystander. Thus, the researchers showed that the same 

physiological experience can be interpreted differently according to the situational context. 

Although this theory was highly influential and supported by some empirical work, a number 

of critics challenged it on theoretical and empirical grounds (see22-24). For example, Zajonc23 

disagreed with the idea that conscious appraisal is imperative for the experience of emotion. 

Following this, studies showed that repeated exposure to a stimulus that was presented 

subliminally (such that the stimulus could not be consciously identified) led to increased liking 

of such a stimulus24. This led the authors to suggest that unconscious appraisals (and not just 

conscious ones) may play a role in affective experience. Such findings support the central ideas 

discussed in appraisal theories. 
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Appraisal theories of emotion (e.g., 25-33) retained Schacter’s20,21 assertion that 

cognition is an antecedent to emotion, but argued that the cognitive component is primarily 

unconscious (see 12 for a full discussion appraisal theories). Madga Arnold pioneered this 

category of emotion theory in 1960, coining the term ‘appraisal’ to mean the cognitive act of 

evaluating a situation25. These theories differ from the two-factor theories by placing the 

cognitive component directly following the onset of the stimulus and prior to the bodily 

responses. According to some appraisal theories, following the introduction of a stimulus, an 

individual makes an unconscious appraisal (evaluating whether a situation is positive or 

negative), which results in an action tendency (i.e., approach or avoid) and a physiological 

and/or motor response, which is then consciously labelled as a particular emotion (see 12). Thus, 

such theories introduce an unconscious attribution process, and shift Schacter’s conscious 

attribution to the end of the emotional episode. Returning to our example, after perceiving the 

snake, you may unconsciously appraise that the situation is dangerous, causing your heart to 

race (i.e., physiological changes), which you then consciously label as fear.  

Most recently, constructionist theories of emotion, such as the Conceptual Act 

Model14,34-40 have gained traction. These theories, first proposed by Lisa Feldman Barrett, 

postulate that emotions are constructed, automatically, from two basic psychological primitives 

that influence and constrain each other: (1) a basic neurophysiological system that produces 

variation in core affect (i.e., arousal and valence41), and (2) a conceptual system for emotion 

(i.e., one’s knowledge about emotion)14. These psychological primitives will be discussed in 

greater detail below.  

The first psychological primitive that contributes to the construction of emotion is a 

core affect system14, which comprises neurophysiological states that can be defined in terms of 

valence (i.e., pleasantness versus unpleasantness) and arousal (see 42,43 for reviews). The 
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purpose of this system is to integrate sensory signals from the environment (e.g., the presence 

of a venomous snake) with interoceptive and homeostatic bodily signals to create a mental state 

that allows us to predict threat and reward, and thus safely navigate the world. Essentially, core 

affect can be seen as a neurophysiological barometer which reflects an individual’s response to 

changing events in their environment14.   

According to the Conceptual Act Model, the experience of feeling an emotion, or 

perceiving it in others, also relies on the involvement of a second psychological primitive – our 

conceptual emotion knowledge (i.e., what we “know” about emotion)14. According to this 

model, we possess a conceptual system that houses all the knowledge we have acquired via 

previous experiences – the bodily sensations, semantic meanings, motor responses (e.g., facial 

expressions), and contexts (amongst others) that we associate with distinct emotions14,44. By 

accessing the knowledge in this conceptual system, we are able to make sense of, and 

categorise, core affect, thus producing experiences of “anger”, “happiness” or “sadness” (or 

whatever categories exist in one’s conceptual landscape)14. 

Such categorisation processes are fundamental cognitive activities that allow the brain 

to make a prediction about the meaning of sensory information14,45, 46. Categorizing something 

renders it meaningful, determining what something is, why it is, and what to do with it14. To 

explain this categorisation process, Barrett draws an analogy between categorising emotions 

and categorising colours46. Although the retina registers light across a continuous spectrum of 

wavelengths, people perceive distinct categories of colour – “red”, “yellow”, “green” – due to 

the previously acquired conceptual knowledge. According to her theory, the same happens with 

emotion14,46; the act of categorizing core affect can be considered as similar to figure-ground 

segregation47,48, wherein emotional experiences emerge as separate events from ongoing 
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changes in core affect. In essence, emotion concepts transform ongoing changes in arousal and 

valence into interpretable and meaningful experiences (e.g., “happiness").  

But what exactly are emotion concepts, and how do they form? According to 

Barrett14,46 concepts are embodied (e.g., 49,50), multimodal (e.g., 14,44), representations of 

emotions that are acquired through experience. Barret14,46 contends that an emotion concept, 

like happiness, evolves as sensory, neurophysiological, and motor information is integrated 

across numerous instances where happiness is labelled. That is, sensory cues from your 

environment (e.g., visual or auditory information about your interaction partner), 

neurophysiological information about your core affective state (e.g., current homeostatic state), 

motor responses (e.g., facial movements, loudness or tone of voice), and so on, all bind together 

with the label “happiness” (which could be provided by yourself or others) to form a singular 

instance of happiness14. Across instances, the multimodal information is integrated, and thus 

the conceptual knowledge about happiness accumulates14. According to this theory, large 

collections of information reside within your concepts, and this information can be retrieved 

and combined in diverse and flexible ways to produce an experience of emotion14.When our 

conceptual knowledge about happiness is primed, for example by the sensory environment 

(e.g., hearing the voice of your favourite comedian), a motor response (e.g., smile), and/or core 

affect (e.g., positive valence, high arousal), the concept is activated, thus encouraging us to 

experience or perceive “happiness” in that particular situation.  

Central to this model is the idea that emotion concepts shape both experiences (i.e., 

inferences about how oneself is feeling) and perceptions of emotion (i.e., inferences about how 

others are feeling14, 51-56). Under this theory, individuals with lower access to emotion concepts 

should have greater difficulties interpreting their own and others’ emotions. One approach to 

testing this hypothesis is to assess the experience or perception of emotion in those who 
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naturally lack access to concepts, for example those with semantic dementia46. These 

individuals typically have permanent brain lesions which impair their ability to remember 

words and concepts, including those for emotion46. One study involving these individuals found 

that although they were able to classify emotional facial expressions as ‘pleasant’ and 

‘unpleasant’ (i.e., could make judgements based on core affect), they were unable to categorise 

them as discrete emotions like anger or sadness (even when such judgements did not require 

the use of emotion words57). Such evidence suggests that emotion conceptual knowledge 

(which the patients could not access) transforms perceptions of affect into experiences of 

discrete emotions.  

Another approach is to experimentally restrict access to emotion concepts, for example 

by semantic satiation, and assess the consequences for emotion perception14,46. In semantic 

satiation experiments, participants repeatedly say a category word until it becomes just a sound 

that is mentally disconnected from its meaning14. Following this, participants have to judge 

whether a stimulus is a member of the repeated category14. In such experiments, relative to 

repeating an emotion word a few times (i.e., low semantic satiation), repeating it numerous 

times (i.e., high semantic satiation), led to slower and less accurate judgements of whether a 

subsequent facial expression matched the repeated word58,59. In later studies, after undergoing 

semantic satiation, participants were presented with two pictures of emotional facial 

expressions and were required to judge whether they were displaying the same emotion58. This 

allowed the researchers to examine how temporarily restricting access to a concept influences 

perception when it is not necessary to label the face stimuli verbally. This work identified that 

semantic satiation led to slower ability to determine whether two facial expressions matched 

each other or not58. Thus, rendering the emotion concept less accessible led to difficulties with 

emotion perception, supporting the role of concepts in the recognition of others’ emotions.  
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Thus far, the extant literature has primarily focused on empirically demonstrating that 

the accessibility of emotion concepts influences emotion perception (see 46 for a full 

discussion). However, according to constructionist theories14,51, the differentiation of such 

concepts should also play a role. From a developmental standpoint, these theories suggest that 

across the lifespan, emotion concepts evolve from a positive-negative dichotomy into more 

differentiated multidimensional representations (i.e., based on arousal, context, motor 

responses, semantic meanings etc.) via the accumulation of conceptual emotion knowledge 

(through experience), thus producing concomitant shifts in the experience and perception of 

emotion51. Essentially, an individual with a greater range of emotion concepts will have a more 

precise and differentiated framework for categorizing their own and others’ emotions. If, for 

example, your concepts for anger and sadness are overlapping – perhaps they are associated 

with similar core affect, motor responses (e.g., facial expression) or contexts, or have a similar 

semantic meaning to you – it will be difficult to distinguish whether you and others are feeling 

angry or sad. If, on the other hand, your concepts are differentiated for highly similar emotions, 

such as irritation and frustration, you are likely to be able to categorise yours and others’ 

emotions precisely as such. Nevertheless, although existing theories suggest that the 

differentiation of emotion concepts will play a role in the experience and recognition of 

emotion, research is yet to test this idea.  

Interwoven into the fabric of these past theories is the function of emotion. In most 

early work, the dominant view was that emotions primarily serve an adaptive role, facilitating 

survival in response to human predicaments such as threat60. Under this framework, 

experiencing the emotion fear in response to predators or enemies is adaptive as it results in 

individuals being highly vigilant or avoidant, thus improving the probability that the individual 

will escape such a threat (see 60). Such work has primarily been shaped by biological and 
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evolutionary perspectives, and has mostly ignored the social function of emotion61. However, 

more recent theories have argued that human emotions have developed and are experienced, 

expressed, and regulated through others and with others (e.g., see 2,61-63) Thus, unsurprisingly, 

in addition to emotions serving an adaptive function (e.g., facilitating appropriate responses for 

survival), many researchers argue that emotions possess a social function – allowing us to 

communicate our needs, intentions, desired courses of action, and role-related expectation and 

behaviours63-66, offering opportunities for shared affective experiences (see 67), and thus 

facilitating the formation and maintenance of social relations68-74. Some have even gone as far 

to say emotions are imperative for “social survival” (e.g., 75) – for building social ties and to 

overcome social problems including loss of power and status, or exclusion (e.g.,76-79). Thus, 

emotions can be seen as important tools for social communication.  

 

1.3. Emotions as tools for social communication   

Humans are highly social beings, deeply embedded into a world where social 

information is ubiquitous in everyday life. One of the richest sources of this social information 

is the face, from which observers can readily make a number of inferences80 – for example 

about identity81-84, gender/sex85-87, ethnicity88-90, physical health91,92, attractiveness93,94, 

personality95-97, and emotional state 8, 98-101. The latter of these has attracted a large amount of 

interest for over a century, perhaps because the ability to effectively convey emotions is 

important for both expressing one’s intentions and basic needs, and also for ensuring the success 

and fluidity of social interactions (e.g.,60-62,102). In scenarios where individuals can read the 

expression of their interaction partner, they are able to respond in an adaptive and/or socially 

appropriate manner. For example, successful conveyance of sadness (e.g., a downturned mouth 

and eyes filling with tears) may elicit reassurance, words of comfort, or a hug from another 
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person (see 103). Successfully communicating threat, aggression or submission, on the other 

hand, prevents potentially harmful encounters, thus benefitting all participants in the 

interaction104. In contrast, a breakdown in communication – for example difficulties in 

conveying or recognising emotional signals– can significantly damage social relations, 

precipitating increased risk of social isolation105-107, or even physical or mental harm80,104.  

An important question is therefore where do these breakdowns in communication 

come from? In other words, why is it that some individuals struggle to recognise the emotions 

of other people, or convey their own emotions? To start to answer this question, it is useful to 

consider modern theories of emotion recognition.  

 

1.3.1. Theories of emotion recognition 

At present, the most widely accepted theories of emotion recognition are template 

matching models. Under these theories, the emotional facial expressions that we encounter are 

compared with stored templates (i.e., imagined visual representations of emotional 

expressions), which allows us to identify the displayed emotion108-111. To fully explain the 

process by which template matching is theorised to occur, and the relevant empirical support, 

it is necessary to draw on the core principles of ‘face-space’112-114.  

It is theorised that adults visually represent faces in a multidimensional ‘face-space’112-

114. Each dimension in this space corresponds to a way in which faces are perceived to vary 

(though it is unclear what dimensions are108). Every face can be coded based on each of these 

dimensions, giving it a unique position in face-space. Faces that are perceptually similar (i.e., 

similar across the dimensions) will be positioned close together in this multidimensional space, 

while perceptually dissimilar faces will be located far away from each other113-115. Although 

‘face-space’ was first devised to explain how individuals code and recognise face identities 112-
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117, more recently it was broadened to explain how individuals code and recognise facial 

expressions108-111. 

The most widely accepted model to explain how the visual system codes the position 

of an incoming facial identity or expression in face-space is the ‘norm-based coding’ model108-

112,118-130, which posits that each facial identity or expression is coded according to how much 

it deviates from a central norm (an average derived from previously encountered facial 

identities or expressions108-112). Under this model, individuals compare incoming facial 

expressions to stored templates of anger, happiness, sadness, and so on, which are each 

represented as the average of all previous encounters (i.e., the average angry expression, the 

average happy expression, the average sad expression, etc.)108-111. When an individual perceives 

that an incoming facial expression is close (in position) to a given template in face-space (i.e., 

similar across many dimensions), they will categorise the expression accordingly108-111.  

One fruitful way to test whether a norms-based coding system is used to represent a 

particular sensory input is through adaptation131. In such a technique, participants’ perceptions 

of stimuli are affected by previous exposure (i.e., adaptation) to other stimuli131. This technique 

is successful because exposure to stimuli reduces the responsiveness of neurons that fire for 

that stimuli, thus altering the neural response to, and thus the perception of, subsequent 

stimuli132. One example of this phenomenon is that, after adapting to constant motion in one 

direction, individuals perceive stationary stimuli to be moving in the opposite direction133. Such 

alterations to perception are often termed ‘aftereffects’ in the literature. Importantly, aftereffects 

can also occur for high-level stimuli such as faces134-137. For example, exposure to a distorted 

face (e.g., eyes raised higher on the forehead than is typical) causes a subsequently viewed 

typical face to appear slightly distorted in the opposite direction (e.g., eyes appear lower than 

typical119). 
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In a norm-based coding model, all of the potential values across a dimension in face-

space (e.g., height of eyebrows) are thought to be coded based on the relative output of two 

pools of neurons: one pool responds maximally to high values on the dimension (e.g., eyebrows 

high up the face) and minimally to low values (e.g., eyebrows far down the face), and the other 

pool responds with the inverse tuning138. According to this model, the “norm” on this dimension 

(e.g., mean eyebrow height) is perceived when both pools produce the same strength output 

signal138. Therefore, if participants follow a norm-based coding approach, we would predict 

that adapting to a face at one end of a dimension (e.g., raised eyebrows) affects the reactivity 

of the pool of neurons tuned to that end (e.g., raised eyebrows) more than the other pool (e.g., 

lowered eyebrows), thus shifting the norm and creating an aftereffect (e.g., lowered 

eyebrows)138. A stimulus that lies further from the norm (e.g., very raised eyebrows) will 

produce stronger activation and subsequent suppression of these neurons, thus shifting the norm 

further along the dimension than a stimulus closer to the norm (e.g., slightly raised eyebrows), 

creating a larger aftereffect138.  

Here, an important question concerns how we assess adaptation to emotional facial 

expressions, and thus whether individuals follow a norm-based approach to coding incoming 

expressions. Typically, researchers will evoke expression aftereffects using a spectrum of facial 

expressions ranging from a prototypical exemplar (e.g., happiness with raised cheeks and an 

upturned mouth) to an ‘antiexpression’ - the physical opposite of the exemplar (e.g., lowered 

cheeks and downturned mouth)111,139. These antiexpressions are created by calculating how far 

each facial feature in the emotional expression deviates from a neutral expression, and then 

moving these features in the opposite direction from neutral111,139. This distance can then be 

used to create more intense (e.g., 100% antiexpression) and less intense (e.g., 33% 

antiexpression) antiexpressions111,139. In these paradigms (e.g.,108), participants are typically 
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shown the antiexpression for 15 seconds, and then a test ‘norm face’ (the average of the six 

basic expressions) for 400ms. Following this, participants are required to label the emotion in 

the norm face108.  

The idea is that if individuals represent facial expressions in a multidimensional, 

template-referenced framework, we would expect adaptation to anti-expressions to produce a 

selective effect on perception111; adaptation to each antiexpression should bias perception 

towards its corresponding ‘real’ expression, and not to other emotional expressions111. That is, 

we would expect adaptation to an antiexpression of anger to bias perception of a subsequent 

norm face towards anger, and not happiness, sadness, or fear (and so on). If, however, facial 

expressions are not represented in this multidimensional, template-based framework, 

antiexpressions will be perceived as deformations of the face that have no specific meaning 

relative to the real expression, thus not resulting in such systematic selective biases in 

perception111. That is, if you do not represent facial expressions in a dimensional framework, 

the opposite of an angry expression (e.g., raised eyebrows) just looks like a deformation of a 

face and will not bias your perception towards a real angry expression (e.g., furrowed 

eyebrows). There is growing evidence to suggest that people adopt a norm-based coding model 

to code and recognise facial expressions for the six basic emotions108-111; perceiving 

antiexpressions of anger, happiness, sadness, fear, disgust and surprise selectively biases our 

perception (i.e., shifts the template) towards the corresponding expression, and more intense 

antiexpressions results in larger biases (i.e., larger shifts in the template)108-111. Such evidence 

suggests that individuals code incoming facial expressions based on their relative position to 

norm expressions (i.e., average exemplars) in a multi-dimensional face-space.  
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1.3.2. Breakdowns in the conveyance and recognition of emotion 

Template-matching models make several predictions as to why individuals may 

struggle to read the emotions of one’s interaction partner. Such models suggest that successful 

conveyance of emotion depends on the interactants having shared visual representations (i.e., 

the emotional expression imagined in the mind’s eye; templates) and motoric representations 

of facial expressions (i.e., the emotional expressions produced). That is, in order to recognise 

the emotion of your interaction partner, they must produce a facial expression which visually 

matches your ‘template’ for that emotion. A mismatch between the “producer” and “perceiver” 

in the appearance of imagined and expressed facial expressions – perhaps with respect to the 

spatial configuration or the kinematics of facial features – could result in bidirectional 

difficulties in emotion recognition. However, in addition to visual appearance (e.g., spatial 

configuration of facial features, or kinematics of facial features, etc.) there may be other features 

of imagined emotion representations that influence our ability to interpret others’ emotions – 

for instance the precision and/or differentiation of such representations.  

Signal detection theory (see 140) posits that signal and noise distributions that are 

precise (i.e., narrow) and distinct (i.e., not overlapping) provide high sensitivity to distinguish 

the signal from the noise. Applying this principle, an individual with a precise representation 

of anger, that is distinct from the representation for sadness, will be adept at discriminating 

whether encountered facial expressions are angry or sad. Conversely, someone with imprecise 

and overlapping visual representations of anger and sadness may struggle to distinguish these 

expressions (see Figure 1.1, bottom-left). This idea is compatible with the principles of face-

space; if the templates for anger and sadness are positioned close together in face-space, it will 

be difficult to determine which template is closest (i.e., most similar across numerous 

dimensions) to an incoming facial expression (see Figure 1.1, left). If, however, the templates 
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for anger and sadness are far away from each other in face-space, it will be relatively easy to 

categorise the incoming facial expression (see Figure 1.1, right). Another important feature is 

precision; if the templates for anger and sadness are precise (i.e., consistent across instances), 

it may also be easier to categorise the expression (see Figure 1.1, top), whereas imprecise 

templates may lead to difficulties due to increased overlap between visual representations (see 

Figure 1.1, bottom). Notably, however, while there is theoretical justification for a role of the 

precision and differentiation of visual representations in emotion recognition, research is yet to 

test this idea.  

Figure 1.1. 

A schematic depicting the position of angry (red circle) and sad (blue circle) templates and an 
incoming facial expression (black circle) in face-space 

Note. The precision of templates is shown by faded red (angry) and blue (sad) ellipses. This 
diagram illustrates the potential importance of the precision (high precision: top; low precision: 
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bottom) and differentiation (poor differentiation: left; good differentiation: right) of visual 
emotion representations when attempting to match incoming expressions to one’s templates.  
 

The ideas discussed above are also compatible with constructionist theories of 

emotion. As mentioned, it is theorised that we possess multimodal emotion concepts that are 

made up of sensory (e.g., visual), affective, contextual, and motor information, for example 

about one’s facial movements13,43,45. Thus, each emotion concept groups both visual 

representations of emotions – the visual information about facial expressions that has been 

stored during instances where these emotions have been labelled or perceived in others – and 

motoric representations of emotions – proprioceptive information about our own facial 

movements when these emotions are labelled or perceived in ourselves. As such, our emotion 

concepts may unite our visual and motoric representations of facial expressions, which are 

central to template-matching models of emotion recognition, in a multidimensional conceptual 

space (similar to a face-space format). In addition, our previous affective experiences, and the 

semantic meanings associated with emotions, are also integrated into our emotion concepts13. 

These features could also be mapped out in a multidimensional conceptual emotion space. 

Drawing on this idea, if semantic, affective, visual, or motoric representations are imprecise or 

overlapping, it could be more difficult to assess whether incoming facial expressions belong in 

one category or another. For example, if your visual representations for anger and sadness are 

overlapping – perhaps they are both associated with a downturned mouth – it will be difficult 

to establish whether incoming facial expressions match your template for anger or for sadness. 

Concurrently, if your visual representation for anger is imprecise – perhaps you have 

encountered highly variable angry expressions – it will be difficult to determine whether 

incoming expressions match such a representation. Similarly, if the semantic meaning or core 

affect (i.e., the levels of arousal and valence) you associate with anger and sadness are imprecise 

(i.e., variable across instances) and overlapping (i.e., similar to one another), you may find it 
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more difficult to distinguish when you or others are experiencing anger or sadness. Although 

these are logical possibilities, research is yet to interrogate whether the precision and 

differentiation of semantic conceptualisations, affective experiences, visual representations, 

and motoric productions of emotion, contribute to emotion recognition performance.   

In sum, together constructionist, template-matching, and signal detection models raise 

the hypothesis that difficulties interpreting the emotions of others could arise due to less precise 

or differentiated semantic meanings, experiences (i.e., core affect), visual representations, or 

productions of emotion. Hence, this work illuminates candidate mechanisms that may underpin 

the emotion recognition difficulties documented in a range of clinical conditions (see 141-146) 

such as autism spectrum disorder (see 146). These mechanistic pathways are particularly 

plausible since there is evidence to suggest that autistic individuals may have altered 

conceptualisations, experiences, visual representations, and productions of emotion146-150, 

which could feasibly contribute to emotion recognition difficulties. Before considering this 

literature at length, it is useful to discuss autism, social cognition, and emotion-processing more 

generally.  

 

1.4. Autism, social cognition, and emotion-processing 

Autism Spectrum Disorder (hereafter ‘autism’) is a neurodevelopmental condition 

characterised by socio-communicative difficulties and restricted and repetitive interests151.  

Recent investigations have found that approximately 1.6% of the UK population have a 

diagnosis of autism152. As suggested by its name, autism has a heterogeneous behavioural 

phenotype, with varying constellations of strengths, differences, and difficulties (e.g.,153-155). 

With respect to the former, autistic individuals frequently show cognitive advantages including 

enhanced creativity, focus, and memory, along with personal qualities, such as honesty, 
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dedication, and a sense of social justice (e.g.,156-162). On the other hand, autistic individuals are 

thought to have difficulties distributing cognitive resources flexibly163,164, a tendency towards 

local rather than global processing165-168, and challenges understanding others’ beliefs and 

desires (i.e., mental states106,168,169). Beyond these challenges, autistic people often experience 

educational and employment difficulties 170,171, poorer quality of life172-174, social isolation (see 

175) and suicidality176. Since the emergence of the social model of disability (e.g., see 177), it has 

been increasingly recognised that some of these difficulties arise due to external factors (e.g., 

stigma, discrimination, lack of accessibility, etc.), rather than due to factors intrinsic to 

autism178-181.  

 

1.4.1. Autism and social cognition 

One particular area of difficulty for autistic individuals is thought to be social cognition 

(see 182). Social cognition is a broader term representing the cognitive ability to perceive, 

categorise, and respond to other people’s thoughts, intentions and feelings183. Social cognition 

enables the acquisition of knowledge and social skills, promotes the success and fluidity of 

social interactions, and facilitates the formation and maintenance of social relationships (see 

184-186). Hence, social cognitive abilities play a major role in everyday life and in psychosocial 

outcomes. Social cognition can be divided into several sub-abilities including social orientation, 

theory of mind, emotion recognition, and emotion expression (amongst others187). Notably, 

differences have been documented between autistic and non-autistic individuals across all of 

these sub-abilities: autistic individuals show reduced social orienting (see 188), difficulties 

inferring the mental state (see 189,190) and emotions of others (see 146,191), and differences in the 

production of emotional facial expressions (see 146,150).   
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1.4.2. Autism and emotion-processing 

In addition to having emotion-related difficulties in the interpersonal domain (e.g., 

difficulties recognising emotions of others), autistic individuals are also thought to have 

intrapersonal emotional difficulties. For example, there is evidence to suggest that autistic 

individuals have difficulties acquiring, developing, and differentiating emotion concepts (see 

148,192), and co-occurring challenges identifying, understanding (see 149), differentiating148 and 

regulating193 their own emotions. At present, it is not clear whether these difficulties are related, 

and/or whether emotion difficulties in the intrapersonal domain precipitate difficulties in the 

interpersonal one (or vice versa). That is, it is unclear whether difficulties understanding, 

identifying or differentiating emotion concepts or emotional experiences underpin the emotion 

recognition and production differences seen in autism.  

In sum, a growing body of evidence suggests that autistic individuals have broad social 

and emotional difficulties. However, when considering this evidence, it is imperative to note 

the role of alexithymia – a subclinical condition characterised by challenges identifying and 

describing one’s own emotions194. 

 

1.4.3. The alexithymia hypothesis 

The term “alexithymia” was first coined in 1973 to describe a group of patients with 

psychosomatic illnesses who showed additional difficulties interpreting their own emotions195. 

Today, alexithymia is widely regarded as a transdiagnostic risk factor for a numerous mental 

health conditions including psychosis, depression, anxiety, and eating disorders (e.g., see 196-

198). Besides these conditions, alexithymia is also highly prevalent in the autistic population, 

with around half of autistic people experiencing co-occurring alexithymia, in comparison to 

just 5% of neurotypicals199. This elevated prevalence, alongside evidence that (neurotypical) 
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individuals high in alexithymia show reduced emotional reactivity200,201, empathy202-205, and 

emotion recognition performance (see 206), led to the proposition of “the alexithymia 

hypothesis”207. This hypothesis proposes that autistic individuals’ difficulties with emotion-

processing are caused by co-occurring alexithymia, and not autism207. There is growing support 

for this hypothesis (e.g.,208-214), though notably the majority of this research has focused on the 

domain of emotion recognition. Thus, currently it is unclear whether differences exist between 

autistic and non-autistic individuals in the conceptualisation, experience, visualisation, and 

production of emotion, after controlling for alexithymia.  

For the remainder of Chapter 1, I synthesise the previous findings regarding these 

emotion-related factors in autism and, where possible, discuss the evidence from studies 

controlling for alexithymia. 

 

1.4.4. Recognising emotional signals in autism 

As discussed, the ability to infer the emotions of one’s interaction partner is important 

for social interaction (see 102). Since autism is characterised by difficulties with such 

interactions, emotion recognition has been suspected as a difficulty for autistic individuals for 

over three decades215. However, the existing literature is rife with mixed findings (see 146, 191, 

216-218): some studies find global differences in emotion recognition between autistic and non-

autistic people, while others show no differences, or emotion, task, or stimuli-specific 

difficulties (see 146, 191, 216-218). 

A growing literature suggests autistic individuals may have emotion-specific 

difficulties with facial expression recognition (e.g., see 191). For example, numerous empirical 

studies (e.g., 147,219-223) and meta-analytic evidence (e.g., 191) demonstrate that autistic 

individuals may have selective emotion recognition difficulties for expressions of anger, but 
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not happiness or sadness. At present, it is unclear why autistic individuals have specific 

difficulties recognising anger, however, there are a number of potential explanations. It could 

be, for example, that differences in facial information sampling play a role. Since autistic 

individuals typically spend less time attending to the eyes, and more time attending to the 

mouth, (relative to non-autistic individuals 224-226), they may struggle to recognise anger, as the 

upper half of the face conveys the majority of the expressive information (e.g., 227,228). 

Alternatively, since autistic individuals display slowed processing of emotional facial 

expressions229-238, it could be that these individuals have particular difficulties recognising 

angry facial expressions due to them being inherently fast-moving239. Another possibility is that 

autistic individuals visualise and/or produce different emotional expressions of anger 

themselves, and thus the non-autistic expressions presented to them do not match their 

expectation, resulting in difficulties interpreting the expression (see emotion recognition 

theories above). Finally, it is possible that autistic individuals themselves have less precise 

and/or differentiated experiences or visual representations of anger, which underpin their 

emotion recognition difficulties. Although these are logical possibilities, research is yet to test 

these ideas.  

The existing literature also points towards potential task and stimuli-specific 

difficulties in emotion recognition. For example, it appears that autistic individuals may have 

particular difficulties recognising low intensity expressions (e.g., 222,240,241), and not “full 

blown” prototypical expressions (e.g., 242-244). Alternatively, autistic individuals may struggle 

to recognise emotion in certain types of stimuli, for example in point-light (series of dots that 

convey biological motion; see 245) but not full displays (e.g., photos or video recordings221).  

In addition to these task-related factors, participant characteristics (e.g., age, extent of 

alexithymia) may also influence the magnitude of differences between the autistic and non-
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autistic participants. For example, Lozier and colleagues191 found that age significantly 

moderated the effect of group on emotion recognition performance. Specifically, these authors 

found that although both child and adult autistic participants displayed emotion recognition 

difficulties (relative to their non-autistic counterparts), these differences were greater in the 

adult group. Other empirical work has found that whilst emotion recognition improves 

throughout life for non-autistic individuals, it does not for autistic individuals246, further 

suggesting age plays a moderating role.  

Another participant characteristic that may contribute to elevated emotion recognition 

difficulties in the autistic population is alexithymia. As mentioned previously, it is theorised 

that autistic individuals’ difficulties with emotion recognition are not caused by autism per se, 

but rather alexithymia (i.e., the alexithymia hypothesis199,207,247). There is growing empirical 

support for this hypothesis. Cook and Brewer et al209, for example, showed that when autistic 

and non-autistic individuals were matched on levels of alexithymia, they had a comparable 

ability to recognise emotion from static face images. Supporting the alexithymia hypothesis, 

this study also found that alexithymic traits, but not autistic traits, predicted poorer emotion 

recognition performance. Similarly, Milosavljevic et al213 found that autistic individuals high, 

relative to low, in alexithymia had greater difficulties recognising emotion, again from static 

snapshots of faces.  

Notably, to date, the majority of studies assessing the relative contributions of autistic 

and alexithymic traits to facial emotion recognition have employed static face stimuli, thus 

overlooking the inherent dynamicity of facial expressions248,249. Prior to this project, only one 

study had investigated whether autistic and alexithymic traits contributed to emotion 

recognition for dynamic stimuli212. This study found support for the alexithymia hypothesis: 

alexithymia, and not autism, was associated with poorer facial emotion recognition for dynamic 
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displays212. While these results are informative, there were two key limitations of this study. 

Firstly, the authors only included female participants. Since autistic males and females often 

possess different behavioural phenotypes250-253, it may be that these findings are not 

representative of autistic males. Secondly, the authors did not include a non-autistic comparison 

group. As such, they were unable to assess whether there were differences between autistic and 

non-autistic individuals in emotion recognition from dynamic stimuli, after controlling for 

alexithymia. Thus, further research, which employs a non-autistic comparison group and 

involves males, is necessary to determine whether autistic versus non-autistic group differences 

remain after accounting for the confounding influence of alexithymia.  

In sum, although existing literature suggests that autistic people may have difficulties 

interpreting the emotions of other people (see 146,191,216-218), most of this work has not assessed 

the contribution of alexithymia, and therefore it is unclear whether these difficulties remain 

after controlling for this factor. While a handful of studies have tested whether autistic or 

alexithymic traits contribute to emotion recognition, these studies have solely relied on static 

snapshots of faces209,123, omitted a non-autistic comparison group212, and/or exclusively 

included female participants212. Therefore, future research should aim to test whether there are 

differences in dynamic emotion recognition for both male and female autistic and non-autistic 

individuals matched on alexithymia. Concurrently, although there is evidence to suggest that 

autistic individual may have greater difficulties recognising some emotions (e.g., anger 147,191, 

219-223) than others, it is currently unclear why. Therefore, future studies should aim to unpick 

the mechanisms underpinning these selective emotion recognition difficulties, assessing 

whether such challenges stem from differences in other emotion-related psychological 

processes (e.g., the conceptualisation, experience, visual representation, and production of 

emotion).  
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Mechanistic differences in autistic and non-autistic emotion recognition 

Although the vast majority of research has aimed to determine whether there are 

differences in emotion recognition between autistic and non-autistic individuals, a handful of 

studies have aimed to elucidate the mechanisms involved in emotion recognition for these 

groups. This research is imperative for making progress: identifying the mechanisms involved 

could illuminate why autistic individuals have greater difficulties on some tasks than others, 

thus explaining the inconsistent findings in the literature (see 146). Moreover, such research 

could help us to design tailored support systems, focusing on these mechanisms, to help both 

autistic and non-autistic individuals to recognise the emotions of others’, with potential benefits 

for psychosocial adjustment254 and psychological health and wellbeing255.   

There is preliminary evidence to suggest that different mechanisms may be involved 

in autistic and non-autistic emotion recognition. While neurotypical adults are thought to 

employ a template-matching strategy to recognise the emotions of others108-111, it is theorised 

that autistic adults may follow a rule-based strategy256,257. That is, rather than automatically 

comparing incoming facial expressions to stored templates, autistic individuals may evaluate 

whether the expressions match a set of characteristics they have learnt to be associated with 

different emotions (e.g., happiness: “smiling”, anger: “furrowed brow”256,257).  

To test this idea, previous studies have presented autistic and non-autistic observers 

with emotional expressions that vary in intensity (e.g., 100, 150, 200, 250 and 300%), and asked 

them to select which examples appear realistic256,257. The logic was that, if individuals employ 

template-matching, naturally exaggerated expressions (e.g., 100%, intensity) would match the 

template and thus appear realistic to participants, while unnaturally exaggerated ones (e.g., 

250%, 300% intensity) would be unrealistic representations of the expression. Conversely, if 

individuals adopt a rule-based strategy, they would be more tolerant of unnaturally exaggerated 
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expressions (i.e., the highly exaggerated expressions appear relatively more realistic), because 

the rules such as “upturned mouth” and “furrowed brow” are still true256,257. Across both 

studies, the autistic adults selected a higher proportion of exaggerated faces as realistic (relative 

to their non-autistic peers), suggesting they had a higher tolerance for exaggeration, and thus 

raising the possibility of a more rule-based strategy256,257.  

Although these findings could be indicative of a rule-based strategy, there are 

alternative explanations for these results. For example, it could be that the autistic participants 

are comparing incoming expressions to more exaggerated templates (relative to non-autistic 

participants), and thus the highly exaggerated expressions appear more realistic to them (as they 

are a closer match to the template). That is, the autistic participants may have more caricatured 

visual emotion representations, leading to a higher tolerance for exaggeration of facial 

expressions. This explanation is plausible since recent work has found that autistic people 

require emotional expressions to be higher in intensity (relative to non-autistic individuals) in 

order for them to be correctly identified222,240. Hence, the autistic participants may have more 

exaggerated visual representations, thus leading to higher tolerance for exaggeration222,240, and 

lower emotion recognition accuracy when expressions are less intense222,240,241 (as they do not 

match their templates).  

Nevertheless, there are other findings which indirectly support the idea that autistic 

individuals may be employing alternative rule-based strategies. Firstly, if autistic individuals 

employ cognitive or verbally mediated strategies, emotion recognition performance should be 

more strongly associated with cognitive or verbal ability for autistic, relative to non-autistic, 

individuals. Supporting this idea, there is evidence to suggest that mental age215 and verbal 

ability258 predict emotion recognition performance for autistic children, but not non-autistic 

children. Second, if it is true that autistic individuals employ more effortful cognitive 
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mechanisms, we would expect longer emotion recognition response latencies, which have been 

documented on numerous occasions (e.g.,229-238; though notably there are other explanations for 

this finding). Thus, the evidence tentatively points towards (some) differences in the 

mechanisms involved in emotion recognition for autistic and non-autistic people.  

The idea that autistic individuals may naturally be less guided by their visual emotion 

representations aligns with Bayesian accounts of autism. According to these accounts, autistic 

people are less affected by their prior experiences (i.e., previously acquired information; priors) 

than neurotypicals, instead placing greater weight on incoming sensory information (e.g., 259-

261). Thus, in the domain of recognition, an autistic person would place less emphasis on their 

stored templates, which they have acquired through past experiences, and instead focus on the 

intrinsic properties of the incoming facial expressions. In addition, Bayesian theories may 

predict autistic individuals to place less emphasis on other conceptual emotion information, 

which is also said to be acquired through experience (see 13) – the core affect, semantic 

meanings, and motor responses (e.g., own facial expressions) associated with an emotion. 

However, these ideas have not yet been tested formally.  

In sum, there is theoretical justification and preliminary evidence for mechanistic 

differences in autistic and non-autistic emotion recognition. However, further work is necessary 

to identify the traits, abilities and processes involved for both groups, and to determine whether 

such factors underpin the emotion recognition difficulties often found for autistic individuals.  

 

1.4.5. Producing emotional signals in autism 

There are a number of factors to consider when examining the production of emotional 

facial expressions in autism, for example the frequency, duration, intensity, quality, accuracy, 

and general appearance of expressions. With respect to the former, numerous empirical studies, 
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and meta-analytic evidence, suggest that autistic children typically produce facial expressions 

less often and for shorter durations than their non-autistic counterparts during naturalistic social 

interactions150, 262-264. To date, there are mixed findings with respect to the intensity of produced 

facial expressions.  In some studies, autistic expressions are subjectively rated as more intense 

(e.g., 265-267), while in others the opposite is true263,268-270. A small number of studies have 

employed more objective measures, such as facial electromyography (fEMG), to assess 

differences in facial expressions. The evidence from these studies contradicts that from 

subjective ratings, finding no differences between autistic and non-autistic participants in 

expressivity while viewing emotional stimuli271-274, when voluntarily mimicking emotional 

expressions274,275, and during automatic imitation276. Notably, it could be that these null effects 

arise due to fEMG not being sensitive to differences in the activation of all facial muscles: 

traditionally fEMG is limited to studying two muscle groups; (1) the corrugator supercilii, 

which is responsible for frowning, and (2) the zygomaticus major, which is responsible for 

smiling277. A more promising tool for analysing expressive differences is facial motion capture 

as it records movements of the skin surface across the entire face with high temporal resolution, 

such that subtle changes in expression can be recorded every few milliseconds277. Thus, future 

studies should aim to employ this technique to compare the facial expressions of autistic and 

non-autistic individuals.  

Concurrently, the extant literature points towards differences between autistic and non-

autistic individuals in the quality, accuracy, and general appearance of facial expressions (see 

146,150). In numerous empirical studies, expressions produced by autistic individuals (relative to 

non-autistic individuals) are perceived as lower in quality and atypical in appearance, being 

rated as odd, awkward or mechanical by non-autistic observers263,265,266,278. Concurrently, 

research has shown that autistic children mimic facial expressions less accurately than their 
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non-autistic peers (i.e., with lower congruency to the displayed expression270,275). In sum, the 

evidence from empirical and meta-analytic studies suggests that autistic individuals produce 

facial expressions less often and for shorter durations, and that such expressions are less 

accurate, lower in quality, and atypical appearance, according to non-autistic observers (see 

146,150).  

Despite growing evidence for differences in the facial expressions produced by autistic 

and non-autistic individuals, studies have not yet characterised what specifically is different 

about them146. There are a number of ways to quantify facial expressions. Firstly, one can look 

at the configuration of facial features and assess whether there are spatial differences between 

groups (e.g., does one group furrow their brow further when expressing anger)146. Secondly, 

one can look at how individuals reach these configurations by asking whether there are 

kinematic differences (e.g., does one group furrow their brow more quickly or in a more jerky 

fashion)146, or differences in the temporal profile of expressions (e.g., one group furrows their 

brow and then purses their lips, while the other moves these regions simultaneously). However, 

despite notions of differences between groups, studies are yet to fully compare the 

spatiotemporal and kinematic properties of autistic and non-autistic facial expressions. 

Nevertheless, this is an important avenue for future research because the findings of such 

studies could have great utility, allowing caregivers and clinicians to be trained to interpret 

autistic facial expressions, thus facilitating more successful and fluid social interactions146. 

When conducting such studies, future research should aim to address the limitations 

of previous research investigating expressive differences. Thus far, previous studies have not 

controlled for facial morphology, which is known to differ between autistic and non-autistic 

individuals279-282. Such differences in facial morphology could underpin subjective ratings of 

autistic expressions as odd, mechanical or awkward263,265,266,278. Thus, future studies comparing 
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the facial expressions produced between these groups should attempt to control for 

morphological differences. Such studies will allow us to determine whether differences in the 

appearance of facial expressions are truly underpinned by differences in facial movements or 

by facial morphology. Second, as mentioned previously, the vast majority of previous studies 

have not controlled for alexithymia. However, any study comparing the facial expressions 

produced by autistic and non-autistic individuals should model the contribution of alexithymia 

to avoid erroneously attributing differences to autism (see the alexithymia hypothesis207). 

Indeed, this is particularly pertinent since recent evidence suggests that alexithymic, but not 

autistic traits are related to reduced presentation duration for spontaneous facial expressions214. 

Further research is necessary to assess whether alexithymia underpins the differences in the 

facial expressions produced by autistic and non-autistic individuals with respect to intensity, 

overlap, and general appearance. 

 

1.4.6. Bidirectional difficulties in emotion recognition; Differing visual 
representations? 

 
Since template-matching models assert that successful conveyance of emotion relies 

on common visual and motoric representations of facial expressions between interactants (e.g., 

108-111), it is reasonable to assume that a mismatch in the production of facial expressions could 

lead to bidirectional emotion recognition difficulties for autistic and non-autistic individuals. 

Notably, however, the vast majority of research has examined how well autistic individuals can 

recognise non-autistic facial expressions, and not the other way round. Nevertheless, although 

the evidence is mixed, the very few studies that have assessed how well non-autistic individuals 

can recognise autistic expressions have generally reported difficulties (e.g., 147,278,283 though see 

265,267).  
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One particular study that both contributes to this literature, and sheds light on the 

mechanisms underpinning expressive differences is by Brewer and colleagues147. In this study, 

the authors took video recordings of autistic and neurotypical participants posing the six basic 

emotions across three conditions: (1) the standard condition, in which participants posed each 

emotion to the best of their ability; (2) the “communicate” condition, wherein participants were 

required to pose such that an experimenter could guess the emotion that was being expressed; 

and (3) the mirror condition, in which participants were able to view their own expression 

during production147. These latter conditions were incorporated to assess whether any groups 

differences stem from autistic individuals not recognising the communicative nature of facial 

expressions, or due to reduced awareness of their facial movements (i.e., proprioceptive 

differences147). Next, Brewer and colleagues147 asked autistic and neurotypical participants to 

match static snapshots of the recorded facial expressions with one of six prompted emotion 

labels (anger, happiness, sadness, surprise, fear and disgust).  

Interestingly, across all conditions, both the autistic and neurotypical participants had 

greater difficulties recognising the expressions produced by autistic posers (relative to 

neurotypical posers147). In addition, both groups produced more recognizable expressions when 

the researchers emphasised the communicative function of expressions, and when participants 

had access to visual feedback147. Notably, this improvement across conditions was comparable 

between groups147. Together, this evidence suggests it is not the case that autistic people are 

less aware of the informative nature of facial expressions (which would have caused larger 

improvement in the communicate condition for the autistic than neurotypical group), nor less 

able to leverage proprioceptive feedback than their neurotypical counterparts (which would 

have caused larger improvements in the mirror condition)147. Rather, after receiving visual 

feedback and explicit instruction to convey emotions, autistic individuals still produce different 
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emotional expressions, suggesting that these individuals may have different visual emotion 

representations to their non-autistic peers147. This idea of atypical representations in autism, 

alongside the finding that both the autistic and neurotypical participants had greater difficulties 

recognising autistic expressions, illuminates two theoretical possibilities. Firstly, it could be 

that autistic individuals produce atypical facial expressions which are idiosyncratic, rather than 

shared (amongst other autistic individuals), thus leading to difficulties recognising autistic 

expressions for both autistic and neurotypical people147. Essentially, under this explanation, 

neither autistic nor neurotypical individuals are able to recognise autistic facial expressions, as 

they are unique to the specific autistic individual and thus do not match the perceiver’s visual 

representations (irrespective of whether the perceived is autistic or neurotypical). A second 

possibility is that autistic individuals produce atypical facial expressions, which systematically 

differ from those produced by neurotypicals, but that this group place less weight on their visual 

and/or motoric representations when recognising others’ emotions. Under this explanation, the 

neurotypical individuals struggle to recognise autistic expressions as they differ from their own 

visual representations, whereas the autistic individuals struggle to recognise them because they 

are not using their visual or motoric representations (or using them to a lesser extent), which 

comprise a good match to incoming autistic expressions, to recognise the emotions of other 

people. This latter explanation is compatible with previous arguments that autistic individuals 

do not compare incoming expressions to their visual representations (i.e., templates) and instead 

follow a rule-based strategy256,257, and/or focus on the sensory properties of the stimuli (e.g., 

259-261). This explanation can also account for why the autistic participants had a better ability 

to recognise the expressions produced by neurotypical than autistic posers. Under this 

explanation, the autistic individuals may be better able to recognise neurotypical expressions 

because they more clearly show the features they have learnt to be associated with distinct 
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emotions (as such learning may primarily be based on neurotypical expressions which they 

encounter relatively more frequently than autistic expressions). Further work is necessary to 

explore these theoretical possibilities. 

In sum, irrespective of the degree to which autistic individuals are guided by their 

representations, the results from Brewer and colleagues147 suggest that autistic individuals may 

have different visual emotion representations to their non-autistic peers. This idea is also 

supported by the literature discussed previously: autistic individuals rate highly exaggerated 

expressions as relatively more realistic (compared to non-autistic individuals256,257), and require 

emotional expressions to be higher in intensity (relative to non-autistic individuals) in order for 

them to be correctly identified222,240. Together, this evidence suggests that autistic people may 

have caricatured visual representations of emotion.  

While informative, the results from previous studies (e.g., 147,222,240,256,257) have led 

researchers to indirectly infer that visual emotion representations may be atypical in autism, 

without direct investigation. That is, studies have shown differences in the production of 

emotional facial expressions147, the appraisal of highly exaggerated stimuli256,257, and in 

identification thresholds222,240, which point to differences in visual representations, however, 

the appearance of such representations has not been interrogated. Future studies could benefit 

from employing psychophysical techniques, such as the method of adjustment (see 284), to allow 

autistic and non-autistic individuals to manipulate features of emotional expressions such that 

they match their visual emotion representations. Following this, features of these 

representations can be compared statistically between groups. In addition, previous studies 

suggesting atypical visual representations in autism (e.g., 147,222,240,256,257) have specifically 

focused on static emotional expressions, and pointed to differences in the spatial domain (i.e., 

spatial exaggeration of facial features). As such, it is unclear whether autistic and non-autistic 
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individuals possess different visual emotion representations for dynamic expressions, and 

whether these differences specifically pertain to the kinematics (e.g., speed, acceleration, jerk, 

etc.), the temporal order (i.e., the way in which the expressions unfold), or spatial exaggeration 

of expressions (or other features). Further research is necessary to confirm this.  

Another important avenue for future research is to assess whether differences in visual 

emotion representations contribute to emotion recognition accuracy for autistic and non-autistic 

individuals. In particular, since the aforementioned theories suggest that the precision and 

differentiation of visual representations may play a role, future studies should aim to assess 

whether there are differences between autistic and non-autistic individuals in these factors, and 

examine whether any differences therein contribute to emotion recognition differences. It could 

be, for example, that autistic individuals’ selective difficulties recognising anger (e.g., 147,191,219-

223) stem from imprecise or overlapping visual representations of anger.  

Although this is yet to be tested in the domain of facial emotion recognition, links have 

been found between these factors for facial identity. For example, one study showed that 

participants who had built up more precise visual representations of facial identities from 

multiple views, relative to a single view, were better able to subsequently recognise those faces 

from a novel perspective285. Thus, illuminating a role of the precision of visual representations 

in the recognition of facial identities. Concurrently, it is well known that it is more difficult to 

differentiate and recognise identities that are overlapping in appearance286. As such, the face 

identity literature raises the hypothesis that individuals that struggle with emotion recognition 

may have imprecise and/or poorly differentiated visual emotion representations. Hence, future 

studies should examine whether differences exist between autistic and non-autistic individuals 

on these factors, and determine whether such differences underpin emotion recognition 

challenges for autistic individuals. 
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1.4.7. The conceptualisation and experience of emotion in autism 

A limited body of work has assessed the understanding, conceptualisation, and 

experience of emotion in autism (see 149,192). Although this body of evidence suggests that 

autistic individuals may have difficulties identifying and describing their emotions (see 149), 

and challenges acquiring, developing, and differentiating emotion concepts (see 148,192), such 

work has heavily relied on self-report measures (89.4% in of studies in Huggins et al.149). This 

may be problematic for a number of reasons. Firstly, there are often weak associations between 

self-reported and objectively measured emotional abilities287,288. Secondly, self-report measures 

of emotional self-awareness may be particularly problematic for use with autistic individuals 

as such measures rely on meta-cognition, which autistic people may struggle with289-291. Hence, 

autistic individuals may be less accurate in their estimation of their emotional abilities, thus 

threatening the validity of self-report measures. This is particularly plausible since previous 

research has found that being high in autistic traits was associated with a greater discrepancy 

between self-reported and behaviourally measured emotional self-awareness292.  

Although a handful of objective methods have been developed to assess the experience 

of emotion (e.g.,148), finding evidence that autistic individuals have less differentiated 

experiences and semantic concepts of emotion148, such studies have failed to account for 

alexithymia. Erbas and colleagues148, asked participants to rate the extent to which they 

experienced 20 emotion labels in response to a series of standardised emotional images148. 

Using this task, an index of emotion differentiation was calculated for each participant by 

computing the intra-class correlation coefficients (ICC), assessing consistency in intensity 

ratings between emotion labels, across images. The logic here was that if participants gave 

consistently similar ratings for two emotions (e.g., anger and sad ratings) across the images, 

they were not differentiating between these two states148. Thus, high ICCs indicated lower 
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levels of emotion differentiation (see 293). In a second task, participants were required to sort 

the 20 emotion terms into groups that they thought belonged together. The individuals that 

divided the emotion terms into a higher number of groups were said to make more fine-grained 

distinctions between semantic emotion concepts148. Erbas and colleagues found that, compared 

to the non-autistic participants, the autistic participants had higher ICCs and divided emotion 

terms into fewer groups, indicating that they had less differentiated semantic concepts and 

experiences of emotion148. As mentioned, an important limitation of this study is that it did not 

control for, or assess the contribution of, alexithymia. Therefore, it is possible that the authors 

erroneously attributed the difficulties differentiating semantic concepts and experiences of 

emotion to autism, when these difficulties actually stem from underlying alexithymia (as 

suggested by the alexithymia hypothesis207). As such, future research should assess whether 

autistic individuals have less differentiated experiences and semantic concepts of emotion, after 

accounting for this important confound.  

Relatedly, preliminary research indicates that alexithymia, and not autism, is linked to 

the precision of emotional experiences, however, this has not yet been established in clinical 

samples292. To assess emotional precision, Huggins and colleagues292 asked participants to 

select which of two images evoked a more intense emotional response. There were four 

emotional ‘test’ conditions: an ‘easy’ and a ‘hard’ condition wherein participants had to judge 

which of the two images they found more ‘pleasing’, and an ‘easy’ and a ‘hard’ condition 

wherein participants judged which of the two were more ‘upsetting’. The authors manipulated 

task difficulty by selecting images which covered either a narrow range (hard condition) or a 

broad range (easy condition) of valence intensity ratings. In each condition, 11 different images 

were employed, and thus there were 55 unique image combinations. Emotional precision was 

calculated for each condition based on the logical consistency of decision-making: if a 
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participant selected image one over image two, and image two over image three, but then 

selected image three over image one, this latter decision would be inconsistent with their 

previous judgements, and would result in a reduction in their precision score (see Chapter 4 for 

more details). This study found that the precision of emotional experiences was (negatively) 

correlated with alexithymic but not autistic traits in the general population292, suggesting that 

those high in alexithymia have less precise emotional experiences across instances. Although 

these findings are informative, one should be cautious about assuming these results, which 

pertain to the contribution of autistic and alexithymic traits in a general population sample, 

extend to autism (i.e., to individuals diagnosed as autistic; see 294 for a full explanation). Hence, 

further work is necessary to establish whether there are differences between autistic and non-

autistic individuals in emotional precision, after controlling for alexithymia.  

The research field currently lacks psychological mechanistic models that can help us 

understand challenges with emotion recognition in the context of autism. As discussed, the 

existing evidence points towards difficulties for autistic individuals in differentiating semantic 

concepts and experiences of emotion. An important question is, therefore, what are the 

consequences of these difficulties for emotion recognition? As mentioned previously, 

constructionist and signal detection theories suggest that those with less differentiated semantic 

concepts or emotional experiences would have greater emotion recognition difficulties, as they 

would have a less precise and differentiated framework for labelling other people’s 

emotions13,50. In support of this idea, previous evidence suggests that (non-autistic) individuals 

who are poorer at differentiating their own emotional experiences are also less able to 

differentiate others’ emotions295. As such, it is plausible that difficulties differentiating 

semantic concepts and experiences of emotion underpin the emotion recognition challenges of 
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autistic individuals (or vice versa). However, further research is necessary to test whether this 

is the case.  

 

1.5. General limitations of extant autism research 

There are a number of general limitations of extant autism research that should be 

addressed in future studies. Firstly, despite autism being a lifelong condition, the vast majority 

of autism research is conducted with children, with just 3 to 3.5% of research involving autistic 

adults296,297. As such, there is a paucity of knowledge regarding the abilities and experiences 

of, and issues affecting, autistic adults. This gap has led to multiple international calls for 

increased representation of this group in future research296,298,299, and the advent of Autism in 

Adulthood, a journal dedicated to closing this gap. Hence, future studies specifically focusing 

on autistic adults are necessary to help increase our understanding of the experiences, 

behaviours, and abilities of this group.  

Another general limitation of autism research is that the majority of studies enrol small 

samples of autistic females, or exclude this group altogether. Historically, autism has been 

perceived as a predominantly male condition, with approximately 4 autistic males to every 1 

autistic female300. However, more recent studies point towards smaller male to female sex 

ratios, with some samples even documenting equal prevalence across genders (see 301,302). 

Notably, when existing diagnostic tools (e.g., the Autism Diagnostic Observation Schedule303) 

are used to verify autism status, the male to female sex ratio is higher than when individuals are 

given the opportunity to self-diagnose (see 302). This is likely because females face greater 

barriers to obtaining autism diagnoses: since gold-standard instruments (e.g., Autism 

Diagnostic Observation Schedule303) are predominantly based on the behavioural phenotype of 

autistic males303,304, which differs from that of females (e.g., 250-253), such assessments may 
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poorly identify autistic females305-308. These assessments may also struggle to diagnose autistic 

females as this group camouflage their autistic traits more in both social and clinical settings 

than their male peers309-311. Overall, this evidence suggests that autistic females are under-

diagnosed, and thus ratios derived from self-identification may be more representative of the 

true prevalence of autism. In such studies, the male to female ratio is around 2:1 (see 302). The 

next question, therefore, is to what extent are autistic men and women being included in 

research? Across studies published in autism journals between 2010 and 2012, 82.22% of the 

participants were male312, and 17.30% of studies excluded females entirely312. Similarly, a 

recent review identified that while 434 studies assessing neural functioning in autism employed 

male-only samples, just four employed female-only samples313. These findings demonstrate 

that autistic females are often underrepresented and systematically excluded from autism 

research. There are numerous consequences of this. Employing consistently small samples of 

autistic females compromises our ability to fully understand the experiences, behaviours, and 

issues affecting autistic females302, and further perpetuates the idea that autism is a male 

condition, thus creating a cycle in which future research is constrained to exploring specific 

male phenotypes302. As such, further research is necessary to characterise the behavioural 

presentation of autistic females, and increase the extent to which they are represented in 

research (e.g., 312,314,315). 

Another general limitation of autism research is that the majority of studies do not 

employ participatory methods316-318. There are numerous advantages of adopting participatory-

style approaches: community input can strengthen the quality of research, ensure the 

accessibility and efficacy of tasks and materials, and ultimately facilitate translation of findings 

into practice318-322. Such methods also help to foster positive relationships and trust and between 

researchers, autistic people, and their allies323. Although participatory research is rare316-318, 
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increasingly, studies are emerging which have meaningfully involved the autism community, 

leading to broad benefits for research (e.g., 316,318,324-330). Future studies should also aim to adopt 

such approaches, thus leading to enhanced quality, accessibility and impact of the research.  

In sum, thus far, autistic adults and autistic women have been underrepresented in 

autism research – leading to poorer understanding of the experiences, behaviours, and abilities 

of these groups – and participatory methods have rarely been adopted – perpetuating an “about 

us without us” (p. 1) discourse 331. Therefore, in the current project, I specifically focus on the 

abilities of autistic adults, ensuring that autistic women are represented in our samples, and 

adopt participatory approaches throughout.  

 

1.6. Summary and rationale 

In sum, preliminary work points to differences in the conceptualisation, experience, 

visualisation, production, and recognition of emotion between autistic and non-autistic 

individuals. However, to date, the majority of previous work has not controlled for alexithymia, 

and thus it is unclear whether such differences arise due to autism or due to co-occurring 

alexithymia. As such, one of the primary aims of my doctoral work was to determine whether 

differences exist between autistic and non-autistic individuals in these emotional abilities after 

controlling for alexithymia. Hence, in the following chapters, I assess the relative contributions 

of autistic and alexithymic traits to the recognition (Chapter 2), visual representation (Chapters 

3, 4 and 5), experience (Chapter 6), conceptualisation (Chapter 6), and production (Chapter 7) 

of emotion. 

Moreover, constructionist, template-matching, and signal detection theories raise the 

hypothesis that emotion recognition difficulties could stem from a number of factors: 

specifically, autistic individuals may possess less precise or less differentiated experiences, 
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visual representations, semantic meanings, or productions of emotion. However, thus far, very 

few studies have tested these predictions and/or assessed the contribution of these emotion-

related factors (i.e., the precision and differentiation of experiences, visual representations, 

semantic meanings and productions of emotion) to emotion recognition. If these factors do 

contribute, it is plausible that the putative differences between autistic and non-autistic people 

in these emotional abilities could underpin the emotion recognition challenges often 

documented in the autistic population. Therefore, in this project, another primary aim was to 

empirically assess whether the way in which autistic and non-autistic individuals experience 

(Chapters 3 and 6), visualise (Chapters 2 and 5), conceptualise (Chapter 6) and produce 

(Chapter 7) emotion contributes to their ability to recognise others’ emotional expressions. In 

doing so, I aimed to build models elucidating the similarities and differences in the mechanisms 

involved in both autistic and non-autistic emotion recognition (see Chapter 8). 
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Chapter 2: Differences between autistic and non-autistic adults in 
the recognition of anger from facial motion remain after 
controlling for alexithymia 
 
 

As discussed in the Introduction, the extant literature suggests that autistic individuals 

may have difficulties recognising the emotions of other people (see 146, 191, 216-218). However, to 

date, the majority of this work has not assessed the contribution of alexithymia, and therefore 

it is unclear whether these difficulties remain after controlling for this factor. Although a 

handful of studies have examined whether autistic or alexithymic traits contribute to emotion 

recognition, thus supporting the alexithymia hypothesis207 (i.e., alexithymia, not autism 

contributes), these studies have solely relied on static snapshots of faces209,123, omitted a non-

autistic comparison group212, and/or exclusively included female participants212. Therefore, 

prior to this project, it was unclear whether autistic versus non-autistic group differences in 

emotion recognition for dynamic stimuli, for both males and females, remain after controlling 

for alexithymia. To address these limitations, in the following chapter, I assessed whether there 

were differences in the ability to recognise emotion from dynamic stimuli for both male and 

female autistic and non-autistic individuals matched on alexithymia.  
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Abstract 
 
To date, studies have not established whether autistic and non-autistic individuals differ in 

emotion recognition from facial motion cues when matched in terms of alexithymia. Here, 

autistic and non-autistic adults (N=60) matched on age, gender, non-verbal reasoning ability 

and alexithymia, completed an emotion recognition task, which employed dynamic point light 

displays of emotional facial expressions manipulated in terms of speed and spatial 

exaggeration. Autistic participants exhibited significantly lower accuracy for angry, but not 

happy or sad, facial motion with unmanipulated speed and spatial exaggeration. Autistic, and 

not alexithymic, traits were predictive of accuracy for angry facial motion with 

unmanipulated speed and spatial exaggeration. Alexithymic traits, in contrast, were predictive 

of the magnitude of both correct and incorrect emotion ratings.  
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2.1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by 

difficulties in social communication, and restricted and repetitive interests151. Since the ability 

to infer emotion from facial expressions is important for social interaction, emotion recognition 

has long been suspected as a difficulty in autism215. However, whilst many studies suggest a 

disparity in the facial emotion recognition ability of autistic and non-autistic individuals (e.g., 

206,332-334), there have been inconsistent findings, ranging from no differences between these 

individuals to large disparities (see 146,216,217 for reviews). Consequently, the question of 

whether autistic individuals exhibit atypical facial emotion recognition has been debated for 

over 30 years. 

The most recent contributions to this debate claim that it is not autism per se that is 

linked to emotion recognition atypicalities but rather alexithymia199,207,247,335. Alexithymia is a 

subclinical condition, characterised by difficulties identifying and expressing emotions194, 

which is often comorbid with ASD (in the neurotypical population the prevalence of 

alexithymia is 4.89%, and in autistic populations the prevalence of alexithymia is 49.93%199. 

Cook, Brewer and colleagues209 demonstrated that continuous measures of alexithymic, but not 

autistic, traits are predictive of poorer facial emotion recognition from static face images. 

Furthermore, when groups are matched in terms of alexithymia, autistic and non-autistic adults 

perform comparably with respect to the recognition of emotion209. Similarly, Milosavljevic et 

al213 demonstrated lower emotion recognition scores - again from static face images - for 

autistic adolescents high in alexithymia relative to those low in alexithymia. Consequently, Bird 

and Cook207 proposed ‘the alexithymia hypothesis’: autistic individuals’ difficulties in emotion-

processing, including facial emotion recognition, are caused by co-occurring alexithymia not 

ASD.  
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  To date, the majority of studies that have reported that atypical facial emotion 

processing is related to alexithymia, not autism, have focused on the recognition of emotion 

from static face images, and have thus overlooked the inherently dynamic nature of facial 

expressions248,249. Dynamic faces carry both spatial information about the configuration of 

facial features relative to each other and information about the kinematics (e.g., speed) of 

movement of facial features336. Recent developments in the face-processing literature 

emphasise the importance of both kinematic and spatial cues in non-autistic facial emotion 

recognition. Most notably, Sowden and colleagues239 manipulated point-light face (PLF) 

stimuli (a series of white dots on a black background that convey biological motion and 

eliminate contrast, texture, colour and luminance cues) such that expressions of happiness, 

anger and sadness were reproduced at 50%, 100% and 150% of their normal speed, and at 50%, 

100% and 150% of their normal range of spatial movement (e.g., at the 150% level a smile 

would be 50% bigger / more exaggerated than normal). Sowden and colleagues239 found that 

the emotion recognition accuracy of non-autistic participants was modulated as a function of 

both spatial and kinematic manipulation. Specifically, when expressions were reduced in their 

speed and spatial extent (i.e., at the 50% level), participants were less accurate in their labelling 

of angry and happy expressions and more accurate for sad expressions. Conversely, when 

expressions were played with exaggerated spatial movement and greater speed (i.e., at the 150% 

level), participants displayed higher accuracy for angry and happy expressions and lower 

accuracy for sad expressions239. Thus, accuracy for labelling high arousal emotions (happy and 

angry) is improved when the stimulus is faster and more spatially exaggerated, whereas 

labelling of low arousal emotions (sad) is impaired. Recent literature therefore highlights that, 

for non-autistic individuals, both spatial and kinematic facial cues contribute to emotion 

recognition accuracy.  
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Although dynamic information is particularly important in real life processing of facial 

expressions337, to the best of our knowledge, there are no studies that have investigated autistic 

versus non-autistic recognition of emotion from dynamic facial motion stimuli (e.g., PLFs) 

whilst controlling for the influence of alexithymia. There are, however, some studies that have 

compared autistic and non-autistic processing of full (i.e., not degraded) dynamic facial 

expressions without controlling for alexithymia. For example, Sato and colleagues338 

demonstrated that, for non-autistic adults, reducing the movement speed of facial morph 

stimuli1b reduced naturalness ratings, however, for autistic adults the effect of speed on 

naturalness ratings was significantly weaker. Sato and colleagues’ results thus demonstrate 

differences between autistic and non-autistic adults in the effects of manipulating facial 

kinematics. However, it remains to be seen whether these differences would persist if the groups 

were matched in terms of alexithymia. To the best of our knowledge, only one study has 

examined the contribution of autistic and alexithymic traits to dynamic emotion recognition212. 

The findings of this study support the alexithymia hypothesis: high alexithymic, but not autistic, 

traits were associated with less accurate facial expression recognition212. However, this study, 

conducted by Ola and Gullon-Scott, has two important limitations. First, only female 

participants were recruited. Since autistic males comprise three quarters of the ASD 

population339, and likely differ in behavioural phenotype250-253,340, one must be cautious about 

extrapolating the findings to autistic males. Second, Ola and Gullon-Scott did not recruit a non-

autistic control group. Consequently, the authors were not able to explore whether autistic 

versus non-autistic group differences in dynamic emotion recognition remain after controlling 

 
b Facial morph stimuli were constructed by successively presenting 26 images from a neutral 

(0%) to full emotional (100%) expression with an increase of 4% in emotion from one image to the 
next. By presenting the images in this way, it gave the illusion of a dynamic emotional expression. 
The speed of playback was then manipulated to allow the researchers to test their hypotheses.  
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for alexithymia. That is, although Ola and Gullon-Scott were able to show that some difficulties 

with emotion recognition from dynamic stimuli were associated with alexithymia, one cannot 

conclude from this study that there are no differences with respect to emotion recognition from 

dynamic stimuli that are specifically associated with ASD. 

The primary aim of the current study was to investigate whether autistic and non-autistic 

adults would exhibit differences in the recognition of emotion from facial motion cues when 

the groups were matched in terms of alexithymia. To address this aim, we employed the 

paradigm developed by Sowden and colleagues239 which uses PLF stimuli to represent 

emotional expressions in terms of the movement of facial landmarks. More specifically, male 

and female autistic and non-autistic adults rated the emotion expressed by PLF stimuli that had 

been manipulated such that expressions of happiness, anger and sadness were reproduced at 

50%, 100% and 150% of their normal speed and spatial extent. The groups were matched in 

terms of their scores on a self-report measure of alexithymia. We predicted that emotion 

recognition accuracy would be affected by both kinematic and spatial manipulation and that 

these effects would not interact with group, but rather that Bayesian statistics would provide 

support for the null hypothesis that the alexithymia-matched groups perform comparably. 

Given that we had considerable variation in alexithymic traits, a secondary aim of our study 

was to explore whether the effects of the spatial and kinematic manipulation on emotion 

recognition accuracy covaried with scores on the self-report alexithymia measure. 

 

2.2. Method 

2.2.1. Participants 

The chosen sample size is based on an a priori power analysis conducted using 

GLIMMPSE341, which focused on replicating the primary results from Sowden et al239 in the 
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control group (the emotion x spatial and emotion x kinematic interactions). Using data from 

Sowden et al239, 8 participants are required in the control group in order to have 95% power to 

detect an effect size of 0.70 (ηP2) at alpha level 0.01 for the emotion x spatial interaction. 

Moreover, 11 participants are required in the control group in order to have 95% power to detect 

an effect size of 0.53 (ηP2) for the emotion x kinematic interaction at alpha level 0.01. However, 

Button et al2013 argue that effect size estimates are commonly inflated (“the winners curse”), 

and that there is “a common misconception that a replication study will have sufficient power 

to replicate an initial finding if the sample size is similar to that in the original study”. 

Accordingly, we planned to recruit a larger number of participants (N=30 per group; almost 

triple the largest sample size generated in our power calculations), in order to obtain adequate 

power. We pre-registered this sample size via the Open Science Framework 

(https://osf.io/kpefz). 

60 individuals, 31 with an ASD diagnosis and 29 non-autistic controls, participated in 

the study (See Appendix 1.1 for ethnicity information). Participants were matched for age, 

gender, non-verbal reasoning (NVR; as measured by the Matrix Reasoning Item Bank; MaRs-

IB343) and alexithymia (as measured by the 20-item Toronto Alexithymia Scale; TAS-20344). 

The ASD group had significantly higher Autism Quotient (AQ304) scores (see Table 2.1). The 

level of autistic characteristics of those in the ASD group was assessed using the Autism 

Diagnostic Observation Schedule (version 2, ADOS-2345). The mean total ADOS-2 score in the 

ASD group was 10.59 (see Appendix 1.2 for information on the quantity of participants that 

met criteria for diagnosis). The MaRs-IB was used to match participants on the basis that the 

PLF task relies on non-verbal reasoning ability and, with respect to participant matching, task 

specific measures of intelligence/ability have been argued to be more appropriate than general 

measures346. A total of four participants (three in the ASD group and one in the control group) 



 50 

had AQ or TAS-20 scores over two standard deviations from their group mean. Since the 

general pattern of results was unaffected by their removal, these participants are included in the 

final analysis. 

Table 2.1. 

Means, standard deviations and group differences of participant characteristics 

 Control group (n=29)  ASD group (n=31) Significance 

Gender 11 Female, 17 Male, 1 Other 14 Female, 16 Male, 1 Other p= .850 
Age 28.81 (9.54) 30.14 (9.08) p= .581 
NVR 62.91 (15.17) 57.05 (17.90) p= .178 
TAS-20 55.66 (13.57) 59.74 (13.14) p= .241 
AQ 19.86 (7.44) 32.52 (10.21) p< .001 
ADOS-2 N/A 10.32(4.76) N/A 

 
Note. In the central columns, means are followed by standard deviations in parentheses.   
 

Twenty-two of the 31 ASD participants were recruited via an existing autism research 

database kept by the Birmingham Psychology Autism Research Team (B-PART). The control 

and remaining nine ASD participants were recruited via social media (Facebook and Twitter) 

and Prolific – an online recruitment platform. All participants in the ASD group had previously 

received a clinical diagnosis of ASD from a qualified clinician.  

2.2.2. Materials and stimuli 

PLF stimuli 

 The PLF task was an adapted version of that developed by Sowden and colleagues239 

which was re-programmed in Gorilla.sc347 to facilitate online testing. The same instructions, 

stimulus videos, and rating scales were used as in the original study. The stimulus videos 

comprised dynamic PLF stimuli, created from videos of four actors (two male, two female) 

verbalising sentences (“My name is John and I’m a scientist”) whilst posing three target 

emotions (angry, happy and sad). PLFs were adapted (see Sowden et al239 for further detail) to 

achieve three spatial movement levels, ranging from decreased to increased spatial movement 
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(S1: 50% spatial movement; S2: 100% spatial movement; S3: 150% spatial movement), and 

three kinematic levels, ranging from reduced to increased speed (K1: 50% original stimulus 

speed; K2: 100% original stimulus speed; K3 – 150% of the original stimulus speed). 

Consequently, there were 9 manipulations per emotion (e.g., (1) S1, K1, (2) S2, K1, (3) S3, K1, 

(4) S1, K2, (5) S2, K2, (6) S3, K2, (7) S1, K3, (8), S2, K3, (9) S3, K3). 

Autistic traits 

The level of autistic traits of all ASD and control participants was assessed via the 50-

item Autism Quotient304. Scores on this self-report scale range from 0 to 50, with higher scores 

corresponding to higher levels of autistic characteristics. The AQ assesses five different areas 

relevant for ASD traits (attention switching, attention to detail, communication, social skill and 

imagination). The AQ has been widely used in both the general and the autistic population348,349, 

and boasts strong psychometric properties, including internal consistency (α  ≥ 0.7) and test-

retest reliability (r ≥ 0.8)350. The AQ also had good internal consistency here (α  = 0.86). 

Alexithymic traits 

The level of alexithymic traits was measured via the Toronto Alexithymia Scale344. This 

self-report scale comprises 20 items rated on a five-point Likert scale (ranging from 1, strongly 

disagree, to 5, strongly agree). Scores on the TAS-20 can range from 20 to 100, with higher 

scores indicating higher levels of alexithymia. The TAS-20 is the most popular tool for 

assessing alexithymia149 and has good internal consistency (α  ≥ 0.7) and test-retest reliability 

(r ≥ 0.7)344,351. The TAS-20 also had good internal consistency here (α  = 0.82). 

Non-verbal reasoning  

Non-verbal reasoning was assessed via the Matrix Reasoning Item bank (MaRs-IB)343. 

Each item in the MaRs-IB consists of a 3 x 3 matrix. Eight of the nine available cells in the 

matrix are filled with abstract shapes, and one cell in the bottom right-hand corner is left empty. 
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Participants are required to complete the matrix by selecting the missing shape from four 

possible options. In order to correctly identify the missing shape, participants have to deduce 

relationships between the shapes in the matrix (which vary in shape, colour, size and position). 

When participants select an answer, they move on to the next item. If participants do not provide 

a response within 30 seconds, they continue to the next item without a response. The MaRs-IB 

assessment lasts 8 minutes regardless of how many trials are completed. There is a total of 80 

different items in the MaRs-IB, however participants are not required (or expected) to complete 

all 80 items within the 8 minutes. If a participant completed all 80 items within 8 minutes, the 

items were presented again but the responses to these were not analysed (following the 

procedure established by Chierchia and Fuhrmann et al343). The MaRs-IB has been shown to 

have acceptable internal consistency (Kuder-Richardson 20 ≥ 0.7) and test-retest reliability (r 

≥ 0.7)343.  

2.2.3. Procedures 

Following a pre-registered design (see https://osf.io/kpefz), participants first completed 

the questionnaires (demographics followed by AQ, followed by TAS-20) and then moved on 

to the PLF task. Each trial in this task began with the presentation of a stimulus, which 

comprised a silent PLF video of an actor expressing one of 3 emotions whilst saying a sentence 

at one of the 3 spatial and 3 kinematic levels239. After watching the video, participants were 

asked to rate how angry, happy and sad the person was feeling239. Participants made their 

ratings on a visual analogue scale, with one end representing ‘Not at all angry/happy/sad’ and 

the opposite end representing ‘Very angry/happy/sad’239. Individuals were asked to make 

ratings for all three target emotions (angry, happy and sad) on scales, which were presented on 

screen in a random order, after each PLF video239. Each trial took approximately 25 seconds to 

complete. Participants completed 3 practice trials (at the S2 and K2 level) and then 108 
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randomly ordered experimental trials (12 per condition) across three blocks. Participants were 

invited to take a break between blocks. The structure of each trial is displayed in Figure 2.1.  

Figure 2.1.  

Example of one trial in the PLF Emotion Recognition task 

 

Note. The fixation cross display is presented for 500ms at the start of each trial. The average 
length of a stimulus video was approximately 7 seconds. Rating scales remained on screen 
until participants had rated the stimulus and pressed the space bar 

 

Following PLF task completion, participants completed the Matrix Reasoning Item 

Bank (MaRs-IB)343.  

Participants completed all tasks online using Google Chrome or Mozilla Firefox on a 

computer or laptop. The frame rate (in frames per second; FPS) of their devices was measured 

to ensure that the quality/fluidity of the stimulus videos was not degraded. All participants’ 

frame rates were 60 FPS or higher with one exception at 50 FPS. When we ran all analyses with 

and without the 50 FPS participant, treating them as a potential outlier, the pattern of results 

was unaffected. Therefore, this participant was included in all analyses. 

How HAPPY was the person feeling?

How ANGRY was the person feeling?

How SAD was the person feeling?

Not at all
SAD

Not at all
ANGRY

Not at all
HAPPY

Very 
HAPPY
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2.2.4. Statistical Analysis 

The three emotion rating responses for each trial were transformed into magnitude 

scores from 0 to 10 (with 0 representing a response of ‘Not at all’ and 10 representing ‘Very’) 

to 3 decimal places. Emotion recognition accuracy scores were calculated as the correct 

emotion rating minus the mean of the two incorrect emotion ratingsc. For instance, for a trial in 

which an angry PLF was presented, the mean rating of the two incorrect emotions (happy and 

sad) was subtracted from the correct emotion (angry). Thus, emotion recognition accuracy 

reflects how well an individual can distinguish whether an incoming expression is angry versus 

happy versus sad. As discussed, our PLF stimuli were created by recording four actors 

verbalising sentences while posing anger, happiness, and sadness, respectively (see 239). 

Although these actors were instructed to produce discrete angry, happy, and sad facial 

expressions, it is important to note that we cannot guarantee that they did not inadvertently 

produce mixed emotional expressions. As such, one may argue that there is no objective 

“ground-truth” in the emotions that are depicted in the PLF expressions. This limitation is not 

confined to the PLF expressions used here, but to all facial expression stimuli used in the 

literature. This has led researchers to call for emotion recognition accuracy to be considered as 

a form of agreement between the expressor (i.e., our actors) and perceiver46. Therefore, here 

we conceptualise emotion recognition accuracy as the degree of agreement between the PLF 

actor and the participants in the present study. 

 
c Many of the studies that have investigated the emotion recognition ability of autistic 

individuals have used forced-choice paradigms in which there is a binary (correct; 1, or incorrect; 0) 
accuracy score for each trial. In order to facilitate comparison of our results to those studies, we also 
completed a binary accuracy analysis, which yielded similar results (see Appendix 1.3). In this 
analysis, for each trial, participants scored 1 when they gave the highest rating to the correct emotion, 
and 0 when they rated either of the incorrect emotions higher than the correct emotion.  
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To test our first hypothesis, we submitted these accuracy scores to a 2 x 3 x 3 x 3 

Analysis of Variance (ANOVA) with the between-subjects factor group (ASD, control) and the 

within-subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, S2, S3), and 

stimulus kinematic level (K1, K2, K3). This analysis has the potential to reveal differences 

between the groups in their accuracy of emotion recognition from facial motion cues. It is 

possible, however, that two groups could have comparable accuracy scores but different 

patterns of ratings. For example, an accuracy score of 2 for an angry stimulus could relate to an 

anger magnitude rating of 4 and happy and sad ratings of 2, or an anger rating of 4, happy rating 

of 0, and a sad rating of 4. To more sensitively pick up on any differences between groups we 

used magnitude as the DV and conducted a 2 x 3 x 3 x 3 x 3 ANOVA with the between subjects 

factor group (ASD, control) and the within-subjects factors emotion (happy, angry, sad), 

stimulus spatial level (S1, S2, S3), stimulus kinematic level (K1, K2, K3) and rating (happy, 

angry, sad).  

To explore whether the effects of the spatial and kinematic manipulation on emotion 

recognition accuracy covaried with alexithymia scores we employed multiple regression 

analyses. More specifically, we applied a sqrt transformation to all ordinal factors of interest 

(age, NVR, AQ, TAS-20), computed z-scores for the transformed data, and submitted the 

transformed z-scored data, along with the nominal predictor gender, to multiple regression 

analyses. The effect of the spatial manipulation (defined as the difference in accuracy between 

S3 and S1), the effect of the kinematic manipulation (defined as the difference in accuracy 

between K3 and K1), mean recognition accuracy, and accuracy for angry videos at the normal 

level (S2, K2) were used as the DVs for each of these analyses. In addition, in order to explore 

whether autistic and/or alexithymic traits predicted the magnitude of correct and incorrect 

ratings, we constructed two linear mixed effects models with ratings for angry facial motion at 
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the normal level, and ratings across all emotions and levels of the spatial and kinematic 

manipulation, as the DVs respectively. For all analyses, we used a p = .05 significance threshold 

to determine whether to accept or reject the null hypothesis. The frequentist approach was 

supplemented with the calculation of Bayes Factors, which quantify the relative evidence for 

one theory or model over another. For all Bayesian analyses, we followed the classification 

scheme used in JASP352 : BF10 values between one and three represent weak evidence, between 

three and ten moderate evidence, and greater than ten strong evidence, for the experimental 

hypothesis. For all Bayesian ANOVAs, the default Uniform prior was used. For all Bayesian 

linear regressions, the default Jeffreys-Zellner-Siow prior was used [r scale = 0.354]. 

 

2.3. Results 

Our primary hypothesis was that emotion recognition accuracy would be affected by 

both kinematic and spatial manipulation and that these effects would not interact with group. 

To test this hypothesis, we conducted a mixed 2 x 3 x 3 x 3 ANOVA with the between-subjects 

factor group (ASD, control) and the within-subjects factors emotion (happy, angry, sad), 

stimulus spatial level (S1, S2, S3), and stimulus kinematic level (K1, K2, K3). This analysis 

revealed a significant main effect of emotion [F(2,116) = 17.79, p < .001, ηP2 = .24, BF10 = 

1.03e15; see Appendix 1.4], a main effect of spatial level [F(2,116) = 259.57, p < .001, ηP2 = 

.82, BF10 = 9.05e57; see Appendix 1.4] which was qualified by an emotion x spatial interaction 

[F(4,232) = 88.42, p < .001, ηP2 = .60, BF10 = 7.53e58], and an emotion x kinematic interaction 

[F(4,232) = 53.90, p < .001, ηP2 = .48, BF10 = 1.90e20]. Furthermore, this analysis revealed a 

significant four-way emotion x spatial x kinematic x group interaction [F(8,464) = 2.438, p < 

.05, ηP2 = .04, BF10 = 0.07]. Note that no kinematic x group interaction was found [p = .538, 

BF10 = 0.02], suggesting that autistic and control participants exhibit similar patterns of 
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accuracy across the kinematic levels. Below, in order to shed light on the effects of the spatial 

and kinematic manipulations, we first unpack the emotion x kinematic and emotion x spatial 

interactions. Subsequently we fully unpack the emotion x spatial x kinematic x group 

interaction. 

In line with Sowden et al239, we observed an emotion x spatial interaction [F(4,232) = 

88.42,  p< .001, ηP2 = .60, BF10 = 7.53e58]. Post-hoc repeated measures ANOVAs revealed that 

whilst the effect of the spatial manipulation was present for all three emotions (all F > 7.00, all 

p < .01), the direction of the effect varied between high and low arousal emotions: recognition 

scores for angry and happy facial motion were highest for 150% spatial extent (S3) [angry mean 

(Standard Error of the Mean; SEM) = 5.21(.21); happy mean(SEM) = 5.70(.24)], followed by 

100% spatial extent (S2) [angry mean(SEM) = 3.15(.22); happy mean(SEM) = 4.75(.23)], and 

finally 50% spatial extent (S1) [angry mean SEM) = 0.53(.22); happy mean(SEM) =  2.10(.25)]. 

In contrast, for sad facial motion, recognition scores were highest for S1 [sad mean(SEM) = 

3.50(.22)], lowest for S3 [sad mean(SEM) = 2.78(.22)] and intermediate for S2 [sad 

mean(SEM) = 3.15(.20)]. This pattern matches the results reported by Sowden et al., (2021) for 

non-autistic participants. The emotion recognition accuracy scores for each emotion across the 

spatial levels can be seen in Figure 2.2 (a).  

In addition, our analysis identified an emotion x kinematic interaction [F(4,232) = 

53.90, p < .001, ηP2 = .48, BF10 = 1.90e20]. Whilst there was a main effect of the kinematic 

manipulation for all three emotions (all F > 20, all p < .001), the direction of the effect differed 

between high and low arousal emotions. For angry and happy facial motion, emotion 

recognition improved with increasing speed [angry: K1 mean(SEM) = 2.28(.19); K2 

mean(SEM) = 2.87(.19); K3 mean(SEM) = 3.73(.23); happy: K1 mean(SEM) = 3.50(.23); K2 

mean(SEM) = 4.50(.22); K3 mean(SEM) = 4.55(.21)]. For sad facial motion, emotion 
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recognition improved as speed decreased [K3 mean(SEM) = 2.03(.19); K2 mean(SEM) = 

3.21(.22); K1 mean(SEM) = 4.18(.23)]. This pattern of results also matches the findings from 

Sowden et al239. The emotion recognition accuracy scores for each emotion across the kinematic 

levels can be seen in Figure 2.2 (b).  

Figure 2.2.  

Mean accuracy scores, for all participants, for each emotion across the spatial (panel a) and 
kinematic (panel b) levels. 
 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints. 
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In order to unpack the significant four-way interaction, we conducted post-hoc 2 x 3 x 

3 (group, emotion, kinematic) ANOVAs for each spatial level. This analysis revealed a 

significant emotion x kinematic x group interaction at the S2 [F(4,232) = 4.53, p < 0.01, ηP2 = 

.07, BF10 = 5.92] but not S1  [p = .265, BF10 = 0.09] or S3 [p = .208, BF10 = 0.09] level. To 

unpack this emotion x kinematic x group interaction at the S2 level, we conducted separate 

post-hoc ANOVAs for each kinematic level at the 100% (S2) spatial level. This analysis 

revealed a significant emotion x group interaction at the K2 [F(2,116) = 6.48, p < .01, ηP2 = .10, 

BF10 = 17.09] but not K1 [p = .244, BF10 = 0.32] or K3 [p = .082, BF10 = 0.82] level. Bonferroni-

corrected post-hoc independent sample t-tests revealed that control, relative to ASD, 

participants had higher accuracy for angry facial motion at the 100% spatial (S2) and speed 

(K2) level [t(58) = 2.78, pbonf. < .05, mean difference = 1.48, BF10 = 6.09]. There were no 

significant group differences in emotion recognition accuracy for happy [p = .757, BF10 = 0.27] 

or sad [p = .085, BF10 = 0.93] videos at the S2K2 level. Thus, the groups significantly differed 

in accuracy for angry PLFs that were not spatially or kinematically manipulated. The mean 

emotion recognition accuracy scores across each emotion for control and ASD participants at 

the S2K2 level are shown in Figure 2.3.  
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Figure 2.3.  

Accuracy at the S2, K2 level, as a function of emotion 

 
Note. Control in lilac, ASD in green. The black line represents the mean, the coloured box 
represents the standard error of the mean, the shaded region represents the standard deviation, 
and the dots are individual datapoints. 
 

To further unpack the emotion x kinematic x group interaction at the S2 level, we 

conducted separate post-hoc ANOVAs for each emotion at the S2 level. This analysis identified 

a significant kinematic x group interaction for angry [F(2,116) = 4.59, p < .05, ηP2 = .07, BF10 

= 3.49] but not happy [p = .070, BF10 = 0.95] or sad [p = .123, BF10 = 0.53] PLFs. Therefore, 

for angry videos at the normal spatial level, the effect of the kinematic manipulation varied as 

a function of group. Bonferroni-corrected paired sample t-tests demonstrated that whilst the 

control group exhibited increasing accuracy across all kinematic levels [K1-K2: t(28) = -4.31, 

pbonf < .001, mean difference = -1.62, BF10 = 153.77; K2-K3: t(28) = -2.86, pbonf  < .05, mean 

difference = -0.95, BF10 = 5.52], the ASD group only showed improvement from the K2 to K3 

*

*p<.05*pbonf < .05
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[t(30) = -3.46, pbonf < .01, mean difference = -1.16, BF10 = 21.10] and not K1 to K2 [p = .865, 

BF10 = 0.19]. Furthermore, the groups did not significantly differ at K1 (F(1,58) = .18, p > .05) 

or K3 (F(1,58) = 3.53 p > .05) but at K2, controls out-performed autistic participants (F(1,58) 

= 7.75, p < 0.01, ηP2 = .12). These results suggest that, whilst controls improved in their 

accuracy for angry PLF stimuli across each level of increasing kinematic manipulation, for 

autistic participants, only the most extreme (K3) level of the kinematic manipulation resulted 

in an accuracy boost. The mean accuracy scores for angry videos across the kinematic levels 

(at the unmanipulated S2 level) for control and ASD participants are shown in Figure 2.4.  
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Figure 2.4.  

Mean accuracy scores for angry videos at the S2 level for control and ASD participants across 
the kinematic levels 
 

 

 

Note. The black line represents the mean, the coloured box represents the standard error of the 
mean, the shaded region represents the standard deviation, and the dots are individual 
datapoints. 
 

 In order to compare the magnitude of the ratings between groups, we conducted a mixed 

2 x 3 x 3 x 3 x 3 ANOVA with the between subjects factor group (ASD, control) and the within-

subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, S2, S3), stimulus 
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kinematic level (K1, K2, K3) and rating (happy, angry, sad). This analysis revealed a significant 

main effect of emotion [F(2,116) = 34.86, p < .001, ηP2 = .38], spatial level [F(2,116) = 50.52, 

p < .001, ηP2 = .47], kinematic level [F(2,116) = 3.51, p < .05, ηP2 = .06] and rating [F(2,116) = 

3.592, p < .05, ηP2 = .06, BF10 = 76], as well as emotion x rating [F(4,232) = 489.95, p < .001, 

ηP2 = .89], spatial x rating [F(4,232) = 64.26, p < .001, ηP2 = .53], kinematic x rating [F(4,232) 

= 49.08, p < .001, ηP2 = .46], emotion x spatial x rating [F(8,464) = 111.13, p < .001, ηP2 = .66], 

emotion x kinematic x rating [F(8,464) = 12.02, p < .001, ηP2 = .17], kinematic x rating x group 

[F(4,232) = 2.79, p < .05, ηP2 = .05] and spatial x kinematic x rating x group [F(8,464) = 2.76, 

p < .05, ηP2 = .05] interactions. All interactions and main effects are unpacked in Appendix 1.5.  

In addition, this analysis revealed an emotion x kinematic x rating x group interaction 

which approached significance [F(8,464) = 1.90, p = .058, ηP2 = .03]. Since this interaction 

potentially offers further insight about the between group difference in anger recognition, we 

unpack it in full here. Post-hoc 2 x 3 x 3 ANOVAs (group x kinematic x rating) for each of the 

emotional videos revealed a significant kinematic x rating x group interaction for angry 

[F(4,232) = 4.26, p < .01, ηP2 = .07, BF10 = 0.61] but not happy [p = .687, BF10 = 0.03] or sad 

[p = .122, BF10 = 0.09] facial motion.  Importantly, post-hoc ANOVAs revealed that for control 

participants, speeding up angry facial motion (regardless of the spatial level) improves accuracy 

by increasing ratings of anger [F(2,56) = 15.39, p < .001, ηP2 =.36, BF10 = 3344.71] and 

lowering ratings of sadness [F(2,56) = 24.15, p < .001, ηP2 = .46, BF10 = 374155.73] across all 

levels of the kinematic manipulation [angry ratings K1-K2: t(28) = -3.17, p < .01, mean 

difference = -0.62, BF10 = 10.71; angry ratings K2-K3: t(28) = -2.24, p < .05, mean difference 

= -0.40, BF10 = 1.67; sad ratings K1-K2: t(28) = 3.91, p = .001, mean difference = 0.90, BF10 = 

58.34; sad ratings K2-K3 t(28) = 2.74, p < .05, mean difference = 0.52, BF10 = 4.34] (however, 
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note that after Bonferroni-correction, the difference in angry ratings for angry facial motion 

between K2 and K3 became non-significant; p = .100; see Figure 2.5).  

For autistic participants, speeding up angry facial motion also improved accuracy by 

increasing ratings of anger [F(2,60) = 12.18, p < .001, ηP2 = .29, BF10 = 551.72], however this 

effect was driven by an increase from the 100% to 150% level [t(30) = -5.24, p = .001, mean 

difference = -0.75, BF10 = 1792.14], and not the 50% to 100% level [p = .636, BF10 = 0.21]. In 

addition, we found that there was a main effect of kinematic level for sad ratings that 

approached significance [F(2,60) = 2.89, p = .063, ηP2 = .09, , BF10 = 0.90]. Importantly, sad 

ratings only decreased from 100% to 150% speed [t(30) = 2.32, p < .05, mean difference = 0.39, 

BF10 = 1.94] and not from 50% to 100% speed [p = .877, BF10 = 0.19] (however, note that after 

Bonferroni-correction, the difference in sad ratings for angry facial motion between K2 and K3 

became non-significant; p = .081; see Figure 2.5). Consequently, we primarily observe 

differences in the accuracy of anger recognition between our ASD and control groups because, 

for the ASD group, speeding up angry facial motion only reduces confusion between angry and 

sad ratings when the speed is increased from 100 to 150% (not 50 to 100%). In contrast, for the 

control group increasing the speed of angry facial motion from 50 to 100% and from 100 to 

150% reduces confusion between anger and sadness ratings. 
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Figure 2.5.  

Mean angry and sad ratings given by control and ASD participants for angry facial motion 
across the kinematic levels 

 
 
Note. The black line represents the mean, the coloured box represents the standard error of the 
mean, the shaded region represents the standard deviation, and the dots are individual 
datapoints. 
 

Multiple Regression Analyses 

In addition, we aimed to explore whether variation in emotion recognition accuracy 

covaried with scores on our self-report alexithymia measure (TAS-20). To test whether autistic 

or alexithymic traits were predictive of the effect of the spatial and kinematic manipulations, 

we conducted two multiple regression analyses. For the first analysis, we used the effect of 

spatial manipulation (defined as the difference in accuracy between S3 and S1) as the dependent 

variable (DV) and AQ and TAS-20 as predictor variables. This analysis resulted in a non-

significant model overall [F(2,57) = .87, p= .425], neither AQ [standardised β = -.17, t(57) = -

1.10, p = .274] nor TAS-20 [standardised β = .19, t(57) = 1.20, p = .236] were significant 

predictors of the effect of the spatial manipulation. In the second analysis, we used the effect 
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of the kinematic manipulation (defined as the difference in accuracy between K3 and K1) as 

the DV and AQ and TAS-20 as predictors. Again, this analysis resulted in a non-significant 

model [F(2,57) = 1.63, p = .206], neither AQ [standardised β = .20, t(57) = 1.33, p = .189] nor 

TAS-20 [standardised β = .05, t(57) = .32 p = .752] were significant predictors of the effect of 

the kinematic manipulation. We then conducted a third multiple regression with mean emotion 

recognition accuracy (across all trials) as the DV. Once again, neither AQ [standardised β = -

.19, t(57) = -1.24, p = .220] nor TAS-20 [standardised β = .12, t(57) = .81, p = .424] were 

significant predictors of mean recognition accuracy and the overall model did not explain a 

significant amount of variance in the data [F(2,57) = .78, p = .461]. To explore the possibility 

that only extreme scores on the TAS-20 predict performance, we compared mean accuracy for 

alexithymic (i.e., TAS-20 ≥ 61) and non-alexithymic (i.e., TAS-20 ≤ 51) participants (according 

to the cut-off scores outlined by Bagby, Taylor & Parker344), excluding ‘possibly alexithymic’ 

individuals. An independent samples t-test confirmed that there was no significant difference 

in mean accuracy between these groups [t(48) = -.18, p = .861, mean difference = -.05, BF10= 

0.29].  

Finally, building on our previous observation that the ASD and control groups differed 

in accuracy for angry facial motion at the normal (100%) spatial and speed level we conducted 

a multiple regression analysis to identify the extent to which autistic and alexithymic traits were 

predictive of accuracy for angry videos at the S2 and K2 levels. This analysis revealed that 

autistic [standardised β = -.44, t(57) = -3.05, p < .01], but not alexithymic [standardised β = .22, 

t(57) = 1.54, p = .130], traits were predictive of accuracy for angry facial motion at the normal 

spatial and speed level [overall model statistics: F(2, 57) = 4.67, p < .05, R2 = .141]. Bayesian 

analyses, using a default prior [Jeffreys-Zellner-Siow prior; r scale = 0.354], revealed that AQ 
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[BFinclusion = 4.230] was over 16 times more likely to be included in a model to predict accuracy 

for angry videos at the normal spatial and speed level than alexithymic traits [BFinclusion = 0.263]. 

In order to ensure that AQ is not just a significant predictor of accuracy for angry 

expressions at the normal spatial and speed level due to variation across other co-variables (e.g., 

age, gender, and non-verbal reasoning), we completed an additional three-step forced entry 

hierarchical regression analysis following the procedures of Cook and Brewer et al209. In the 

first step, the demographic variables (gender, age and NVR) were entered into the model, which 

overall accounted for 16% of the variance in accuracy at the S2K2 level [F(3,56) = 3.56, p <  

.05, R2 = .160]. Importantly, of the three demographic variables, only NVR was a significant 

predictor of accuracy for angry facial motion at the normal spatial and speed level [standardised 

β = .35, t(56) = 2.79, p < .01] (and not gender [standardised β = .15, t(56) = 1.20, p = .233] or 

age [standardised β = - .01, t(56) = -.06, p = .950]). In the second step, AQ was added 

[standardised β = -.36, t(55) = -3,13, p < .01], producing a statistically significant R2 change [F 

change (1, 55) = 9.80, p < .01, R2 change = .127]. Finally, when TAS-20 was entered into the 

model, the analysis revealed it was not a significant predictor of accuracy for angry facial 

motion at the normal level [standardised β = .17, t(54) = 1.26, p = .214] and resulted in a non-

significant R2 change [F change (1, 54) = 1.58, p = .214, R2 change = .020; see Table 2.2]. 

Hence, this analysis demonstrated that autistic traits (and not alexithymic traits) were a 

significant predictor of accuracy for angry facial motion at the normal level (S2, K2) even after 

age, gender and NVR have been accounted for.  

These analyses suggest that alexithymia accounts for very little variance in accuracy for 

angry facial motion at the normal (S2K2) level once autistic traits have been accounted for. 

However, since our autism and alexithymia measures were correlated [R = .53, p < .001], when 

alexithymia is entered into a multiple regression after autistic traits, it may not be a significant 
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predictor due to collinearity. Consequently, we ran one further hierarchical regression, with the 

demographic variables entered in Step 1, alexithymia in Step 2 and autistic traits in Step 3. 

Alexithymia failed to significantly improve the model [F change (1, 55) = .31, p = .581, R2 

change = .005], explaining only 0.5% more variance than that explained by the demographic 

variables alone. Despite being highly correlated with alexithymia, autistic traits were again a 

significant predictor of accuracy for angry facial motion at the normal level [standardised β = -

.45, t(54) = -3.33, p < .01] when added to the model in Step 3. Adding autistic traits at this step 

produced a statistically significant R2 change [F change (1, 54) = 11.12, p < .01, R2 change = 

.143], explaining an additional 14.3% of the variance in accuracy.  

Table 2.2.  

Results of the forced entry hierarchical regression for accuracy for angry videos at the normal 
spatial and speed level.  

Model R R2 Adjusted R2 SEE R2 
change 

F change Sig. F change 

1 .400 .160 .115 1.82 .160 3.556 .020 
2 .536 .287 .235 1.69 .127 9.798 .003 
3 .554 .307 .243 1.68 .020 1.581 .214 
 
Note. 1.  predictors: age, gender, non-verbal reasoning; 2. predictors: age, gender, non-verbal 
reasoning, AQ; 3. predictors: age, gender, non-verbal reasoning, AQ, TAS-20. 
 

The above results demonstrate that, compared to NVR, age, gender and alexithymia, 

autistic traits account for an additional 14.3% of the variance in the accuracy of anger 

recognition from motion cues at the normal (S2K2) level. In principle, autistic traits might 

contribute to anger recognition by modulating the magnitude of correct ratings (wherein lower 

AQ should be related to higher anger ratings for angry stimuli), the magnitude of incorrect 

ratings (wherein lower AQ should be related to lower happy and sad ratings for angry stimuli), 

or both. In addition, it is possible that alexithymic traits might contribute to correct and incorrect 
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emotion ratings, but not emotion recognition accuracy (e.g., by contributing to both increased 

correct and incorrect emotion ratings). To explore these possibilities, and thereby shed light on 

the psychological mechanisms by which AQ negatively predicts anger recognition, we 

constructed a linear mixed effects model, predicting the magnitude of ratings with AQ score, 

TAS-20 score, the interaction between AQ score and rating type (correct vs. incorrect), and the 

interaction between TAS-20 and rating type (correct vs. incorrect). This analysis revealed a 

significant AQ x rating type interaction [t(180) = 2.12, p < .05], wherein AQ predicted incorrect 

[t(59.89) = 3.36, p < .01] but not correct [p = .381] emotion ratings for angry facial motion at 

the normal level; those with higher AQ gave higher incorrect emotion ratings (i.e., happy and 

sad) for angry facial motion at the normal level. Our analysis also identified that the relationship 

between TAS-20 and ratings (across correct and incorrect emotions) for angry facial motion at 

the normal level approached significance [t(180) = 1.80, p = .074]. Note that no TAS x rating 

type interaction was identified [p = .288]. 

 The analyses reported above suggest that autistic traits contribute to anger recognition 

by modulating the magnitude of incorrect ratings, but not correct, ratings. In addition, these 

analyses revealed an interesting additional finding: alexithymic traits may be positively 

predictive of both correct and incorrect emotion ratings. Since the analyses reported above were 

restricted to the normal (S2K2) level for angry facial motion, next, we constructed one further 

linear mixed effects model (following the procedures outlined above) to investigate whether 

autistic and/or alexithymic traits are predictive of higher correct and incorrect emotion ratings 

across all emotions and levels of the spatial and kinematic manipulation. This analysis revealed 

that TAS-20 score was a significant positive predictor of the magnitude of ratings [t(57.84) = 

2.95, p < .01], with those with higher alexithymia giving higher intensity (correct and incorrect) 

ratings across all emotions and levels of the spatial and kinematic manipulation. Importantly, 
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the TAS x rating type interaction was not significant [p = .125], suggesting that alexithymic 

traits were predictive of both correct and incorrect emotion ratings. Our analysis also revealed 

that there was a significant AQ x rating type interaction [t(4800.41) = 2.37, p < .05]. In line 

with our previous analysis, AQ predicted incorrect [t(49.02) = 2.24, p < .05] but not correct [p 

= .175] emotion ratings, such that those higher in autistic traits gave higher incorrect ratings.  

 Therefore, our results suggest that whilst the level of autistic traits is predictive of 

accuracy for angry facial motion at the normal level (by positively predicting incorrect emotion 

ratings but not correct emotion ratings), alexithymic traits are not predictive of emotion 

recognition accuracy across emotions and manipulations but are positively predictive of both 

correct and incorrect emotion ratings. 

 

2.4. Discussion 

The current study tested whether autistic individuals, relative to alexithymia-matched 

controls, have greater difficulty recognising emotions from facial motion cues. We 

hypothesised that emotion recognition would vary as a function of kinematic and spatial 

manipulation and that these effects would not interact with diagnostic group, but rather 

Bayesian statistics would provide evidence that the groups perform comparably. We also aimed 

to explore whether the effects of spatial and kinematic manipulation on emotion recognition 

accuracy would covary with scores on a self-report alexithymia measure. In replication of 

Sowden et al239, our results indicated that emotion recognition accuracy was affected by both 

spatial and kinematic manipulation. In addition, we identified that emotion recognition 

accuracy did not covary with alexithymia scores. In conflict with our hypothesis, we observed 

a significant emotion x spatial x kinematic x group interaction. Further unpacking this 

interaction revealed that autistic, relative to control, adults showed reduced recognition of angry 
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facial motion at the normal (100%) spatial (S2) and speed (K2) level. Furthermore, whilst 

control participants improved in accuracy across all kinematic levels, autistic participants only 

benefitted from the speed increase from the normal (100%) to increased (150%) speed level. 

Exploration of the magnitude of ratings further demonstrated that, for non-autistic participants, 

speeding up angry PLFs improved accuracy through a combination of increasing anger ratings 

and decreasing sad ratings for both the 50-100% and 100-150% increase. In contrast, for autistic 

participants speeding up angry facial motion only increased anger ratings and decreased sad 

ratings between the 100% and 150% levels (not from 50-100%). In addition, multiple regression 

analyses revealed that autistic traits and NVR, but not age, gender or alexithymia, were 

significant predictors of recognition accuracy for angry facial motion at the normal spatial and 

speed level (where level of autistic traits was a negative predictor and NVR was a positive 

predictor). Although alexithymic traits were not associated with accuracy, they were associated 

with higher ratings for both the correct and incorrect emotions. Importantly, our results 

demonstrate that when autistic and control individuals are matched in terms of alexithymia 

there are group differences in recognition accuracy, though these are restricted to angry (not 

happy or sad) facial motion.  

Of particular note is our finding that differences between autistic and control individuals 

are restricted to the recognition of anger from facial motion. This finding is in line with previous 

research suggesting that angry expressions are better recognised by non-autistic compared to 

autistic individuals147,219-222 and is supported by meta-analytic evidence demonstrating greater 

differences between ASD and control groups in the recognition of angry compared to happy 

and sad expressions191. Importantly, however, some of these previous studies did not measure 

alexithymia219-222 and in those that did, alexithymic and ASD traits were confounded147, making 

it impossible to determine whether differences in anger recognition were attributable to 
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alexithymia or ASD. The present study resolves this ambiguity and suggests that difficulties 

with recognising angry expressions at the ‘normal’ spatial and speed level are related to autism, 

not alexithymia.  

An important observation is that in the current paradigm both groups performed equally 

well for slowed angry facial motion, but whilst the controls benefitted from the K1 to K2 speed 

increase (i.e., 50% to 100% speed), the autistic participants only benefitted from the K2 to K3 

speed increase (i.e., accuracy only increased when the stimulus was played at 150% of normal 

speed). Our analysis of the magnitude of angry, happy and sad ratings for angry PLFs provided 

further insight into this effect: for non-autistic participants, speeding up angry PLFs from 50-

100% speed and 100-150% improved accuracy through a combination of increasing anger 

ratings and decreasing sad ratings, thereby reducing the confusion between emotions. For 

autistic participants, speeding up angry facial motion also increased anger ratings and decreased 

sad ratings, however, this only happened between the 100% and 150% levels (not from 50-

100%). This lack of a change in angry and sad ratings from 50 to 100% speed resulted in the 

autistic participants displaying significantly lower emotion recognition accuracy for angry 

facial motion at the 100% level. Further to this, the lack of a decrease in sad ratings may also 

explain why autistic traits were associated with higher incorrect emotion ratings for angry facial 

motion at the normal level (as found in our linear mixed effects model).   

These findings also raise the possibility that autistic individuals may have a higher 

‘kinematic threshold’ for perceiving anger from facial motion (i.e., an angry expression has to 

be moving quite quickly before it actually appears angry or angrier to ASD participants). This 

idea builds upon the findings of a previous study that used static photographic stimuli at varying 

expressive intensities (constructed by repeatedly morphing a full expression with a neutral 

expression to result in 9 intensity levels for each emotion) to estimate identification thresholds 
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(the intensity at which an expression is identified correctly on two consecutive trials) for autistic 

and control participants. The authors found that autistic individuals had significantly higher 

identification thresholds than controls, meaning that a higher intensity was necessary before an 

expression appeared angry to ASD participants. Importantly, this study also found no 

significant group differences in identification thresholds for happiness or sadness222. Song and 

Hakoda’s findings suggest that autistic individuals have a different identification threshold for 

static angry expressions222. For dynamic facial expressions, it may be that autistic and control 

individuals have a different ‘kinematic identification threshold’ such that the expression must 

move more quickly (than would be required for control individuals) before it is identified as 

angry. Further research is necessary to investigate whether the group difference in recognising 

angry expressions at the S2K2 level is underpinned by a difference in kinematic identification 

thresholds.  

Another (non-mutually exclusive) explanation for why the autistic individuals may have 

particular difficulty recognising angry expressions relates to movement production. Previous 

studies have documented differences between autistic and control participants in the production 

of facial expressions of emotion146,147. In our study, we used PLF videos that were made by 

filming four non-autistic participants posing different emotional states. Given that autistic and 

non-autistic individuals may produce different facial expressions and that one’s own movement 

patterns influence the perception and interpretation of the movements of others353-356, our 

autistic participants might have struggled to read emotion in our PLF videos because the 

expressions were dissimilar to expressions that they would have adopted themselves. To date, 

studies that have documented differences between autistic and control participants in the 

production of facial expressions of emotion have used non-autistic observer ratings as a 

measure of the quality of facial expression (i.e., from the perspective of a non-autistic rater 
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autistic individuals produce expressions which appear “atypical”). Consequently, research has 

not yet identified what specifically is different about autistic and non-autistic facial expressions. 

Importantly, differences might be found in the final arrangement of facial features (i.e., spatial 

differences) or the speed/acceleration/jerk with which individuals reach these expressions (i.e., 

kinematic differences). Further research is necessary to a) characterise the expressive 

differences between autistic and non-autistic individuals, b) ascertain whether there are greater 

expressive differences between the groups for angry compared to happy and sad expressions 

and, c) confirm whether such differences in movement profile contribute to emotion recognition 

difficulties.  

Another potential explanation for why autistic individuals have specific difficulties 

recognising anger concerns facial information sampling. Autistic individuals are thought to 

exhibit a local, rather than global, processing style165-168, wherein they focus on specific regions 

of the face such as the mouth224-226. Given that the majority of expressive information for anger 

is thought to be conveyed around the eyes227,228, the autistic participants may struggle to 

recognise this emotional facial expression. Conversely, these individuals may not struggle to 

recognise happiness and sadness because, for these emotions, the mouth contains relatively 

more expressive information101. As such, a local-processing style characterised by a focus on 

the mouth region may only impede the recognition of anger, and not happiness or sadness, for 

autistic individuals. Further research which employs eye tracking is necessary to determine 

whether differences in facial information sampling underpin selective difficulties recognising 

anger.  

There is growing support for the alexithymia hypothesis, not only with respect to facial 

emotion recognition (e.g., 209,212,213,335), but also with vocal and musical emotion 

recognition357,358, and in related domains such as empathy208. As these literatures grow, 
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establishing what can and cannot be explained by the alexithymia hypothesis is of increasing 

importance not only to academics working in the field but also to clinicians for whom it is 

important to understand which aspects of behaviour and cognition are indicative of autism, and 

which are more representative of alexithymia. In the present study, we found that self-reported 

alexithymia was not predictive of the effect of spatial or kinematic manipulation on emotion 

recognition from motion cues, emotion recognition accuracy in general, or emotion recognition 

accuracy specifically relating to angry videos at the normal spatial and speed level. However, 

when we decomposed our accuracy measure into the magnitude of ratings for the correct and 

incorrect emotions, we found that elevated alexithymia was associated with increased ratings 

for both correct and incorrect emotions. Consequently, these data suggest that, in the context of 

our task, individuals with high levels of alexithymic traits can recognise emotion from motion 

cues to the extent that they can, for example, rate an angry PLF as more angry, relative to happy 

and sad. However, compared to individuals low in alexithymic traits, they are more likely to 

rate a PLF high for all emotion categories. 

 One possible explanation for the absence of a significant relationship between 

alexithymia and emotion recognition accuracy in our study is linked to the use of degraded 

facial motion stimuli. Bird, Press and Richardson359 demonstrated that impairments in emotion 

recognition in highly alexithymic individuals may be driven by an avoidance of the eye region. 

It is possible that, by using degraded stimuli in which the eye-region is represented by the 

kinematics and spatial configuration of only 6 landmarks (white dots), we have changed the 

way in which attention is allocated across the face. We know, from previous work, that the 

speed of movement of our eye-region landmarks carries emotion-differentiating signal239. 

However, it is possible that when eyes are represented as six white dots, they are no longer 

avoided by highly alexithymic individuals. Thus, alexithymic individuals might process 
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information from the eye-region of our PLF stimuli more than they would with, for example, 

photographic stimuli. It is also conceivable that our PLF stimuli encourage (all) observers’ 

attention towards the mouth over the eye region. If this were the case, a correlation between 

alexithymia and impaired emotion recognition may be hidden since there is no known link 

between alexithymia and impaired recognition of emotion from mouth-region cues. 

 Perhaps of most interest for the field of alexithymia research is our finding that 

alexithymic traits are predictive of increased magnitude of both correct and incorrect emotion 

ratings. Such results are reminiscent of a literature which concerns increased emotional 

reactivity in alexithymic individuals360. However, whilst it is tempting to speculate that our 

results are indicative of over-attribution of emotion in highly alexithymic individuals, it should 

be noted that there is no objective ground-truth with respect to the magnitude of ratings of our 

PLF stimuli. Our stimuli were designed to discretely represent happy, angry and sad emotions 

thus one may argue that the “ground-truth” for an angry PLF, for example, is that happy and 

sad ratings should be zero. However, we cannot guarantee that our PLF actors did not 

inadvertently produce mixed emotional expressions. A broader point here is that, given the 

paucity of research concerning emotion-related facial motion cues, the extent to which facial 

movements overlap between happy, angry and sad expressions is currently unclear. Thus, whilst 

it may be that highly alexithymic individuals are over-attributing emotion, an alternative 

possibility is that they are more finely tuned to emotion-related motion cues and are in fact 

correctly identifying that some motion cues are linked to happy, sad and angry states (though 

perhaps with different probabilities). To resolve this interpretational issue, further research is 

required to establish the extent of overlap between dynamic happy, angry and sad expressions. 
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Limitations 

In the present study, we aimed to produce statistically rigorous and replicable results. 

The standard alpha level (p < .05) has recently been called into question for its utility and 

appropriateness in psychological research361-364. Hence, we are reassured to see that our main 

findings remain significant, after Bonferroni-correction and, when we set a more conservative 

alpha threshold of 0.025. Importantly, substantial effect sizes and Bayes factors support our low 

p values, thus providing us with further confidence in our results. Therefore, we believe our 

findings make sound contributions to the literatures regarding alexithymia, ASD and dynamic 

facial expression recognition, however, there are several limitations to consider.  

One potential limitation of this study concerns the way in which emotion recognition 

performance has been calculated.  By using intensity ratings to calculate emotion recognition 

accuracy, we are unable to delineate whether individuals score poorly (1) due to difficulties 

distinguishing whether expressions appear angry, happy or sad, or (2) due to them perceiving 

the expressions to be less intensely emotional. To illustrate this, consider the following 

scenario. Participant A believes that a happy PLF comprises a subtle, but clear, representation 

of happiness, thus resulting in the attribution of a low happiness rating (e.g., two out of ten), 

and a rating of zero for both anger and sadness. Participant A would only score two points 

despite accurately discriminating that the expression is happiness and not anger or sadness. 

Now consider Participant B, who believes that the same happy PLF comprises a more intense 

version of the expression, thus resulting in a moderate happiness rating (e.g., five out of ten), 

and a rating of zero for both anger and sadness. Participant B would score three points higher 

than Participant A, however it could be argued that they are no more accurate. Rather, this latter 

individual just perceives the expression to be more intensely emotional. To mitigate this 

limitation, we also calculated binary accuracy scores, wherein participants scored one point 



 78 

when they attributed the highest intensity rating to the correct emotion, and zero points when 

they attributed the highest intensity rating to an incorrect emotion. Using these binary scores, 

both Participant A and Participant B would score one point for their accurate response. After 

calculating these scores, we conducted our analyses again (see Appendix 1.3), finding a highly 

similar pattern of results. Most notably, the autistic participants correctly recognised a lower 

proportion of angry expressions with normal spatial exaggeration and speed than their non-

autistic counterparts, thus replicating our primary results. Together, these results provide 

convincing evidence that the autistic participants have difficulties recognising angry facial 

motion at the normal level, irrespective of the way in which emotion recognition accuracy is 

calculated.  

Another potential limitation is that due to COVID-19-related restrictions on face-to-face 

testing, only 22 of our ASD group completed ADOS-2 assessments. As a result, we have limited 

information about whether the remaining 9 participants would surpass the threshold for an 

autism or autism spectrum diagnosis on the ADOS-2. In addition, of the 22 participants that did 

complete the observational assessment, just 16 met criteria for a diagnosis. Hence, it is possible 

that our ASD group display less frequent or lower intensity autistic behaviours than would 

typically be seen in an ASD population. In spite of this we identified a significant group 

difference. Note that this limitation may have resulted in false negatives or an underestimation 

of the true effect size. However, it is highly unlikely that it could have resulted in false positives 

or inflated effects sizes. 

Another potential limitation of this study is that we used the self-report TAS-20 to 

measure alexithymia. Whilst 89% of studies comparing the emotional self-awareness of autistic 

and non-autistic participants use self-report measures (and 62% use the TAS-20149), some 

authors (e.g., 365,366) have questioned their utility as “people with alexithymia, by definition, 
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should not be able to report their psychological state”366. However, endeavours to develop 

objective measures of alexithymia are in their infancy and early attempts are yet to be replicated 

(e.g., 367,368) and thus self-report measures are necessary. Whilst the TAS-20 has long been the 

gold-standard tool for assessing alexithymia, there are some concerns that it might actually be 

a measure of psychopathology symptoms or current levels of psychological distress (see 

365,366,369-372. Further studies may try to replicate our results using alternative measures of 

alexithymia such as the Perth Alexithymia Questionnaire373 or Bermond Vorst Alexithymia 

Questionnaire (BVAQ)374, which have been argued to index an alexithymia construct that is 

distinct from individuals’ current level of psychological distress371. However, since our aim 

was to investigate whether the alexithymia hypothesis applies, not only to emotion recognition 

from static face stimuli, but also to recognition from dynamic stimuli, it was crucial for the 

design of the current study that we employ the same measure of alexithymia (i.e., the TAS-20) 

as has previously been employed in the emotion recognition literature (e.g., 209,212,213,335).  

The results of the current study are informative with respect to the recognition of 

emotion from facial motion cues. However, given that surface properties375, such as 

pigmentation/colouring376 and shading/depth377, are implicated in the recognition of emotion, 

one should be cautious about assuming that our findings generalise to full dynamic emotional 

expressions (e.g., video stimuli). Future research should aim to clarify whether our findings are 

specific to the recognition of emotion from facial motion cues, or if they are applicable more 

broadly to emotion recognition from full dynamic displays.    

Conclusions 

The current study tested whether autistic, relative to alexithymia-matched controls, have 

greater difficulty recognising emotions from facial motion cues. In conflict with our 

hypotheses, we observed that autistic, relative to control, adults showed reduced recognition of 
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angry facial motion at the normal (100%) spatial and speed level. Interestingly, whilst for 

controls recognition accuracy improved across all levels of the kinematic manipulation for 

angry videos, autistic participants only benefitted from the 100% to 150% speed increase. 

Alexithymic traits were associated with elevated correct and elevated incorrect emotion ratings, 

but not accuracy. Our results draw attention to anger specific differences in emotion recognition 

between autistic and non-autistic individuals. Future research should aim to elucidate why 

autistic individuals exhibit differences that are specific to angry expressions. 
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Chapter 3: Comparing internal representations of facial 
expression kinematics between autistic and non-autistic adults  
 

In the previous chapter, we discovered that the autistic participants had higher 

kinematic identification thresholds for anger, but not happiness or sadness, than their non-

autistic counterparts. That is, the autistic participants required angry (but not happy or sad) 

expressions to be higher in intensity – here, in terms of speed – before the expressions could 

be correctly identified. As discussed in Chapter 2, these results raise the possibility that 

autistic individuals possess more exaggerated, higher speed, visual representations of anger 

than their non-autistic peers. To formally test this possibility, in the following chapter, we 

employed the method of adjustment to index and then compare the angry, happy and sad 

visual representations of autistic and non-autistic individuals with respect to speed.  
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Abstract 

Recent developments suggest that autistic individuals require dynamic angry expressions to 

have a higher speed in order for them to be successfully identified. Therefore, it is plausible 

that autistic individuals do not have a ‘deficit’ in angry expression recognition, but rather their 

internal representation of these expressions is characterised by very high-speed movement. In 

this study, matched groups of autistic and non-autistic adults completed a novel emotion-based 

task which employed dynamic displays of happy, angry and sad point light facial (PLF) 

expressions. On each trial, participants moved a slider to manipulate the speed of a PLF 

stimulus until it moved at a speed that, in their ‘mind’s eye’, was typical of happy, angry or sad 

expressions. Participants were shown three different types of PLFs – those showing the full-

face, only the eye region, and only the mouth region, wherein the latter two were included to 

test whether differences in facial information sampling underpinned any dissimilarities in speed 

attributions. Across both groups, participants attributed the highest speeds to angry, then happy, 

then sad, facial motion. Participants increased the speed of angry and happy expressions by 

41% and 27% respectively and decreased the speed of sad expressions by 18%. This suggests 

that participants have ‘caricatured’ internal representations of emotion, wherein emotion-

related kinematic cues are over-emphasised. There were no differences between autistic and 

non-autistic individuals in the speeds attributed to full-face and partial-face angry, happy and 

sad expressions respectively. Consequently, we find no evidence that autistic adults possess 

atypically fast internal representations of anger.  
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3.1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by 

difficulties in social communication, and restricted and repetitive interests151. The question of 

whether autistic individuals exhibit atypical facial emotion recognition has been debated for 

over 30 years (see 146,216,217 for reviews). However, to date this literature has largely focused on 

the recognition of emotion from static face stimuli. This bias in the literature potentially reflects 

a broader bias across the entirety of the emotion perception literature. Indeed, it is well 

established that the spatial features of facial expressions (i.e., the configuration of facial features 

relative to one another) are important for emotion recognition and thus that emotion can be 

recognised from static snapshots of faces378-381. In contrast, a limited number of studies have 

investigated the influence of dynamic (changing over time) emotion cues such as the temporal 

order of face actions within a sequence (see 80,382-384), and facial movement kinematics, where 

kinematic information concerns all properties of movement except force and in the context of 

facial movement typically refers to speed, acceleration, and jerk (change in acceleration)239.  

Recent developments in the facial emotion literature have started to tip this balance 

(e.g., 80,239,382-384). Consequently, dynamic information is increasingly considered a valuable 

source of cues with respect to emotion recognition. For instance, in a series of experiments with 

non-autistic participants, Sowden et al239 demonstrated that facial movement kinematics (in this 

instance, speed) comprise important cues for emotion recognition. More specifically, these 

authors showed that across different facial actions (i.e., eyebrow widening, nose lengthening, 

lip raising, mouth widening and mouth opening) and emotional expression contexts (i.e., posed, 

spontaneous and communicative), happy and angry expressions were typically fastest, and sad 

expressions were slowest239. Importantly, Sowden et al239 also demonstrated that kinematic 

cues play a causal role in facial emotion judgements. Their paradigm employed point-light 



 85 

displays (a series of dots that convey biological motion) of the face (point light faces; PLFs) 

that had been manipulated to achieve three spatial levels, ranging from reduced to increased 

spatial movement (50% spatial; 100%; 150%), and three kinematic levels, ranging from 

reduced to increased speed (50% speed; 100%; 150%). Sowden et al239 demonstrated that 

speeding-up facial expressions promoted anger and happiness judgements and slowing-down 

expressions encouraged sadness judgments, thus the speed of movement of internal facial 

features influences observers’ judgements of emotion.  

In order to redress the bias towards the use of static stimuli in the ASD emotion 

recognition literature, our most recent work employed the paradigm developed by Sowden and 

colleagues to investigate emotion recognition from facial motion cues in ASD385. There were 

two key findings from our recent study. Firstly, autistic adults (relative to non-autistic controls 

who were matched on age, gender, non-verbal reasoning and alexithymia) had significantly 

lower emotion recognition accuracy for angry, but not happy or sad, facial motion when PLFs 

were unmanipulated (i.e., when they were played at their normal (100%) speed and with normal 

(100%) degree of spatial movement across frames)385. Secondly, whilst for controls, 

recognition accuracy increased when angry facial motion was sped up from 50% to 100% speed 

and from 100% to 150% speed, the recognition accuracy of autistic participants only increased 

from 100% to 150% (and not from 50% to 100%)385. Note that since our groups were matched 

in terms of alexithymia (a subclinical condition, characterised by difficulties identifying and 

expressing emotions194) differences between our groups were related to autistic, not 

alexithymic, characteristics (for further discussion of this issue see 207,209). In sum, we observed 

that autistic adults exhibited typical anger recognition for high speed (150%) PLFs, but reduced 

accuracy (relative to non-autistic adults) at a lower speed (100%). 
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Our recent findings therefore illustrate differences between autistic and non-autistic 

adults in emotion recognition from facial kinematic information385. However, these differences 

are specifically restricted to anger and do not extend to happiness and sadness385. Interestingly, 

this anger-specific difficulty is also mirrored in the static emotion recognition literature. A 

number of empirical studies indicate that the recognition of anger is particularly challenging 

for autistic individuals219-222. Indeed, a meta-analysis of this literature suggests that there are 

greater differences between autistic and non-autistic individuals in the recognition of angry than 

there are for happy and sad expressions191. Further to this, Song and Hakoda demonstrated that 

autistic children (relative to non-autistic children) require angry, but not happy or sad, 

expressions to have higher emotional intensity in order for them to be correctly identified222. 

More specifically, to estimate ‘identification thresholds’ (the intensity at which an expression 

is identified correctly on two consecutive trials) Song and Hakoda used static photographic 

stimuli at varying expressive intensities (constructed by repeatedly morphing a full expression 

with a neutral expression to result in 9 intensity levels for each emotion) and asked participants 

to select which emotion most effectively described the emotion shown (out of six possible 

options)222. They found that, compared to non-autistic counterparts, autistic children had 

significantly higher identification thresholds for angry expressions, meaning that a higher 

intensity was necessary before an expression could be reliably identified as angry. Importantly, 

there were no significant differences between the groups for identification thresholds for 

happiness or sadness222. These findings suggest that autistic individuals require a higher 

intensity of emotion before a static facial expression can be reliably identified as angry. At 

present there is no equivalent study for dynamic facial expressions.  

Our recent results385 raise the hypothesis that autistic adults may require a higher 

intensity of emotion before a dynamic facial expression can be reliably identified as angry. That 
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is, our results clearly illustrated that autistic adults did not have a categorical ‘deficit’ in the 

recognition of anger385. Rather, relative to controls, autistic participants required a higher speed 

before they could accurately identify angry expressions385. It is therefore plausible that autistic 

adults do not have a ‘deficit’ in the recognition of angry expressions, but rather their internal 

representation of angry facial expressions (i.e., the speeds at which they would visualise these 

emotions in their “mind’s eye”) is characterised by very high-speed movements385. 

Atypical internal representations of facial expressions could influence the accuracy of 

emotion recognition via multiple potential mechanistic pathways. For example, according to 

“template matching” models of emotion labelling (see 147,386), when trying to interpret an 

expression, one compares the physical features of the observed expression to one’s own internal 

representations or expression “templates” and “reads off” the corresponding emotion label147. 

Consequently, correct labelling of the observed expression is more likely if the “sender” and 

“receiver” have matching internal representations of emotions (see 147,387). Thus, individuals 

with internal representations of emotion that are very common within the general population 

are more likely, on average, to correctly label observed expressions. Whereas correct emotion 

labelling may be reduced in individuals with uncommon internal representations. In this case, 

an abnormally high-speed representation of anger may lead to reduced accuracy in recognising 

“normal speed” angry stimuli because only high-speed angry expressions match the observer’s 

internal representation of anger. In addition, internal representations of facial expressions 

provide predictive information based on previous experience (i.e., ‘priors’)80,388,389. 

Consequently, an abnormally high-speed representation of anger may lead to reduced accuracy 

in recognising “normal speed” angry stimuli by acting as an atypical prior which biases 

subsequent perception of incoming face stimuli260.  
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The question of why differences in autistic facial emotion recognition are specific to 

anger is a difficult one. If autistic individuals have internal representations of anger that are 

characterised by atypically high-speed movement, why would this be selective to anger, why is 

this not also the case for emotions such as happiness? One potential explanation relates to 

differences in facial information sampling. There is evidence to suggest that autistic individuals 

tend to avoid looking at the eye region of the face, and instead preferentially look at the mouth 

region224-226 (though also see 359 for a debate concerning the role of alexithymia in explaining 

differences in autistic facial information sampling). Some researchers believe that this is a 

strategy that autistic individuals adopt to modulate amygdala activation390-392, which is often 

atypical in ASD in response to faces229, 393-399, as the amygdala is highly responsive to the eye 

region of emotional facial expressions400. Given that for anger the majority of expressive 

information is thought to be conveyed in the upper half of the face, around the eye region227,228, 

autistic participants may require greater “signal” (i.e., faster movement) when recognising 

anger because they are focusing on an information-poor part of the face (i.e., the mouth). This 

would not be the case for happy and sad because, for these emotions, the mouth comprises a 

more information rich part of the face379,401.  

To investigate whether, compared to non-autistic adults, autistic adults have different 

internal representations of anger that are characterised by higher mean speed, the current study 

employed a novel emotion-based task which we refer to as the “PLF slider task”. Using a 

method of adjustment design, participants were required to manipulate a sliding scale in order 

to speed-up or slow-down PLF stimuli until the stimuli matched their internal representation of 

anger, happiness and sadness. PLF stimuli were employed to facilitate comparisons between 

the current study and our previous study385, to draw participants’ attention to facial motion cues 

as opposed to static cues such as texture, luminance, and contrast, and because the use of point 
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lights to represent particular facial landmarks simplifies the task of modulating facial speed in 

real time. This method estimates, for each participant, an index of mean percentage speed 

attribution. We hypothesised that, relative to control participants, autistic adults would attribute 

higher mean speeds to angry, but not happy or sad, stimuli. Furthermore, we reasoned that, if 

higher speed thresholds for anger, are driven by a focus on the mouth region – an information-

poor part of the face with respect to anger recognition – differences between the ASD and 

control groups should disappear if participants are required to focus on information-rich parts 

of the face (i.e., the eye region). To test this hypothesis, we included a partial face condition, in 

which participants saw only the upper or lower face of the face on each trial.  

 

3.2. Method 

See https://osf.io/sgxum for the pre-registration relating to this report.  

3.2.1. Participants 

 A total of 25 autistic and 25 non-autistic participants were recruited from a local 

database held by the Birmingham Psychology Autism Research Team and Prolific. The study 

was approved by the Science, Technology, Engineering and Mathematics (STEM) ethics 

committee at the University of Birmingham (ERN_16-0281AP9B) and was conducted in 

accordance with the principles of the revised Helsinki Declaration.  

The pre-registered sample size was based on an a priori power analysis conducted using 

G*Power402, which focuses on replicating the group-difference385 in recognition accuracy 

(between ASD and control individuals) for angry videos at the normal spatial and speed level. 

Using data from our previous study385, 25 participants are required in each group in order to 

have 80% power to detect an effect size of 0.719 (Cohen’s d) at alpha level 0.05 for this group-

difference in accuracy.  

https://osf.io/sgxum
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All participants in the ASD group had previously received a clinical diagnosis of ASD 

from an independent clinician. The level of autistic traits of 21 individuals in the ASD group 

was assessed using the Autism Diagnostic Observation Schedule (version 2)345. Of those who 

did complete the ADOS assessment, 16 met criteria for ASD (5 autism, 11 autism spectrum; 

mean ADOS-2 score = 9.62). Although, five individuals in the ASD group did not meet criteria 

for diagnosis according to the ADOS, they had previously received a clinical diagnosis of ASD 

and thus still participated in the study. Unfortunately, it was not possible to complete 

observational assessments on four ASD participants due to restrictions on face-to-face testing 

during the COVID-19 pandemic. The participants in the ASD group had significantly higher 

Autism Quotient scores304 than those in the non-autistic group (see Table 3.1).  

3.2.2. Procedures  

Participants completed our group-matching measures followed by the PLF slider task, 

which were both administered online via Qualtrics and Gorilla.sc.  

Group-matching measures 

To facilitate group-matching, participants provided information concerning their age 

and gender, and completed the Toronto Alexithymia Scale (TAS-20)344 and the Matrix 

Reasoning Item Bank (MaRs-IB)343, an 8-minute assessment of non-verbal reasoning ability. 

The Autism Quotient (AQ)304 was also completed to ensure that the autistic group were 

significantly higher in autistic traits. All of these measures were completed online.  

PLF slider task 

The PLF slider task is a novel tool for the estimation of the mean speed of a participant’s 

internal representation of emotional expressions. In this task, on each trial, participants are 

presented with a PLF stimulus video (on average, approximately 6 seconds in length) which 

was looped such that when the stimulus reached the end it played again from the beginning. 
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Participants were instructed to “move the slider to change the speed of this video until it matches 

the speed of a typical ANGRY/HAPPY/SAD expression” (note that participants were only 

asked to change the speed of the expression to match the emotion that was displayed in the 

stimulus video, i.e., on a trial where an angry facial expression was presented, participants were 

only asked to manipulate the speed of the video so that it matched the speed of a typical angry 

expression). Consequently, participants were matching the speed of the displayed PLF to their 

internal representation of that expression. Participants could change the speed of the video by 

moving a slider to the left (decrease speed) or right (increase speed) on a visual analogue scale 

ranging from 25% to 200% of the recorded speed. Once participants were satisfied that the 

speed of the video matched that of a typical angry/happy/sad expression, they could press the 

spacebar to continue. There was no time limit for participants to respond on each trial. This task 

indexes the percentage speed attributed, by participants, to each of the PLF stimulus videos 

(e.g., 125% speed).  

The PLF stimulus videos (taken from Sowden et al239) were originally created by taking 

video recordings of four actors (two male, two female) verbalising sentences whilst posing the 

three target emotions (angry, happy and sad). These recordings were then fed into OpenFace403 

from which the x and y coordinates of 68 facial landmarks were extracted at 25 frames per 

second (FPS). To create the PLF stimuli, Sowden and colleagues293 displayed successive frames 

of these coordinates as white dots on a black background (using Cogent graphics for MATLAB) 

and saved these displays as video files. This resulted in four videos per emotion (i.e., one for 

each actor).  

There were two main sections of the PLF slider task. In the first part of the task (the 

full-face condition), participants were shown full PLF stimuli made up of 68 white dots on a 

black background (see Appendix 2.1). In the second part of the task (partial face condition), 
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participants were shown partial PLF stimuli comprising 32 dots on a black background 

displaying either the eye or mouth region (see Appendix 2.1). In the first part of this task (the 

full condition), participants were shown four repetitions of full-face PLF stimuli for each of the 

four actors, however, each repetition had a different starting speed (80%, 90%, 100% and 110% 

speed). The starting speed manipulation ensured that the point on the scale relating to the 

normal recorded (100%) speed was not always in the same spatial location. This resulted in 16 

full-face videos per emotion (4 actors x 4 starting speeds x 3 emotions = 48 trials in total). 

Participants completed three practice trials (one for each emotion at 100% starting speed) and 

then the 48 randomly ordered experimental trials across three blocks. In the second part of the 

task (the partial face condition), participants were shown two repetitions of eye PLF stimuli, 

and two repetitions of mouth PLF stimuli, for each actor. The starting speeds for these 

repetitions were 80% and 100% speed respectively. This resulted in 8 eye and 8 mouth PLF 

stimulus videos per emotion.  Participants completed 48 randomly ordered experimental trials 

(4 actors x 2 face areas x 2 starting speeds x 3 emotions = 48 trials in total) across three blocks.  

3.2.3. Score Calculations 

Group-matching measures 

 Scores on the AQ and TAS-20 were calculated as a sum of participants’ responses 

whereby, in line with published standards for each questionnaire, some questions were reverse 

scored. Higher scores on the AQ (maximum score: 50) and TA-20S (maximum score: 100) 

reflect higher levels of autistic and alexithymic traits respectively. Scores on the Matrix 

Reasoning Item Bank (NVR) were calculated as the percentage of correct responses within 8 

minutes.   
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PLF slider task 

 Before calculating percentage speed change and attributed speed (see below), we 

adjusted for the PLF starting speed. To do so, we multiplied the percentage speed attributed to 

the videos moving at 80% speed by 0.8, 90% speed by 0.9, and 110% speed by 1.1 (if a 

participant attributed 125% speed to a video with 80% starting speed, they actually attributed 

100% speed to the video; 125 x 0.8 = 100; that is, they adjusted the speed of the video such that 

it played back at 100% of the speed at which it was recorded). This gave us ‘adjusted percentage 

speed attributions’. 

Percentage speed change. In order to index whether participants’ internal 

representations of emotion were faster or slower than the 100% (natural) speed of the stimulus 

videos, we calculated percentage speed change. This index was calculated by subtracting 100 

from all of the adjusted percentage speed attributions made by participants (e.g., if a participant 

attributed 73% speed to a video (after adjusting for starting speed), the percentage speed change 

would be -27%). Therefore, this index of percentage speed change reflects how much 

participants changed the speed of the PLF stimulus video relative to the speed it was recorded 

at (since we had already corrected for starting speed).   

Attributed speed. In order to answer the question of whether autistic and non-autistic 

individuals have differing internal representations of angry, happy and sad dynamic facial 

motion in terms of speed, we needed to calculate the speed (in pixels per frame) that participants 

attributed to each of these emotions. We did this via three steps; (1) calculating the recorded 

speed in pixels per frame for each PLF stimulus; (2) calculating an attribution multiplier based 

on the participants’ responses (i.e., based on percentage speed change) and finally (3) 

calculating attributed speed by multiplying the recorded speed of the PLFs with this attribution 

multiplier.  
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For step one, we followed procedures outlined in Sowden et al. (2021). The 12 different 

PLF videos (4 actors x 3 emotions) were fed into the open-source software OpenFace403 to 

identify the x and y coordinates (in pixels) of 68 facial landmarks, sampled at a rate of 25Hz. 

Subsequently, key points (e.g., inner eyebrow) were identified and distances between these key 

points were calculated as the square root of the sum of squared differentials of the x and y co-

ordinates of each key point. Next, these face distances were summed to create five face 

“actions” (as in 239,277) including inner eyebrow widening, nose lengthening, lip raising, mouth 

widening and mouth opening. Speed was calculated as the absolute value of the average change 

in distance between relevant points on the face for each face action across the whole video clip, 

and thus represents the absolute mean speed (pixels/frame) for each facial action, within the 

whole recording window. These speed vectors were low pass filtered at 10 Hz to include human 

movement signal and exclude noise associated with the MATLAB diff function. Since our 

speed measure concerns the movement of face actions (such as eyebrow widening) it represents 

the speed of movement of the internal features of the face, not the speed of rigid-body head 

movement. We focus on the internal features because we know that their movement speed is 

important in emotion recognition239. For the full-face videos, we calculated mean speed by 

taking an average for each video across all 5 facial actions. For videos in the partial face 

condition, we took an average of speed across the relevant facial action regions (e.g., averaging 

across eyebrow widening and nose lengthening for PLFs displaying the eyes, and averaging 

across lip raising, mouth widening and mouth opening for PLFs displaying the mouth). 

Next, we transformed participants’ responses to each of the full-face and partial face 

emotional videos into “attribution multipliers” by dividing percentage speed change by 100 and 

then adding 1 to all the values (e.g., for a trial in which a participant has increased the speed of 

a video relative to the speed at which it was recorded by 40%, the attribution multiplier would 
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be 1.4. For a trial in which a participant decreases the speed by 27%, the attribution multiplier 

would be 0.73). Following this, we calculated attributed speed by multiplying the “attribution 

multiplier” by the mean speeds that we calculated (see above) for each of the full-face/partial-

face emotional videos. Finally, we calculated the mean speeds attributed to the angry, happy 

and sad videos by taking an average across the videos for each emotion respectively.  

3.2.4. Statistical Analyses 

Preregistration, data, and analysis files are available online at https://osf.io/xa23h/. For 

all analyses, we used a p = .05 significance threshold to determine whether to accept or reject 

the null hypothesis. The frequentist approach was also supplemented with the calculation of 

Bayes Factors, which quantify the relative evidence for one theory or model over another. For 

all Bayesian analyses, we followed the classification scheme used in JASP352: BF10 values 

between one and three represent weak evidence, between three and ten moderate evidence, and 

greater than ten strong evidence, for the experimental hypothesis. Similarly, BF10 values 

between 1 and !
"
 reflect weak evidence, between !

"
 and !

!#
 moderate evidence, and smaller than 

!
!#

  strong evidence, for the null hypothesis respectively352. For all Bayesian ANOVAs, a default 

Uniform prior was used. For all Bayesian independent samples t-tests, a default prior was used 

(Cauchy width = 0.707). 

PLF slider task 

To test our first hypothesis, we conducted two mixed 2 x 3 Analysis of Variance 

(ANOVA), with the between-subjects factor group (ASD, control) and the within-subjects 

factor emotion (angry, happy, sad). In the first of these ANOVAs, we used percentage speed 

change as our dependent variable (DV), and in the second we used mean attributed speed as 

our DV. To test our second hypothesis, we conducted two mixed 2 x 2 x 3 ANOVAs with the 

between-subjects factor group (ASD, control), and the within-subjects factors face area (eyes, 

https://osf.io/xa23h/
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mouth) and emotion (angry, happy, sad). As before, in the first of these ANOVAs, we used 

percentage speed change as our DV, and in the second we used mean attributed speed.  

 

3.3. Results 

3.3.1. Group Demographics 

Participants were matched on age, gender, NVR and alexithymia. The ASD group were 

significantly higher in autistic traits. In order to ensure that there were no outliers in survey 

scores, we verified that each of the participants’ scores on the AQ, TAS-20 and MaRs-IB were 

no more than three standard deviations away from their group mean. Descriptive statistics for 

these groups, in addition to the statistics pertaining to group comparisons are presented in Table 

3.1. Information about participants’ ethnicities is reported in Appendix 2.2.  

Table 3.1.  

Means, standard deviations and group differences of participant characteristics. In the central 
columns, means are followed by standard deviations in parentheses.  

 Control (n=25) ASD (n=25) Significance 

Gender 9 Female, 15 Male, 1 Other 11 Female, 13 Male, 1 Other p = .842 

Age 27.57 (9.70) 31.98(9.88) p = .118 

NVR 63. 31(15.75) 55.59(17.81) p = .111 

TAS-20 56.00(12.97) 57.96(12.03) p = .582 

AQ 20.04(7.17) 34.60(9.40) p < .001 

Note. Non-verbal reasoning (NVR), Toronto Alexithymia Scale (TAS-20), Autism Quotient 
(AQ). Age is in years. 

 

3.3.2. Percentage Speed Change Analyses 

In order to compare the extent to which autistic and non-autistic individuals 

increased/decreased speed of emotional expression PLFs, we conducted a mixed 2 x 3 ANOVA 

with the between-subjects factor group (ASD, control) and the within-subjects factor emotion 
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(angry, happy, sad), and with percentage speed change as the dependent variable (DV). This 

analysis revealed a main effect of emotion [F(2,96) = 84.78, p < .001, ηP2 = .64, BF10 = 2.58e25; 

Figure 3.1], with participants speeding up angry expressions the most [mean(standard error of 

the mean (SEM)) = +41.10% (3.33)], followed by happy expressions [mean(SEM) = +26.78% 

(2,47)], and slowing down sad expressions [mean(SEM) = -17.64% (3.37)]. Importantly, we 

identified no main effect of group [t(48) = 0.67, p = .669, mean difference = 1.26%, BF10 = 

0.20] and, contrary to our hypothesis, no emotion x group interaction [F(2,96) = 2.14, p = .135, 

ηP2 = .04, BF10 = 0.90; Figure 3.1]. Since our BF10 value only provided weak evidence to support 

the null hypothesis, we proceeded to unpack this interaction. This showed that there were no 

significant differences between the groups in the percentage speed change (even before 

Bonferroni-correction) for angry [t(48) = 0.99, p = .326, mean difference = 6.60%, BF10 = 0.42], 

happy [t(48) = 1.45, p = .154, mean difference = 7.15%, BF10 = 0.67] or sad [t(48) = -1.48, p = 

.145, mean difference = -9.99%, BF10 = 0.69] facial motion. Notably, in conflict with our 

hypothesis, percentage speed change for anger was numerically higher in the non-autistic 

relative to autistic participants [non-autistic mean(SEM) = +44.40%(4.70%); autistic 

mean(SEM) = +37.79%(4.70%)].  
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Figure 3.1.  

Mean percentage speed change attributed to each target emotion for all participants (A) and 
for control and autistic participants respectively (B). 
 

 
 
 
Note. In both graphs, the black line represents the mean, the shaded region represents one 
standard deviation. The coloured box represents one standard error around the mean and the 
dots represent individual datapoints. 

 

A

B

**
***

***

**p < .01
***p < .001
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In the following additional analyses, the dependent variable (percentage speed change) 

is calculated only from the trials in the partial face condition. To analyse this data, we conducted 

a mixed 2 x 2 x 3 ANOVA with the between-subjects factor group (ASD, control), and the 

within-subjects factors face area (eyes, mouth) and emotion (angry, happy, sad) in order to 

compare the percentage speed change for the eye and mouth regions of the emotional 

expressions across groups. Once again we identified a main effect of emotion [F(2,96) = 75.464, 

p < .001, ηP2 = .61, BF10 = 2.65e46], with participants speeding up the eye and mouth regions 

most for angry [mean(SEM) = +31.84% (3.61)], followed by happy expressions [mean(SEM) 

= +20.97% (2.54)], and slowing down these regions for sad expressions[mean(SEM) = -23.77% 

(3.61)]. In addition, this analysis found no main effect of group [t(48) = 0.56, p = .575, mean 

difference = 2.01%, BF10 = 0.17], or face area [F(1,48) = 3.75, p = .059, ηP2 = .07, BF10 = 0.14], 

no face area x group interaction [F(1,48) = 0.02, p =.900, ηP2 = .00, BF10 = 0.17], or face area 

x emotion interaction [F(2,96) = 1.34, p = .266, ηP2 = .03, BF10 = 0.07], and finally no face area 

x emotion x group interaction [F(2,96) = 0.27, p = .270, ηP2 = .01, BF10 = 0.12]. Our analysis 

also revealed that the emotion x group interaction was not significant [F(2,96) = 1.81, p = .178, 

ηP2 = .04, BF10 = 2.43] however since Bayesian statistics provide weak evidence for the 

presence of an emotion x group interaction, we ran post-hoc independent samples t-tests. This 

identified that there were no significant differences between autistic and control participants in 

percentage speed change (before Bonferroni-correction) for angry [t(48) = 1.28, p = .205, mean 

difference = 9.27%, BF10 = 0.55], happy [t(48) = 0.99, p = .330, mean difference = 5.00%, BF10 

= 0.42], or sad [t(48) = -1.14, p = .260, mean difference = -8.24%, BF10 = 0.48; see Figure 3.2] 

displays when the eyes and mouth were grouped together (as would be the case in the emotion 

x group interaction). Once again, contrary to our hypothesis, percentage speed change for anger 
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was numerically higher in non-autistic relative to autistic participants [non-autistic mean(SEM) 

= +36.48%(5.11%); autistic mean(SEM) = +27.21%(5.11%)].   

Figure 3.2. 

Mean percentage speed change attributed to each target emotion for the eyes (panel A) and 
mouth (panel B) for control and autistic participants. 

 

Note. In both graphs, the black line represents the mean, the shaded region represents one 
standard deviation. The coloured box represents one standard error around the mean and the 
dots represent individual datapoints.  

A

B
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3.3.3. Attributed Speed Analyses 

In order to compare the mean speed attributed to the emotional expressions by autistic 

and non-autistic individuals, we conducted a mixed 2 x 3 ANOVA with the between-subjects 

factor group (ASD, control) and the within-subjects factor emotion (angry, happy, sad), and 

with mean attributed speed as the DV. This analysis revealed a main effect of emotion [F(2, 96) 

= 254.61, p < .001, ηP2 = .84, BF10 = 5.46e49], with participants attributing the highest speeds to 

angry [mean(SEM) = 3.18(0.08) pixels/frame], followed by happy [mean(SEM) = 2.21(0.04) 

pixels/frame], and finally sad [mean(SEM) = 1.18(0.05) pixels/frame] expressions. 

Importantly, we identified no main effect of group [t(48) = 0.721, p = .475, mean difference = 

0.04 pixels/frame, BF10 = 0.20] and, contrary to our hypothesis, no emotion x group interaction 

[F(2,96) = 1.74, p = .189, ηP2 = .04, BF10 = 0.60]. Since our Bayes Factor only provided weak 

evidence to support the null hypothesis, we proceeded to unpack this interaction. This showed 

that there were no significant differences between the groups in the speeds attributed to angry 

[t(48) = 0.97, p = .337, mean difference = 0.15 pixels/frame, BF10 = 0.42], happy [t(48) = 1.38, 

p = .172, mean difference = 0.12 pixels/frame, BF10 = 0.61] or sad [t(48) = -1.55, p = .128, 

mean difference = -0.15 pixels/frame, BF10 = 0.75] facial motion (note that the stats shown are 

before Bonferroni-correction). Notably, in conflict with our hypothesis, autistic participants 

attributed numerically lower speeds to angry facial motion than their non-autistic counterparts 

[autistic mean(SEM) = 3.11 pixels/frame(0.11 pixels/frame); non-autistic mean(SEM) = 3.26 

pixels/frame(0.11 pixels/frame)].  

In the following additional analyses, the dependent variable is calculated only from the 

trials in the partial face condition. To analyse this data, we conducted a mixed 2 x 2 x 3 ANOVA 

with the between-subjects factor group (ASD, control), and the within-subjects factors face 

area (eyes, mouth) and emotion (angry, happy, sad) in order to compare the mean speed 
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attributed to the eye and mouth regions of the emotional expressions across groups. Once again 

we identified a main effect of emotion [F(2,96) = 221.54, p < .001, ηP2 = .82, BF10 = 9.60e17], 

with participants attributing the highest speed to angry [mean(SEM) = 2.70(0.07) pixels/frame], 

followed by happy [mean(SEM) = 1.96(0.04) pixels/frame], and finally sad [mean(SEM) = 

1.01(0.05) pixels/frame] expressions. In addition, this analysis identified a main effect of face 

area [F(1,48) = 3732.59, p < .001, ηP2 = .99, BF10 = 1.25e46], with the highest speeds attributed 

to the mouth region [mean(SEM) = 2.85(0.04) pixels/frame], and the slowest speeds attributed 

to the eye region [mean(SEM) = 0.93(0.02) pixels/frame]. We also found a significant emotion 

x face area interaction [F(2, 96) = 262.38, p < .001, ηP2 = .85, BF10 = 4.99e41], which suggested 

that there was a larger effect of face area for happy [F(1,48) = 1922.89, p < .001, ηP2 = .98, BF10 

= 4.17e52] and angry [F(1,48) = 1266.40, p < .001, ηP2 = .96, BF10 = 7.56e46] than sad [F(1,48) 

= 331.58, p < .001, ηP2 = .87, BF10 = 1.42e23] facial motion. Taken together, higher speeds were 

attributed to the mouth than eye region across all emotions, but this difference was greater for 

happy and angry than sad facial motion (see Figure 3.3). There was no main effect of group 

[t(48) = 0.98, p = .334, mean difference = 0.06 pixels/frame, BF10 = 0.16], no emotion x group 

interaction [F(2,96) = 1.75, p = .188, ηP2 = .04, BF10 = 0.09] or face area x group interaction 

[F(1,48) = 1.70, p = .199, ηP2 = .03, BF10 = 0.18], and finally no face area x emotion x group 

interaction [F(2,96) = 1.71, p = .196, ηP2 = .03, BF10 = 0.24].  
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Figure 3.3.  

Mean attributed speed (pixels/frame) to each target emotion for the eyes (orange) and mouth 
(blue). 

 

Note. For each condition, the black line represents the mean and the shaded region represents 
one standard deviation. The coloured box represents one standard error around the mean and 
the dots represent individual datapoints. 

 

3.4. Discussion 

The current study used a novel PLF slider task to investigate whether autistic and non-

autistic individuals have differing internal representations of angry, happy and sad dynamic 

facial motion in terms of speed. In doing so, we identified that the participants, as a whole, 

attributed the highest speeds to angry, followed by happy, followed by sad expressions for both 

full-face and partial-face (eye and mouth) PLFs. More specifically, we found that on average, 

participants increased the speed of full angry expressions by 41%, increased the speed of full 

happy expressions by 27%, and finally decreased the speed of full sad expressions by 18%. 

Eyes
Mouth

***
*** ***

***
*** ***

***p < .001
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Our primary concern, however, was whether autistic and non-autistic individuals 

possess differing internal representations of the speeds of dynamic emotional expressions. We 

hypothesised that the ASD and non-autistic control group would attribute different mean speeds 

to full-face angry (and not happy or sad) expressions, that is we predicted an interaction 

between group and emotion. Our frequentist analyses showed that there was no significant 

group by emotion interaction in both the percentage speed change and attributed speed analyses. 

However, Bayesian analyses indicated that our data only provided anecdotal evidence in 

support of the null hypothesis (that there is no group x emotion interaction). To explore whether 

there was a trend towards a difference between the groups in the speeds attributed to angry 

expressions we unpacked the interaction. This revealed that there were no group differences in 

the speeds attributed to full-face happy, sad and, importantly, angry facial motion in both the 

frequentist and Bayesian analyses. Contrary to our hypothesis, for angry expressions thresholds 

were numerically higher for the non-autistic than for the autistic group. Thus, the evidence 

suggests that autistic and non-autistic individuals do not differ in their internal representations 

of the speed of angry facial motion.  

In addition, in the partial-face condition (when participants either saw the mouth or eyes 

alone), our frequentist analyses identified that there was no group x emotion interaction. 

However, our Bayesian analyses indicated that our data provided anecdotal evidence for the 

presence of this interaction in the percentage speed change analysis. Importantly, unpacking 

this interaction demonstrated, once again, that there were no group differences in how much 

participants increased or decreased the speed of partial-face angry, happy and sad facial motion 

(in both frequentist and Bayesian analyses). Notably, in conflict with our hypothesis, percentage 

speed change for anger was numerically higher in the non-autistic relative to autistic 

participants. In addition, in our attributed speed analysis, our data provided strong evidence for 
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the absence of a group x emotion interaction (BF10 = 0.09) in the partial-face condition. As 

such, it was apparent that when we accounted for the recorded speed of the eye and mouth 

expressions, the group x emotion interaction disappeared. Taken together, there were no group 

differences in how much participants increased or decreased the speed of partial-face angry, 

happy and sad facial motion, nor were there group differences in the speeds attributed to these 

partial-face expressions. 

Our secondary concern was whether there would be significant group differences in the 

speeds attributed to the mouth, and not the eye, region for angry facial motion. We reasoned 

that if higher speed thresholds for anger were driven by a focus on the mouth region - an 

information-poor part of the face with respect to anger recognition - differences between the 

autistic and non-autistic participants should disappear if participants are required to focus on 

information-rich parts of the face (i.e., the eye region). Our results demonstrate that autistic and 

non-autistic participants attributed comparable speeds for all emotional expressions, 

irrespective of whether they saw information from the eye region, or mouth region alone. 

Indeed, our Bayesian analyses provide moderate evidence to support the null hypothesis, as 

shown by the Bayes Factors for the face area x emotion x group interaction in both the 

percentage speed change (BF10 = 0.12) and attributed speed (BF10 = 0.24) analyses. Therefore, 

we found no evidence to support our hypothesis that autistic and non-autistic participants would 

attribute different speeds for angry expressions in the mouth, but not eye, partial face condition. 

One may query whether the current study would have observed significant differences 

between the groups if we had recruited an ASD sample that scored more highly in terms of 

autistic traits. We do not believe this to be the case for several reasons. Firstly, the mean AQ 

score in this study was comparable to that in a large-scale study with over 800 autistic 

participants (34.60 in the present study and 33.73 in 404) and therefore, our sample is 
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representative of the broader population in terms of autistic traits. Secondly, there was no 

correlation between autistic traits (as measured by the AQ) and mean percentage speed change 

[p = .287, BF10 = 0.31] or attributed speed [p = .247, BF10 = 0.34] within our sample. Therefore, 

even if we recruited participants who scored more highly in terms of autistic traits, it is unlikely 

that larger group differences would emerge. Finally, our autistic participants have comparable 

AQ, and ADOS scores to those in other studies (e.g., 219,385,405) in which significant group 

differences in facial emotion recognition have been found.  

Taken together, our results suggest that autistic and non-autistic individuals do not 

significantly differ in their internal representations of full and partial (eye or mouth region) 

angry, happy, and sad facial motion in terms of speed. Importantly, these results suggest that 

the finding from our previous study wherein autistic participants were less accurate (relative to 

alexithymia-matched non-autistic participants) in recognising angry expressions when stimuli 

were played at 100% of their recorded speed (but not if they were played at 150% of recorded 

speed), is unlikely due to differing internal representations in the speed domain. Consequently, 

these results force us to question other processes which may be contributing to differences in 

the recognition of anger in autistic samples.  

One potential explanation is that whilst autistic and non-autistic individuals do not differ 

in their internal representations (at least in the speed domain), autistic people may be less 

affected/guided by these internal representations, and thus may exhibit differences in emotion 

recognition. As discussed above, template matching models of emotion recognition emphasise 

that, to label an expression, one must compare the incoming sensory stimulus (i.e. the facial 

expression) to one’s internal representations of emotion and “read off” the corresponding 

emotion label. However, such explanations overlook the effect that prior expectations have on 

the perception of incoming sensory information. For example, if one expects to observe a happy 
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expression one will attend more to features that generally signal happiness and less to features 

that tend to signal sadness406. According to Bayesian accounts, autistic people may be less 

affected by their priors than neurotypical people259,260 and place greater emphasis on incoming 

sensory information (see 261). Thus, for non-autistic people, expectations can bias the perception 

of expressions (i.e. incoming sensory stimuli) such that they better match internal 

representations of expected emotions. For autistic people the perception of expressions may be 

less affected by prior expectations. In cases where non-autistic people have informative priors 

(which faithfully represent statistically regularities in the environment), this process should 

improve emotion recognition. Thus, autistic individuals would exhibit a comparative reduction 

in the accuracy of emotion recognition. That is, although autistic and non-autistic people may 

have comparable internal representations, for non-autistic people only, expectations may bias 

the perception of expressions to bring them “closer” to their internal templates. For comparable 

emotion recognition, autistic people may require the incoming stimulus itself to be closer to 

their internal representation. In line with this, in our previous work385, we observed that autistic 

individuals had difficulty recognising normal speed (100%) angry expressions, which are 

further away from the average internal representation speed (137.79%), but not those with a 

higher speed (150%), which are closer to the average internal representation speed for anger. 

Emotion recognition difficulties would be more likely for anger because, for both happy and 

sad expressions, there is less of discrepancy between the normal (100%) speed that expressions 

were displayed at and the average internal representation speed (happy = 123.19%; sad = 

87.35%).   

Another possible explanation for why autistic individuals have a particular difficulty 

recognising angry expressions relates to movement production. In our previous study385, we 

used PLF videos that were created by filming four non-autistic participants posing different 
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emotions. Given that autistic and non-autistic individuals may produce different facial 

expressions of emotion146,147, and that one’s own movement patterns influence the 

interpretation of the movement of others353-356, the autistic participants in our previous study 

might have exhibited reduced emotion recognition accuracy because the non-autistic 

expressions were dissimilar to expressions that autistic individuals would adopt themselves. 

That is, in addition to the process (outlined above) of matching visual expression stimuli to 

internal templates, participants may motorically simulate observed expressions and “read off” 

the corresponding emotion label407-409 (though note that this process is not essential for emotion 

recognition410). If the motoric simulation is associated with an unsuitable emotion label emotion 

recognition accuracy would be reduced. Since internal visual representations and motor 

programs are formed through different experiences (primarily the experience of observing 

others’ expressions, and the experience of executing and refining actions until they achieve the 

desired goal) and one has relatively little experience of observing (and therefore forming visual 

representations based upon) one’s own facial expressions, it is possible that autistic individuals 

could have internal motor programs for angry expressions that differ from those in the general 

population, without have differing internal visual representations. If a mismatch in the 

production of facial expressions is to explain autistic individuals’ difficulty recognising angry 

expressions, one would expect to see that these groups differ more in their production of angry 

relative to happy and sad expressions. This seems plausible since Faso and colleagues265 

identified that the angry expressions posed by autistic, relative to non-autistic, individuals were 

rated (by non-autistic raters) as more intense (and there were no group differences in the 

intensity of posed happy and sad expressions). Therefore, it could be the case that autistic angry 

expressions are more intense (e.g., are faster or jerkier), and therefore this group struggle to 

read the less intense non-autistic expressions. Further research is necessary to a) characterise 
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the expressive differences of autistic and non-autistic individuals, and b) ascertain whether 

these differences underpin an emotion-specific difficulty with angry expressions. In addition, 

this line of investigation requires further work to determine the direction of causality. It could 

be the case that autistic and non-autistic individuals produce different facial expressions and 

this leads to bidirectional emotion recognition difficulties, but it is also possible that difficulties 

with perceiving and labelling emotional facial expressions impacts on the production of 

emotional expressions. 

In addition to the implications for the autism literature, we believe that our results have 

important implications for the study of emotion recognition more generally. Previous research 

has demonstrated that when experimenters speed-up PLF expressions, observers are more 

accurate in anger and happiness judgements and, when experimenters slow-down PLFs, 

observers are more accurate in their judgments of sadness239. To date, however, no research has 

investigated the speed of observers’ internal representations of dynamic emotional expressions. 

Our findings, that participants increased speed (relative to the natural speed at which actors 

executed these expressions) for happy and angry, and decreased speed for sad expressions, 

suggest that people may have “caricatured” internal representations of emotion. In these 

caricatures, emotion-related kinematic cues are over-emphasised such that sad expressions 

appear extremely slow, and angry expressions appear extremely fast. Our results build on 

findings from the static emotion recognition literature wherein exaggerated internal 

representations of static expressions are common388. Our results also suggest a possible 

psychological mechanism for Sowden et al’s observation that participants are more accurate in 

their recognition of slowed sad expressions and speeded happy and angry expressions239: 

slowed sad expressions and speeded happy/angry expressions may comprise a better match to 

participants’ internal representations of these emotions, thus facilitating emotion recognition. 
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Limitations 

 The results of the current study are informative with respect to understanding emotion 

representations from facial motion cues alone. However, since many features of expressions 

are implicated in emotion processing, such as shading/depth377 and pigmentation/colouring376, 

one should be cautious to assume that our findings generalise to full dynamic emotional 

expressions (e.g., video recordings of facial expressions). It could be, for instance, that autistic 

and non-autistic individuals differ in the speeds they attribute to full emotional expressions but 

not point-light displays. However, given that our study was motivated by the observation of 

group differences in emotion recognition from facial motion cues (as isolated by PLF 

stimuli)385, it was crucial to our overall research question that we used PLF stimuli in the current 

study. It is also important to note that autistic and non-autistic groups could in principle differ 

in their internal representations of facial expressions in the spatial (i.e., the configuration of 

facial features relative to one another) but not speed dimension. In line with this, Song and 

Hakoda222 demonstrated that autistic individuals required a higher intensity of static angry, but 

not happy or sad, expressions in order for them to be correctly identified. Our choice to focus 

on the speed, rather than spatial, domain was driven by our empirically grounded a priori 

hypothesis that representations of anger would be characterised by higher speed movement.  

 With respect to the current study, it is also important to note that whilst we tested adults, 

the study by Song and Hakoda222 focused on children (mean age was approximately 11.5 years). 

It is possible that there are developmental effects such that internal representations of emotion 

differ between autistic and non-autistic children but not between autistic and non-autistic adults. 

This is plausible since autistic children show less attention to faces than non-autistic children 

(as shown by a lack of an attentional bias to faces, less distraction by faces in visual search 

tasks, and lower fixation times 255,411,412) and spend less time looking at heads/faces in a social 
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scene than autistic adults413. Consequently, one may speculate that autistic children have 

atypical internal representations of emotion (at least in part due to reduced attention to faces), 

however, by the time they reach adulthood, they have gathered enough information about faces 

to have ‘typical’ emotion representations. At present, we cannot say whether we would have 

found group differences if our sample was made-up of children. Since the current study was 

motivated by our previous work with adult autistic participants385 our focus on an adult sample 

was necessary. To establish whether there are developmental changes in internal 

representations of emotional expressions further work, which compares the development of 

autistic and non-autistic children, is necessary. 

Conclusions 

The current study aimed to estimate the speeds that autistic and non-autistic individuals 

attribute to angry, happy and sad dynamic facial motion. Whilst we found no group differences 

in the speeds attributed to happy and sad expressions (thus supporting our hypothesis), we also 

found no group difference for angry expressions (in conflict with our hypothesis). 

Consequently, we find no evidence to support the idea that particular difficulties with 

expression recognition from angry facial motion385 are due to atypically fast (or slow) internal 

representations of anger. Future research is necessary to further unpack why autistic individuals 

display difficulties that are specific to angry expressions.  
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Chapter 4: The inside out model of emotion recognition: how the 
shape of one’s internal emotional landscape influences the 
recognition of others’ emotions 
 

The previous chapter provided convincing evidence that there are no group differences 

in angry, happy and sad visual representations with respect to speed. These results force us to 

consider other factors which may be contributing to emotion recognition difficulties for 

autistic individuals. As discussed in the Introduction, constructionist13,45, template-

matching108-112, and signal detection theories140 raise the possibility that individuals with 

precise and differentiated information within their emotion concepts – for instance with 

respect to affective experiences and visual representations – may have a superior ability to 

recognise the emotions of other people. However, at present, research has not tested this idea. 

To investigate this possibility, it is necessary to first develop experimental tasks which 

facilitate measurement of the precision and differentiation of one’s emotional experiences and 

visual emotion representations, and second assess the contribution of these factors to emotion 

recognition in the general population. If these variables predict emotion recognition 

performance, an important next step will be to compare autistic and non-autistic individuals 

on these factors (i.e., the precision and differentiation of emotional experiences and visual 

emotion representations), and to determine whether differences therein contribute to emotion 

recognition challenges for autistic people. Therefore, in the following chapter, across a series 

of experiments, we first develop and validate two novel paradigms examining the precision 

and differentiation of emotional experiences and visual emotion representations, and second 

build a mechanistic model linking the experience, visual representation and recognition of 

emotion, in a general population sample.  
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Abstract 

Some people are exceptional at reading emotional expressions, while others struggle. Here we 

ask whether the way we experience emotion “on the inside” influences the way we expect 

emotions to be expressed in the “outside world” and subsequently our ability to read others’ 

emotional expressions. Across multiple experiments, incorporating discovery and replication 

samples, we develop EmoMap (N= 20; N=271) and ExpressionMap (N=98; replication N=193) 

to map adults’ experiences of emotions and visual representations of others’ emotions. Some 

individuals have modular maps, wherein emotional experiences and visual representations are 

precise and distinct- anger looks and feels different from happiness, which looks and feels 

different from sadness. In contrast, others have experiences and representations that are variable 

and overlapping- anger, happiness, and sadness look and feel similar and are easily confused 

for one another. Here we illustrate an association between these maps: those with precise and 

distinct experiences of emotion also have precise and distinct visual representations of emotion. 

Finally (N=193), we construct the Inside Out Model of Emotion Recognition, which explains 

60.8% of the variance in emotion recognition and illuminates multiple pathways to emotion 

recognition difficulties. These findings have important implications for understanding emotion 

recognition in numerous clinical populations.  
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4.1. Introduction 

Some people are exceptional at navigating the social world: the considerate concierge 

rapidly reads facial expressions and anticipates every desire; the perceptive companion 

accurately detects the sadness behind their friend’s smile; the skilled negotiator notices a telling 

tightness around the eyes and knows just the right time to apply pressure. Other individuals 

struggle: as Parkinson’s Disease progresses, people with this condition increasingly report 

challenges with reading others’ emotional expressions414, and similar difficulties predict 

negative social and wider health outcomes across a range of psychiatric and mental health 

conditions415-417. Despite clear individual differences in the ability to read others’ emotional 

expressions, little is known about why these individual differences exist. Here we ask whether 

individual differences in navigating the social world of others’ facial expressions are related to 

individual differences in the shape of one’s own internal emotional landscape. In other words, 

is there a relationship between our experience of emotion “on the inside” and our ability to 

identify emotions in the “outside world”? 

Internal “maps” of concepts - such as personality traits - can exert a considerable 

influence on judgments we make about others. Stolier and colleagues418 for instance, mapped 

internal conceptual-trait maps by asking participants to rate the similarity of 13 different 

personality traits. They also mapped representations of how these traits are depicted on people’s 

faces by asking participants to rate various face images with respect to these 13 traits418. Both 

internal (semantic) conceptual maps and external maps of facial representations, tended to 

exhibit a modular structure with particular traits - such as aggressive, mean, dominant and 

egotistical– clustering together418. Importantly, the shape of an individual’s map of others’ 

facial representations was highly correlated with the shape of their internal conceptual 

landscape such that a perceiver who believed aggression and dominance to be closely related 
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in conceptual space would be more likely (compared to a perceiver with a weak link between 

the two concepts) to see an aggressive face as dominant418. Thus, Stolier and colleagues 

illustrate that, for trait judgements, internal conceptual maps and judgements we make about 

others in the outside world are tightly related418. 

Stolier and colleagues' work pertains to traits. Here we focus on emotions. Preliminary 

evidence provides initial support for a link between the experience and recognition of emotion. 

Israelashvili and colleagues295 for example, illustrated that individuals who are good at 

differentiating their own experiences of distinct emotions are more accurate in reading others' 

emotional facial expressions. Nevertheless, although preliminary evidence indicates that 

individuals who are better able to identify how they feel “on the inside” are also better able to 

recognise emotions in the “outside world”, it is unclear why this relationship exists. Afterall, 

recognising one’s own emotions primarily depends upon the labelling of internal signals, 

whereas recognising others’ emotions principally consists of categorizing incoming sensory 

information. The psychological mechanisms supporting superior emotion recognition in 

individuals with superior (own) emotion differentiation are currently unknown. 

The face identity literature provides a candidate mechanism: studies from this field have 

illustrated that individuals who are good at face identity recognition tend to have robust visual 

representations (also referred to as templates and/or abstracted structural representations) of 

others’ identities, in their minds eye419-421. Such representations are thought to be constructed 

via experience wherein exposure to different views of a face updates the abstracted structural 

representation of this identity and, over time, the representation comes to emphasise diagnostic 

aspects of the face (that differentiate this face from another) and minimise non-diagnostic 

aspects421. Signal detection theory (see 140) also tells us that distinguishing between signal and 

noise (e.g., correct and incorrect facial identities) is easier if the signal and noise distributions 
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are distinct and precise – when these channels are not overlapping, and when they are consistent 

across numerous instances or samples (i.e., narrow). In line with this, Etchells, Brooks and 

Johnston421 found that participants were better at recognising faces from a novel view when 

they had built up a more precise representation of that face from multiple views, relative to a 

single view, during a preceding learning phase. Furthermore, it is well documented that faces 

that are more overlapping in appearance are more difficult to differentiate286. Therefore, the 

face identity literature raises the hypothesis that individuals who are adept at reading others’ 

emotions will have precise and distinct visual representations (in their ‘mind’s eye’) of 

emotional facial expressions. This hypothesis is yet to be tested.  

If we are to understand why people who are better at recognising others’ emotions tend 

to be good at identifying their own, and if this is related to the precision of visual representations 

of others’ emotional expressions, we must also explain why representations would be more 

precise and distinct for individuals who are better able to differentiate their own emotions. 

Models of conceptual learning suggest that robust concepts facilitate learning: Having a 

(semantic) concept that a table has a flat top and four legs encourages a learner to focus on these 

invariant features when encountering new table exemplars and ignore variant features such as 

colour or texture422,423, thus minimizing within-category differences and maximizing between-

category differences424. Similarly, having precise and distinct concepts of one’s own emotions 

(which may be multidimensional including semantic, interoceptive and sensory information 

44,52-55,425) may encourage a learner to focus on invariant features of facial expressions and 

ignore between expression variation, thus encouraging the formation of precise and distinct 

visual representations of others’ facial expressions. However, despite theoretical justification 

for a link between the experience and representation of emotion, research has not yet tested this 

idea.  
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Here we ask whether the experience of emotion “on the inside” influences the way in 

which one represents the dynamic emotional facial expressions that one would encounter in the 

“outside world” and whether this, in turn, affects emotion recognition accuracy. Specifically, 

we predict that some individuals will have internal emotion maps with a clear modular structure, 

wherein emotional experiences are precise and distinct: happiness feels very different from 

anger, which feels very different from sadness. We predict that these individuals will also have 

precise and distinct representations of the way in which emotions are expressed on others’ faces 

and, correspondingly, will be adept at recognising expressions. Other individuals, however, 

may have variable and overlapping experiences of emotion wherein anger, happiness and 

sadness feel relatively similar and are easily confused for one another. We predict that these 

individuals will have more variable and overlapping visual representations of others’ 

expressions such that, in their mind’s eye, anger, happiness and sadness look relatively similar. 

Thus, resulting in emotion recognition difficulties. 

Across a series of experiments, we first develop and validate “EmoMap”, a novel 

method to map the shape of individuals’ emotional experience landscapes (Experiment 1). 

Second, we develop “ExpressionMap” to map the landscape of participants’ visual 

representations of emotional expressions (Experiment 2). Following this, we test for a mapping 

between the experience of emotion “on the inside” and representations of the way emotions are 

expressed in the “outside world”. That is, we ask whether those with modular internal emotional 

maps, who have precise and distinct experiences of anger, happiness and sadness, also tend to 

have precise and distinct visual representations of angry, happy and sad facial expressions (note 

that these emotions were selected as they correspond to different regions in the circumplex 

model of emotion41, varying in both and valence). Throughout these analyses, we control for 

clinically relevant demographic factors known to be associated with the experience and 
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perception of emotion (e.g., the level of autistic traits, the level of alexithymic traits, and non-

verbal reasoning ability; e.g., 148,209,213,385,426-428) to ensure that any relationships we discover 

exist even after accounting for these variables. Finally, we assess the contribution of the 

precision and differentiation (i.e., distinctness) of emotional experiences and representations to 

the recognition of anger, happiness and sadness, and use structural equation modelling to 

construct the ‘Inside Out Model’ of emotion recognition; a model which provides insight into 

the psychological mechanisms by which one’s experience of emotions “on the inside” 

influences one’s ability to identify emotions in the “outside world”. 

 

4.2. Results 

4.2.1. Study 1: Developing EmoMap 

Participants (N=271) completed our EmoMap paradigm - a two-part task that assesses 

the differentiation and precision of emotional experiences. In the first part, on each trial, 

participants viewed pairs of images (from the Nencki Affective Picture System429) each known 

to selectively induce either anger, happiness or sadness430, and were asked to rate how similar 

the emotions evoked by the images were on a scale from 0, ‘Not at all similar’, to ten, ‘Very 

similar’ (to 4 decimal places). These similarity scores were then transformed into distance 

scores via multidimensional scaling, a statistical technique that represents objects (emotional 

images, lexical items) as points in multidimensional space, wherein close similarity between 

objects corresponds to small distances between the points in the representation. Distance scores 

were then used to a) calculate the mean distances between (e.g., distance between angry and 

happy clusters, angry and sad clusters, and happy and sad clusters) and within emotion clusters, 

and b) plot multidimensional scaling maps.  
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The multidimensional scaling maps confirmed that the internal emotional landscape had 

a modular structure for some participants (Figure 4.1, left panel) and a less modular, more 

overlapping, structure for others (Figure 4.1, right panel).  EmoMap was validated by 

illustrating that individuals high in alexithymic traits, who by definition have difficulties 

differentiating their own emotions194, tended to have emotional landscape maps with a less 

modular, more overlapping structure, whereas those low in alexithymic traits had modular 

emotional landscapes. That is, linear mixed effects models predicting mean distance between 

clusters and mean distance within clusters with TAS score, AQ score, non-verbal reasoning 

ability (clinically relevant demographic variables known to be associated with the experience 

and perception of emotion; e.g., 148,209,213,385,426-428), and with subject number as a random 

intercept revealed alexithymic traits as a significant negative predictor of distance between 

emotion clusters [F(1,267) = -5.92, p<.05] and distance within emotion clusters [F(1,267) = -

6.16, p<.05]. In general, greater overlap was seen between anger and sadness [mean distance 

(SEM) = 14.39(0.21)], than happiness and anger [mean distance (SEM) = 20.79(0.29)], and 

happiness and sadness [mean distance (SEM) = 20.70(0.29)] in participants’ internal emotional 

landscapes (see Appendix 3.1 for a full discussion). These results validate EmoMap by 

confirming that individuals who, by definition, have difficulties differentiating their own 

emotions exhibit higher EmoMap emotion confusion as indexed by smaller distances between- 

and within- emotion clusters (suggesting they have difficulties differentiating distinct and more 

similar emotional states).  
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Figure 4.1.  

Examples of precise and distinct (left), and variable and overlapping (right) emotional 
landscapes. 
 

 

Note. The dimensions illustrated here may somewhat reflect the two dimensions outlined in the 
circumplex model of affect41 – arousal and valence. The first dimension may correspond to 
valence, with high values reflecting negative valence and low values reflecting positive valence 
(see left). The second dimension may correspond to arousal; high scores reflect high activation, 
and low scores reflect low activation (see left). This may be an appropriate interpretation of the 
internal emotional landscape of Participant A (left).  

 

In the second part of EmoMap, on each trial participants were required to make 

decisions about three images (also from the Nencki Affective Picture System429). There were 

four conditions: one non-emotional control condition, and three emotional experimental 

conditions exploring the experience of anger, happiness and sadness respectively. Participants 

completed the control condition first. In this condition, participants were required to select 

which of the three (emotionally neutral) images they found most colourful using their mouse 

cursor. Two of these images were in colour and one was in grayscale, thus serving as an 

attention check. Following this, participants completed the three experimental conditions in a 

random order. In these conditions, participants were required to select which of the three images 
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made them feel most angry, happy or sad using their mouse cursor (i.e., in the ‘angry condition’ 

participants would have to decide which image made them most angry). As in the control 

condition, there was a ‘trap’ image on each trial such that two of the images were strong 

inducers of the target emotion (e.g., sadness), and one was a strong inducer of another emotion 

(e.g., happiness), thus serving as an attention check. Emotional precision was calculated, for 

each emotion, based on the logical consistency of decision-making: if a participant selected 

image one over image two and image two over image three, but then selected image three over 

image one, this would be considered an inconsistent decision and would result in a reduction in 

their precision score292 (see Methods for further details on scoring). Precision requires 

participants to differentiate between the intensity of emotion evoked by each image292. 

Therefore, inconsistent decisions are likely to stem from imprecision in an individual’s 

emotional experience across repeated instances292. 

 Using scores from this task, we aimed to determine whether there is a link between the 

precision and differentiation of emotional experiences. Our results illustrate that individuals 

with modular landscapes are more likely to have precise emotional experiences, whereas those 

with more overlapping emotion landscapes have less reliable emotional experiences. That is, a 

linear mixed effects model of emotional precision as a function of between-cluster distances, 

within-cluster distances, the interaction between emotion and between-cluster distances, the 

interaction between emotion and within-cluster distances (independent variables), AQ, TAS, 

non-verbal reasoning and colour (control) precision (control variables), with subject number as 

a random intercept revealed that emotional precision was positively predicted by between-

cluster distances [F(1,786.1) = 9.58, p<.01], and negatively predicted by within-cluster 

distances [F(1,785.9) = -10.30, p<.01]. Since the emotion that was displayed (angry, happy or 

sad) did not interact with between- or within-cluster distances to predict emotional precision, 
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our results suggest that those with larger distances between clusters and smaller distances within 

their emotion clusters typically had greater emotional precision for anger, happiness and 

sadness. Emotional precision was also positively predicted by non-verbal reasoning ability 

[F(1,264) = 12.83, p<.001] but not by any other variables, including colour control precision 

[all p>.05]. Hence, our results demonstrate that the distances between and within emotion 

clusters predict the precision of emotional experiences.   

4.2.2. Study 2: Developing ExpressionMap 

To map visual representations of the external expression landscape, participants (N=98; 

replication N=193) completed our ExpressionMap paradigm. On each trial participants were 

asked to move a dial to change the speed of an emotional point light display of the face (a PLF) 

until it matched the speed they typically associated with an angry, happy or sad expression. 

That is, participants were matching the speed of the displayed PLF to their visual representation 

of that expression. The precision of visual representations was indexed as the standard deviation 

of the speeds attributed to each repetition of the angry, happy and sad expressions respectively, 

multiplied by -1 (see Methods for full details). Mean representational precision was calculated 

by taking a mean of the precision scores for the angry, happy and sad PLFs. In addition, this 

task also provides an index of the ‘distance’ between emotions in participants’ visual 

representations of facial expressions. Distance scores were calculated as the absolute difference 

in speed attributed to two different emotions. For example, to calculate distance between happy 

and angry, we subtracted the mean speed attributed to happy from the speed attributed angry, 

and then took the absolute value. Mean distance was calculating by taking a mean of the scores 

for the angry-happy, angry-sad, and happy-sad distances.  

To visualise representations of the external emotional landscape, we produced density 

plots displaying the speeds attributed to angry, happy and sad expressions respectively. Density 
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plots confirmed that for some individuals, visual representations of emotion are precise and 

distinct (Figure 4.2, left panel), and for others they are variable and overlapping (Figure 4.2, 

right panel). Across participants, the precision and differentiation of such representations 

differed as a function of emotion/emotion pair – these results are reported in Appendix 3.1 as 

they are outside the scope of the current study.  

Figure 4.2.  

Examples of precise and distinct and variable and overlapping visual emotion representations.  

 

 

 

4.2.3. Mapping between the experience of emotion “on the inside” and their 
representations of emotional expressions in the “outside world”  
 
A subset of participants (N =193) completed both EmoMap and ExpressionMap. To 

probe the existence of a mapping between the experience of emotion “on the inside” and 

representations of the way emotions are expressed in the “outside world”, we constructed two 

separate linear mixed effects models to predict metrics of ExpressionMap (representational 

precision and distance between representations) from metrics derived from EmoMap 
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(emotional precision, distance between emotion clusters respectively), with AQ score, TAS 

score, non-verbal reasoning, and control precision as control variables, and with subject number 

as a random intercept. Representational precision was positively predicted by emotional 

precision [F(1,186) = 5.15, p<.05] but not colour control precision [p > .05]: individuals with 

more precise experiences of emotion also had more precise visual representations of emotion 

(while the precision of colourfulness judgments did not contribute to the precision of visual 

representations). Non-verbal reasoning was also a significant predictor of representational 

precision [F(1,186) = 30.71, p<.001]: those with higher non-verbal reasoning had greater 

representational precision. In addition, distance between emotion representations was predicted 

by distance between emotion clusters [F(1,186) = 8.19, p<.01]: those with more distinct 

experiences of emotion also had more distinct representations. Thus, precision and 

differentiation within internal emotional landscapes is linked to precision and differentiation in 

visual representations of the external world (even after controlling for relevant participant 

demographics; see Figure 4.3).  
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Figure 4.3.  

A diagram demonstrating that precision and differentiation within internal emotional 
landscapes (left) is linked to precision and differentiation in visual models of the external world 
(right). 
 

 

Note. Figure 4.3 top shows the modular emotion and representation maps of one participant. 
Figure 4.3 bottom shows the overlapping emotion and representation maps of another 
participant.  

 

4.2.4. Predicting emotion recognition ability 

The above analyses illustrate a mapping between the experience of emotion “on the 

inside” and visual representations of the way emotions are expressed in the “outside world”, 

but how do these inside and outside maps influence emotion recognition accuracy? To answer 
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this question, we first focused on asking how the shape of ExpressionMaps relate to individual 

differences in emotion recognition as indexed by our previously validated PLF Emotion 

Recognition Task239,385. On each trial in this task, participants viewed an angry, happy or sad 

PLF and rated how angry, happy and sad the expression appeared. Emotion recognition 

accuracy was calculated as the correct emotion rating minus the mean of the two incorrect 

emotion ratings. 

Building on the face identity literature419-421 and principles of signal detection theory140 

our a priori hypothesis was that emotion recognition accuracy would be positively predicted 

by the precision of emotion representations and by distance between emotion representations. 

To test this, we constructed a linear mixed effects model with accuracy as the outcome variable, 

representational precision, distance between emotion representations, the interaction between 

representational precision and distance, AQ score, TAS score and non-verbal reasoning as 

predictors (clinically relevant participant characteristics known to be involved in the experience 

and perception of emotion; e.g., 148,209,213,385,426-428), and subject number as a random intercept. 

Across both our original (N=98) and replication (N=193) sample, representational precision 

was a significant positive predictor of accuracy [original sample: F(1,91) = 4.19, p<.05; 

replication sample: F(1,186) = 13.86, p<.001; see Figure 4.4]: those with more precise visual 

emotion representations typically achieved higher accuracy (i.e. identified the emotion that the 

actor intended to convey) on the PLF Emotion Recognition Task. In conflict with our 

hypothesis, accuracy was not predicted by distance in either sample [all p>.05]. There were also 

no other significant predictors of accuracy across both samples [all p>.05]. 

 

 

 

 



 128 

Figure 4.4.  

The relationship between mean accuracy and mean representational precision in original 
sample (left [R = -.311, p = .002, BF10 = 15.32]) and replication sample (right [R = -.399, p 
< .001, BF10 = 1.21e6]).  

 

Since it is likely that emotion recognition is contingent not only on the clarity of emotion 

representations but also on the ability to match a displayed expression to one’s visualization, 

we also included a visual matching task in our battery. This task assesses how well participants 

can visually match the speed of one expression to another displayed expression. Each trial 

began with a PLF stimulus video on the left-hand side of the screen. After this video had played 

once, the same PLF stimulus video also appeared on the right-hand side of screen (moving at a 

random speed) and continued to play in a loop. Participants were instructed to “move the dial 

to change the speed of the video on the right until it matches the speed of the video on the left”. 

Consequently, participants were visually matching the speed of one PLF to another. Deviation 

scores (the distance between the speeds of the two animations) comprised the absolute value of 

the percentage speed attributed to the leftward expression minus that attributed to the rightward 
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expression. Mean deviation scores comprised a mean of all of the absolute deviation scores. 

Higher deviation scores represented greater difficulties matching the two expressions.  

Subsequently, visual matching difficulty and the interaction between representational 

precision and matching difficulty were added to the linear mixed effects model described above. 

In our larger sample, we found that the main effect of representational precision on emotion 

recognition accuracy was moderated by matching difficulty [F(1,184) = 12.26, p<.001]. To 

unpack this interaction, we conducted a median half split analysis, dividing participants into a 

high matching group (matching deviation scores <27.75%) and a low matching (matching 

deviation scores >27.75%) group. Representational precision was only a significant predictor 

of accuracy for those with lower matching ability [F(1,89) = 7.16, p<.01], and not those with 

higher matching ability [F(1,90) = 0.44,  p=.507] (see Figure 4.5). This interaction was also 

evident in our original sample [low matching: F(1,42) = 4.18, p<.05; high matching: F(1,42) = 

0.44,  p=.513]. Hence, across both samples, for participants with a lower ability to match 

expressions, representational precision was a significant predictor of emotion recognition 

ability. This potentially indicates that when one’s ability to match two representations is 

compromised, having clear and precise visual representations becomes particularly important. 
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Figure 4.5.  

The relationship between mean accuracy and representational precision within the high 
(original sample: R = .148, p = .310, BF10 = 0.294; replication sample: R = .004, p = .972, 
BF10 = 0.13) and low matching groups (original sample: R = 0.324, p < .05, BF10 = 2.18; 
replication sample: R = .379, p < .001, BF10 = 176.06). 

 

 

 

 

 

 

 

 
In sum, emotion recognition ability is predicted by the precision of imagined visual 

representations of others’ emotions and one’s matching ability, such that – for individuals 

with lower ability to match two visually displayed expressions - the more precise one’s 

representations the better one’s emotion recognition accuracy.  

4.2.5. Building the Inside Out Model of Emotion Recognition (N = 193) 

For the following analyses, we focused on the 193 participants that had completed all 

four tasks (EmoMap, ExpressionMap, Visual Matching and PLF Emotion Recognition), thus 

allowing us to build a comprehensive model incorporating the experience, representation and 

recognition of emotion. Model construction comprised a four-step process. First, since we had 

many potential variables of interest, we determined their relative importance for emotion 

recognition using a random forests analysis431 employing the Boruta wrapper algorithm432. In 
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this analysis, representation matching, matching difficulty, representational precision, distance 

between emotion clusters, and emotional precision were deemed important for emotion 

recognition. Here, ‘representation matching’ reflects the interaction between representational 

precision and matching difficulty, which was found to be a significant predictor of emotion 

recognition in our previous analyses. ‘Representation matching’ was computed by multiplying 

the representational precision scores for angry, happy and sad expressions with their 

corresponding matching difficulty scores (e.g., angry representational precision x angry 

matching difficulty; happy representational precision x happy matching difficulty; sad 

representational precision x sad matching difficulty). Higher representation matching scores 

indicate superior representational precision, matching ability, or both. Following our random 

forests analysis, we added variables classified as “important” into a structural equation model 

predicting emotion recognition accuracy, sequentially (starting with the most important 

variable), until there was no longer a significant improvement (or our goodness of fit index 

exceeded the specified threshold). Third, to determine the most mathematically plausible path 

directions in our structural equation model, we systematically reversed each path and compared 

the Bayesian Information Criterion (BIC) scores for the original and reversed models (see 

Appendix 3.2 for the steps listed above). Lastly, we built one final structural equation model in 

which we included the path directions that were mathematically most plausible. There was 

moderate to very strong evidence that this final model was better than all previous models (BIC 

difference > 6). Fit indices demonstrated that our final model was a good fit for the data [Root 

Mean Square Error of Approximation (RMSEA) = 0.055; Standardized Root Mean Square 

Residual (SRMR) 0.071; Comparative Fit Index (CFI) = 0.954].  

In our final structural equation model (see Figure 4.6 and Table 4.1), which accounted 

for 60.8% of the variance in emotion recognition accuracy, there were two component processes 
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that contributed to individual differences: the precision component and the differentiation 

component. With respect to the former, emotional precision exerted an indirect effect on 

emotion recognition [z = 2.05, b = 0.53, p<.05], by influencing representation matching ability 

[z = 2.06, b = 0.75, p<.05], which had a direct effect on emotion recognition accuracy [z = 6.93, 

b = 0.70, p<.001]. With respect to the latter, our analysis revealed that there were significant 

direct effects of (1) distance between emotion clusters on emotion recognition accuracy [z = 

2.18, b = 0.20, p<.05], and (2) emotion recognition accuracy on distance between emotion 

clusters [z = 2.47, b = 0.24, p<.01], thus suggesting a bidirectional feedback loop between these 

variables. In addition, whilst distance between representations had a direct effect on distance 

between emotion clusters [z = 2.93, b = 0.28, p<.01], it did not exert an indirect effect on 

accuracy [z = 1.80, b = 0.05, p=.072]. Finally, our analysis also identified a significant direct 

effect of emotional precision on non-verbal reasoning ability [z = 2.21, b = 0.63, p<.05], and 

of alexithymia on distance between clusters [z = -2.27, b = -0.15, p<.05; see Appendix 3.3 for 

the inter-relationships between all variables in the model].  

Table 4.1.  

Parameter estimates for our final structural equation model. Standardised betas are shown in 
the final column (Std. b).  

Path Estimate z-value p-value Std. b 
Representation Matching → Accuracy 0.021 6.932 < .001 0.700 
Emotional Precision → Representation Matching 4.393 2.137 = .033 0.754 
Emotional Precision → Representation Matching → Accuracy * 0.090 2.052 = .040 0.527 
Emotional Precision → NVR 0.018 2.205 = .027 0.633 
Distance between clusters → Accuracy 0.039 2.179 = .029 0.197 
Accuracy → Distance between clusters 1.193 2.466 = .014 0.236 
Distance between representations → Distance between clusters 2.611 2.932 = .003 0.275 
Distance between representations → Distance between clusters → Accuracy * 0.102 1.800 = .072 0.054 
TAS → Distance between clusters -0.058 -2.269 = .023 -0.150 

Note. Indirect effects are labelled with an asterisk (*) 
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Figure 4.6.  

The final structural equation models exploring the experience, visualization and recognition 
of emotion.  
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Note. Circles 
correspond with latent variables; rectangles correspond with manifest variables. Black arrows 
indicate positive relationships. Red arrows indicate negative relationships. Full line arrows 
correspond with direct effects; dashed line arrows correspond with indirect effects. The values 
displayed are the standardised beta path coefficients. The significance level for direct and 
indirect effects are shown by asterisks: *p < .05, **p ≤ .01, ***p ≤ .001. 

 
4.3. Discussion 

Here we illustrated that individual differences in the experience of emotion “on the 

inside” are interrelated with individual differences in representations of emotional expressions, 

and that these sources of individual differences predict 61% of the variance in accuracy on a 
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dynamic emotion recognition task. In Experiment 1 we developed (N=20) and validated 

(N=271) “EmoMap”, a novel method to map the shape of individuals’ emotional experience 

landscapes. In Experiment 2 we developed “ExpressionMap” to map the landscape of (N=98; 

replication N=193) participants’ representations of how emotions are expressed in the outside 

world. Subsequently we tested for a mapping between the experience of emotion “on the inside” 

and their representations of the way emotions are expressed in the “outside world”. Individuals 

with modular internal emotional maps, who had precise and distinct emotional experiences, 

tended to have precise and distinct visual representations of other people’s dynamic emotional 

facial expressions. Structural Equation Modelling further illustrated that such individuals 

tended to have correspondingly enhanced emotion recognition accuracy. Therefore, our “Inside 

Out Model of Emotion Recognition” provides new insight into the psychological mechanisms 

underpinning individual differences in the recognition of emotion from dynamic facial 

expressions.  

In our final model, which explained 60.8% of the variance in emotion recognition 

accuracy, there were two component processes that contributed to individual differences: the 

precision component and the differentiation component. Within the precision component, 

which explained a larger proportion of the variance in emotion recognition, those with less 

precise emotional experiences also had less precise visual emotion representations, and 

correspondingly low emotion recognition accuracy. Interestingly, representational precision 

only contributed to emotion recognition for those with a lower ability to match two visually 

displayed expressions. With respect to the differentiation component, having poorly 

differentiated representations of others’ expressions, predicted poorly differentiated 

experiences of anger, happiness and sadness and corresponding difficulties with emotion 

recognition (note that this later link between experience and recognition of emotion was bi-
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directional). The direction of all the paths in our model was determined through systematic 

comparison of BIC scores. BIC comparisons revealed moderate to very strong evidence that 

the directions in our final model were the most mathematically plausible. Nevertheless, it is 

important to note that structural equation modelling cannot definitively determine causality433. 

Thus, any directions of causality suggested by our model are merely hypotheses that should be 

tested via causal manipulation356.  

Taking a step back from the individual path directions, it is pertinent to consider the 

component processes outlined in our final model. Although our modelling allowed for other 

pathways to emotion recognition difficulties – for example an emotion pathway (emotional 

precision, distance between clusters) and a representation pathway (representational precision, 

distance between representations) – our analyses demonstrated that the precision and 

differentiation component processes were the most mathematically plausible. The emergence 

of these components is somewhat surprising given that EmoMap and Expression map were 

completed in two separate sittings (on two separate days) and that different methods were used 

to calculate their corresponding variables (see Method). The emergence of these components 

despite their corresponding variables being calculated differently and measured across different 

sittings suggests that they are meaningful components of emotion recognition rather than 

methodological artefacts.  

More generally, it is useful to consider alternative explanations for our conclusion that 

individual differences in emotion recognition from dynamic stimuli can, in part, be explained 

by individual differences in the way emotions are experienced and the way expressions are 

represented. A primary question concerns whether a third variable unrelated to emotion, such 

as participants’ motivation to do well, underpins the relationships between the experience, 

representation and recognition of emotion. In other words, do those with more precise 
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experiences of emotion also have more precise visual emotion representations and more 

accurate emotion recognition simply because these individuals tried harder on all tasks? Our 

findings suggest that this is unlikely: self-reported effort was not significantly associated with 

emotional precision, representational precision, distance between representations, matching 

difficulty, or representation matching, respectively (all p > .05; see Appendix 3.4). In addition, 

although there were small-moderate correlations between effort and distance between clusters 

[R = .272, p < .001], and effort and emotion recognition accuracy [R = .236, p = .001] 

respectively, our Bonferroni-corrected partial correlations demonstrated that all the 

relationships we discovered remained significant after controlling for self-reported effort (see 

Appendix 3.4). Hence, the relationships we found between the experience, representation and 

recognition of emotion are not underpinned by self-reported effort. Similarly, since each of our 

paradigms included intricately designed attention checks, it is unlikely that differences in 

attention underpin the associations between these variables. Finally, one may ask whether the 

relationships documented here pertain specifically to the processing of emotion. That is, could 

it be that some individuals have precise and distinct concepts in general and hence they are 

good at recognising any complex stimuli. Our results suggest that this possibility is also 

unlikely: only those with precise experiences of emotion, and not those with precise concepts 

of colour, had greater representational precise and emotion recognition accuracy (see Appendix 

3.2). Hence overall, it is unlikely that effort, attention, or another domain general process (e.g., 

having distinct concepts in general) underpins the associations found here. Rather our results, 

which have been acquired across several experiments with large samples (involving built-in 

replications), provide convincing evidence for links between the experience, representation, 

and recognition of emotion.  
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But how do such links come about? For example, why would having imprecise 

emotional experiences lead to imprecise expression representations? As noted in our 

Introduction section, constructionist theories offer a theoretical framework that may help 

answer such questions. Constructionist theories of emotion (e.g., 44,52-55,425) propose that 

children are continually constructing multimodal representations of emotions. For example, 

when hearing a caregiver describe a situation as “anger inducing” a child may associate their 

current internal sensations and prevailing visual/auditory/tactile inputs with the word “angry”. 

Over time “angry” ceases to be just a word and becomes a multimodal concept44 and once the 

concept is acquired, it may function to sharpen its own conceptual boundaries424. That is, having 

precise and distinct emotion concepts may help a learner focus on invariant features of facial 

expressions and ignore between expression variation, thus encouraging the formation of precise 

(i.e., reliable) and distinct visual representations of others’ expressions. Note that the reverse 

direction of causality is also possible: a child with precise visual representations of others’ 

expressions may be better able to recognise when others are angry thus providing the child with 

a label with which to categorise their own internal states. Such a child may have more 

opportunities for labelling their internal states, potentially resulting in more precise and distinct 

emotional experiences. As mentioned previously, further work must test the Inside Out Model’s 

directions of causality if we are to make more confident claims about the causal role of 

emotional experience in the precision of visual emotion representations, and develop richer 

theoretical models of the developmental experiences that give rise to such links. 

In addition to contributing to constructionist theories of emotion, our findings are also 

relevant to the face identity and signal detection literatures419-421. By demonstrating that precise 

visual representations of emotional expressions facilitate recognition of emotional expressions, 

we illustrate an important role for stored visual representations in emotion recognition, that 
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extends beyond the known role of representations in facial identity recognition. Our findings 

are also partially in line with signal detection theory140. That is, we identified that emotion 

recognition was directly predicted by the precision, but not the differentiation, of visual emotion 

representations. These findings raise the possibility that there are independent contributions of 

these factors to emotion recognition. The lack of a significant (direct) effect of the 

differentiation of visual emotion representations (i.e., the distance between attributed speed) on 

recognition may be due to the presence of large differences in the speeds attributed to angry, 

happy, and sad facial expressions [angry mean(SEM) = 3.85(0.06); happy mean(SEM) = 

2.80(0.04); sad mean(SEM) = 1.63(0.03)], meaning that on average the representations are ‘far 

apart’ and instances of overlap between the signal and noise distributions are relatively 

uncommon. Independent of this there may feasibly be an additional effect of the precision of 

visual emotion representations (variation in attributed speeds). For example, the expectation 

literature would predict that more precise (i.e., a representation that is precise in appearance 

across instances) representations of upcoming stimuli would precipitate increased recognition 

accuracy (see 434-437). Future research should aim to include other emotions (e.g., surprise, 

disgust, and fear), likely to populate other points on the speed continuum, to identify whether 

this illuminates an effect of the differentiation of visual emotion representations. In the current 

study, we were unable to include additional emotions due to testing constraints. Including 

surprise, disgust and fear would have increased the duration of our test battery to over eight 

hours (doubling the current testing time of four hours) and compromised our ability to test such 

large samples (due to limits on resources). We selected high and low arousal (anger/ happiness 

and sadness), and positively and negatively valenced (happiness and anger/sadness) emotions 

to cover different regions in arousal-valence space41.  
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Implications  

Our Inside Out Model raises a number of testable hypotheses that may help us better 

understand the aetiology of the emotion recognition difficulties documented in numerous 

clinical conditions (e.g., depression, anxiety, psychosis, eating disorders, Parkinson’s disease, 

and autism spectrum disorder; see 141-146,438). In the current study, we have illuminated two 

component processes that may contribute to these difficulties: the differentiation component 

and the precision component. With respect to the former, differences in recognising others’ 

emotions may be linked to difficulties differentiating one’s own emotional states; indeed 

preliminary evidence supports this pathway in the context of depression, anxiety, 

schizophrenia, anorexia nervosa and autism (as found in 148,439-443). The precision component, 

on the other hand, suggests the testable hypothesis that emotion recognition difficulties in 

clinical conditions linked to imprecise emotional experiences – such as bipolar disorder and 

psychosis, which are associated with mood fluctuations151,444 – may be mediated by the 

(im)precision of visual representations of emotional expressions. Identifying mechanistic 

pathways that explain variation in emotion recognition may help us design tailored support 

systems with potential impacts upon psychosocial adjustment254 and psychological health and 

wellbeing255. Hence, future studies should aim to test these predictions. 

Limitations 

The results of the current study are informative with respect to understanding the links 

between the experience, visual representation, and recognition of emotion from facial motion 

cues alone. Here, we have employed point-light displays, which provide a way of studying core 

dynamic cues (e.g., speed), while controlling other perceptual dimensions445,446, such as identity 

(e.g., gender, age, ethnicity, face attractiveness), depth, and pigmentation, which are all known 

to influence emotion recognition376,377,447. Although this allowed us to accurately assess the 
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contribution of kinematic cues to visual emotion representations, and their subsequent effect on 

emotion recognition accuracy (without these other cues confounding the results), such tight 

control may limit the extent to which our findings generalise to full dynamic emotional 

expressions (e.g., full video recordings of facial expressions). It could be, for example, that the 

links we have demonstrated between the experience, representation and recognition of emotion 

exist for point-light displays, but not full emotional expressions. However, since individuals 

compare incoming facial expressions to stored templates, which represent the average facial 

expressions they have encountered previously (e.g., the average angry expression across all 

previous encounters108-111,448), it seems unlikely that the precision of such templates would only 

be important when recognising emotion from point-light displays (which are not typically 

encountered). Concurrently, there is no clear reason why an individual would draw on their 

own emotional experiences to recognise emotion, specifically in point light displays, and not in 

full dynamic expressions.  Nevertheless, future studies are necessary to confirm whether our 

results generalise to full emotional expressions. 

Relatedly, it is also worth noting that here we examine the precision and differentiation 

of visual emotion representations specifically in the speed domain. This was an active design 

choice, motivated by previous evidence demonstrating the critical role of speed cues in the 

visual representation449 and recognition239,385 of emotion. Nevertheless, in future work, we will 

expand our paradigms to encompass other spatiotemporal emotion cues (e.g., degree of spatial 

exaggeration, movement onset/offset, texture, colour, etc.), thus facilitating investigations into 

the precision and differentiation of visual emotion representations in other domains.  

It is also important to consider the limitations of our EmoMap paradigm for assessing 

the experience of emotion. Although his paradigm has several methodological advantages – it 

can be completed online in just 25-35 minutes and does not require participants to translate 
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their emotional experiences into words (see 450) – there are disadvantages of using such 

computer-based assessments. For example, by employing images to elicit emotional reactions 

(as is common in the literature e.g., 148,295,428,451,452), participants may respond based on how 

they think they should feel, rather than how they truly feel. Whilst this is a possibility, we 

specifically addressed this issue in our task instructions, thus minimizing the likelihood of 

participants responding in this way: when describing EmoMap, we told participants that “this 

isn’t about what the image represents, or how you think other people, on average, respond to 

the images. It is about your own personal response” (as in Huggins et al292). Nevertheless, future 

investigations could benefit from employing more ecological methods such as experience 

sampling (e.g., 453,454), wherein participants label or rate their emotional state on several 

occasions throughout the day for multiple days. Using these methods, emotion differentiation 

can be calculated by computing intra-class correlations, measuring consistency between 

emotion ratings across occasions, for each participant (see 293). Such studies could then aim to 

test whether the ability to differentiate emotions in everyday life is associated with more 

differentiated visual emotion representations, and enhanced emotion recognition.  

Finally, it is important to highlight the limitations of our study with respect to sample 

generalizability. Across both experiments discussed here, the samples were predominantly 

female (74.91, 46.94, and 78.76% respectively), white (58.67, 83.67, and 56.48% respectively), 

and from the United Kingdom (37.27, 64.29, and 41.97% respectively). Since there may be 

differences in the experience and recognition of emotion between males and females455-457, it 

may be that the results discussed here are not representative of males. Although this is possible, 

the evidence from our post-hoc analyses suggest that our primary effects are not moderated by 

sex (see Appendix 3.5). Thus, it seems that for both males and females the experience, visual 

representation, and recognition of emotion are all linked. Nevertheless, further work should aim 
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to verify our results in more balanced, and/or male, samples. In addition, previous studies have 

found that experiences (e.g., 458-462) and visual representations (e.g., 388,389,463-465) of emotion 

vary across cultures. Many of these studies suggest that there may be differences specifically 

in the appearance of visual representations (e.g., individuals from Western Cultures emphasise 

the eyebrows and mouth in their visual representations, while those from East Asian cultures 

the eye region388). Although this is an important consideration, it is worth noting that, in the 

current study, we specifically focus on the precision and differentiation of visual 

representations, rather than on the appearance of them. Since individuals across numerous 

cultures employ template-matching techniques (i.e., comparing incoming facial expressions to 

stored ‘templates’) to recognise the emotions of others108-111,448, it seems unlikely that the 

precision of such templates would be important in one culture but not another. Nevertheless, 

future studies should aim to the Inside Out Model across different cultures.  

 

4.4. Method. Experiment 1: Developing EmoMap 

This study was approved by the Science, Technology, Engineering and Mathematics 

(STEM) ethics committee at the University of Birmingham (ERN_16-0281AP9D) and was 

conducted in accordance with the principles of the revised Helsinki Declaration. Informed 

consent was obtained from all participants.  

4.4.1. Participants 

 271 participants were recruited via the School of Psychology’s Research Participation 

Scheme database and Prolific. Individuals were eligible to take part in the study if they were  

between the ages of 18 and 65, fluent in English, had normal or corrected-to-normal vision, and 

had access to a computer/laptop with an internet connection. The sample size was based on an 

a priori power analysis conducted using G*power402. To replicate the association between 
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alexithymia and emotion differentiation in Erbas et al428, 97 participants were required to have 

95% power at alpha level 0.05. However, since effect sizes are commonly inflated342, and we 

were utilizing a more complicated analysis (a linear mixed effects model in which we control 

for the other relevant demographic variables known to be associated with the experience and 

perception of emotion), we recruited a larger number of participants (N = 271; almost triple the 

sample size generated in our power calculation).  

Participant characteristics are displayed in Table 4.2. Information regarding 

participants’ ethnicities is reported in Appendix 3.6. Notably, four participants in the sample 

(1.48%) reported that they had a diagnosis of autism spectrum disorder. Therefore, we 

conducted our analyses twice, first including these participants and then excluding them. Since 

the general pattern of results was unaffected by their removal, we included these participants in 

our final statistical analyses.  

Table 4.2.  

Means and standard deviations of participant characteristics. In the column on the right-hand 
side, means are followed by standard deviation in parentheses.  

 
Variable Participants (N=271) 
Sex 68 Male, 203 Female 
Age 24.00 (9.16) 
NVR 60.22% (15.35%) 
AQ-50 19.11 (6.85) 
TAS-20 48.17(12.08) 

 

4.4.2. Procedures 

Participants completed demographics questions, followed by the Autism Quotient304 

(see Chapter 2 for a description) and Toronto Alexithymia Scale344 (see Chapter 2) on Qualtrics 

(https://www.qualtrics.com). Subsequently, participants completed our EmoMap paradigm 

(openly available at https://app.gorilla.sc/openmaterials/447800) followed by the Matrix 

https://www.qualtrics.com/
https://app.gorilla.sc/openmaterials/447800
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Reasoning Item Bank343 (see Chapter 2) on Gorilla (https://gorilla.sc). All participants 

completed the study online.  

4.4.3. Materials and Stimuli 

EmoMap Task 

There were two key parts of the EmoMap task. In the first part, on each trial participants 

viewed pairs of images from the Nencki Affective Picture System429, and were instructed to 

“think about what feelings arise when you look at each of these images. Now please rate how 

SIMILAR those two feelings are”. Participants made their ratings on a visual analogue scale 

(with a step size of 0.0001) ranging from 0, ‘Not at all similar’ to 10, ‘Very similar’. An 

advantage of the EmoMap paradigm is that it provides a tool to measure emotion differentiation 

without requiring participants to produce emotion labels, unlike existing tasks (see 449 for a for 

a full discussion). 

The chosen images were known to be effective at selectively inducing anger, happiness 

or sadness across large samples (N = 124)430, and generated distinct emotion clusters based on 

graph theory analyses with pilot study data (see Appendix 3.7). In this task, there were five 

images for each emotion (anger, happiness and sadness) resulting in 15 different images and 

105 unique image combinations (and therefore 105 trials): 30 within emotion-category 

combinations (10 for anger, 10 for happiness and 10 for sadness) and 75 between emotion-

category combinations (25 angry-sad, 25 angry-happy, 25 happy-sad). A reaction time check 

was incorporated to prevent participants responding too quickly (i.e., without thinking). 

Responses faster than 1000ms resulted in an error message (“Too Fast. Our algorithm has 

detected that you might need to take longer to think through your answer. You will now incur 

a 5 second penalty and then will be asked to do the trial again”), a 5-second penalty, and then 

the trial was re-started. This threshold was selected to give participants sufficient time view the 

https://gorilla.sc/
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images, detect and compare the emotions evoked each by them, and then respond by clicking 

on the scale.  

To map the shape and size of participants’ internal emotional landscapes, similarity 

ratings were transformed into (Euclidean) distance scores through multidimensional scaling 

(using the Scikit-learn library in Python). Multidimensional scaling (MDS) is a statistical 

technique that represents objects (emotional images, lexical items etc.) as points in 

multidimensional space wherein close similarity between objects corresponds to close distances 

between the corresponding points in the representation466. The distance between points in 

multidimensional space can then be plotted (see Figure 4.1).  Mean distances within specific 

emotion clusters comprised the average of the Euclidean distances for the 10 angry-angry, 10 

happy-happy and 10 sad-sad image pairs, respectively. Mean distances between specific 

emotion clusters comprised the mean of the Euclidean distances for the 25 angry-happy, 25 

angry-sad, and 25 happy-sad image pairs, respectively. We then computed mean distances 

within and between clusters by averaging across emotions/emotion pairs. Larger distances 

between and within emotion clusters reflect greater emotion differentiation.  

The second part of our EmoMap paradigm was inspired by the work of Huggins and 

colleagues292. In this part of the task, on each trial, participants were presented with three 

images from the Nencki Affective Picture System429, and were required to make a decision. 

This task involved four conditions: one non-emotional control condition, and three emotional 

experimental conditions exploring the experience of anger, happiness and sadness respectively. 

First, participants completed the non-emotional control condition. In this condition, participants 

were required to select which of the three (neutral) images they found most colourful using 

their mouse cursor. Two of these images were in colour and one was in grayscale, thus serving 

as an attention check. If participants selected the grayscale image, they were presented with an 
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error message, incurred a 5-second penalty, and then were asked to do the trial again. Following 

this, participants completed the three experimental conditions in a random order. In these 

conditions, participants were required to select which of the three images made them feel most 

angry, happy or sad (e.g., in the angry condition, participants had to decide which of the three 

images made them most angry) using their mouse cursor. As was the case in the control 

condition, there was a ‘trap’ image on each trial in the emotional conditions. On each trial, two 

of the images were strong inducers of the target emotion (e.g., sadness), and one was a strong 

inducer of another emotion (e.g., happiness), thus serving as an attention check. If participants 

selected the image that strongly induced the non-target emotion, they were presented with the 

error message discussed above, incurred a 5-second penalty, and then were asked to do the trial 

again. Within each condition, there were 11 target (i.e., non-trap) images which were presented 

in all possible unique pairs across 55 trials. The images that were selected had previously been 

identified as successful inducers of the target emotion430. In addition, in order to make the 

experimental conditions comparable, we ensured that the mean intensity ratings (angry = 3.53; 

happy = 3.50; sad = 3.56) and standard deviation of intensity ratings across images within a 

condition (angry = 0.80; happy = 0.80; sad = 0.81) were similar for each emotion. 

Precision scores were calculated for each condition in line with the logical consistency 

of a participants’ decisions. To demonstrate this, consider a participant that selects image one 

over image two and image two over image three; both of these decisions are consistent with 

one another. However, if the participant then selected image three over image one, this would 

be considered inconsistent with their previous judgments292. Precision requires participants to 

differentiate between the intensity of emotion evoked by each image292. Thus, here inconsistent 

decisions likely stem from imprecision in how individuals experience an emotion across 

multiple instances292.  
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We followed the procedures of Huggins et al292 to calculate precision. We first 

quantified each participant’s image rankings by summing the number of times they chose each 

image. If a participant was completely consistent in their decisions within a condition, rank 

scores would follow a linear hierarchy: the image that was most emotionally evocative (or 

colourful) should be chosen in all ten trials it appeared (scoring 10), the second-highest should 

be chosen in nine of ten trials (scoring 9), and so on, the image they found least emotionally 

intense (or colourful) should never be chosen (scoring 0). Subsequently, we examined how 

image rankings related to the decisions made on each trial. Images with higher ranks should 

evoke stronger emotional reactions than those with lower ranks. Thus, inconsistent decisions 

occur when an image with a lower ranking is chosen over an image with a higher ranking. For 

each trial, item differences were calculated as the rank score for chosen item minus the rank 

score for the unchosen item. For inconsistent decisions, the item difference score would be 

equal to or less than zero. More extreme inconsistencies (e.g., selecting the image with the 

lowest ranking over the one with the highest ranking) resulted in more negative item 

differences. We then summed the item differences for each condition, to produce total precision 

scores, with greater scores reflecting higher precision. If a participant made completely 

consistent decisions within a condition, their score would be 220.  

 

4.5. Method. Experiment 2: Developing ExpressionMap 

4.5.1. Participants 

 The first (“original”) sample for Experiment 2 comprised 98 participants recruited via 

Prolific. The second, replication, sample comprised 193 participants recruited via the School of 

Psychology’s Research Participation Scheme database and Prolific. For both samples, 

individuals were eligible to take part if they were between the ages of 18 and 65, fluent in 
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English, had normal or corrected-to-normal vision, and had access to a computer/laptop with 

Google Chrome and an internet connection. The sample size for our replication sample was 

based on an a priori power calculation using GLIMMPSE341. To have 90% power to replicate 

our finding from sample one that representational precision predicted emotion recognition 

accuracy, 68 participants were necessary (alpha level = 0.05). Since effect sizes are commonly 

inflated342 and using larger samples improves the precision of parameter estimates467, we 

recruited a larger number of participants (N = 193; almost triple the sample size generated in 

our power calculation).  

Participant characteristics are displayed in Table 4.3. Information regarding 

participants’ ethnicities is reported in Appendix 3.5. Notably, one participant in the original 

sample (1.02%) and two participants in the replication sample (1.02%) reported that they had a 

diagnosis of autism spectrum disorder. Therefore, we conducted our analyses both including, 

and then excluding, these participants. Since the general pattern of results was unaffected by 

their removal, we included these participants in our final statistical analyses. 

Table 4.3. 

Means and standard deviations of participant characteristics. In the column on the right-hand 
side, means are followed by standard deviation in parentheses.  

Variable Experiment 2, Original sample (n=98) Replication sample (n=193) 
Sex 52 Male, 46 Female 41 Male, 152 Female 
Age 33.34 (9.79) 23.41 (9.04) 
NVR 58.45% (16.62%) 61.24% (14.79%) 
AQ-50 18.65 (7.64) 18.94 (6.79) 
TAS-20 46.00(11.82) 48.13 (11.58) 

 

4.5.2. Procedures 

First, informed consent was obtained from all participants before conducting the study. 

Participants in the original sample completed demographics questions, followed by the 50-item 
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Autism Quotient304, and the 20-item Toronto Alexithymia Scale344 on Qualtrics 

(https://www.qualtrics.com). Following this, these participants completed three tasks that 

employed dynamic point light displays (a series of dots that convey biological motion) of angry, 

happy and sad facial expressions (PLFs) on Gorilla (https://gorilla.sc). Participants completed 

ExpressionMap followed by the Visual Matching task, followed by the PLF Emotion 

Recognition task (see Chapter 2 for a full description). Finally, participants completed the 

MaRs-IB343 (see Chapter 2 for a full description). For those in the replication sample, 

participation was split across two parts. In part one, participants completed demographics 

questions, the AQ, TAS and EmoMap paradigm. In part two, which was completed in a separate 

sitting at least 24 hours after finishing part one, participants completed ExpressionMap, the 

Visual Matching Task, the PLF Emotion Recognition task, and the MaRs-IB. For both samples, 

all parts of the study were completed online.  

4.5.3. Materials and Stimuli  

ExpressionMap 

In this task, on each trial, participants were presented with a dynamic point light display of the 

face (PLF; on average approximately 6 seconds in length) that looped such that it played 

continuously. Participants were instructed to “move the dial to change the speed of this video 

until it matches the speed of a typical ANGRY/HAPPY/SAD expression”.  

The PLFs were originally created by asking actors to read a sentence (“my name is John 

and I’m a scientist”) in a happy, angry or sad manner239. The emotion depicted in the stimulus 

video matched the instructed emotion, i.e., on a trial where an angry facial expression was 

presented, participants were only asked to manipulate the speed of the video so that it matched 

the speed of a typical angry expression. Consequently, participants were matching the speed of 

the displayed PLF to their imagined visual representation of that expression (the speed they 

https://www.qualtrics.com/
https://gorilla.sc/
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would imagine “in their mind’s eye”). Participants could change the speed of the video by 

moving a dial clockwise to increase the speed of the animation or anticlockwise to decrease the 

speed of the animation. The minimum and maximum point on the dial corresponded with 25% 

and 300% of the recorded speed respectively. Once participants were satisfied, they pressed the 

spacebar to continue. There was no time limit for participants to respond on each trial. 

Participants were shown four repetitions of each PLF stimulus video (each one starting at a 

random speed) across four actors. This resulted in 16 videos per emotion (4 actors x 4 

repetitions x 3 emotions = 48 trial in total). Participants completed three practice trials (one for 

each emotion at 100% starting speed) and then the 48 randomly ordered experimental trials 

across three blocks. Participants were encouraged to take breaks between blocks. 

The ExpressionMap task was adapted from Keating, Sowden and Cook449 (Chapter 3). 

In the current study we improved the task by a) using a dial, instead of the slider used 

previously, thus making the minimum and the maximum points on the scale more ambiguous, 

b) starting each video at a random speed thus reducing potential response biasing, c) setting the 

initial dial position to a random orientation that did not correspond to starting speed, thus 

ensuring that the minimum and maximum points, and the point of the 100% recorded speed 

were at different spatial locations on the dial – as a result, participants were unable to be 

consistent simply by selecting a similar location on the scale each time  –, d) incorporating a 

reaction time check- when participants responded faster than 5 seconds on a trial, they were 

presented with an error message, incurred a 5 second penalty, and then were asked to do the 

trial again and, e) incorporating a walk-through video to facilitate comprehension of task 

instructions. 

Whereas existing methods aim to construct comprehensive representations of emotional 

expressions (e.g., 384,463,464), ExpressionMap seeks to assess accompanying features of those 
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representations (e.g., speed, precision and differentiation; see 468). ExpressionMap provides an 

index of the percentage speed attributed to each of the stimulus videos by participants (e.g., if 

a participant attributes 130% speed to an expression, their representation for that expression is 

1.3 times faster than the recorded speed). Following the procedures outlined in Keating, 

Sowden and Cook449, we calculated the true speed attributed to each of the PLFs (in pixels per 

frame) by multiplying the percentage speed attributed, divided by 100, with the speed of the 

actor’s facial movement in the original video. For example, for a trial in which a participant 

attributed 200% speed to a face moving at 2.5 pixels/frame, the true speed attributed to the 

expression would be 5 pixels/frame [i.e., (200 ÷ 100)	× 	2.5] (see 449 for more information). 

This task operates on the premise that, compared to participants with precise visual 

representations, those with less precise representations of emotion would attribute more 

variable speeds to the expressions469. For instance, someone with a precise visual representation 

of anger would attribute similar speeds across repetitions (e.g., by attributing 120% speed, 

121% speed and 119% speed to the angry expression). In contrast, someone with a less precise 

visual representation would be more variable (e.g., by attributing 120% speed, 60% speed and 

180% speed to an angry expression). Therefore, to index the precision of visual emotion 

representations, we took the standard deviation of the speeds attributed to one emotion for one 

actor (i.e., actor 1, angry expression) across the 4 video repetitions. Following this, we 

multiplied standard deviation scores by -1 so that our variable would now represent precision 

(note that in Figures 4.4 and 4.5 we also added a constant of 2.52, since the lowest score was -

2.52, to facilitate interpretation). We then calculated mean representational precision for each 

of the emotions (angry, happy and sad) by taking a mean of the precision scores for each actor 

within an emotion (e.g., taking a mean of the precision scores for angry expressions across 
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actors 1, 2, 3 and 4). Mean representational precision was calculated by taking a mean of the 

precision scores for the angry, happy and sad PLFs. 

Finally, this task also provides an index of the ‘distance’ between emotions in 

participants’ visual representations of facial expressions. To calculate distance scores, we 

subtracted the speed attributed to one emotion from the speed attributed to another and then 

took the absolute value of this number. For example, to calculate distance between happy and 

angry, we subtracted the speed attributed to happy from the speed attributed angry, and then 

took the absolute value. Mean distance was calculated by taking a mean of the scores for the 

angry-happy, angry-sad, and happy-sad distances.  

Visual Matching Task 

We reasoned that an individual might have beautifully precise mental representations 

of others’ expressions and still struggle to recognise others’ emotions due to an inability to 

match the incoming expression data with the stored representation. Thus, we developed the 

Visual Matching task to assess how well participants can visually match the speed of one 

expression to another (displayed) expression. Each trial began with a PLF stimulus video on 

the left-hand side of the screen. After this video had played once, the same PLF stimulus video 

also appeared on the right-hand side of screen, moving at a random speed, and continued to 

play in a loop. Participants were instructed to “move the dial to change the speed of the video 

on the right until it matches the speed of the video on the left”. Turning the dial clockwise 

increased speed, anticlockwise movements decreased speed. The minimum and maximum 

points on the dial corresponded with 25% speed and 300% of the recorded speed respectively 

(participants were not explicitly informed about this). Once the participant was satisfied, they 

pressed spacebar to continue. Participants were shown four repetitions of each PLF stimulus 

video for each of the four actors; each repetition had a different starting speed. In each full set 
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of 16 (4 actors x 4 repetitions) stimulus videos for an emotion, the starting speed ranged from 

50% to 200% of the recorded speed, in 10% increments (i.e., 50%, 60%, 70%, 80%, 90%, 

100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%). This range of 

starting speeds ensured that participants were able to match across a variety of speeds. 

Participants completed three practice trials (one for each emotion at 100% starting speed) and 

then the 48 randomly ordered experimental trials across three blocks. Participants were given 

the opportunity to take breaks between blocks.  

The Visual Matching task provides an index of how well participants can visually match 

the speed of one expression to another. To calculate deviation scores, we subtracted the 

percentage speed attributed to the expression on the right from the percentage speed of the video 

on the left and took the absolute value of this deviation score as a measure of how far away the 

speeds of the two animations were (irrespective of whether they attributed too high or too low 

speed). Finally, we calculated mean deviation scores by taking a mean of all of the absolute 

deviation scores. Higher deviation scores representation greater difficulties matching the two 

expressions.  

4.5.4. Transparency and openness 

In this manuscript, we report how we determined our sample sizes, all data exclusions, 

all manipulations, and how we calculated all measures. All datafiles, data-processing code, 

analysis scripts, and tasks are openly available at https://osf.io/hd8u2/wiki/home/. The data 

were processed and analysed using R (R Studio version 2021.09.2), Python (Jupyter Notebook 

version 6.4.8), and JASP (version 0.16). All our linear mixed effects models were conducted in 

R Studio using the lmer function (from the lme4 package). For these models, we also used the 

Anova function (from the car package) to conduct a Type III ANOVA with a Kenward-

Roger470 approximation for degrees of freedom, as supported by Luke471. For all linear mixed 

https://osf.io/hd8u2/wiki/home/


 154 

effects models, the relationships between the experience, representation, and recognition of 

emotion hold when the control variables are included (as reported in the Results section) and 

excluded, thus affording us greater confidence in our findings. In R Studio, we also conducted 

a random forest analysis431 employing the Boruta wrapper algorithm (Boruta function from 

Boruta package432), and structural equation modelling using the sem() function (from the 

lavaan package). In JASP, we conducted Bayesian linear regressions (using a default Jeffreys-

Zellner-Siow prior; r scale = 0.354) to determine the relative strength of evidence for the 

experimental versus null hypotheses.  For these analyses, we followed the classification scheme 

used in from Lee and Wagenmakers352: BF10 values between one and three represent weak 

evidence, between three and ten moderate evidence, and greater than ten strong evidence, for 

the experimental hypothesis.  
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Chapter 5: Autistic adults exhibit highly precise representations of 
others’ emotions but a reduced influence of emotion 
representations on emotion recognition accuracy 
 
 

In Chapter four, we demonstrated that the ability to precisely visualise and match 

facial expressions contributed to emotion recognition for non-autistic people. As such, our 

results illuminate potential candidate mechanisms that may underpin the emotion recognition 

difficulties of autistic individuals. It could be, for example, that autistic individuals have less 

precise visual emotion representations, a poorer ability to visually match two expressions, or 

both, thus leading to emotion recognition difficulties (e.g., with anger147,191,219-223). The 

following chapter tests this possibility, first comparing the precision and differentiation of 

visual emotion representations and matching ability between groups (after controlling for 

alexithymia), and second assessing the contribution of these factors to emotion recognition for 

both autistic and non-autistic people.  
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Abstract 

To date, studies have not yet established the mechanisms underpinning differences in autistic 

and non-autistic emotion recognition. The current study investigated whether autistic and non-

autistic adults differed in terms of the precision and/or differentiation of their visual emotion 

representations and their general matching abilities, and second, explored whether differences 

therein were related to challenges in accurately recognising emotional expressions. To fulfil 

these aims, 45 autistic and 45 non-autistic individuals completed three tasks employing 

dynamic point light displays of emotional facial expressions. We identified that autistic 

individuals had more precise visual emotion representations than their non-autistic 

counterparts, however, this did not confer any benefit for their emotion recognition. Whilst for 

non-autistic people, non-verbal reasoning and the interaction between precision of emotion 

representations and matching ability predicted emotion recognition, no variables contributed to 

autistic emotion recognition. These findings raise the possibility that autistic individuals are 

less guided by their emotion representations, thus lending support to Bayesian accounts of 

autism.  
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5.1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterised by 

restricted and repetitive interests and difficulties with social communication and interaction151. 

While not considered a core diagnostic feature, emotion recognition has been a topic of interest 

in autism research for over 30 years because it is often thought that challenges in this area might 

be an underlying cause for social difficulties. However, findings in this literature are famously 

mixed (see 146 for a review): some studies find differences in emotion recognition between 

autistic  and non-autistic people, some studies find no differences and some find quite specific 

difficulties (e.g. with angry expressions 147,191,219-222,385). In this literature it is often the case that 

“emotion recognition” is treated as a unitary or modular ability. However, recent work has 

begun to elucidate several component processes that contribute to individual differences in 

emotion recognition. Here we 1) compare autistic and non-autistic individuals on various 

abilities which we know to be involved in (non-autistic) emotion recognition, and 2) test 

whether these processes also contribute to emotion recognition in autistic adults. Understanding 

the extent to which different tasks rely on these factors might help us to disentangle the mixed 

findings in this literature. 

Recent work has highlighted that a person’s internal templates - that is the way one 

pictures emotional expressions in the “minds’ eye” (also known as a visual representations of 

emotion; e.g., 384,388,463,464,472) - are important contributors to emotion recognition accuracy 

(Chapter 4)473. Signal detection theory (see 140) tells us that at least two properties of visual 

representations should predict emotion recognition accuracy: precision and differentiation. That 

is, a ‘signal’ distribution and a ‘noise’ distribution that are both imprecise (wide) and indistinct 

(overlapping) provide low sensitivity to discriminate between ‘signal’ and ‘noise’. Thus, an 

individual with an imprecise visual representation of anger, which overlaps with the 
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representation of sadness should find it difficult to discriminate between the two emotions. Our 

recent work tested this hypothesis by asking (non-autistic adult) participants to manipulate a 

dial to change the speed of a dynamic point light face (PLF) stimulus (depicting an actor 

speaking in a happy, angry or sad fashion) until it moved at a speed they typically associated 

with an angry, happy or sad expression473. Thus, providing us with an estimate of the speed of 

participants’ internal visual representations of emotional expressions. Participants also 

completed an emotion recognition task in which they rated the extent to which PLF stimuli 

depicted different emotional expressions473. Although we did not confirm a role for 

differentiation in emotion recognition, we did find (across two samples with a total N = 281) 

that adults with less precise emotion representations typically exhibited lower emotion 

recognition accuracy scores469,473. Thus, signal detection theory highlights two features of 

visual emotion representations that may be important in emotion recognition: 1) the precision, 

and 2) the differentiation of these visual representations. Our empirical work to date has 

confirmed an important role for precision. 

In addition to precision, our previous work showed that the general ability to match two 

images also plays an important role in emotion recognition. We theorized that to have superior 

emotion recognition, one may need to have a) precise representations of facial expressions, and 

b) the ability to match incoming expression stimuli to internal representations. To test matching, 

we asked participants to alter the speed of a PLF until it matched the speed of a second PLF473. 

Across both a discovery and replication sample, we found an interaction between 

representational precision and matching ability. That is, for participants with a good ability to 

visually match two expressions, representational precision was less important for emotion 

recognition. In contrast, if participants had a poorer ability to match expressions, 

representational precision played an important role.  
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In a parallel literature, there is preliminary evidence that autistic individuals struggle to 

differentiate their own emotions148. Since autistic individuals may struggle with emotion 

differentiation they may also struggle to differentiate visual representations of emotion. That 

is, autistic individuals may picture emotional expressions in their mind’s eye as more similar 

and overlapping than their non-autistic peers (e.g., the angry and sad expressions they imagine 

look very similar and are easily confused for one another). This is particularly plausible given 

that individuals with less differentiated experiences of emotion typically have less 

differentiated visual representations too473. As mentioned previously, since overlapping 

‘signal’ and ‘noise’ distributions may make it difficult to discriminate the ‘signal’ from the 

‘noise’140, it may be that difficulties differentiating visual representations are responsible for 

emotion recognition differences in autism. However, research has not yet tested this idea.  

In sum, recent work has begun to elucidate a number of factors that could account for 

individual differences in emotion recognition, including the precision and differentiation of 

visual representations of expressions and visual matching ability. It follows that emotion 

recognition difficulties in autism could be due to differences in one, or many, of these factors. 

For instance, autistic individuals may have more imprecise and/or overlapping visual 

representations of emotional expressions. Unpacking this may help to explain why not all 

studies find differences between autistic and non-autistic people with respect to emotion 

recognition: perhaps some emotion recognition tasks rely more on either the precision or 

differentiation of visual emotions representations, or more on these representations in general, 

than others. For example, affect matching paradigms, in which participants judge whether two 

expressions show the same or different emotions may place less emphasis on visual emotion 

representations (as participants compare expressions that are presented to them sequentially or 
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simultaneously) than labelling paradigms, where participants may have to compare to their 

visual representations in order to produce the correct emotion label. 

The current study therefore, first investigated whether autistic and non-autistic adults 

differed with respect to the precision and/or differentiation of their visual representations of 

emotion and their general matching abilities (in the speed domain), and second explored 

whether differences therein were related to individual differences in accurately recognising 

emotional expressions. In our study, we also controlled for alexithymia – a subclinical condition 

wherein individuals experience difficulties in identifying their own emotions194 – to ensure that 

any differences between the groups relate to autism, and not to alexithymia, as has been found 

in previous work207,209,212,213.  

Recent Bayesian accounts of autism propose another possible source of differences in 

emotion recognition in autism. According to Bayesian accounts, prior expectations bias the 

perception of incoming sensory information. With respect to emotion recognition, if one 

expects to observe a happy expression, one will attend more to features that generally signal 

happiness and less to features that tend to signal other emotions406. Bayesian theories of autism 

argue that autistic people are less affected by prior expectations than neurotypical people259,260 

and place greater emphasis on incoming sensory information (see 261). Therefore, for non-

autistic people, expectations can bias the perception of expressions (i.e., incoming sensory 

stimuli) such that they better match visual representations of expected emotions. For autistic 

people the perception of expressions may be less affected by prior expectations, and therefore 

their perception of the incoming expression may be less biased towards their visual emotion 

representation. If it is the case that autistic individuals are less affected by their visual 

representations of emotion (relative to non-autistic people), we would expect emotion 

recognition accuracy to be predicted by the precision and differentiation of these 
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representations to a lesser extent than for non-autistic individuals. Consequently, in addition to 

investigating whether autistic and non-autistic adults differ in terms of matching abilities, the 

precision and/or differentiation of visual emotion representations, we also assessed the extent 

to which a number of different abilities were implicated in autistic and non-autistic emotion 

recognition.  

 

5.2. Results 

To determine whether there are differences between autistic and non-autistic individuals 

in these abilities, the current study employed three tasks involving dynamic point light displays 

of angry, happy and sad facial expressions. The first task was an adapted version of our 

“ExpressionMap” task449,468,473 which uses a method of adjustment design. On each trial, 

participants were required to manipulate a dial to speed-up or slow-down PLF stimuli until they 

matched their visual representation of anger, happiness, and sadness. This task assesses how 

precise (by assessing variability, across trials, in attributed speed) and overlapping (via 

assessing the mean distance between emotions in terms of speed) participants’ visual emotion 

representations are. In the second task, known as the “Visual Matching Task”473, participants 

were required to match the speed of a PLF to another displayed PLF. Since participants are 

provided with a visual representation to match to, they do not need to imagine anything, 

therefore this task indexes visual matching ability independent of imagination ability. Finally, 

we used our previously validated task239,385 to index emotion recognition ability. On each trial, 

participants viewed an angry, happy, or sad PLF and rated the extent to which the expression 

looked angry, happy and sad on visual analogue scales. Emotion recognition accuracy was 

calculated as the correct emotion rating minus the mean of the two incorrect emotion ratings. 
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In the following section, we (1) compare autistic and non-autistic participants on the 

precision and differentiation of visual emotion representations, matching abilities, and emotion 

recognition, and (2) determine whether the same processes are implicated in autistic and non-

autistic emotion recognition.  

5.2.1. Analyses comparing autistic and non-autistic participants 

First, to compare the precision of visual emotion representations (as measured by the 

ExpressionMap task) across participant groups, we conducted a linear mixed effects model with 

representational precision as the dependent variable, emotion (angry, happy, sad), group 

(autistic vs non-autistic), the interaction between emotion and group [independent variables], 

age, sex, non-verbal reasoning ability and alexithymia [control variables] as predictors, and 

subject number as a random intercept. This revealed that there was a significant main effect of 

emotion [F(2,176) = 87.13, p < .001]: precision scores were highest for sad [mean(standard 

error of the mean; SEM) = -0.52(0.03)], followed by happy [mean(SEM) = -0.68(0.04)], 

followed by angry expressions [mean(SEM) = -0.91(0.04)]. In addition, both age [F(1,83) = -

18.23, p < .001], and non-verbal reasoning [F(1,83) = 18.10, p < .001] predicted 

representational precision. Most importantly, however, we identified a main effect of group 

[F(1,83) = 6.25, p = .014]: in contrast to our hypothesis, the autistic participants [mean(SEM) 

= -0.64(0.04) exhibited significantly higher precision than the non-autistic [mean(SEM) = -

0.77(0.04)] participants, suggesting that autistic individuals have more precise visual 

representations of emotion. The emotion x group interaction [p = .594], sex [p = .207], and 

alexithymia [p = .469] were not significant predictors of representational precision.  

Next, to compare the distances between emotion representations across participant 

groups, we constructed a linear mixed effects model with distance as the dependent variable, 

emotion pair (angry-happy, angry-sad, happy-sad), group (autistic, non-autistic), the interaction 
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between emotion pair and group [independent variables], age, sex, non-verbal reasoning, and 

alexithymia [control variables] as predictors, and subject number as a random intercept. In line 

with the results from our previous study [30], this analysis found that there was a significant 

main effect of emotion [F(2,176) = 74.31 p < .001]: the distance between angry and sad emotion 

representations was largest [mean(SEM) = 2.25(0.11)], followed by angry and happy 

[mean(SEM) = 1.21(0.09)] and happy and sad [mean(SEM) = 1.14(0.07)]. There was no main 

effect of group [p = .117], nor an interaction between emotion pair and group [p = .317], thus 

autistic and non-autistic individuals do not significantly differ in the differentiation of visual 

emotion representations. Finally, age [p = .080], sex [p = .174], non-verbal reasoning [p = .390] 

and alexithymia [p = .594] did not predict the distance between emotion representations.  

Next, to compare the matching difficulty of the autistic and non-autistic participants, we 

ran a linear mixed effects model of matching difficulty as a function of emotion (angry, happy, 

sad), group (autistic, non-autistic), the emotion x group interaction [independent variables], age, 

sex, and non-verbal reasoning [control variables] as predictors, and subject number as a random 

intercept. This analysis revealed that non-verbal reasoning ability was a significant negative 

predictor of matching difficulty [F(1,83) = -15.75, p < .001]: those with higher non-verbal 

reasoning had a greater ability to match two visually displayed expressions on speed. 

Importantly, there was no significant main effect of group [p = .255] or an emotion x group 

interaction [p = .795], indicating that autistic and non-autistic individuals had similar matching 

ability across all emotions. There was also no significant main effect of emotion [p = .058]. 

Age [p = .188], sex [p = .388], and alexithymia [p = .149] were also not significant predictors 

of matching difficulty.  

Finally, we constructed a linear mixed effects model of emotion recognition accuracy 

(as measured by the PLF emotion recognition task) as a function of emotion (angry, happy, 



 165 

sad), spatial level (50%, 100%, 150% spatial exaggeration), kinematic level (50%, 100%, 150% 

speed), group (autistic, non-autistic), the interaction between these variables [independent 

variables], age, sex, non-verbal reasoning, and alexithymia [control variables] as predictors, 

and subject number as a random intercept. This revealed that there was no significant main 

effect of group or any significant interactions with group (all p > .05). Therefore, the autistic 

and non-autistic participants exhibited comparable levels of accuracy across different emotions, 

speeds, and levels of spatial exaggeration. The remaining results from this analysis are reported 

in Appendix 4.1 as they are outside the scope of the current study.  

5.2.2. Determining the contributors to autistic and non-autistic emotion recognition 

To determine the relative importance of our variables of interest for autistic and non-

autistic emotion recognition, we conducted a random forests analysis431 in each group using the 

Boruta432 wrapper algorithm (version 7.7.0; as in 473). Random forest regression is a supervised 

machine learning technique that constructs a large number of decision ‘trees’, each predicting 

a continuous outcome variable with a collection of factors, and then aggregates these 

predictions into one final result (by taking a mean of the predictions from the individual tress). 

The Boruta wrapper algorithm starts by randomly shuffling each predictor variable and adding 

these shuffled variables (termed “shadow features”) to the dataset. Following this, across many 

iterations (here, 1500), the algorithm trains a random forest regression on all the predictors, as 

well as their shuffled copies (i.e., “shadow features”), and categorises a variable as important 

(i.e., useful for predicting a target variable) when its importance score is higher than the highest 

importance score for a shadow feature (termed “shadowMax” in the analysis; see 474 for an 

accessible summary of the Boruta wrapper algorithm). In this analysis, our outcome variable 

was mean accuracy and our predictor variables were total AQ score, total TAS score, the AQ 

and TAS subscales (i.e., AQ Social Skills, AQ Attention Switching, AQ Attention to Detail, 
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AQ Communication, AQ Imagination, TAS Difficulties Describing Feelings, TAS Difficulties 

Identifying Feelings, and TAS Externally Oriented Thinking), non-verbal reasoning ability, 

age, mean representational precision, mean distance, and the interaction between 

representational precision and matching (‘representation matching’), (thus following similar 

procedures to 473).   

For non-autistic participants, of the 15 variables tested, two were confirmed important, 

one was tentative, and 12 were confirmed unimportant. Figure 5.1 (left) illustrates that the 

interaction between representational precision and matching and non-verbal reasoning were 

classed as important for non-autistic emotion recognition, with mean importance scores of 6.57 

and 13.88 respectively. AQ Imagination score was classified as tentatively important with a 

mean importance score of 3.78. All other variables were deemed unimportant. In contrast, for 

autistic participants all 15 of the tested variables were confirmed unimportant (see Figure 5.1 

right).  
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Figure 5.1.  

Random forest variable importance scores for non-autistic (left) and autistic (right) 
participants. 
 

Note. Variable importance scores for all 15 variables included in the Boruta random forest 
regression model, displayed as boxplots. Box edges correspond to the interquartile range 
(IQR); whiskers represent 1.5 × IQR distance from box edges; circles denote outliers. Box 
colour reflects the decision made by the algorithm: Green = confirmed important, yellow = 
tentative, red = rejected; grey = shadow features – shadowMin, shadowMean, shadowMax 
(minimum, mean and maximum variable importance scores of shadow features, respectively).  

 

Following this, to verify the result from our random forests analysis for non-autistic 

individuals, we constructed a Bayesian linear regression model (using a default Jeffreys-

Zellner-Siow prior; r scale = 0.354) of accuracy as a function of non-verbal reasoning, the 

interaction between representational precision and matching (‘representation matching’), and 
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AQ Imagination score. The strongest model that emerged from this analysis included just non-

verbal reasoning ability and the representational precision x matching interaction as predictors 

of emotion recognition accuracy (and not AQ I score) [BF10 = 149.64, R2 = 33.5%]. According 

to the model, there was very strong evidence that both of these factors contribute to emotion 

recognition accuracy for non-autistic individuals. When this analysis was conducted with 

autistic participants, there was moderate evidence that these variables did not predict emotion 

recognition accuracy [i.e., the null hypothesis; BF10 = 0.15, R2 = 1.00%], thus confirming the 

results from our previous analysis.  

 

5.3. Discussion 

 The current study compared autistic and non-autistic adults on features of visual 

representations thought to be implicated in emotion recognition (e.g., precision and 

differentiation of visual emotion representations, general matching ability), and investigated 

the contribution of these factors to emotion recognition in both groups. We found that the 

autistic participants had more precise visual emotion representations (in the speed domain) 

across all three emotions, thus contradicting our expectations. In addition, we identified that 

there were no significant differences between groups in emotion recognition accuracy. This was 

true across all levels of the spatial and kinematic manipulations. This finding contradicts 

previous studies identifying group differences in emotion recognition (e.g., 191,385,475,476) and 

instead supports literature suggesting emotion recognition performance is comparable between 

autistic and non-autistic people (e.g., 207,243,244,477,478). Furthermore, there were no significant 

differences between groups in differentiation – as indexed by the distance between emotion 

representations - or matching ability. Hence, although autistic individuals may have less distinct 

emotional experiences (as in 148), they have comparably distinct visual representations (at least 
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in the speed domain) to their non-autistic counterparts. In sum, these results show that the 

autistic participants had more precise emotion representations (in terms of speed), but that this 

did not confer any benefit in terms of accuracy on our task which indexed emotion recognition 

from dynamic stimuli (although it is possible that having more precise visual emotion 

representations benefits autistic individuals on other types of tasks).  

 Here, it is important to consider alternative explanations for our conclusion that the 

autistic participants had more precise visual emotion representations (relative to their non-

autistic peers). A primary question concerns whether the autistic participants achieved higher 

representational precision simply due to a focus on local details of the PLF expressions (i.e., a 

small number of points in the PLFs), thus facilitating more consistent speed attributions.  Our 

findings suggest that this is unlikely: post-hoc correlations demonstrate moderate evidence [r = 

-0.071, p = .509, BF10 = 0.181] for a null relationship between representational precision and 

the attention to detail subscale of the AQ. Therefore, it is unlikely that the autistic participants 

had more precise visual emotion representations simply due to a focus on local details in our 

ExpressionMap paradigm. Another explanation is that the autistic individuals have lower 

cognitive flexibility, resulting in these individuals approaching each trial in a similar way each 

time, leading to more precise visual representations. Again, this explanation is not probable 

since there is moderate evidence [r = 0.097, p = .364, BF10 = 0.152] for a null relationship 

between representational precision and the attention switching subscale of the AQ (a proxy for 

cognitive flexibility). As such, it is not the case that the autistic participants exhibited greater 

representational precision due to a focus on local details or reduced cognitive flexibility. Rather, 

our results suggest that autistic individuals truly have more precise representations of facial 

expressions in their mind’s eye (with respect to speed).  
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To determine the relative importance of various abilities (e.g., precision of 

representations, distance between representations, general matching ability) and clinically 

relevant individual differences (e.g., non-verbal reasoning, AQ, TAS) to autistic and non-

autistic emotion recognition, we conducted random forest analyses employing the Boruta 

wrapper algorithm. Whilst for non-autistic individuals, non-verbal reasoning ability and the 

interaction between representational precision and matching were classified as important, and 

AQ Imagination score was classified as tentatively important for emotion recognition, no 

variables were deemed important for autistic emotion recognition. Of particular note, none of 

the variables corresponding to features of emotion representations contributed to autistic 

emotion recognition (i.e., precision of representations, distance between representations, the 

representational precision x matching interaction). That is, these factors were no better than 

randomly shuffled data at predicting emotion recognition accuracy. Thus, aside from precision 

(where autistic participants exhibited more precise emotion representations in terms of speed) 

there were minimal differences between the groups (matching, distinctness and accuracy did 

not significantly differ); nevertheless, there were differences in the way these variables were 

related such that autistic participants did not exhibit the predictive relationship between features 

of representations and emotion recognition accuracy that is exhibited by non-autistic people. 

These results suggest differences in the psychological mechanisms underpinning emotion 

recognition from dynamic stimuli in autism.  

One possible mechanistic difference is that autistic individuals may not be ‘using’ their 

(precise) emotion representation (or ‘using’ them to a lesser extent) to help them recognise 

emotional expressions. This idea aligns well with Bayesian accounts of autism which posit that 

autistic individuals are less influenced by priors than non-autistic people (see 261). To date, there 

is mixed evidence in relation to these Bayesian accounts, with some studies suggesting weaker 
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prior influences, others suggesting no differences, and a handful suggesting larger prior 

influences in autism (see 479). Furthermore, there is variance across domains: for ‘social priors’, 

the evidence is almost evenly split between suggesting weaker prior influences and no 

differences, while for simpler perceptual priors there are usually no differences between autistic 

and non-autistic people (see 479). One issue that is unresolved in this field is the question of 

whether autistic individuals possess weaker priors and/or whether autistic individuals are less 

influenced by priors. The two are orthogonal to each other so that, in theory one could have 

strong priors but nevertheless be weakly influenced by them. Our results raise the hypothesis 

that - at least in the domain of emotion recognition – autistic individuals have strong priors (i.e., 

precise emotion representations in the speed domain) but are, nevertheless weakly influenced 

by them (i.e., the relationship between the priors and on emotion recognition accuracy is 

minimal). Future research is required to test this hypothesis.  

If it is true that autistic individuals are less guided by their visual emotion 

representations, we might expect these individuals to perform better on tasks that do not require 

a comparison between incoming facial expressions and internal templates. For example, they 

may perform better on affect matching paradigms, wherein participants have to judge whether 

two expressions show the same or different emotions (i.e., differentiate emotional expressions 

that are presented to participants sequentially or simultaneously), rather than labelling 

paradigms, where participants may have to compare to their visual representations in order to 

produce the correct emotion label. In line with this, whilst numerous studies employing 

matching paradigms show comparable emotion recognition performance between autistic and 

non-autistic people (e.g., 243,480-482), those employing labelling paradigms often document 

differences between these groups (e.g., 229,483-488). As such, our findings may help disentangle 
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mixed findings regarding emotion recognition in autism by suggesting that autistic individuals 

may have particular difficulties on tasks that mandate comparison to their internal templates.  

If autistic individuals are less guided by their visual representations of emotion, how are 

they able to achieve high levels of accuracy on our emotion recognition task? One plausible 

explanation is that autistic individuals have developed compensatory strategies that allow them 

to achieve comparable accuracy to non-autistic participants on certain tasks (e.g., in the current 

study; see 216). The nature of these compensatory strategies may vary from person to person, 

but one possibility is that autistic people use explicit cognitive or verbally mediated strategies 

to help them recognise emotions (in contrast to more automatic processing in non-autistic 

individuals216,256,257). Here, rather than automatically comparing their visual emotion 

representations to incoming facial expressions, the autistic participants may instead follow a 

“rule-based strategy” where they assess the degree to which the expression matches a list of 

features they have learnt to be associated with anger (e.g., “furrowed eye-brow”, “fast-moving”, 

etc.), happiness (“lip raising”, “teeth showing”, etc.), and sadness (“downturned mouth”, “slow-

moving”, etc), along with other emotions256,257.   

If autistic participants are using an alternative, cognitive or verbal, strategy we might 

expect emotion recognition performance to be more related to general cognitive or verbal ability 

for autistic people than for non-autistic people. Supporting this idea, studies have found that 

mental age215, and receptive and expressive language258 predict emotion recognition ability in 

autistic, but not non-autistic, children. Concurrently, if autistic individuals are less reliant on 

visuo-spatial cues (such as visual emotion representations), we might also expect non-verbal 

reasoning ability to be less associated with emotion recognition performance in the autistic than 

non-autistic group. In line with this, here we found that non-verbal reasoning ability was a 

significantly stronger predictor of emotion recognition accuracy [z = -2.251, p < .05] for the 
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non-autistic [t = 3.88, p < .001, BF10 = 74.16, R2 = 0.259], than autistic [t = -0.46, p = 0.650, 

BF10 = 0.321, R2 = 0.005], participants. Third, if it is true that autistic individuals employ more 

effortful cognitive/verbally mediated mechanisms to recognise emotions (rather than a more 

automatic processing style), this could explain why autistic individuals typically exhibit longer 

emotion recognition response latencies than non-autistic individuals (e.g., 229-238; though note 

there could be other explanations for longer response latencies). Here, the PLF stimuli were 

presented for relatively long durations (approximately 6 seconds on average), thus providing 

the autistic participants sufficient time to employ their compensatory strategies (and hence they 

were able to reach comparable accuracy scores). Further research is necessary to confirm 

whether autistic individuals adopt a rule-based strategy to read emotional facial expressions.   

Limitations 

The results of the current study are informative with respect to understanding the 

emotion representations of autistic and non-autistic individuals from facial motion cues alone. 

However, since many features of expressions are involved in emotion processing, such as 

shading/depth377 and pigmentation/colouring376, one should be cautious to assume that our 

findings generalise to full dynamic emotional expressions (e.g., full video recordings of facial 

expressions). It could be, for instance, that the precision of emotion representations and 

matching ability are important for autistic emotion recognition for full dynamic expressions, 

but not point-light displays. However, since our study was motivated by the observation of 

group differences in emotion recognition385, and links discovered between emotion 

representations and emotion recognition from facial motion cues alone (as in 469,473), it was 

crucial to our overall research question that we used PLF stimuli in the current study. Although 

this was an active design choice, motivated by previous research demonstrating a causal role of 

speed cues in emotion recognition239 and other a priori hypotheses (see 449), in future work we 
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will develop our paradigms to encompass other spatiotemporal emotion cues. Thus, facilitating 

comparisons of visual emotion representations between autistic and non-autistic individuals 

with respect to other cues such as the degree of spatial exaggeration, movement onset/offset, 

texture and colour. 

It is also important to address the limitations of our study with respect to 

generalizability. Notably, the participants in our sample were predominantly white (86.67%; 

see Appendix 4.2), highly educated (see Appendix 4.3), English-speaking individuals from 

highly developed countries. As such, our sample may not be representative of those with 

lower levels of education or intellectual disabilities, or those from different racial, ethnic, 

cultural, or socioeconomic backgrounds. With respect to the former, whilst autistic 

individuals with average to high IQs often have comparable emotion recognition performance 

(e.g., 209,244,477,478), those with co-occurring intellectual disabilities appear to struggle with 

emotion recognition (e.g., 215,489,490), relative to IQ or mental age-matched comparison groups 

(though see 491). Hence, we may not have found emotion recognition difficulties here due to 

our autistic participants possessing high levels of intelligence (as demonstrated by their high 

level of education). With respect to the latter, since the participants in our sample are 

predominantly from developed countries, where emotion recognition interventions are 

increasingly being offered to autistic individuals (e.g., 476,492,493), it may be that some of our 

autistic participants have undergone training in the past, thus improving their emotion 

recognition scores. Hence, our findings may not represent the emotion recognition 

performance of autistic individuals from less developed countries. Future studies should aim 

to dismantle barriers to inclusion to boost the representativeness of their samples, thus 

allowing us to identify whether specific subgroups of autistic individuals (e.g., those with 
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intellectual disabilities) have difficulties with emotion recognition (and other emotion 

processes).  

Conclusion 

The current study aimed to compare autistic and non-autistic participants on features of 

their emotion representations, and determine whether the same processes are implicated in 

autistic and non-autistic emotion recognition. Using a method of adjustment design, we found 

that autistic individuals had more precise visual emotion representations than their non-autistic 

counterparts (in the speed domain). That is, the autistic participants were more precise (i.e., 

consistent) in the speeds they attributed to angry, happy and sad facial expressions across 

repetitions. Nevertheless, this enhanced precision did not confer any benefit for their emotion 

recognition. Whilst for non-autistic people, non-verbal reasoning and the interaction between 

precision of emotion representations and matching ability predicted emotion recognition, no 

variables contributed to autistic emotion recognition. These findings highlight the possibility 

that autistic individuals are less guided by their emotion representations (a form of prior). Future 

research is necessary to identify what traits, processes, and strategies are implicated in autistic 

emotion recognition. 

 

5.4. Method 

This study was approved by the Science, Technology, Engineering and Mathematics 

(STEM) ethics committee at the University of Birmingham (ERN_16-0281AP9D) and was 

conducted in accordance with the principles of the revised Helsinki Declaration. Informed 

consent was obtained from all participants.  
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5.4.1. Participants 

A total of 45 autistic and 45 non-autistic participants were recruited from the 

Birmingham Psychology Autism Research Team (B-PART) database, the Centre for Autism 

Research Oxford database, and Prolific. All participants in the ASD group had previously 

received a clinical diagnosis of ASD from an independent clinician. As expected, the 

participants in the ASD group had significantly higher AQ scores than those in the non-autistic 

group (see Table 5.1.).  

The sample size was based on an a priori power analysis conducted using G*Power402, 

which focuses on replicating the group-difference in recognition accuracy (between autistic and 

non-autistic individuals) for angry videos at the normal spatial and speed level385. Using data 

from Keating et al385, 25 participants are required in each group in order to have 80% power to 

detect an effect size of 0.719 (Cohen's d) at alpha level 0.05 for this group-difference in 

accuracy. Since Button and colleagues342 argue that sample size calculations are likely to be 

optimistic, we recruited 45 participants in each group in order to ensure we obtained adequate 

power.  

Table 5.1.  

Means, standard deviations, and group differences of participant characteristics. In the central 
columns, means are followed by standard deviation in parentheses.  

Variable ASD (n=45) Non-ASD (n = 45) Significance 

Sex 30 Female, 14 Male, 1 Prefer not to say 26 Female, 19 Male p = .360 
Age 35.51 (14.06) 34.87(9.01) p = .398 
NVR 65.83%(15.31%) 63.70%(15.20%) p = .255 
AQ-50 37.31(7.64) 21.44(7.34) p < .001 
TAS-20 64.60(12.46) 57.49(11.99) p = .004 

Note. Age is in years. 
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5.4.2. Procedures 

Following participatory research guidelines318,319, prior to conducting this study, a group 

of individuals from the autism community (from the Birmingham Psychology Autism Research 

Team Consultancy Committee) provided feedback on our research (e.g., about task design and 

instructions, frequency of breaks, and suggested routes for dissemination, etc.). Following this 

consultation, we made a number of changes (e.g., added instruction videos for the 

ExpressionMap and Visual Matching task to promote understanding and accessibility) before 

starting to recruit participants.  

Participants completed demographics questions, followed by the 50-item Autism 

Quotient304 (as in Chapter 2), and the 20-item Toronto Alexithymia Scale344 (as in Chapter 2). 

Following this, participants completed three tasks that employed dynamic point light displays 

(a series of dots that convey biological motion) of angry, happy and sad facial expressions 

(PLFs). Participants completed the ExpressionMap paradigm473 (as in Chapter 4), followed by 

the Visual Matching task473 (as in Chapter 4), followed by the PLF Emotion Recognition task 

(as in Chapter 2). Finally, participants completed the Matrix Reasoning Item Bank (MaRs-

IB)343 (as in Chapter 2). Within each task, participants were encouraged to take regular breaks 

in between blocks. All parts of the study were completed online in one sitting. Together, these 

questionnaires and tasks took approximately two hours and 30 minutes to complete.  

5.4.3. Statistical analyses 

All frequentist analyses were conducted using R Studio (version 2021.09.2) and all 

Bayesian analyses were conducted using JASP (version 0.16). For all frequentist analyses, we 

used a significance threshold of p = 0.05 to determine whether to accept or reject the null 

hypothesis. The frequentist approach was supplemented with the calculation of Bayes Factors, 

which quantify the relative evidence for one theory or model over another. For all Bayesian 
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analyses, we followed the classification scheme used in JASP352: BF10 values between one and 

three reflect weak evidence, between 3 and 10 as moderate evidence, and greater than ten as 

strong evidence for the experimental hypothesis. Conversely, BF10 values between 1 and 1/3 

reflect weak evidence, between 1/3 and 1/10 as moderate evidence, and smaller than 1/10 as 

strong evidence for the null hypothesis respectively352.  
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Chapter 6: Similarities and differences in the psychological 
mechanisms involved in autistic and non-autistic emotion 
recognition 
 

In Chapter 4, in addition to showing that the precision of visual representations 

contributes to emotion recognition, we also demonstrated that (for non-autistic people) the 

precision and differentiation of emotional experiences is linked to emotion recognition 

performance. Hence, our results reveal additional potential candidate mechanisms that may 

underpin the emotion recognition difficulties of autistic individuals: they may have less 

precise and/or less differentiated emotional experiences than their non-autistic counterparts, 

leading to challenges interpreting other people’s emotions. This is particularly plausible given 

that previous studies have found autistic individuals have greater difficulties differentiating 

their own emotions than their non-autistic peers148. The following chapter tests this 

possibility, first by comparing the precision and differentiation of emotional experiences 

between groups after controlling for alexithymia, and second by examining the contribution 

of these factors to emotion recognition in each group, respectively.  
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Abstract 

The extant literature hints at the idea that differences in the autistic population in the recognition 

of others’ emotions might be related to differences in the way emotions are experienced. 

Specifically, autistic individuals may differ in the precision of emotional experiences, ability to 

differentiate between emotions, and/or semantic conceptions of emotions. Here, we empirically 

tested this claim by (1) investigating whether autistic and non-autistic adults differed in the 

precision and/or differentiation of their emotional experiences, and their understanding and 

differentiation of emotion concepts, after controlling for alexithymia, and (2) assessing the 

contribution of these emotional abilities to emotion recognition. Hence, 50 autistic and 50 non-

autistic individuals, matched on age, sex, and non-verbal reasoning completed several 

computer-based tasks. We found no group differences in emotional precision, emotion 

differentiation, and the understanding or differentiation of emotion concepts after controlling 

for alexithymia. For both groups, the ability to differentiate one’s own emotions contributed to 

enhanced emotion recognition. Whilst having more differentiated emotion concepts contributed 

to elevated emotion recognition for non-autistic people, having a more precise understanding 

of emotion concepts contributed for autistic people. These findings highlight similarities and 

differences in the mechanisms involved in autistic and non-autistic emotion recognition.  
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6.1. Introduction 

Autism spectrum disorder (hereafter ‘autism’) is a neurodevelopmental condition, 

characterised by restricted and repetitive interests and difficulties with social communication 

and interaction151. Although not considered a diagnostic feature, emotion recognition has been 

a topic of interest in autism research for over three decades because it is thought that difficulties 

in this area may contribute to social challenges (e.g., 215). To date, the majority of emotion 

recognition research has aimed to determine whether differences exist between autistic and non-

autistic individuals (see 146,191,216). This literature is famously mixed (see 146,218 for reviews): 

some studies show differences in emotion recognition between groups, while others find no 

differences, or emotion-specific difficulties (for example in recognising angry 

expressions147,191,219-222,385). Here, instead of focusing on assessing whether there are group 

differences in emotion recognition, we explore whether there are differences in the way in which 

autistic people read emotional expressions. That is, we ask whether autistic and non-autistic 

people typically employ different mechanisms to recognise the emotions of others.  

One potential candidate mechanism concerns the way in which autistic and non-autistic 

people use their experiences of their own emotions when recognising others’ emotions. A 

person’s internal emotional landscape is an important contributor to how well they can 

recognise the emotions of others (see 473). For instance, individuals who have more precise and 

differentiated emotional experiences typically find it easier to successfully recognise other 

people’s emotions. Our previous work provided empirical support for this in a large (N = 193) 

sample of non-autistic participants473. Participants completed a two-part “EmoMap” paradigm 

wherein they first viewed pairs of images each known to selectively induce either anger, 

happiness or sadness430, and rated how similar the evoked emotions felt. They subsequently 

selected the image that made them feel the most angry, happy, or sad. Emotion differentiation 
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was calculated using a multidimensional scaling algorithm to transform similarity scores into 

‘distances’ between emotions. Emotional precision was calculated based on the logical 

consistency of participants’ responses: if a participant selected image A over image B, and 

image B over image C, but then selected image C over image A, this would comprise an 

inconsistent decision and would indicate imprecision in their emotional experience. Thus, 

individuals with highly precise and differentiated emotions are precise in their emotional 

responses to the images and feel very different inside when they experience anger, happiness 

and sadness. Previously we found that (non-autistic) participants with more precise and 

differentiated emotional experiences typically had greater emotion recognition accuracy on an 

independent test473. At present, it is not known whether the same is true for autistic individuals.  

Another potential contributing factor to emotion recognition concerns how well 

individuals understand semantic emotion concepts (i.e., the semantic meaning associated with 

the emotion) and are able to differentiate these from one another (e.g., differentiating the 

concept of sadness from disappointment). Contemporary theories of emotion and emerging 

evidence suggest that semantic emotion concepts shape how individuals “construct” both 

emotional experiences (i.e., inferences about how oneself is feeling) and emotion perceptions 

(i.e., inferences about how others are feeling)51-56. Specifically, these theories suggest that from 

childhood through adulthood, emotion concepts evolve from a “positive vs. negative” 

dichotomy into increasingly differentiated multidimensional representations, producing 

concomitant shifts in the experience and perception of emotion51. That is, possessing emotion 

concepts that are differentiated across more dimensions will encourage individuals to 

differentiate between their own affective experiences, and others’ emotional facial expressions, 

across more dimensions (e.g., arousal and context in addition to valence). Hence, as we develop, 

we move away from conceptualizing, experiencing and perceiving, emotions as “good” and 
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“bad”, to conceptualizing, experiencing, and perceiving them more precisely (e.g., based on 

arousal, context, etc.).  

Although theories to date are highly informative, they have not yet specified whether 

emotion concepts influence experiences and perceptions independently and directly, or whether 

there are indirect effects amongst these variables (one variable influences another, which 

influences a third variable). It could be, for example, that having precise and distinct semantic 

emotion concepts helps an individual to differentiate between their own emotional states, which 

in turn helps them to tell apart others’ emotional expressions. To determine the mechanistic 

pathways amongst these variables, studies employing causal manipulation are necessary. 

However, at present, the putative direction of causality is unknown, thus making it impossible 

to determine which factor should be the target for manipulation. Here, research employing 

mediation analyses offer a potential solution, identifying the most mathematically pathways, 

and thus opening avenues to future studies formally testing the degree of causality and 

directionality between these variables. 

Preliminary work suggests that there may be differences between autistic and non-

autistic people in their ability to differentiate experiences and semantic concepts of emotion. 

Erbas and colleagues148, for example, have argued that autistic adults have less differentiated 

experiences and concepts of emotion than their non-autistic counterparts. In support of this, 

Erbas and colleagues found that the autistic participants sorted emotion terms into fewer 

conceptual groupings, suggesting these individuals make less fine-grained distinctions between 

emotion concepts. Autistic adults also had less differentiated emotional responses to emotion-

inducing images148. Importantly, however, this study did not control for alexithymia - a 

subclinical condition, highly prevalent in autistic people199, characterised by difficulties 

identifying and describing one’s own emotions194. This could be problematic as it is thought 
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that autistic individuals’ challenges with emotion-processing (including emotion 

differentiation) may be underpinned by alexithymia, and not autism (see 207). Further research 

is necessary to understand whether autistic people have less differentiated experiences and 

concepts of emotion after controlling for alexithymia.  

Although research has demonstrated a role for both emotion differentiation and 

emotional precision in the recognition of emotion473, studies have not yet examined emotional 

precision in the context of autism. However, it could be that emotional precision is lower in 

autism (in addition to emotion differentiation as described above), thus contributing to emotion 

recognition difficulties. Alternatively, given that different traits and processes appear to be 

involved in autistic and non-autistic emotion recognition147,246,426, this factor may not contribute 

to emotion recognition for autistic individuals at all.  

In sum, it is unclear whether there are differences between autistic and non-autistic 

individuals in emotional precision, and/or in the differentiation of experiences and semantic 

concepts of emotion, after controlling for alexithymia. Such differences could conceivably feed 

into challenges with recognising other’s emotional expressions. As such, the current study had 

two primary aims: (1) to investigate whether autistic and non-autistic adults differed in the 

precision and/or differentiation of their experiences and semantic conceptions of emotion, and 

(2), to assess whether differences therein were related to individual differences in emotion 

recognition. Additionally, in order to identify putative mechanistic pathways, we conducted 

exploratory post-hoc analyses to identify whether the ability to differentiate one’s own 

emotions mediates the relationship between the differentiation of emotion concepts and 

emotion recognition. Importantly, throughout, we control for alexithymia to ensure that any 

differences between the groups arise due to autism, and not alexithymia, as has been found in 

previous work207,209,212,213.  
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6.2. Method 

This study was approved by the Science, Technology, Engineering and Mathematics 

(STEM) ethics committee at the University of Birmingham (ERN_16-0281AP9D) and 

conducted in line with the principles of the revised Helsinki Declaration.  

6.2.1. Participants 

58 autistic and 59 non-autistic participants were recruited from the Birmingham 

Psychology Autism Research Team (B-PART) database, the University of Birmingham 

Research Participation Scheme, and Prolific. All participants in the ASD group had previously 

received a clinical diagnosis of ASD from an independent clinician. As expected, the autistic 

participants had significantly higher Autism Quotient (AQ)304 scores than the non-autistic 

participants [U = 384.5, Z = -7.24, p < .0001]. We employed a 2 standard deviation cutoff for 

identifying and excluding outliers as recommended by Berger and Kiefer494, due its low 

absolute bias (i.e., low risk of type-I and type-II errors494). That is, we excluded participants 

with AQ scores that were over 2 standard deviations higher or lower than their group mean, and 

those with performance on the emotion-based tasks over 2 standard deviations worse than their 

group means since it is likely that such low performance levels are due to attentional lapses and 

not representative of true ability. Reassuringly we observed that many of the excluded 

participants also failed multiple attention checks and that the exclusion of participants did not 

affect the results of the group comparisons on our main measures (i.e., no significant group 

differences were found in emotional precision, the differentiation of experiences and concepts 

of emotion, or understanding of emotion concepts regardless of whether these participants were 

included or excluded). After the exclusions, our final sample comprised 50 autistic and 50 non-

autistic participants that were matched on age, sex, and non-verbal reasoning ability (see Table 

6.1.).  The ethnicities of these participants are reported in Appendix 5.1.  
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Table 6.1.  

Means, standard deviations, and group differences of participant characteristics. In the central 
columns, means are followed by standard deviation in parentheses.  

Variable Non-autistic (n=50) Autistic (n = 50) Significance 

Sex 30 Female, 20 Male 26 Female, 22 Male, 2 Prefer not to say p = .304 
Age 31.64 (15.08) 32.42 (10.42) p = .382 
NVR 58.83% (13.81%) 61.80% (18.49%) p = .183 
AQ-50 20.04 (7.53) 36.66 (5.51) p < .001 
TAS-20 47.62 (13.20) 62.66 (10.11) p < .001 

Note. Age is in years. 

The chosen sample size was based on an a priori power analysis conducted using 

G*Power402. To have 80% power to detect emotion differentiation as a significant predictor of 

emotion recognition accuracy (effect size f2 = 0.159), at alpha level 0.05, 41 participants in each 

group are required. However, since Button and colleagues342 argue that sample size calculations 

are likely to be optimistic, we ensured that we had at least 50 participants in each group.  

6.2.2. Procedures 

Following participatory research guidelines318,319 prior to conducting the study, 

members of the autism community (from the Birmingham Psychology Autism Research Team 

Consultancy Committee) provided feedback on our research (e.g., on task design and 

instructions, suggested dissemination routes, etc.). Following this consultation, we made 

several changes before starting data collection.  

Participants provided informed consent and then completed demographics questions, 

the Autism Quotient304, and the Toronto Alexithymia Scale344 on Qualtrics (see Chapter 2 for 

a description of these questionnaires). Following this, participants completed EmoMap473 (see 

Chapter 4), the Point Light Face (PLF) Emotion Recognition Task239 (see Chapter 2), the 
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emotional vocabulary test (inspired by Nook et al51) and the Matrix Reasoning Item Bank343 

(see Chapter 2) on Gorilla.sc. All parts of the study were completed online.  

6.2.3. Materials and Stimuli  

EmoMap 

A full description of our EmoMap paradigm can be found in Chapter 4. An advantage 

of this paradigm is that it allows us to measure emotion differentiation without requiring 

participants to translate their emotional experiences into words, unlike existing tasks (see 450 

for a full discussion). This is particularly beneficial for the current study as autistic individuals 

sometimes have different language and communication profiles to non-autistic individuals (see 

495,496). Removing the requirement to translate their emotional experiences into words means 

that our task focuses on participants’ ability to differentiate their emotional signals, rather than 

their ability to produce emotion labels.   

Emotional Vocabulary Test 

We assessed participants’ semantic conceptions of 20 different emotions (i.e., affection, 

amusement, anger, anxiety, awe, contentment, depression, desire, disgust, embarrassment, 

excitement, fear, guilt, happiness, interest, irritation, loneliness, peaceful, sadness, surprise) 

using an adapted version of the emotional vocabulary test (from 51,497). The list of emotions was 

selected to include a) the six basic emotions498, b) emotions that occupy all four quadrants of 

the circumplex dimensions of arousal and valence41, and c) emotions that are most frequently 

evoked by standardised databases of images (e.g., the Nencki Affective Picture System, the 

International Affective Picture System)499. In this task, on each trial, participants were required 

to type a definition of an emotion word that was presented on screen. In order to ensure data 

validity, we i) explicitly instructed participants to come up with definitions themselves (rather 

than searching for them online), ii) forced the task into full-screen so that we could tell if 
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participants minimised the page to look-up definitions, and iii) excluded any definitions that 

matched those provided by the Oxford, Cambridge, and Meriam Webster dictionaries.  

In the current study, we consider how well participants understand the meaning (i.e., 

the semantic content) of emotion concepts, and how these meanings overlap between emotions. 

To this end, we calculated two types of scores using the definitions provided by participants - 

emotional vocabulary test scores, which pertain to the accuracy of participants’ definitions, and 

conceptual distance scores, which reflect the conceptual overlap in participants’ own 

definitions. To calculate emotional vocabulary scores, first, a trained experimenter assigned 

each definition a score of zero, one, or two (as in a WASI vocabulary test and in Nook et al51). 

A score of two was awarded if the participants provided i) a plausible and specific definition of 

the emotion, ii) a direct synonym of the emotion, or iii) a scenario that would conceivably evoke 

the given emotion and not other emotions. We assembled a list of definitions and synonyms 

(taken from the Oxford and Cambridge Dictionaries and from Nook et al51) which the 

experimenter referred to when scoring the responses. A score of one was awarded if the 

participant provided a definition that was of the correct valence or situation, but too vague to 

meet criteria for a two-point response. For example, if a participant defined loneliness as “the 

feeling of being alone”, or “a sad feeling”, they would score one point for this definition. To 

score two points, participants would need to include both parts of this definition: e.g., “the sad 

feeling you get when you are alone”. A score of 0 was awarded if the participants gave 

definitions, synonyms, or situations relevant to a different emotion. We calculated total 

emotional vocabulary scores by summing the scores for each item. As such, emotional 

vocabulary test scores ranged from 0 to 40, with higher scores representing more accurate 

understanding of emotion terms.  
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To calculate conceptual distance scores, we employed Natural Language Processing – 

a machine learning technique facilitating the analysis and synthesis of large quantities of 

language data500. Specifically, we used a pre-existing model (sentence-transformers/all-mpnet-

base-v2) designed to analyse the meaning of sentences, and then compute the conceptual 

similarity of sentence pairs (i.e., the similarity in meaning of sentence pairs). During its 

development, this model was trained on one billion sentence pairs, derived from numerous 

online sources, thus enhancing the reliability of the conceptual similarity estimates. In the 

current study, we used this model to compute conceptual similarity scores for each pair of 

definitions (e.g., Affection-Amusement, Affection-Anger, Affection-Anxiety…. Sadness-

Surprise), which we then inverted (by multiplying by -1) to get conceptual distance scores. 

These conceptual distance scores range from 0 to -1 (to 15 decimal places), with higher scores 

representing greater differentiation of semantic emotion concepts. To assess the differentiation 

of participants’ conceptions of same-valence emotions (within valence conceptual distance), 

we took a mean of the conceptual distance scores for the 45 positive-positive definition pairs 

(e.g., Affection-Amusement, Affection-Happiness, etc.), and 45 negative-negative definition 

pairs (e.g., Anger-Anxiety, Anger-Sadness, etc.), and then averaged across these values. To 

assess the differentiation of participants’ conceptions of opposite-valence emotions (between 

valence conceptual distance), we took a mean of the conceptual distance scores for the 100 

positive-negative definition pairs.  

Logically, if our task and analysis pipeline are operating as intended, between valence 

conceptual distance scores should be higher (i.e., more positive) than within valence conceptual 

distance scores. In order to verify this, we conducted a paired samples t-test on these data, 

identifying extreme evidence [BF10 > 100] that between valence conceptual distance 

[mean(SEM) = -0.28(0.006)] was higher than within valence conceptual distance [mean(SEM) 
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= -0.40(0.008); t(99) = 32.55, p < .0001, BF10 = 1.34e51]. Encouragingly, we also identified that 

the five lowest mean conceptual distance scores were for the Anxiety and Fear [mean(SEM) = 

-0.59(0.015)], Depression and Sadness [mean(SEM) = -0.58(0.017)], Contentment and 

Peaceful [mean(SEM) = -0.56(0.020)], Contentment and Happiness [mean(SEM) = -

0.55(0.019)], and Anger and Irritation [mean(SEM) = -0.54(0.018)] definition pairs, as one 

would expect (as these concepts are close to one another in meaning).  

In addition, we calculated the mean number of words included across all definitions for 

each participant. We included this in our analyses to ensure that emotional vocabulary score, 

between valence conceptual distance, and within valence conceptual distance were significant 

predictors after controlling for the length of definition (i.e., to ensure it is not just the case that 

some individuals wrote shorter definitions and so had more/less overlap in conceptions).  

6.2.4. Statistical analyses 

All frequentist analyses were conducted using R Studio (version 2021.09.2) and all 

Bayesian analyses were conducted using JASP (version 0.16). For all frequentist analyses, we 

used a significance threshold of p = 0.05 (two-sided) to determine whether to accept or reject 

the null hypothesis. Parametric assumptions were met for all analyses employing simple linear 

models and linear mixed effects models. Non-parametric linear regressions were conducted 

when assumptions were violated. We conducted all linear mixed effects models in R Studio 

using the lmer function (from the lme4 package). In addition, we employed the Anova function 

(from the car package) to conduct a Type III ANOVA on the results of our linear mixed model 

with a Kenward-Roger470 approximation for degrees of freedom, as supported by Luke471. In R 

Studio, we also conducted i) a random forest analysis431 employing the Boruta wrapper 

algorithm (Boruta function from Boruta package)432, and ii) mediation analyses using the sem() 

function (from the lavaan package). We conducted Bayesian analyses in JASP in order to 
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determine the relative strength of evidence for the experimental versus null hypotheses. For all 

Bayesian analyses, we followed the classification scheme proposed by Lee and 

Wagenmakers352: BF10 and BF01 values between one and three reflect weak evidence, between 

3 and 10 reflect moderate evidence, greater than 10 reflect strong evidence, and greater than 

100 reflect extreme evidence for the experimental (BF10) and null (BF01) hypotheses, 

respectively.  

 

6.3. Results 

In the following section, we (1) compare autistic and non-autistic participants on the 

precision and differentiation of emotional experiences, understanding of emotion concepts, and 

differentiation of emotion concepts, and (2) determine whether the same processes are 

implicated in autistic and non-autistic emotion recognition.  

6.3.1. Analyses comparing autistic and non-autistic participants 

No differences between groups in emotional precision 

First, to compare the precision of emotional experiences (as measured by the EmoMap 

task) between participant groups, we conducted a linear mixed effects model with emotional 

precision as the dependent variable, emotion (angry, happy, sad), group (autistic, non-autistic), 

the interaction between emotion and group [independent variables], age, sex, non-verbal 

reasoning ability, alexithymia, emotional vocabulary score, between valence conceptual 

distance, within valence conceptual distance, and mean definition word count [control 

variables] as predictors, and subject number as a random intercept. This revealed that within 

valence conceptual distance was a positive predictor of emotional precision [F(1,89) = 9.67, p 

= .003, ηp2 = 0.03, 95% Confidence Intervals(CI) = (3.60, 15.86)]: those with more 

differentiated conceptions of same-valence emotions typically had greater emotional precision. 
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Most notably, however, there was no main effect of group [F(1,263.54) = 0.08, p = .784, ηp2 = 

0.00, 95%CI = (-11.05, 8.34)], no emotion x group interaction [F(2,196) = 0.99, p = .373, ηp2 = 

0.00], nor any other significant predictors [all p > .05]. Hence, to probe the strength of the 

evidence supporting the idea that there were no differences in emotional precision between 

groups, we employed a post-hoc Bayesian ANOVA. This analysis provided moderate evidence 

that there was no main effect of group [BF01 = 4.13] or an emotion x group interaction [BF01 = 

6.16]. Using a default prior (Uniform prior), there was moderate evidence for excluding the 

main effect of group [BFexclusion = 6.03], and strong evidence for excluding the emotion x group 

interaction [BFexclusion = 14.33] (relative to including these variables) when attempting the 

explain the data. These results generalized well across priors for both the main effect of group 

[Beta binomial: BFexclusion = 7.67; Wilson: BFexclusion = 4.99] and the emotion x group interaction 

[Beta binomial: BFexclusion = 15.68; Wilson: BFexclusion = 17.04]. Together, this evidence suggests 

that there were no differences between the autistic and non-autistic participants in emotional 

precision.  

No differences between groups in emotion differentiation for distinct emotional states 

To test whether autistic adults have less differentiated experiences of distinct emotions 

than non-autistic adults, we constructed a linear mixed effects model with distance between 

clusters as the dependent variable, emotion pair (angry-happy, angry-sad, happy-sad), group 

(autistic, non-autistic), the interaction between emotion pair and group [independent variables], 

age, sex, non-verbal reasoning, alexithymia, emotional vocabulary score, between valence 

conceptual distance, within valence conceptual distance, and mean definition word count 

[control variables] as predictors. In line with the results from our previous study473, there was 

a significant main effect of emotion pair [F(2,196) = 89.98 p < .001, ηp2 = 0.60]: the distance 

between angry and sad clusters was smallest [mean(SEM) = 13.87(0.26)], followed by happy 
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and sad [mean(SEM) = 18.05(0.44)], followed by angry and happy [mean(SEM) = 

18.93(0.43)]. In addition, between valence conceptual distance was also a significant positive 

predictor of distance between clusters [F(1,89) = 4.95, p = .029, ηp2 = 0.05, 95%CI = (0.20, 

3.16)]: those with less differentiated conceptions of emotions (of opposite valence) typically 

had less differentiated experiences of distinct emotions. Finally, our analysis also revealed that 

non-verbal reasoning ability was a significant negative predictor of distance between clusters 

[F(1,89) = -4.23, p = .043, ηp2 = 0.05, 95%CI = (-1.37, -0.03)]: those with poorer non-verbal 

reasoning ability typically had greater distances between clusters. Once again there was no main 

effect of group [F(1,124.52) = 1.69, p = .196, ηp2 = 0.01, 95%CI = (-2.95, 0.60)] nor an 

interaction between emotion pair and group [F(2,196) = 1.94, p = .146, ηp2 = 0.02], nor any 

other significant predictors of distance between clusters [all p > .05]. To assess the strength of 

the evidence suggesting no differences in distance between clusters for autistic compared to 

non-autistic individuals, we employed a post-hoc Bayesian ANOVA. This analysis provided 

anecdotal evidence that there was no main effect of group [BF01 = 1.26], and moderate evidence 

that there was no emotion x group interaction [BF01 = 3.02]. Using a default prior (Uniform 

prior), there was anecdotal evidence for excluding the main effect of group [BFexclusion = 1.08], 

and the emotion x group interaction [BFexclusion = 1.48] (relative to including these variables) 

when attempting the explain the data. These results generalized to some extent across priors: 

notably the strength of the evidence remained anecdotal, however, for some priors the evidence 

was in favour of a main effect of group [Beta binomial: BFexclusion = 0.60; Wilson: BFexclusion = 

0.48] and an emotion x group interaction [Beta binomial: BFexclusion = 0.99; Wilson: BFexclusion 

= 0.59]. In sum, here we found no credible evidence for a difference between the autistic and 

non-autistic participants in the differentiation of distinct emotional states. 
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No differences between groups in emotion differentiation for similar emotional states 

Next, to test whether autistic adults have less differentiated experiences of similar 

emotions (i.e., less granular emotional experiences), we constructed a linear mixed effects 

model with distance within clusters as the dependent variable, emotion (distance within angry, 

happy, and sad clusters respectively), group (autistic, non-autistic), the interaction between 

emotion and group [independent variables], age, sex, non-verbal reasoning, alexithymia, 

emotional vocabulary score, between valence conceptual distance, within valence conceptual 

distance, and mean definition word count [control variables] as predictors, and subject number 

as a random intercept. This revealed a main effect of emotion [F(2,196) = 14.38, p < .001, ηp2 

= 0.20]: distance within happy clusters was lowest [mean(SEM) = 12.41(0.25)], followed by 

distance within angry clusters [mean(SEM) = 13.69(0.25)] and distance within sad clusters 

[mean(SEM) = 13.73(0.25)]. In addition, our analysis identified that between valence 

conceptual distance [F(1,89) = 6.48, p = .013, ηp2 = 0.07, 95%CI = (0.28, 2.12)] was a 

significant positive predictor of distance within clusters: those with less differentiated 

conceptions of emotions (of opposite valence) typically had less differentiated experiences of 

similar emotions. We also identified that non-verbal reasoning was a significant negative 

predictor of distance within clusters [F(1, 89) = -11.23, p = .001, ηp2 = 0.11, 95%CI = (-1.14, -

0.30)]. There was no main effect of group [F(1,148.43) = 0.43, p = .514, ηp2 = 0.02, 95%CI = 

(-1.35, 0.67)], nor an emotion x group interaction [F(2,196) = 1.14, p = .321, ηp2 = 0.01], and 

there were no other significant predictors of distance within clusters [all p > .05]. Hence, to 

probe the strength of the evidence supporting the idea that there were no differences in the 

distance within clusters between groups, we employed a post-hoc Bayesian ANOVA. This 

analysis provided anecdotal evidence that there was no main effect of group [BF01 = 2.52] and 

moderate evidence that there was no emotion x group interaction [BF01 = 5.85]. Using a default 
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prior (Uniform prior), there was anecdotal-moderate evidence for excluding the main effect of 

group [BFexclusion = 2.97] and the emotion x group interaction [BFexclusion = 4.85] (relative to 

including these variables) when attempting the explain the data. These results generalized well 

across priors for both the main effect of group [Beta binomial: BFexclusion = 1.92; Wilson: 

BFexclusion = 1.32] and the emotion x group interaction [Beta binomial: BFexclusion = 3.24; Wilson: 

BFexclusion = 2.20]. Together, this evidence suggests that there were no differences between the 

autistic and non-autistic participants in the distance within emotion clusters. 

No differences between groups in levels of understanding of emotion concepts 

To assess the understanding of emotion concepts, we compared the emotional 

vocabulary test scores of the autistic and non-autistic participants. To do so, we ran a non-

parametric multiple regression of emotional vocabulary as a function of group (autistic, non-

autistic), age, sex, non-verbal reasoning, alexithymia, and mean definition word count [control 

variables]. This analysis revealed that mean definition word count [t(92) = 3.56, p < .001, 

95%CI = (0.11, 0.39)] predicted emotional vocabulary score: those who provided longer 

definitions typically had higher emotional vocabulary scores. There were no significant 

differences between the autistic participants and non-autistic participants in emotional 

vocabulary score [t(92) = -1.95, p = .055, 95%CI(-5.79, 0.06)]. A follow-up Bayesian 

independent sample t-test, using a default prior (Cauchy width = 0.707) revealed anecdotal 

evidence for this null effect [BF01 = 1.04, 95%CI = (-0.04, 0.72)], which generalized well across 

both wide [BF10 = 1.31, 95%CI = (-0.03, 0.74)] and ultrawide [BF01 = 1.73, 95%CI = (-0.03, 

0.75)] priors. Thus, although we found no significant differences between groups in the 

understanding of emotion concepts using frequentist statistics, there is only anecdotal evidence 

that there are no differences between groups based on a Bayesian approach.  
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No differences between groups in the extent of overlap in semantic conceptions of emotion  

 Following this, to determine whether autistic or non-autistic people have more 

differentiated conceptions of emotions with the same and opposite valences, we constructed 

two simple linear models as a function of group (autistic, non-autistic), age, sex, non-verbal 

reasoning, alexithymia, and mean definition word count [control variables]. For both models, 

the only significant predictor was mean definition word count [between valence: F(1,92) = -

7.84, p = .006, ηp2 = 0.08, 95%CI = (-0.03, -0.00); within valence: F(1,92) = -8.60, p = .004, ηp2 

= 0.09, 95%CI = (-0.04, -0.01)]: those who provided longer definitions tended to have lower 

conceptual distance scores, both for same-valence and opposite-valence emotions. There was 

no effect of group [between valence conceptual distance: F(1,92) = 3.33, p = .071, ηp2 = 0.03, 

95%5CI = (-0.00, 0.07); within valence conceptual distance: F(1,92) = 1.12, p = .293, ηp2 = 

0.02, 955%CI = (-0.01, 0.04)], nor any other significant predictors in both models [all p > .05]. 

Follow-up Bayesian independent sample t-tests, using a default prior (Cauchy width = 0.707), 

provided moderate evidence that there was a null effect of group for both between valence 

conceptual distance [BF01 = 4.70, 95%CI = (-0.40, 0.34)] and within valence conceptual 

distance [BF01 = 3.46, 95%CI = (-0.52, 0.22)]. These results generalized well across priors: 

there was moderate evidence for the null hypothesis for both wide [between valence conceptual 

distance: BF01 = 6.43, 95%CI = (-0.35, 0.41); within valence conceptual distance: BF01 = 4.66, 

95%CI = (-0.22, 0.54)] and ultrawide [between valence conceptual distance: BF01 = 8.94, 

95%CI = (-0.36, 0.41); within valence conceptual distance: BF01 = 6.40, 95%CI = (-0.22, 0.55)] 

priors. Together, this evidence suggests that there were no differences between autistic and non-

autistic participants in the extent of overlap in semantic conceptions of emotion.  

 In sum, we found no credible evidence for differences between autistic and non-autistic 

individuals in emotional precision, the differentiation of emotional experiences, or the 
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understanding and differentiation of semantic emotion concepts, after controlling for 

alexithymia.  

6.3.2. Different combinations of variables are important for autistic and non-autistic 
emotion recognition 

Next, we aimed to determine the factors that contribute to autistic and non-autistic 

emotion recognition respectively. Thus, we ran a random forests analysis431 in each group using 

the Boruta432 wrapper algorithm (as described in 426,473; see Chapter 5). In this analysis, our 

outcome variable was mean emotion recognition accuracy. We included the emotion-related 

variables studied here as predictors: emotional precision, distance between clusters, distance 

within clusters, emotional vocabulary score, between valence conceptual distance and within 

valence conceptual distance. For exploratory purposes, we also included total AQ score, total 

TAS score, the AQ and TAS subscalesd (i.e., AQ Social Skills, AQ Attention Switching, AQ 

Attention to Detail, AQ Communication, AQ Imagination, TAS Difficulties Describing 

Feelings, TAS Difficulties Identifying Feelings, and TAS Externally Oriented Thinking), non-

verbal reasoning ability, and age as predictors (thus following similar procedures to 425,473), 

since these variables are also thought to be involved in emotion-processing (e.g., 146,207,385,473).  

For the non-autistic participants, of the 18 variables tested, four were classified as 

important, three were classified as tentatively important, and 11 were deemed unimportant. 

Figure 6.1 (left) illustrates that the distance within clusters [mean importance score; MIS = 

18.57], non-verbal reasoning ability [MIS = 11.34], the TAS difficulty identifying feelings 

(TAS DIF) subscale [MIS = 7.87] and age [MIS = 7.44] were important for emotion 

recognition; distance between clusters [MIS = 5.87], total TAS score [MIS = 5.17], and the AQ 

 
d Since random forests analyses are less affected by issues of multi-collinearity, we were able 

to include all of the AQ and TAS subscale, which are highly correlated with one another, in this 
analysis.  
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communication subscale [MIS = 4.00] were tentatively important for emotion recognition. All 

other variables were deemed unimportant. In comparison, for the autistic participants, six of the 

variables were classified as important and the remainder were classed as unimportant for 

emotion recognition. Figure 6.1 (right) shows that the distance between emotion clusters [MIS 

= 33.69], emotional vocabulary score [13.43], the TAS difficulty identifying feelings subscale 

[12.59], distance within emotion clusters [10.56], between valence conceptual distance [MIS = 

7.72] and total TAS score [7.71] were all classed as important for autistic emotion recognition.  

Figure 6.1.  

Random forest variable importance scores for non-autistic (left) and autistic (right) 
participants. 

Note. Variable importance scores for all 18 variables included in the Boruta random forest 
regression model, displayed as boxplots. Box edges correspond to the interquartile range 
(IQR); whiskers represent 1.5 × IQR distance from box edges; circles denote outliers. Box 
colour reflects the decision made by the algorithm: Green = confirmed important, yellow = 
tentative, red = rejected; grey = shadow features – shadowMin, shadowMean, shadowMax 
(minimum, mean and maximum variable importance scores of shadow features, respectively).  
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Next, to verify the results from our random forests regression model, we constructed 

linear mixed effects models predicting mean emotion recognition accuracy with the important 

and tentatively important variables in the autistic and non-autistic groups respectively. Since 

we identified a strong correlation between two variables of interest - distance between emotion 

clusters and distance within clusters [R = .746, p < .001, 95%CI = (0.59, 0.85), R2 = 55.65%] 

– we constructed two linear mixed effects models with near identical predictors but where one 

model included distance between emotion clusters and the other included distance within 

clusters. Thus, ensuring that parameter estimates were not compromised by collinearity issues. 

In the model that excluded distance between clusters, distance within clusters [F(1,43) = 15.99, 

p < .001, ηp2 = 0.27, 95%CI = (0.23, 0.67)], non-verbal reasoning [F(1,43) = 13.55, p < .001, 

ηp2 = 0.24, 95%CI = (0.19, 0.63)] and AQ communication score [F(1,43) = -8.58, p = .005, ηp2 

= 0.17, 95%CI = (-0.57, -0.11)] were significant predictors of non-autistic emotion recognition. 

In the model that excluded distance within clusters, distance between clusters [F(1,43) = 4.53, 

p = .039, ηp2 = 0.10, 95%CI = (0.02, 0.49)], non-verbal reasoning ability [F(1,43) = 6.09, p = 

.018, ηp2 = 0.12, 95%CI = (0.06, 0.53)], and AQ communication score [F(1,43) = 5.99, p = .019, 

ηp2 = 0.12, 95%CI = (-0.58, -0.06)] were significant predictors of non-autistic emotion 

recognition. Therefore, both distance between clusters and distance within clusters predict 

emotion recognition performance for non-autistic people.  

Following this, we constructed the relevant linear mixed effects models in the autistic 

group. In the model that excluded distance between clusters, distance within clusters [F(1,44) 

= 13.10, p < .001, ηp2 = 0.23, 95%CI = (0.21, 0.71)], emotional vocabulary score [F(1,44) = 

15.98, p < .001, ηp2 = 0.27, 95%CI = (0.28, 0.83)], and TAS DIF [F(1,44) = 8.07, p = .007, ηp2 

= 0.15, 95%CI = (0.19, 1.04)], predicted emotion recognition performance. Similarly, in the 

model that excluded distance within clusters, distance between clusters [F(1,44) = 22.27, p < 
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.001, ηp2 = 0.34, 95%CI = (0.31, 0.76)], emotional vocabulary score [F(1,44) = 15.01, p < .001, 

ηp2 = 0.25, 95%CI = (0.24, 0.73)], and TAS DIF score [F(1,44) = 7.04,  p = .011, ηp2 = 0.14, 

95%CI = (0.14, 0.92)] predicted emotion recognition accuracy. Thus, - just as we saw for non-

autistic participants - both distance between clusters and distance within clusters predict 

emotion recognition performance for autistic people.  

To determine the strength of evidence for these predictive models we constructed two 

Bayesian linear regressions predicting emotion recognition accuracy in each group using the 

variables found to be significant contributors above. For non-autistic participants, distance 

between clusters, distance within clusters, non-verbal reasoning ability, and AQ 

communication score accounted for 36.8% of the variance in emotion recognition accuracy. 

There was extreme evidence [BF10 > 100] that this model was a better fit to the data than a null 

model [BF10 = 102.40, R2 = 36.8%]. In contrast, for the autistic participants, distance between 

clusters, distance within clusters, TAS difficulties identifying feelings, and emotional 

vocabulary score together accounted for 51.2% of the variance in emotion recognition accuracy. 

Again, there was extreme evidence that this model was a better fit to the data than a null model 

[BF10 = 16,125.73, R2 = 51.2%]. 

In sum, distance between clusters and distance within clusters (i.e., the ability to 

differentiate between similar and distinct emotional states) predicted emotion recognition in 

both groups. However, whilst having enhanced non-verbal reasoning and communication (as 

shown by low scores on AQ Communication scale) contributed to elevated emotion recognition 

for non-autistic people this was not the case for the autistic group. For autistic individuals, 

having a more accurate understanding of emotion concepts and greater difficulties identifying 

one’s own emotions (as shown by the difficulty identifying feeling subscale of the TAS), 

predicted elevated emotion recognition (see Figure 6.2). 
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Figure 6.2. 

The relationships between mean emotion recognition accuracy and distance between clusters, 
distance within clusters, emotional vocabulary score, non-verbal reasoning ability (NVR), AQ 
Communication score (AQ C), and TAS Difficulty Identifying Feelings score (TAS DIF), 
respectively, for the autistic (orange) and non-autistic (green) participants.  

 

6.3.3. Exploratory analyses: Emotion differentiation mediates the relationship between 
the differentiation of semantic emotion concepts and emotion recognition for non-
autistic people 

Since we had identified that between valence conceptual distance predicted distance 

between and within clusters, which both predicted emotion recognition performance,  

we conducted post-hoc mediation analyses to explore whether between valence conceptual 

distance exerted an indirect effect on emotion recognition by influencing the distances between 

Non-autistic

Autistic

Non-autistic

Autistic

Non-autistic

Autistic

Non-autistic

Autistic



 203 

and within clusters, in each group respectively. In the first model, the predictor was between 

valence conceptual distance, the mediator was distance between clusters, and the outcome 

variable was emotion recognition accuracy. In the second model, the predictor was between 

valence conceptual distance, the mediator was distance within clusters, and the outcome 

variable was emotion recognition. Across all mediation models we controlled for relevant 

confounding variables (non-verbal reasoning, AQ, TAS, emotional vocabulary score, mean 

definition word count) to enhance the internal validity of our findings.  

 First, we conducted these mediation analyses in the non-autistic group. For these 

participants, in the first model, whilst there was no direct effect [z = -0.49, p = .623, 95%CI = 

(-0.315, 0.189)] of between valence conceptual distance on emotion recognition, there was an 

indirect effect via distance between clusters [z =1.98, p = .048, 95% CI = (0.001, 0.229); see 

Figure 6.3(A)]. This suggests a potential causal direction (though future studies are necessary 

to confirm this chain of causality); having well-differentiated emotion concepts may lead to 

individuals having well-differentiated experiences of distinct emotions, and then in turn greater 

emotion recognition accuracy. Similarly, in the second model, there was no direct effect of 

between valence conceptual distance on emotion recognition [z = -1.49, p = .135, 95% CI = (-

0.371, 0.050)], but there was an indirect via distance within clusters [z = 2.81, p = .005 95% CI 

= (0.064. 0.361); see Figure 6.3(B)]. As such, for non-autistic participants, having well-

differentiated emotion concepts may also lead to them having well-differentiated experiences 

of more similar emotions, and then in turn greater emotion recognition accuracy. Future studies 

employing causal manipulation are needed to confirm this chain of causality.  

To verify that these pathways were most plausible, we then swapped the position of 

distance between clusters and between valence conceptual distance, such that distance between 

clusters was the predictor and between-valence conceptual distance was the mediator. Our 
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analysis revealed that the indirect effect was not significant [z = -0.47, p = .638, 95% CI = (-

0.088, 0.054)]. Following this, we conducted the same analysis with distance within clusters, 

identifying once again that the indirect effect was not significant [z = -1.28, p = .199, 95% CI 

(-0.137, 0.029)]. Therefore, our results suggest that the most mathematically plausible pathway 

is as follows: having well differentiated semantic concepts of emotion may lead to more 

differentiated experiences of emotion, and then in turn better emotion recognition.  
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Figure 6.3.  

Mediation models showing the contribution of between valence conceptual distance to non-
autistic emotion recognition via distance between clusters (panel A) and distance within 
clusters (panel B), after controlling for non-verbal reasoning AQ, TAS, emotional vocabulary 
score, and mean definition word count. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The asterisks (*) denote statistical significance: *p<.05, **p<.01, ***p<.001. 
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Second, we completed these mediation analyses in the autistic group. This identified 

that, for the autistic participants, in the first model there was neither a direct effect [z = -0.87, 

p = .382, 95% CI = (-0.379, 0.145)] nor an indirect effect [z = 0.56, p = .578, 95% CI = (-0.125, 

0.223); see Figure 6.4(A)] of between valence conceptual distance on emotion recognition 

performance via distance between clusters. Notably, between conceptual distance also did not 

predict distance between clusters in the autistic group [z = 0.56, p = .579, 95% CI = (-0.233, 

0.418)]. Similarly, in the second model, there was no direct effect [z = -0.68, p = .499, 95% CI 

= (-0.408, 0.198)] or indirect effect [z = 0.50, p = .618, 95% CI = (-0.109, 0.183); see Figure 

6.4(B)] of between valence conceptual distance on emotion recognition performance via 

distance within clusters. In addition, between valence conceptual distance did not predict 

distance within clusters in the autistic group [z = 0.49, p = .625, 95% CI = (-0.263, 0.438)]. 

Therefore, for autistic participants, the differentiation of emotion concepts, did not contribute 

to the differentiation of their emotional experiences, nor their emotion recognition performance 

(after controlling for these relevant characteristics).  
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Figure 6.4.  

Mediation models showing the contribution of between valence conceptual distance to autistic 
emotion recognition via distance between clusters (panel A) and distance within clusters (panel 
B), after controlling for non-verbal reasoning, AQ, TAS, emotional vocabulary score, and mean 
definition word count. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The asterisks (*) denote statistical significance: *p<.05, **p<.01, ***p<.001. 

Autistic

A

B

z = 0.56, p = .579
95%CI = (-0.233, 0.418) 

Between valence 
conceptual distance

Distance between 
clusters

Emotion Recognition

z = 5.26, p < .001***
95%CI = (0.336, 0.736) 

Direct: 
z = -0.87, p = .382

95%CI = (-0.379, 0.45) 

Indirect:
z = 0.56, p = .578

95%CI = (-0.125, 0.223) 

z = 0.49, p = .625
95%CI = (-0.263, 0.438) 

Between valence 
conceptual distance

Distance within
clusters

Emotion Recognition

z = 2.97, p = .003**
95%CI = (0.145, 0.704) 

Direct: 
z = -0.68, p = .499

95%CI = (-0.408, 0.198) 

Indirect:
z = 0.50, p = .618

95%CI = (-0.109, 0.183) 
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6.4. Discussion 

 The current study compared autistic and non-autistic adults on emotional abilities 

thought to be involved in emotion recognition (e.g., emotional precision, differentiation of 

experiences and concepts of emotion, and understanding of emotion concepts), and investigated 

the contribution of these factors to emotion recognition in both groups. Our results suggest that 

there are no differences between autistic and non-autistic people with respect to the precision 

and differentiation of emotional experiences, nor the understanding or differentiation of 

semantic concepts of emotion. However, notably, we identified similarities and differences in 

the traits, processes, and abilities involved in autistic and non-autistic emotion recognition. For 

both groups, individuals who had more differentiated experiences of distinct (e.g., angry-happy, 

angry-sad, happy-sad) and similar (e.g., anger, irritation, frustration) emotions also had a better 

ability to read others’ emotional facial expressions as depicted in point light displays. However, 

whilst having higher non-verbal reasoning, enhanced communication (as indexed by low scores 

on the AQ Communication subscale), and more differentiated emotion concepts contributed to 

elevated emotion recognition accuracy for non-autistic individuals, the same could not be said 

for their autistic counterparts. Rather, for these individuals, having a more precise 

understanding of emotion concepts (as indexed by more accurate and precise definitions of 

emotion terms), and (surprisingly) greater difficulties identifying their own emotions, predicted 

enhanced emotion recognition performance.  

These findings significantly advance our understanding of the processes and abilities 

involved in both autistic and non-autistic emotion recognition. To the best of our knowledge, 

no studies to date have empirically tested the mechanistic pathway by which emotion concepts 

influence emotion recognition. As discussed in the Introduction, one possibility is that emotion 

concepts impact upon emotional experiences and emotion perceptions directly and 
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independently; another possibility is that there are indirect effects amongst these variables. This 

study suggests that the latter is more mathematically plausible; having well-differentiated 

concepts of emotion may lead to (non-autistic) individuals having well-differentiated 

experiences of emotion, and then in turn greater emotion recognition accuracy. This chain of 

causality raises a hypothetical pathway by which these abilities develop from infancy to 

adulthood (i.e., emotion concepts become increasingly differentiated, leading to increasingly 

differentiated emotional experiences, and then in turn emotion perceptions). Nevertheless, 

further research employing causal manipulation and/or longitudinal methods are necessary to 

verify this chain of causality, and to test how and when these links arise developmentally.  

Similarly, these findings also significantly advance our understanding of the traits, 

processes, and abilities involved in autistic emotion recognition. Until now, the factors involved 

in autistic emotion recognition have remained elusive, with several studies finding that certain 

demographic factors, abilities, or processes important for non-autistic emotion recognition, are 

not important for autistic emotion recognition (e.g., no effect of age246; no same group 

advantage for emotion recognition147; no effect of the precision of visual representations426). 

Here we found that autistic individuals with more differentiated experiences of distinct and 

similar emotions, better understanding of emotional vocabulary and greater difficulties 

identifying their own feelings had better emotion recognition performance. This latter finding 

is particularly surprising as we would typically expect the opposite; individuals with greater 

difficulties identifying their emotions would typically be expected to exhibit poorer emotion 

recognition (in line with the alexithymia hypothesis207). One potential (post-hoc) explanation 

for this unexpected finding is that these individuals were aware that they have greater 

difficulties with emotions, and therefore tried harder on the emotion recognition task to 

compensate for this difficulty, leading to enhanced performance. This effect may be particularly 
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dramatic in the autistic group as studies have shown that autistic individuals tend to 

underestimate their emotional abilities to a larger degree than their non-autistic counterparts292. 

Future studies should aim to test whether effort is mediating the effect of the TAS DIF subscale 

on emotion recognition performance.  

The results of the current study contradict previous findings suggesting that autistic 

individuals have less differentiated experiences and concepts of emotions148. There are 

numerous potential explanations for this discrepancy. First, in the analyses conducted here, we 

have controlled for alexithymia – an important confounding variable that was not controlled for 

in previous studies. Hence, it is possible that the autistic participants tested previously had less 

differentiated experiences and concepts of emotion due to co-occurring alexithymia, rather than 

due to autism itself, in line with the alexithymia hypothesis (see 207). Secondly, it could be the 

case that autistic individuals have particular difficulties on emotion differentiation tasks that 

require them to translate their emotional experiences into words (e.g., the photo emotion 

differentiation task in Erbas et al148), but do not exhibit differences with respect to tasks that 

purely focus on differentiating emotional signals (such as our EmoMap task). Nevertheless, 

although this is a possibility, if this were the case, we would have expected our autistic 

participants to perform more poorly than their non-autistic counterparts on the emotional 

vocabulary test (which they did not). Third, this discrepancy in findings could arise due to 

differences in demographics. Whilst the sample in the current study comprised 50 autistic and 

50 non-autistic adults (with a mean age in each group of 32.42 and 31.64 years respectively), 

previous studies have tested younger samples (e.g., Erbas et al148 tested 18 autistic and 26 non-

autistic adolescents with a mean age of 16.71 and 16.56 years respectively). As such, it is 

possible that autistic individuals have particular difficulties differentiating experiences and 

concepts of emotions relative to their non-autistic peers during adolescence, which disappear 
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as they transition into adulthood. Further research is necessary to a) replicate the results of the 

current study, and b) formally test under what conditions and tasks (e.g., age, language-based 

tasks) autistic people exhibit difficulties with emotion differentiation.  

Implications 

The results of the current study pave the way for future supportive interventions to help 

both autistic and non-autistic people to accurately recognise emotional facial expressions. 

Although we found no group differences, there is substantial variation in emotion recognition 

performance in both groups (scores ranging from 1.03 to 6.13). In this sample, 20% of 

participants exhibited low emotion recognition accuracy (scoring less than 2.5/10); these 

individuals tended to struggle to differentiate the emotional expressions, for example attributing 

high happy and sad ratings to angry expressions. Notably, this study illuminates emotion 

differentiation as a candidate mechanism that could be supported in order to improve the 

emotion recognition performance of these individuals. Such interventions have the potential to 

elicit broad benefits - enhanced emotion differentiation is not only associated with accurate 

emotion recognition, but also with adaptive emotion regulation, improved psychosocial 

functioning, and decreased mental health difficulties (see 293,439,501-505 for reviews). These 

interventions could be subtly adapted to emphasise improving the differentiation of emotion 

concepts (i.e., by focusing on the specific differences between the semantics of individual 

emotions) for non-autistic people, and the general understanding of emotion concepts for 

autistic people. Indeed, recent work employed a five-day intervention which aimed to increase 

conceptual emotion knowledge by providing detailed information about each emotion concept 

to participants, and then requiring them to compare these concepts to one another (thus targeting 

both general understanding of emotions and the differentiation of emotion concepts)506. This 

intervention had promising effects, successfully improving conceptual emotion knowledge and 
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downstream emotion differentiation performance, relative to an active control group, 

immediately after training and at follow-up a month later506. Further research is necessary to 

assess whether such interventions have longer term benefits for conceptual emotion knowledge 

and emotion differentiation, and to determine whether these interventions have downstream 

benefits for autistic and non-autistic emotion recognition. 
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Chapter 7: Comparing the spatiotemporal and kinematic 
properties of autistic and non-autistic facial expressions 
 

Thus far, we have examined whether there are differences between autistic and non-

autistic individuals with respect to the conceptualisation, experience, and visual representation 

of emotion after controlling for alexithymia, and assessed whether differences therein 

contribute to emotion recognition. In the following chapter, we pose a similar question, 

examining whether there are differences in the facial expressions produced by these groups, 

and assess the extent to which participants’ own productions contribute to their ability to 

recognise others’ emotions. In doing so, we address the limitations of previous research (see 

section 1.4.5.) by employing methods with high sensitivity (i.e., facial motion capture) to 

compare the spatiotemporal and kinematic properties of autistic and non-autistic expressions, 

after controlling for facial morphology and alexithymia.  
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Abstract 
 
Preliminary studies are suggestive of differences in facial expressions between autistic and 

non-autistic individuals. However, it is unclear what specifically is different, whether such 

differences remain after controlling for facial morphology and alexithymia, and whether 

production differences relate to perception differences. Here we 1) compared jerkiness and 

activation profiles for autistic and non-autistic expressions, after controlling for morphology 

and alexithymia, and 2) explored whether differences therein predicted differences in emotion 

recognition. We employed facial motion capture techniques to record 2,448 posed and 2,448 

spoken expressions of anger, happiness and sadness from 25 autistic and 26 matched non-

autistic adults. Participants also completed a task assessing the ability to recognise emotions 

from dynamic stimuli. Autistic participants relied more on the mouth region to signal anger, 

whereas non-autistic individuals used both mouth and eyebrow cues; for happiness, autistic 

participants showed activity patterns suggestive of a less exaggerated smile that also did not 

“reach the eyes”; for sadness, autistic participants tended to make a downturned expression by 

raising their upper lip more than their non-autistic peers. Alexithymia predicted less 

differentiated angry and happy expressions, and less precision (reduced consistency) for 

spoken expressions. For non-autistic individuals, those who produced precise spoken 

expressions typically had greater emotion recognition accuracy. No production-related factors 

contributed to autistic emotion recognition.  
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7.1. Introduction 

Emotion recognition challenges in the autistic population are a topic of ongoing debate. 

Autism spectrum disorder (hereafter ‘autism’) is a neurodevelopmental condition, characterised 

by difficulties with social communication and interaction151. While not regarded a diagnostic 

feature, emotion recognition has been a focus of autism research for over three decades because 

it is thought that challenges in this area may contribute to putative social difficulties215. Thus 

far, the majority of this literature has aimed to determine whether there are differences between 

autistic and non-autistic individuals in the ability to recognise the emotions of others (see 146). 

This work has yielded mixed findings (see 146,216,217 for reviews): while some studies find 

differences in emotion recognition between groups, others find no differences, or emotion-, 

task-, or stimuli-specific differences (e.g., in recognising angry expressions147,219-222,385). Here, 

we focus on an under-explored area of research: emotion recognition is strongly influenced by 

the way in which a person uses their own body to express emotion. Here we build on this 

evidence base to first ask whether autistic people move their faces in a different way (compared 

to non-autistic people) when expressing emotions; second, we question whether the production 

of one’s own facial expressions relates to the recognition of others’. 

A burgeoning body of research suggests that the way we move our own bodies affects 

the way we label others’ body movements. For example, leveraging evidence that fast 

movements tend to indicate anger and slow movements indicate sadness (e.g., 507-511), Edey and 

colleagues354 showed that people who typically walk fast tend to perceive others’ fast 

movements as less intensely angry compared to people who typically walk slow; presumably 

because for fast walkers high speed movement looks relatively ‘normal’. Conversely, slow 

movers perceived fast movements as appearing intensely angry354. That is, Edey and 

colleagues354 showed that people use their own typical walking speed as a benchmark against 



 217 

which to judge the movements of others. Thus, production and perception are linked: one’s own 

movements influence the interpretation of the movements of others. 

A breadth of evidence suggests that autistic individuals tend to move their bodies in 

different ways from non-autistic individuals and that production differences might be linked to 

perception differences. Autistic individuals typically exhibit more jerky whole-body512, upper 

limb387,513-515, and head516 movements (see 353). Furthermore, Cook and colleagues387 showed 

that within an autistic sample more jerky movements were correlated with differences in the 

perception of biological motion. Autistic individuals who moved in a particularly jerky fashion 

were less likely to view smooth, minimally jerky, animations as “natural”. Thus, with respect 

to bodily movement, production differences have been linked to perception differences in the 

autistic population. 

Preliminary evidence suggests that there are differences in the facial expressions 

produced by autistic and non-autistic people (see 146,150 for reviews). The majority of this 

evidence comes from studies where non-autistic observers, blind to diagnostic status, make 

ratings about the accuracy, quality, general appearance, and/or intensity of autistic and non-

autistic facial expressions. Autistic expressions are generally perceived to be less accurate (i.e., 

less socially congruous), lower in quality, and ‘atypical’ in appearance (see 146,150), being rated 

as odd, awkward or mechanical by (non-autistic) observers263,265,266,278. Some studies have also 

obtained ‘intensity’ ratings, though findings are mixed with some reporting more intense (e.g., 

265-267), and some less (e.g., 263,268-270) autistic expressions. These studies - in which non-autistic 

observers subjectively rate expressions - suggest that there is something different about facial 

expressions produced by autistic and non-autistic people. If this is indeed the case, then 

perception differences might be linked to differences in the production of emotional facial 

expressions.  
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A handful of studies have employed more objective measures to attempt to quantify the 

way in which facial expressions produced by autistic and non-autistic people differ, however, 

a clear picture has not emerged. The evidence from studies using facial electromyography 

(fEMG) contradicts that from subjective ratings, suggesting that there are no differences 

between groups in expressivity274,517. Notably, this lack of an effect could arise due to fEMG 

not being sensitive to differences in the activation of facial muscles: fEMG is typically limited 

to studying just two muscle groups – one responsible for frowning (the corrugator supercili) 

and one responsible for smiling (the zygomaticus major)277. Nevertheless, other research 

employing fEMG suggests that autistic children typically display less differentiated facial 

muscle activation for positive and negative518 and happy, angry, and fearful273 facial 

expressions than their non-autistic peers. Such findings suggest that autistic individuals produce 

more overlapping facial expressions across different emotions.  

An important consideration concerns facial morphology. In recent years, several studies 

suggest that there may be differences in facial morphology between autistic and non-autistic 

individuals (e.g., 279-282). Thus, it could be that differences in the subjective appearance of 

expressions reflect differences in overall facial morphology (the shape and structure of the face) 

rather than differences in facial movement per se. Such differences in facial morphology may 

underpin subjective ratings of autistic expressions as odd or exaggerated263,265-267,278, because 

the appearance of different features contributes to judgements of facial expressions (e.g., 

intensity judgements; see 519). Thus, any studies comparing autistic and non-autistic facial 

expressions should thus aim to minimise the confounding influence of morphological 

differences. 

A further issue is that many of these studies have used posed expressions that are not 

accompanied by other naturalistic forms of movement, such as speech. In everyday life, we 
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produce emotional facial expressions both in isolation (without other concurrent movements, 

e.g., smiling when a friend announces good news), and while carrying out other movements 

like talking (e.g., smiling while verbally congratulating a friend). Arguably, studying the sorts 

of dynamic expressions that are produced during emotional verbalisations provides insight into 

the natural dynamics of emotional expression and is less affected by caricatured concepts 

relating to how expressions “should” appear. However, thus far, much of the literature has 

solely focused on comparing ‘isolated’ posed expressions that are free from other kinds of 

movements. Therefore, it is unclear whether there are differences in the facial expressions 

produced by autistic and non-autistic individuals when also carrying out other naturalistic 

movements (e.g., speech). 

A third issue is that alexithymia has not been accounted for in the majority of previous 

research. Alexithymia comprises a subclinical condition, highly prevalent in the autistic 

population199, that is characterised by difficulties identifying, describing and differentiating 

emotions194. Popular theories argue that autistic individuals’ difficulties with emotion-

processing are caused by co-occurring alexithymia, and are therefore not a feature of autism 

per se207. To date, most of the support for this hypothesis comes from studies focusing on 

emotion recognition (e.g., 209,212,213; though see 385). However, alexithymia is linked to 

proprioceptive differences (i.e., differences in perceiving the position and movement of the 

body520-522), and proprioception is essential to accurate motor control for both the body and the 

face (see 523-526). Thus, it is plausible that alexithymia could be linked to differences in the 

production of facial expressions. Indeed, there is preliminary support for this idea: Trevisan 

and colleagues214 identified that alexithymic, but not autistic traits, were associated with 

reduced expressivity of spontaneous facial expressions (here, reduced presentation duration of 

facial expressions) in autistic and non-autistic children. As such, any study comparing emotion 
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recognition and production in autistic and non-autistic individuals should model the 

contribution of alexithymia to avoid erroneously attributing differences to autism.  

In sum, it is possible that differences in the ability to recognise others’ facial expressions 

of emotion are linked to differences in the production of those same expressions in the autistic 

population. However, at present research has failed to delineate clear differences in the 

production of emotional expression in autism because methods with low sensitivity have been 

used, facial morphology has not been accounted for, naturalistic movements have been 

underexplored and the contributions of alexithymia have not been modelled. To make progress, 

research that deals with these factors is needed. 

When it comes to examining the relationship between production and perception an 

important question is what features of produced emotional expressions are likely to influence 

the perception of others’ emotions? The body movement literature points a finger at relatively 

general aspects of movement. As noted above, individuals who generally move in a more jerky 

fashion show more extreme differences in labelling others’ movements as natural387. Thus, one 

might predict that more jerky facial expressions are associated with reduced emotion 

recognition accuracy. However, a parallel literature, concerning the internal experience of 

emotion, draws attention to more specific features. This literature reports that the precision and 

differentiation of one’s own emotional experiences and visual representations425,426,469,473 may 

contribute to the ability to recognise the emotions of others. Indeed, this literature has its roots 

in signal detection theory (see 140), where it is argued that a ‘signal’ distribution and a ‘noise’ 

distribution that are imprecise (i.e., wide) and indistinct (i.e., overlapping) provide a low 

sensitivity to discriminate between the ‘signal’ and ‘noise’. Thus, one might predict that an 

individual who produces imprecise (i.e., inconsistent) angry facial expressions, which are 

indistinguishable from their sad expressions, may struggle to discriminate other people’s angry 
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and sad expressions (perhaps because it is difficult to determine whether others’ expressions 

match their own for anger or for sadness). Although precision and differentiation have been 

explored in the emotional experience literature, these concepts are lacking from the emotional 

production literature.  

Current Study  

The current study employed facial motion capture techniques to record posed and 

spoken expressions of anger, happiness and sadness from autistic and, age-, gender- and IQ-

matched, non-autistic adults. Facial motion capture offers many advantages with respect to the 

objective analysis of facial movements as it provides assessment with high temporal resolution, 

such that visible changes in facial movements can be tracked every few milliseconds277. 

Notably, this technique records movement of the skin surface across the whole face, and thus 

the resulting data directly reflect what humans see, instead of the underlying muscle 

contractions captured by fEMG277. Here we employed Apple ARKit technology, True Depth 

Cameras and Rokoko Face Capture tools, thus enabling us to capture up to 28,000 datapoints 

per recording (e.g., 52 facial landmarks across 540 timepoints). Recordings were standardised 

to a common avatar face to minimise effects of any morphological differences; indices were 

calculated representing a) the extent of activation and b) the jerkiness of movement, of 

numerous facial landmarks across time. We explored the contribution of both autism and 

alexithymia to differences in the expression of angry, happy and sad emotions. Next, we 

assessed whether there were any differences between the autistic and non-autistic participants 

in the precision and differentiation of produced facial expressions, after controlling for 

alexithymia. Finally, we explored whether one’s own facial movement predicted the ability to 

recognise emotions from motion cues. More specifically, we explored whether features of 

participants’ own emotional expressions, including jerk, activation, precision, and 
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differentiation, contribute to participants’ ability to recognise others’ emotions as indexed by a 

dynamic emotion recognition task. 

Hypotheses 

Given the evidence from the body movement literature (e.g., 512-516), we predicted that 

autistic participants would display significantly more jerky facial expressions than their non-

autistic counterparts. We did not make any formal predictions regarding the magnitude of 

activation of facial landmarks since this evidence was highly mixed (e.g., 263,265-269,274,517), and 

potentially confounded by alexithymia (see 146,214). Finally, in line with signal detection 

theory140 and previous findings (e.g., 426,427,469,473), we predicted that the precision and 

differentiation of participants’ own productions would contribute to their ability to recognise 

others’ facial expressions.  

 

7.2. Method 

7.2.1. Participants 

25 autistic and 26 non-autistic participants were recruited from local autism research 

databases and through a university mailing list. All autistic participants had previously received 

a clinical diagnosis of autism spectrum disorder from an independent clinician. The autistic 

participants had significantly higher autism quotient (AQ)304 scores than the non-autistic 

participants (see Table 7.1). The mean AQ score in the autistic group was highly comparable 

to that found in large autistic population samples (e.g., 35.19 in 348).  
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Table 7.1.  

Means, standard deviations, and group differences of participant characteristics. In the central 
columns, means are followed by standard deviation in parentheses.  
 
Variable Non-autistic (n = 26) Autistic (n = 25) Significance 
Gender 16 Cisgender female 12 Cisgender female .777 

8  Cisgender male 10 Cisgender male 
1 Non-binary/ Third gender 1 Non-binary/ Third gender 
1 Prefer not to say 1 Prefer not to say 
0 Transgender male 1 Transgender male 

Age 27.73 (10.69) 29.92 (9.67) .448 
IQ 116.85 (13.06) 112.60 (19.88) .375 
AQ 13.81 (7.62) 33.24 (9.13) < .001 
TAS-20 43.12 (13.58) 62.24 (12.11) < .001 

Note. Age is in years. 

7.2.2. Procedures 

First, participants completed demographics questions, the autism quotient (AQ)304 and 

the Toronto Alexithymia Scale (TAS-20)344 on Qualtrics (see Chapter 2 for a full description 

of these questionnaires), and then the PLF Emotion Recognition Task239,385 (as in Chapter 2) on 

Gorilla.sc (access task at: https://app.gorilla.sc/openmaterials/447800). These tasks were 

completed online prior to the testing session. On the day of the testing session, participants 

completed our FaceMap paradigm and then the two-subtest version of the Weschler 

Abbreviated Scale for Intelligence (2nd edition; WASI-II)527. 

7.2.3. Materials and stimuli 

FaceMap  

To examine the facial expressions produced by the autistic and non-autistic participants, 

we used our FaceMap paradigm. In this task, participants’ facial movements were recorded 

during two conditions (as in 239). In the spoken condition, participants were required to say a 

sentence (“My name is Jo and I’m a scientist) whilst moving their face in a way which displayed 

the target emotion. In this condition, participants completed 2 practice trials and then two 
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experimental blocks: in each block participants posed eight angry, eight happy, and eight sad 

expressions (the order of these emotional displays was counterbalanced across participants). In 

the posed condition, participants were required to pose the target emotional expressions along 

to a series of beeps (which varied in pitch). On the first beep participants posed a neutral 

expression; on the second beep participants moved into target emotional expression; on the 

third beep participants moved back into a neutral expression, and then finally a fourth beep 

indicated that the recording had finished (3 second delay between each beep; 9 second 

duration). In the posed condition, participants completed 2 practice trials followed by two 

experimental blocks: in each block participants posed eight angry, eight happy, and eight sad 

expressions (the order of these was counterbalanced across participants). In total, there were 96 

recordings per participant (48 spoken, 48 posed), thus generating over 4,800 facial expression 

recordings.  

To facilitate these recordings, participants stood 30cm away from, and facing, an iPhone 

12 that was mounted on a tripod with an illuminated ring light. The facial expressions were 

recorded and tracked using the Rokoko Face Capture tool. Rokoko employs Apple ARKit 

technology, which has been validated for facial motion tracking528, and is recommended for 

analysing the facial movements of those with movement-related disorders (e.g., autism)528. The 

ARKit technology makes use of mobile iOS devices equipped with a True Depth Camera, which 

can record high resolution (1920 x 1080 pixels) videos at a variety of frame rates (here, 60 

frames per second). This True Depth Camera has an infrared emitter capable of projecting over 

30,000 invisible dots to create an infrared image representation of the face529,530, which can be 

then used to extract the X, Y, and Z coordinates of specific points, and levels of activation of 

52 facial blendshapes (i.e., action units; see below). Before its release, this technology was 
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extensively tested with individuals of different ages and ethnic backgrounds531, thus making it 

a suitable for tracking the facial movements of those with varied face morphology.  

WASI-II 

The Intelligence Quotient (IQ) of participants was assessed via the two-subtest version 

of the WASI-II527. The two-subtest form consists of vocabulary and matrix reasoning 

assessments. Scores on the WASI range from 70 to 160, with higher scores representing higher 

intelligence, and with 100 corresponding to average intelligence. The two-subtest version of 

the WASI-II demonstrates good psychometric properties, including high split-half, (r ≥ 0.8) and 

test-retest, reliability (r ≥ 0.8)532. 

7.2.4. Data processing and extraction 

As previously discussed, preliminary literature suggests possible differences in facial 

morphology between autistic and non-autistic individuals (e.g., 279-282). In the current study, we 

aimed to compare the facial movements of autistic and non-autistic individuals when posing 

different emotional expressions, and thus it was necessary to control for differences in facial 

morphology across participants. To do so, the facial expression recordings were retargeted onto 

photorealistic avatars (using Blender) before the data were extracted (see https://osf.io/8a5yw/). 

We extracted the data in two forms. Firstly, we extracted the X, Y, and Z coordinates 

of the 68 facial landmarks analysed by the popular open-source software OpenFace. Next, we 

calculated jerk at each of the facial landmarks at each of the timepoints in the recordings by 

first calculating the distance that each facial landmark had moved as the square root of the sum 

of squared differentials of the x, y, and z co-ordinates for each point, and subsequently 

calculating movement speed by dividing the distance travelled by time. Acceleration was 

indexed as the change in speed at each of the facial landmarks across two adjacent timepoints. 

Jerk was calculated as the change in acceleration at each of the facial landmarks across two 

https://osf.io/8a5yw/
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adjacent timepoints. Consequently, we had jerk data for all landmarks on the face (68) across 

all timepoints in the video (378 in spoken condition, 536 in posed condition) for angry, happy, 

and sad expressions (96), of all participants (51). 

Next, we extracted the activation of 52 facial action “blendshapes” across all timepoints 

(see https://arkit-face-blendshapes.com for full list of blendshapes). To extract this information, 

the infrared face map (described above) is analysed using Apple’s built-in neural network 

algorithm533. The extracted blendshapes are similar to facial action units (e.g., “browInnerUp”, 

“mouthSmileLeft”, etc.). Activation scores for each blendshape range from zero, no activation, 

to one, peak activation. Since we aimed to examine facial movements specifically, we excluded 

eight blendshapes that corresponded to where participants were looking (e.g., the left and right 

Eye Look Up, Eye Look Down, Eye Look In and Eye Look Out blendshapes). As such, here 

we analysed activation data for 44 blendshapes across all timepoints in the video (382 in spoken 

condition, 540 in posed condition) for the angry, happy, and sad expressions (96), of all 

participants (51). These data are particularly useful for assessing spatial differences in facial 

expressions between the groups. Notably, the point at which participants are at peak activation 

in the posed condition is timepoint 270 of 540.  

Resampling Spoken Recordings 

After extracting the jerk and activation data for the spoken expressions, we resampled 

these data (using the resample() function in MATLAB) such that all recordings were equal in 

length, thus facilitating statistical comparisons. Since all recordings in the posed condition were 

equal in length, no resampling was necessary for these expressions.  

Score calculations 

As discussed previously, we theorised that the intensity, precision (i.e., consistency of 

same emotional expression) and differentiation (i.e., differentiation across different emotional 

https://arkit-face-blendshapes.com/
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expressions) of one’s own facial expressions could contribute to the ability to recognise others’ 

expressions. As such, we calculated measures of intensity, precision and differentiation for the 

posed and spoken expressions in terms of both jerk and activation.  

“Intensity”, for each participant, was indexed by calculating the mean of a) jerk and b) 

activation across timepoints, landmarks and repetitions, for each emotion and condition, and 

subsequently averaging across emotions to get an index of overall mean jerk and activation for 

posed and spoken expressions.  

Precision scores were calculated in four steps: for each participant and for each emotion 

(1) we calculated a mean of jerk, and activation, across all timepoints in the recording for each 

landmark/blendshape and repetition; (2) we computed the standard deviation of these averaged 

jerk and activation scores across the 16 repetitions for each landmark/blendshape, thus giving 

us an index of variability in jerk and activation at each of the landmarks/blendshapes; (3) we 

calculated a mean of these variability scores across the landmarks to give us one overall 

measure of variability; (4) we multiplied the variability scores by -1 such that the mean 

variability scores would represent mean precision. By following these steps, we calculated 

precision for angry, happy, and sad posed and spoken expressions in terms of both jerk and 

activation. We took a mean across emotions to get an index of overall mean precision for posed 

and spoken expressions with respect to jerk and activation.  

To calculate distance scores, we followed three steps: for each participant (1) we 

calculated a mean of jerk, and activation, across the 16 repetitions, and across all timepoints, 

for each landmark/blendshape; (2) we computed the absolute difference in jerk, and in 

activation, for the angry and happy, angry and sad, and happy and sad facial expression pairs 

at each of the landmarks/blendshapes; (3) we took an average of these difference scores across 

landmarks/blendshapes to reach one difference score for each facial-expression-pair (one 
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difference score for angry and happy expressions; one difference score for angry and sad 

expressions, and one difference score for happy and sad expressions). Following this, we took 

a mean across facial-expression-pairs to get an index of overall mean distance for posed and 

spoken expressions with respect to jerk and activation.  

7.2.5. Data Analysis 

Our analyses comparing the facial expressions produced by autistic and non-autistic 

individuals were conducted using MATLAB (version 2022b). The analyses assessing the 

contribution of emotion-production factors to emotion recognition were conducted using R 

Studio (version 2021.09.2) and JASP (version 0.17.2.1). For all permutation test analyses 

comparing autistic and non-autistic facial expressions (see description below), we employed an 

alpha of 0.05 to determine statistical significance. For all Bayesian analyses, we followed the 

classification scheme used in JASP: BF10 values between one and three reflect weak evidence, 

between 3 and 10 reflect moderate evidence, greater than 10 reflect strong evidence, and greater 

than 100 reflect extreme evidence for the experimental hypothesis352. For all our Bayesian 

linear regressions, we used a default Zellner-Siow Prior (r scale = 0.354).  

 

7.3. Results 

To portray the contribution of autism and alexithymia to the production of angry, happy 

and sad facial expressions across time, we rendered heatmaps of the average expressions 

produced by the autistic and non-autistic participants, and those high and low in alexithymia 

(see Appendix 6.1).  

7.3.1. Analyses with posed data 

Activation at the peak of posed expressions 
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First, we aimed to determine whether there were group differences in activation during 

peak expression for anger, happiness and sadness at specific blendshapes. Therefore, we 

extracted the activation data at peak expression (i.e., at timepoint 270) for each blendshape, 

participant, and repetition, for each of the emotions respectively (44 blendshapes x 51 

participants x 16 repetitions; resulting in 35,904 datapoints for each emotion). Following this, 

for each of the 44 blendshapes, we conducted a linear mixed effects model of activation as a 

function of group and TAS score, with subject and repetitions as random intercepts (816 

datapoints for each model), for each of the emotions. In these models, if we found a significant 

main effect of group, this would suggest that there are significant differences in activation 

between autistic and non-autistic individuals at the specific blendshape, even after controlling 

for alexithymia.  

To account for multiple comparisons, we carried out a permutation test (with 100 

permutations). Within each permutation, the activation data for participants were shuffled so 

that they were randomly allocated to either the autistic or non-autistic group (and as such the 

data were shuffled amongst individuals with differing alexithymia scores). Following this, we 

conducted linear mixed models predicting (shuffled) activation at each blendshape with group, 

TAS score, and with subject and repetition as random intercepts (as above). The F values for 

the group and alexithymia effects on activation were extracted in each permutation. Next, all 

the F values for the shuffled data were sorted in order of magnitude. Finally, the effects in our 

analysis with true participant data were deemed to be significant if they exceeded the F value 

at the 95th percentile (and thus alpha < .05) from the analysis with the shuffled data.  

This analysis identified that there were significant group differences in activation at 

specific blendshapes for the angry [4.55% of blendshapes], happy [45.55% of blendshapes] and 

sad [2.27% of blendshapes] expressions, even after controlling for alexithymia. When posing 
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an angry expression, the autistic participants exhibited significantly lower activation of the left 

and right brow down blendshapes [left F = -4.91; right F = -4.91] – facial features typically 

considered to signal anger. Alexithymia was a significant negative predictor of activation for 

the left and right eye wide [left F = -5.47; right F = -5.49] and the left mouth [F = -5.47] 

blendshapes. For happiness, the autistic participants displayed significantly lower activation at 

45.55% of the blendshapes; the left and right eye squint [left F = -8.40; right F = -8.43], mouth 

smile [left F = -15.67; right F = -14.97], mouth dimple [left F = -7.84; right F = -6.82], mouth 

lower down [left F = -5.80; right F = -5.63], mouth upper up [left F = -8.55; right F = -8.31], 

brow down [left F = -7.13; right F = -7.12], and cheek squint [left F = -10.43; right F = -11.05] 

blendshapes, along with the upper mouth roll [F= -4.54], upper mouth shrug [F = -5.43], mouth 

close [F = -5.39], mouth funnel [F = -5.18], left mouth stretch [F = -3.72] and cheek puff [F = 

-4.34] blendshapes (see Figure 7.1). Thus, the autistic participants displayed lower activation 

of many blendshapes considered to signal happiness (e.g., mouth smile, cheek squint). 

Alexithymia was a significant positive predictor of activation for the jaw open [F = 5.07] and a 

negative predictor of the mouth shrug lower [F = -5.94] blendshapes. Finally, for sadness, the 

autistic participants exhibited significantly lower activation for the jaw forward [F = 4.02] 

blendshape. Alexithymia was a significant positive predictor of activation for the left and right 

eye blink [left F = 5.86; right F = 5.94], and the right mouth [F = 4.02] blendshapes (see Figure 

7.1).  

Activation at the peak of posed expressions: Summary 

At the peak of the posed expressions, an autism diagnosis was associated with reduced 

activation of a number of emotion-relevant blendshapes. These likely indicate reduced eyebrow 

movements for anger, less eye, eyebrow, mouth and cheek activity for happiness and reduced 

jaw movement for sadness. Alexithymia was linked to different expressions which featured 
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both reduced and increased activation. That is, individuals high in alexithymia showed reduced 

mouth movements for both anger and happiness, but for sadness these individuals exhibited 

increased activity around the mouth region.  

Figure 7.1. 

Graphs (left) and heatmaps (right) showing the activation of posed angry (top), happy (middle) 
and sad (bottom) autistic (orange) non-autistic (blue) facial expressions across blendshapes. 

 

Note. In the left panel, significant group effects are indicated by green dots on the graph, and 
significant alexithymia effects are indicated by lilac dots. Note that the heatmaps for the 
expressions are standardised for each emotion respectively.  
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Activation across the time-course of posed expressions 

Next, we aimed to determine whether there were any differences between groups in 

activation for angry, happy and sad facial expressions at specific blendshapes and timepoints 

in the posed condition. To test this, for each of the 44 blendshapes, at each of the timepoints, 

we conducted a linear mixed effects model of activation as a function of group and TAS score, 

with subject and repetitions as random intercepts, for each of the emotions. In these models, if 

we found a significant main effect of group, this would suggest that there are significant 

differences in activation between autistic and non-autistic individuals at the specific 

blendshape, at the specific moment in time, after controlling for alexithymia. As above, we 

conducted a permutation test to determine which effects were statistically significant.  

This analysis identified that there were significant group differences in activation for 

angry, happy, and sad facial expressions at specific blendshapes at specific timepoints. For 

anger, the autistic participants displayed significantly lower activation of the left and right brow 

down blendshapes for numerous timepoints when holding the angry expression (see Figure 7.2). 

In contrast, the autistic participants displayed significantly higher activation of the left and right 

mouth frown and mouth upper blendshapes during this period. Thus, when producing posed 

expressions of anger, the autistic participants may have relied more on the mouth, and less on 

the eyebrows, to signal anger. Prior to and after the expression, the autistic participants also 

displayed higher activation for the mouth pucker and left and right eye blink blendshapes. 

Alexithymia was a significant negative predictor of activation for the left and right eye wide 

and eye squint blendshapes when holding the angry expression (see Figure 7.2 for all significant 

effects).  
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Figure 7.2.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for angry posed expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at every 
second from the start to end of the recording (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 seconds).  
 

For happiness, the autistic participants displayed significantly lower activation of the 

left and right mouth smile, mouth dimple, mouth shrug upper, mouth lower down, mouth upper 

up, eyebrow down and eye squint blendshapes at specific timepoints when holding the 

expression. In contrast, the autistic participants displayed significantly higher activation at the 

mouth close, mouth funnel, mouth roll upper, and cheek puff blendshapes during this period 

(see Figure 7.3). These results suggest that the autistic and non-autistic participants display 

different mouth and cheek configurations when expressing happiness. Alexithymia was a 

significant negative predictor of activation for the left and right eye wide, mouth press, and the 

upper and lower mouth shrug blendshapes at peak expression. Conversely, alexithymia was a 

significant positive predictor of activation for the left and right mouth lower down and mouth 

upper up blendshapes, at timepoints immediately following the initiation of movement into the 

happy expression. Alexithymia was also a significant predictor of the jaw open blendshape at 

numerous timepoints when holding the expression (see Figure 7.3).  
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Figure 7.3.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for happy posed expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at every 
second from the start to end of the recording (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 seconds).  

 

Finally, for sadness, the autistic participants displayed significantly lower activation of 

the left jaw blendshape at numerous timepoints when holding the expression. In contrast, the 

autistic participants exhibited significantly higher activation of the left and right mouth upper 

up blendshapes at timepoints shortly after initiating movement into the expression (see Figure 

7.4). Alexithymia, on the other hand, was a significant negative predictor of the left and right 

mouth lower down, mouth upper up, mouth stretch, the upper mouth roll and right jaw 

blendshapes during this period. Conversely, alexithymia was a significant positive predictor of 

activation for the left and right eye blink and the mouth right blendshapes at specific timepoints 

when holding the expression (see Figure 7.4).  
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Figure 7.4.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for sad posed expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at every 
second from the start to end of the recording (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 seconds).  
 
Activation across the time course of posed expressions: Summary 

For posed expressions, there were differences in the time-course of activity between 

autistic and non-autistic individuals. For anger this included enhanced activity around the 

mouth and reduced activity around the eyebrows, suggesting a greater reliance on mouth cues 

for autistic individuals. For happiness, the autistic participants displayed greater activity at 

some mouth blendshapes, and lower activity at others, suggesting a mouth configuration that 

differed from their non-autistic peers. Concurrently there was lower activity around the eyes, 

eyebrows and cheeks for autistic individuals, suggesting a smile that does not “reach the eyes”. 

For sadness, the autistic participants displayed greater activation of the upper lip, and lower 

protrusion of the jaw.  

Alexithymic traits were also associated with differences in the time-course of posed 

emotional expressions. For anger, high levels of alexithymic traits were linked to lower 

activation around the eye region. For happiness, alexithymia was linked to reduced activity 

around the eyes, eyebrows, and mouth, which is suggestive of reduced smile activity. For 

sadness, alexithymia was associated with reduced activity around the mouth.  

Jerk averaged across the whole time-course of posed expressions 

Next, we aimed to determine whether there were differences between groups in the 

jerkiness of angry, happy and sad expressions at specific landmarks on the face. Due to previous 

findings that autistic individuals exhibit significantly more jerky movements, independent of 
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movement phase (see 387), we took an average of jerk across all timepoints in the recording for 

each landmark, participant, and repetition, for each of the emotions respectively (68 landmarks 

x 51 participants x 16 repetitions; resulting in 55,488 datapoints for each emotion). Following 

this, for each of the 68 landmarks, we conducted a linear mixed effects model of jerk as a 

function of group and TAS scores, with subject and repetition as random intercepts (816 

datapoints for each model) for each of the emotions. As previously, we conducted a permutation 

test on the data to account for multiple testing (see above).  

This analysis revealed that there were significant group differences in jerk for angry and 

happy (but not sad) expressions at specific regions on the face (note that the largest number of 

significant differences were found for anger = 32.35% landmarks; happiness = 4.41% 

landmarks). When posing angry expressions, the autistic participants exhibited significantly 

higher jerk than the non-autistic participants at all of the mouth facial landmarks [mean 

significant F = -4.19] and at specific nose landmarks [22.2% landmarks; mean significant F = 

-3.71], even after controlling for alexithymia (see Figure 7.5). Combining these results with 

those relating to activation, our findings suggest that the autistic participants may activate the 

mouth region to a greater extent when expressing anger, thus leading to greater jerk in this 

region. In addition, this analysis revealed that alexithymia was a significant negative predictor 

at specific eyebrow landmarks [10% landmarks; mean significant F = -3.87]: those higher in 

alexithymia exhibited lower jerk at a specific eyebrow landmark when posing anger (see Figure 

7.5). In contrast, for happiness, the autistic participants displayed significantly lower jerk at a 

third of the eyebrow landmarks (33.33% landmarks; mean significant F = 7.62). It is likely that 

the autistic participants displayed significantly lower jerk at the eyebrow region due to there 

being lower activation of the left and right ‘eyebrow down’ blendshapes, as per our previous 

analysis. Alexithymia was not a significant predictor of jerk at any of the landmarks when 
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posing happiness. Finally, there were no significant group differences in jerk for sad 

expressions at any of the facial landmarks. Nevertheless, alexithymia was a significant negative 

predictor of jerk at specific eyebrow [40% landmarks; mean significant F = - 4.56] and jaw [F 

= 5.88%; F = 3.76] landmarks: those higher in alexithymia exhibited less jerky movements at 

specific eyebrow landmarks when posing sadness (see Figure 7.5).  

Figure 7.5.  

Graphs showing the jerkiness of posed angry (top), happy (middle) and sad (bottom) autistic 
(orange) and non-autistic (blue) facial movements across facial landmarks. 
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Angry
**

******
* * * * ** * ** ** **

Autism

*

Alexithymia

* * *

* * * *

F = 0

F = -9.36

F = 9.36

Happy

Sad

*

*



 241 

right panel, the F values for the group and alexithymia effects at each facial landmark are 
shown. Positive values (e.g., yellow, orange, red) signify higher jerk in the autistic participants 
or a positive predictive relationship between jerk and alexithymia. Negative values (e.g., green, 
blue and purple) signify lower jerk in the autistic participants or a negative predictive 
relationship between jerk and alexithymia. Stars denote statistical significance at p < .05.  
 

Jerk averaged across the whole time-course of posed expressions: Summary 

For posed expressions, there were differences in the jerkiness of facial movements 

between autistic and non-autistic individuals. In line with our above observation that autistic 

participants activate the mouth region to a greater extent than non-autistic participants, we 

further observed more jerky mouth movements for angry expressions. For happiness, the 

autistic participants displayed less jerky eyebrow movements which, again, is in line with lower 

activation in this region. Alexithymia was also associated with some differences in the jerkiness 

of expressions. Specifically, those higher in alexithymia exhibited less jerky eyebrow 

movements when posing anger and sadness. 

 

7.3.2. Analyses with spoken data 

Activation averaged across the whole time-course of spoken expressions 

Next, we aimed to determine whether there were group differences in activation for the 

angry, happy, and sad spoken expressions at specific blendshapes. In this condition, since the 

expression was produced across the whole recording, we took an average of activation across 

all timepoints for each blendshape, participant, and repetition, for each of the emotions 

respectively (52 blendshapes x 51 participants x 16 repetitions; resulting in 42,432 datapoints 

for each emotion). Following this, for each of the 44 blendshapes, we conducted a linear mixed 

effects model of activation as a function of group and TAS score, with subject and repetitions 
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as random intercepts (816 datapoints for each model), for each of the emotions. To account for 

multiple testing, we conducted a permutation test (see above).  

This revealed that there were significant group differences in activation for spoken 

expressions of anger [15.91% of blendshapes], happiness [11.36% of blendshapes] and sadness 

[4.55% blendshapes]. For anger, the autistic participants displayed significantly lower 

activation of the left and right eye squint [left F = -4.93; right F = -4.91], brow down [left F = -

3.70; right F = -3.70], and the mouth roll upper [F = -5.90] blendshapes, and significantly higher 

activation of the left and right mouth upper up [left F = 3.94; right F = 4.70] blendshapes. Thus, 

across both the posed and spoken condition, the autistic participants displayed lower activation 

of the brow down blendshapes. Notably, alexithymia was a significant positive predictor of 

activation at the left and right mouth smile [left F = 8.30; right F = 8.97], cheek squint [left F = 

4.21; right F = 3.82] and left mouth [F = 6.88] blendshapes (see Figure 7.6). Hence, those high 

in alexithymic traits showed increased activation of many of the blendshapes associated with 

happiness (mouth smile, cheek squint) when posing anger, suggesting that these facial 

expressions may be less well differentiated. For happy spoken expressions, the autistic 

participants exhibited significantly lower activation of the left and right eye squint [left F = -

4.12; right F = -4.12], and brow down [left F = -10.45; right F = -10.42], and the mouth roll 

lower [F = -3.78] blendshapes (see Figure 7.6). Thus, across both conditions, the autistic 

participants displayed lower activation of the brow down blendshapes when expressing 

happiness. In addition, alexithymia was a significant positive predictor of the left and right 

mouth frown blendshapes [left F = 5.35; right F = 5.91], and a significant negative predictor of 

activation for right jaw blendshape [F = - 4.39]. Hence, when posing happiness, those high in 

alexithymic traits showed increased activation of some of the blendshapes associated with anger 

(e.g., mouth frown), suggesting once again that their happy expressions may be less well-
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differentiated from their angry expressions. Finally, for sad spoken expressions, the autistic 

participants displayed higher activation of the left and right mouth upper up [left F = 8.39; right 

F = 9.63] blendshapes (see Figure 7.6). Alexithymia was not a significant predictor of activation 

for sad spoken expressions at any of the blendshapes.  

Activation averaged across the whole time-course of spoken expressions: Summary 

When activation was averaged across the whole time-course of spoken expressions we 

observed that, compared to non-autistic individuals, those with an autism diagnosis exhibit 

reduced activity in the eye and eyebrow regions when speaking in an angry fashion. Similarly, 

the autistic participants showed reduced activity around the eye and eyebrows when speaking 

in a happy fashion, suggesting that a smile that does not ‘reach the eyes’ (as much as for their 

non-autistic peers). When speaking in a sad fashion, the autistic participants show increased 

activity around the upper lip, mirroring the observations we made for posed expressions.  

 Alexithymia was associated with activation of many of the blendshapes associated with 

happiness (mouth smile, cheek squint) when posing anger, and activation of anger-associated 

blendshapes when posing happiness. Thus, suggesting that these facial expressions may be less 

well differentiated for highly alexithymic individuals.  
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Figure 7.6. 

 Graphs (left) and heatmaps (right) showing the activation of spoken angry (top), happy 
(middle) and sad (bottom) autistic (green) non-autistic (purple) facial expressions across 
blendshapes. 

 

Note. In the left panel, significant group effects are indicated by green dots on the graph, and 
significant alexithymia effects are indicated by lilac dots. Note that the heatmaps for the 
expressions are standardised for each emotion respectively. 
 
Activation across the time-course of spoken expressions 

Next, we aimed to determine whether there were any differences between groups in 
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timepoints in the spoken expression. To test this, for each of the 44 blendshapes, at each of the 

timepoints, we conducted a linear mixed effects model of activation as a function of group and 

TAS score, with subject and repetitions as random intercepts, for each of the emotions. As 

above, we employed a permutation test to establish which effects were statistically significant.  

This analysis revealed that, for anger, the autistic participants displayed significantly 

lower activation of the left and right brow down and eye squint, the lower and upper mouth roll, 

and the mouth close blendshapes at numerous timepoints throughout the expression. In contrast, 

the autistic participants displayed significantly higher activation of the left and right mouth 

upper up blendshapes at numerous timepoints throughout, and the mouth smile blendshapes 

early in the angry expression (see Figure 7.7 for all significant differences). Alexithymia was a 

significant positive predictor of the left and right mouth smile and cheek squint blendshapes at 

numerous timepoints throughout the angry expression, thus suggesting that angry and happy 

expressions are less well differentiated for highly alexithymic individuals. In comparison, 

alexithymia was a significant negative predictor of the brow down blendshapes later in the 

expression (see Figure 7.7 for all significant differences). 
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Figure 7.7.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for angry spoken expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at 0.8 
second intervals (48 frames).  
 

 

For happiness, the autistic participants exhibited significantly lower activation of the 

left and right brow down blendshapes at every timepoint in the recording. In addition, the 

autistic participants displayed significantly lower activation of the left and right cheek squint, 

eye squint and mouth shrug upper blendshapes at the start and end of the expression, and many 

of the mouth-related blendshapes (e.g., left and right mouth lower down, mouth smile, mouth 

dimple, mouth press, etc) at the start of the expression. In contrast, the autistic participants 

displayed significantly higher activation of the mouth pucker and mouth funnel blendshapes at 

the start and end of the expression. Alexithymia, on the other hand was a significant positive 

predictor of the left and right mouth frown blendshapes at numerous timepoints throughout, 

suggesting that highly alexithymic individuals tend to activate action units associated with 

anger when posing happiness (see Figure 7.8 for all significant effects).  
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Figure 7.8.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for happy spoken expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at 0.8 
second intervals (48 frames).  
 

 

Finally, for sadness, the autistic participants displayed significantly higher activation of 

the left and right mouth upper up and brow outer up blendshapes, along with the left jaw 

blendshape, at numerous timepoints throughout the expression. Concurrently, the autistic 

participants exhibited significantly lower activation of the upper and lower mouth roll, and 

lower mouth shrug blendshapes throughout the expression. Finally, the autistic participants 

displayed lower activation of the left and right eye squint and mouth frown blendshapes near 

the start of the expression (see Figure 7.9). Alexithymia was a significant positive predictor of 

the upper and lower mouth roll and mouth shrug blendshapes, and the left and right mouth 

upper up and mouth dimple blendshapes at various timepoints throughout the expression. 

Alexithymia was a significant negative predictor of the left and right eye squint blendshapes at 

the start and end of the expression, and of the mouth pucker and mouth funnel blendshapes near 

the start of the expression (see Figure 7.9).  
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Figure 7.9.  

Graphs showing the t-values for the significant group (top) and alexithymia (bottom) effects on 
activation across blendshapes and time for sad spoken expressions. 
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Note. Positive values (e.g., orange, red) signify higher activation in the autistic participants or 
a positive predictive relationship between activation and alexithymia. Negative values (e.g., 
blue and purple) signify lower activation in the autistic participants or a negative predictive 
relationship between activation and alexithymia. This graph also features heatmaps to help 
readers visualise the significant effects. The heatmaps show the significant differences at 0.8 
second intervals (48 frames).  
 
 

Activation across the time-course of spoken expressions: Summary 

 For spoken expressions of anger, the autistic participants (compared to non-autistic 

participants) exhibited reduced activity in the eye and eyebrow region, and increased activity 

around the mouth. For happiness, the autistic participants exhibited reduced activation around 

the eyes, eyebrows, and cheeks which, as with posed expressions, suggests a smile that is 

constrained to the mouth region. There were also differences in configuration at this mouth 

region for these expressions, with the autistic participants puckering and funnelling their mouth 

more, but smiling, shrugging and rolling their mouth less when speaking in a happy fashion. 

Similarly, for sad spoken expressions, the autistic participants displayed a different mouth 

configuration to their non-autistic peers, placing great emphasis on moving the upper lip up, 

and lower emphasis on pulling the corners of their mouth down (at specific timepoints).  

Individuals high in alexithymic traits tended to activate blendshapes associated with 

anger when posing happiness and vice versa, suggesting less differentiation between angry and 

happy expressions. For sadness, alexithymia was associated with alterations to the activity 

around the mouth region at various timepoints in the expression. 

Jerk averaged across the whole time-course of spoken expressions 

Finally, we aimed to determine whether there were significant group differences in the 

jerkiness of spoken expressions across the emotions. To fulfil this aim, we took an average of 

jerk across all timepoints in the recording for each landmark, participant, and repetition, for 
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each of the emotions respectively. Following this, for each of the 68 landmarks, we conducted 

a linear mixed effects model of jerk as a function of group and TAS scores, with subject and 

repetition as random intercepts (816 datapoints for each model) for each of the emotions. As 

previously, we conducted a permutation test on the data to account for multiple testing (see 

above).  

Our analysis revealed that there were no significant group differences in the jerkiness 

of movements for angry, happy or sad spoken expressions at any of the facial landmarks. 

Similarly, alexithymia did not predict jerk at any of the facial landmarks for angry expressions. 

However, for happiness and sadness, alexithymia was a negative predictor of jerk at specific 

mouth facial landmarks [happiness: 15% landmarks; mean significant F = - 4.41; sadness: 15% 

landmarks, mean significant F = -4.45; see Figure 7.10].  
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Figure 7.10.  

Graphs showing the jerkiness of spoken angry (top), happy (middle) and sad (bottom) autistic 
(orange) and non-autistic (blue) facial movements across facial landmarks. 

 

Note. In the left panel, facial landmarks where there are significant group differences are shown 
in green, and facial landmarks where alexithymia contributes to jerk are shown in lilac. In the 
right panel, the F values for the group and alexithymia effects at each facial landmark are 
shown. Positive values (e.g., yellow, orange, red) signify higher jerk in the autistic participants 
or a positive predictive relationship between jerk and alexithymia. Negative values (e.g., green, 
blue and purple) signify lower jerk in the autistic participants or a negative predictive 
relationship between jerk and alexithymia. Stars denote statistical significance at p < .05.  
 

 

Angry

Autism Alexithymia

*

F = 0

F = -9.36

F = 9.36

Happy

Sad

*
*
*

* **



 254 

Jerk averaged across the whole time-course of spoken expressions: Summary 

There were no differences between autistic and non-autistic individuals in the jerkiness 

of movements for angry, happy or sad spoken expressions. Alexithymia, however, was 

associated with less jerky mouth movements for both happiness and sadness. 

Posed and spoken expressions: Overall summary 

Across both the posed and spoken conditions, autistic participants tend to communicate 

anger more with the mouth rather than the eye and eyebrows. Across both conditions, the 

autistic participants displayed lower activation of the eye, eyebrow, and cheek region 

suggesting that the smile does not “reach the eyes” as much as for non-autistic participants. For 

both posed and spoken conditions, the autistic participants tended to make a downturned 

expression by raising their upper lip more than their non-autistic peers. In contrast, alexithymic 

expressions were characterised by greater similarity between anger and happiness.  

The differentiation of angry and happy facial expressions: Exploratory Analysis 

As discussed previously, the results from our primary analyses raise the possibility that 

those high in alexithymia produce less differentiated angry and happy facial expressions than 

those low in alexithymia, even after accounting for autism. That is, we found that individuals 

high in alexithymia displayed elevated activation of the mouth smile blendshapes when posing 

anger, and the mouth frown blendshape when posing happiness (relative to those low in 

alexithymia). Thus, to formally test the contribution of autism and alexithymia to the 

differentiation of angry and happy spoken expressions, we conducted an exploratory random 

forests analysis431, using the Boruta432 wrapper algorithm (as described in 426,427,473; see Chapter 

5). In this analysis, alexithymia was deemed important [Mean Importance Score (MIS) = 9.59], 

and autism was deemed unimportant [MIS = 2.13], for the differentiation of angry and happy 

spoken expressions (see Figure 7.11, left). A follow-up analysis identified the same pattern of 
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results in the posed condition (alexithymia [MIS = 9.36]; autism [MIS = 2.64]; see Figure 7.11, 

right).  In sum, these results suggest that alexithymia, and not autism, is associated with lower 

differentiation of angry and happy facial expressions across both posing conditions.  

Figure 7.11.  

Random forest importance scores for AQ and TAS to the differentiation of spoken (left) and 
posed (right) angry and happy expressions. 
 

 
Note. Variable importance scores displayed as boxplots. Box edges correspond to the 
interquartile range (IQR); whiskers represent 1.5 × IQR distance from box edges; circles 
denote outliers. Box colour reflects the decision made by the algorithm: Green = confirmed 
important, yellow = tentative, red = rejected; grey = shadow features – shadowMin, 
shadowMean, shadowMax (minimum, mean and maximum variable importance scores of 
shadow features, respectively).  

 

7.3.3. The link between production and perception  

 Subsequently, we aimed to investigate whether features of emotion-production 

contribute to emotion perception which we operationalised as emotion recognition accuracy. 

Building on the body movement and emotional experience literatures we predicted that more 

−1
0

−5
0

5
10

15
20

Im
po
rta
nc
e

sh
ad
ow
M
in

sh
ad
ow
M
ea
n

AQ

sh
ad
ow
M
ax

TA
S

−1
0

−5
0

5
10

15
20

−1
0

−5
0

5
10

15
20

Im
po
rta
nc
e

sh
ad
ow
M
in

sh
ad
ow
M
ea
n

AQ

sh
ad
ow
M
ax

TA
S

−1
0

−5
0

5
10

15
20

Spoken Condition Posed Condition 



 256 

jerky, and less precise and/or differentiated, expressions would be associated with reduced 

emotion recognition accuracy. We explored whether this was the case for both autistic and non-

autistic individuals by conducting a random forests analysis431 separately for each group, using 

the Boruta432 wrapper algorithm (version 7.7.0; as in 426,427,473). To test our predictions, we 

included emotion recognition accuracy as the outcome variable: feature variables included 

mean jerk, mean jerk precision, mean jerk distance (i.e., differentiation) for both posed and 

spoken expressions; mean activation, mean activation precision, mean activation distance (i.e., 

differentiation) for both posed and spoken expressions; plus AQ and TAS.  

For the non-autistic participants, of the 15 variables tested, three were classified as 

important, three as tentatively important, and nine were deemed unimportant for emotion 

recognition. Figure 7.12 (left) shows that spoken jerk precision [Mean Importance Score (MIS) 

= 9.75], TAS score [MIS = 9.54] and mean spoken jerk [MIS = 8.61] were classed as important 

for emotion recognition. AQ [MIS = 4.81], posed jerk precision [MIS = 4.61] and posed jerk 

distance [MIS = 4.37] were tentatively important for non-autistic emotion recognition. All other 

variables were deemed unimportant. Notably, here we found that variables corresponding to 

the spoken condition were deemed important for emotion recognition, while those in the posed 

condition were deemed tentatively important. This finding is expected; participants should be 

more likely to draw on their own spoken productions since the stimuli in the emotion 

recognition task also comprise spoken expressions.  

For the autistic participants, of the 15 variables tested, one was classified as tentatively 

important, and 14 were classified as unimportant for emotion recognition. As shown in Figure 

7.12 (right), IQ was deemed tentatively important [MIS = 6.35] and all other variables were 

deemed unimportant for autistic emotion recognition.  
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Figure 7.12.  

Random forest variable importance scores for non-autistic (left) and autistic (right) emotion 
recognition. 
 

 

 

 

 

 
Note. Variable importance scores for all 15 variables included in the Boruta random forest 
regression model, displayed as boxplots. Box edges correspond to the interquartile range 
(IQR); whiskers represent 1.5 × IQR distance from box edges; circles denote outliers. Box 
colour reflects the decision made by the algorithm: Green = confirmed important, yellow = 
tentative, red = rejected; grey = shadow features – shadowMin, shadowMean, shadowMax 
(minimum, mean and maximum variable importance scores of shadow features, respectively).  

 

Following this, to verify the results from our random forests analyses, we conducted a 

linear regression in each group, predicting mean emotion recognition accuracy with the 

“important” and “tentatively important” variables. In these regressions, we added the predictor 

variables sequentially, starting with the variables with the highest mean importance scores, until 

there was no longer a significant improvement to the model.  
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For autistic individuals, IQ was a significant positive predictor [t = 2.60, b = 0.48, p = 

.016], accounting for 22.6% of the variance in emotion recognition accuracy, and significantly 

improving the model [F change = 7.73, p = .016, R2 change = 22.6%]. Bayesian analyses 

demonstrated that there was moderately strong evidence for this model relative to a null model 

[BF10 = 3.62, R2 = 22.6%]. 

For non-autistic individuals, entering mean spoken jerk precision as a predictor of 

emotion recognition significantly improved the model [F change = 16.59, p < .001, R2 change 

= 41.9%], accounting for 41.9% of the variance. Adding TAS score in the second step 

marginally improved the model [F change = 4.27, p = .051, R2 change = 9.9%], accounting for 

an additional 9.9% of the variance. There were no further improvements to the model when we 

added the remaining important and tentatively important variables. In the final model, mean 

spoken jerk precision [i.e., consistency in the jerkiness of emotional expressions; t = 2.80, b = 

0.48, p = .010, R2 change = 41.9%] was a significant positive predictor of emotion recognition 

accuracy. Alexithymia approached significance as a negative predictor of emotion recognition 

accuracy [t = -2.07, b = -0.35, p = .051]. Bayesian analyses demonstrated that there was very 

strong evidence for our final model relative to a null model for non-autistic individuals [BF10 = 

87.55, R2 = 51.4%]. In contrast, the same analysis demonstrates moderate evidence for the null 

model for autistic individuals [BF10 = 0.22, R2 = 2.4%]. 

The link between production and perception: Exploratory analyses  

The above analysis implicated spoken jerk precision in emotion recognition within the 

non-autistic group. To gain insight into individual differences that might be related to higher 

jerk imprecision in the non-autistic population we conducted a further exploratory analysis 

wherein we tested the contribution of various demographic factors to spoken jerk precision in 

the non-autistic group. That is, we constructed a Bayesian linear regression model predicting 
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spoken jerk precision with age, IQ, AQ and TAS. The strongest model included only TAS as a 

predictor [BF10 = 5.44, R2 = 25.0%]: those higher in alexithymic traits typically displayed less 

precise (i.e., more variable) facial expressions in terms of jerk [t =-2.83, b = -0.50, p = .009]. 

Building on this we conducted an exploratory mediation analysis to test the hypothesis that 

alexithymia might exert an indirect effect on emotion recognition by influencing spoken jerk 

precision. This analysis revealed that there were both significant direct [z = -2.20, p = .028, 

95% CI = (-0.051, -0.003)] and indirect [z = -2.10, p = .036, 95% CI = (-0.034, -0.001)] effects 

of alexithymia on emotion recognition accuracy (see Figure 7.13). Hence our findings suggest 

a potential causal direction: for non-autistic individuals, being high in alexithymic traits may 

lead to more variable productions of emotional facial expressions, which in turn may result in 

poorer emotion recognition accuracy.  

Figure 7.13.  

Mediation models showing the contribution of alexithymia to non-autistic emotion recognition 
via spoken jerk precision. 
 

 

 

Note. The asterisks (*) denote statistical significance based on 95% confidence intervals.  
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7.4. Discussion 

In the current study, we first compared the facial expressions produced by autistic and 

non-autistic individuals, after controlling for differences in facial morphology and alexithymia, 

and second, explored whether the jerkiness, activation profile, precision, and differentiation of 

participants’ own emotional expressions contributed to their ability to recognise others’. Our 

results suggest that both autism and alexithymia contribute to levels of activation and jerk when 

producing emotional expressions. Notably, however, these contributions differed as a function 

of the displayed emotion (i.e., across anger, happiness and sadness), the facial action unit (e.g., 

brow down blendshapes, mouth smile blendshapes, etc.), and the posing condition (i.e., posed 

versus spoken). That is, the autistic participants (relative to non-autistic participants) did not 

exhibit consistently higher or lower activation, or higher or lower jerk, across all facial features, 

for all emotions. This evidence points to differences in both the configuration and kinematics 

of facial features (i.e., relative activation of features) between autistic and non-autistic 

individuals when expressing emotion. Such differences could, at least partially, explain why 

non-autistic individuals find it difficult to recognise the emotions of autistic people, and vice 

versa (e.g., 147,534; though see 267).  

For anger, both when posing and speaking, the autistic participants displayed lower 

activation of the brow down blendshapes, and higher activation of specific mouth blendshapes 

(e.g., mouth frown, mouth upper up), than their non-autistic peers (even after minimising effects 

of differences in facial morphology and controlling for alexithymia). Autistic individuals also 

displayed significantly higher jerk for all mouth facial landmarks in the posing condition. 

Together, this evidence suggests that autistic participants may rely more on the mouth, and less 

on the eyebrow region, to signal anger than their non-autistic counterparts, both during posed 

and spoken emotional expressions. Interestingly, autistic individuals typically attend more to 
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the mouth, and less to the eye region (than their non-autistic peers), when recognising emotional 

expressions (e.g., 224-226; though also see 359). One possible explanation that develops from our 

current findings is that, since autistic individuals rely more on the mouth, and less on the 

eyebrows, (relative to non-autistic individuals) to signal anger themselves, these participants 

may expect there to be more expressive information in the mouth region, and thus attend to this 

area more. Such attentional biases could then lead to downstream difficulties recognising anger 

since the majority of the expressive information is thought to be displayed in the upper half of 

the face227,228. Further research is necessary to test whether differences between groups in the 

production of emotional facial expressions contribute to differences in the sampling and 

recognition of them.  

 For happiness, there were numerous, and large, differences between groups in activation 

for both posed and spoken expressions, even after minimising the effects of differences in facial 

morphology and controlling for alexithymia. Specifically, we found that the autistic participants 

displayed significantly lower activation of many blendshapes typically associated with 

happiness in both conditions – the left and right mouth smile, cheek squint, eye squint, and 

brow down blendshapes. By contrast, we found that the autistic participants exhibited higher 

activation for other cheek and mouth blendshapes (e.g., mouth funnel, mouth pucker, cheek 

puff, mouth roll upper) in both conditions. Together, these results suggest there are group 

differences in mouth configuration when expressing happiness, with autistic individuals 

displaying a less exaggerated, and more puckered, smile. In addition, our results suggest that 

the autistic participants may rely more on the mouth to signal happiness, and less on the eyes, 

eyebrows and cheeks (similar to above for anger; see Figure 1 and Figure 6 for visual 

representation). This may explain why autistic expressions have been rated as less natural in 

previous experiments (e.g., 265): in the neurotypical literature, genuine (i.e., natural) happy 
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expressions (i.e., “Duchenne smiles”) are said to be characterised by activation of both the 

zygomaticus major muscle  –  which pulls the lip corners upwards (i.e., mouth) –  and the 

orbicularis oculi muscle  –  which lifts the cheeks, gathers the skin around the eye, and pulls 

the brow down  –  while non-genuine happy expressions only involve the former (e.g., 535-538). 

Hence, the happy expressions produced by autistic individuals may be perceived as less genuine 

or natural (by non-autistic observers), as they only involve activation of the zygomaticus major 

muscle (i.e., the mouth). Notably, although these expressions may be perceived as less genuine 

based on neurotypical criteria, this does necessarily mean that autistic individuals actually 

produce less authentic expressions (i.e., more contrived or forced expressions). Rather, it could 

be the case that genuine expressions of happiness for autistic individuals do not involve the 

orbicularis oculi muscle to the same extent as for non-autistic individuals. Further work is 

necessary to characterise genuine and posed autistic facial expressions, and to ascertain whether 

autistic expressions are rated as less natural or atypical in appearance (e.g., 263,265,266,278) due to 

lower activation of the cheek squint, eye squint, and brow down blendshapes.  

 For sadness, there were fewer group differences in activation (relative to anger and 

happiness), and no group differences in jerk, after minimising the effects of differences in facial 

morphology and controlling for alexithymia. In the posed condition, we identified that the 

autistic participants exhibited significantly lower activation of the jaw forward blendshape 

when at peak expression, and higher activation of the mouth upper up blendshape when moving 

into the expression. In the spoken condition, while the autistic participants displayed 

significantly lower activation of the mouth frown, mouth roll and eye squint blendshapes (at 

specific moments in time), these participants showed elevated activation of the mouth upper 

up, brow outer up, and jaw left blendshapes. Thus, once again, our results point to different 

configurations (i.e., relative activation) of facial features for both posed and spoken sad 
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expressions between groups. Most notably, the autistic participants tended to raise their upper 

lip more (posed and spoken condition), and pull the corners of their mouth down less (spoken 

condition), to display the downturned mouth that is characteristic of a sad expression (relative 

to their non-autistic peers).  

The results of the current study partially support our hypothesis concerning the jerkiness 

of facial movements. Since previous studies have found that autistic individuals exhibit jerkier 

whole-body, upper-limb and head movements (e.g., 512-516), we predicted that autistic 

participants in the current study would display significantly more jerky facial expressions than 

their non-autistic counterparts. However, whilst we found that the autistic participants (relative 

to non-autistic participants) exhibited higher jerk at all mouth facial landmarks for posed 

expressions of anger, thus supporting our hypothesis, we also found lower jerk at specific 

eyebrow landmarks for happiness, and no differences in jerk for sadness, thus contradicting our 

hypothesis. Moreover, we found that there were no significant differences in jerk between 

autistic and non-autistic participants in the spoken condition. When interpreting these results, 

it is important to consider the relationship between activation and jerk. By doing so, we can 

attempt to explain why we see different jerk effects across emotions. Here, for anger, we found 

differences between the groups in terms of jerk that were not mirrored in activation: when 

averaging across timepoints, the autistic participants displayed greater jerk, but not activation, 

in the mouth region when posing angry expressions. These results suggest that the autistic 

participants may have exhibited comparable levels of activation of the mouth, but reached these 

levels in a more jerky fashion. For happiness, on the other hand, differences between the groups 

in the jerkiness of movement were mirrored in terms of activation for the eyebrow region: the 

autistic participants displayed lower activation of the brow down blendshape, and lower jerk 

for eyebrow landmarks when posing happiness. Thus, the autistic participants may have 
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displayed lower jerk for happiness because they activated, and thus moved, this region to a 

lesser extent. Future investigations should aim to determine the significance and 

(in)dependency of the group effects on jerk and activation for angry, happy and sad emotional 

expressions.  

In the current study, we found that alexithymia significantly contributed to the 

production of emotional facial expressions, both in terms of activation and jerk. For example, 

we found that alexithymia, and not autism, was associated with less differentiated angry and 

happy facial expressions (in terms of activation) for both posed and spoken expressions. 

Specifically, in the spoken condition, we found that individuals high in alexithymia displayed 

elevated activation of the mouth smile blendshapes when posing anger, and the mouth frown 

blendshape when posing happiness (relative to those low in alexithymia). Concurrently, for 

both posed and spoken expressions, we found that there were smaller differences (i.e., smaller 

distances) in activation between angry and happy facial expressions across blendshapes for 

those high, relative to low, in alexithymia. These results suggest that highly alexithymic 

individuals may produce more overlapping, and thus ambiguous, angry and happy facial 

expressions. Notably, previous work, which has not controlled for alexithymia, has suggested 

that autistic individuals display less differentiated facial muscle activation for anger, happiness 

and fear273, and positive and negative emotions518. Our results raise the possibility that these 

differences, which have previously been attributed to autism, may be better explained by 

alexithymia. Nevertheless, further research is necessary to confirm our findings, and to assess 

whether alexithymia contributes to greater overlap between facial expressions for other 

emotions (e.g., anger and disgust, surprise and fear, etc.). Further research might also question 

whether observers struggle to recognise the less differentiated facial expressions produced by 

individuals who are high in alexithymic traits.  



 265 

Relatedly we also found that, for non-autistic individuals, those high in alexithymia 

typically produced less precise (i.e., more variable) facial expressions with respect to jerk (in 

the spoken condition). There are a number of potential explanations for this finding. Since 

alexithymia is linked to proprioceptive differences520-522 and proprioception is essential for 

motor control523-526, one explanation is that highly alexithymic individuals have lower control 

of their movements, thus resulting in more variable productions of facial expressions across 

instances. Another possibility is that alexithymic individuals are less able to draw on their own 

concepts or experiences of emotion when attempting to pose the expressions, thus resulting in 

more variable productions. This is plausible since research has suggested that individuals who 

are high in alexithymic traits tend to have difficulties retrieving emotional information and 

memories (e.g., see 539). Supporting these explanations, here we found that, when asked to 

report how difficult they found it to pose the emotional expressions on a scale from one to ten, 

those high in alexithymic traits typically reported greater difficulties [r = 0.58, p < .001]. Further 

research is necessary to explore whether inconsistency in the jerkiness of expressions in the 

alexithymic population is linked to differences in proprioception/motor control and/or access 

to emotional-related information.  

 Another key aim of this study was to assess whether there were any links between the 

production and perception of emotional facial expressions for autistic and non-autistic 

individuals. Leveraging the body movement and emotional experience literatures we predicted 

that more jerky, and less precise and/or differentiated, facial expressions would be associated 

with reduced emotion recognition accuracy. We found that precision was an important 

contributor for non-autistic individuals, accounting for 41.9% of the variance in emotion 

recognition accuracy: those who produced highly variable spoken expressions (in terms of jerk) 

typically had poorer accuracy on an independent task that required the recognition of emotion 
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from motion cues. In a further exploratory analysis, we also identified that, for non-autistic 

individuals, alexithymia exerted an indirect effect on emotion recognition accuracy by 

negatively influencing the precision of spoken expressions (which in turn contributed to 

accuracy). Thus, these findings illuminate a potential mechanistic pathway by which 

alexithymia contributes to emotion recognition: having difficulties identifying and describing 

one’s own emotions (i.e., alexithymia), may lead to more variable productions of emotional 

expressions, which may in turn lead to greater emotion recognition difficulties. Since structural 

equation modelling cannot definitively determine causality433, future studies employing causal 

manipulation are necessary to test this pathway.  

The current findings complement ideas proposed in template-matching models of 

emotion recognition. Such models posit that, to recognise the emotions of others, individuals 

compare incoming facial expressions to stored ‘templates’, which comprise the average of all 

previous encounters (e.g., an average angry expression across instances)108-111. Here, we add to 

this literature by demonstrating that, in addition to drawing on templates based on others’ 

expressions (i.e., visual representations), individuals may also draw on their own facial 

expressions. Further work is necessary to unpack whether this information about own 

expressions relates to stored visual representations (e.g., from watching one’s own expressions 

in the mirror) or stored motoric representations. Furthermore, our results show the utility of 

considering approaches like signal detection theory (SDT; see 140) in the emotion recognition 

field. That is, we found that precision, an important concept in SDT, is also important with 

respect to emotion recognition: precise (i.e., consistent or reliable) productions of facial 

expressions facilitate enhanced emotion recognition. One may question why we did not find a 

significant effect of distance between facial expressions (differentiation) on emotion 

recognition. It may be that the expressions that we examined are perceptually dissimilar, and 
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thus instances of overlap between the signal and noise distributions are relatively uncommon, 

leading to no effect of distance. Independent of this, there could conceivably be an effect of the 

precision of one’s own facial expressions on emotion recognition. Here, precision may be proxy 

for the clarity of one’s motoric representations, which could affect emotion recognition 

irrespective of perceptual overlap. Moreover, the expectation literature would predict that more 

precise (motoric) representations of incoming expressions (i.e., priors) would result in enhanced 

emotion recognition accuracy (see 434-437). Future research should aim to include other emotions 

(e.g., surprise, disgust and fear) that share perceptual features with anger, happiness and sadness 

in order to identify whether an effect of the differentiation of facial expressions emerges.  

 While we found that the precision of spoken productions predicted emotion recognition 

for non-autistic individuals, no production-related factors contributed to emotion recognition 

for autistic individuals. When we explored demographic factors, IQ was the only significant 

contributor for autistic individuals, explaining 22.6% of the variance in accuracy. These results 

add to a growing literature suggesting that different psychological mechanisms are involved in 

autistic and non-autistic emotion recognition (e.g., 246,426,427). Within this literature, there is 

evidence that the precision of visual emotion representations (i.e., the way one pictures others’ 

emotional expression in the mind’s eye) contributes to emotion recognition accuracy for non-

autistic individuals, but not autistic individuals (e.g., 426,473). Taken together, these studies 

suggest that autistic individuals may not be using their visual representations and productions 

of facial expressions (or, at least, use them to a lesser extent than non-autistic individuals) to 

help them recognise others’ emotions. This idea aligns well with Bayesian theories of autism 

which propose that, compared to non-autistic people, autistic individuals are less influenced by 

prior expectations (e.g., 259-261).  
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 If autistic individuals rely less on stored visual representations and productions of facial 

expressions, how are they recognising other people’s emotions? One plausible explanation is 

that autistic individuals have developed cognitively or verbally mediated compensatory 

strategies256,257. For example, they may follow a “rule-based” strategy where they assess the 

extent to which an incoming expression matches a list of features they have learnt to be 

associated with different emotions (e.g., anger: “furrowed eyebrow”; happiness: “lips raised”; 

sadness: “downturned mouth”)256,257. If autistic individuals are employing these cognitively or 

verbally mediated rule-based strategies, then we might expect emotion recognition performance 

to be related more to verbal or cognitive ability in the autistic than non-autistic group. 

Supporting this idea, here we found that IQ was a significant predictor of emotion recognition 

for the autistic [F(1,23) = 6.73, p = .013, R2 = 22.6], but not non-autistic participants [F(1,23) 

= 2.62, p = .120, R2 = 10.2%]. Concurrently, if autistic individuals are employing more effortful 

strategies, rather than automatically comparing to their visual representations or productions, 

this could explain the longer emotion recognition response latencies found for autistic 

individuals (e.g., 229-238). Further research is necessary to test whether autistic people adopt a 

rule-based strategy to recognise others’ emotions, and to identify what other factors contribute 

to autistic emotion recognition.  

Limitations and Future Directions  

 Although the results of the current study are highly informative with respect to 

understanding the differences in the facial expressions produced voluntarily by autistic and non-

autistic individuals, further work is necessary to characterise and compare spontaneously 

produced expressions. Here, we focused specifically on voluntary expressions, which are 

ubiquitous in everyday life, posed in order to deliberately communicate one’s thoughts, 

intentions, and emotions to interaction partners. However, it is important to note that 
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spontaneous expressions are also common in day-to-day life, may comprise more accurate 

indicators of an individual’s emotions (e.g., 540), and may differ in appearance to posed 

expressions541-543. As such, the findings documented here may not generalise to spontaneously 

produced emotional expressions. Therefore, further work is necessary to test the contribution 

of autism and alexithymia to the spatiotemporal and kinematic properties of spontaneous 

emotional facial expressions.  

It is also important to address the limitations of our study with respect to 

generalizability. Given that the participants in our sample were predominantly white (82.35%; 

see Appendix 6.2), and from Western Cultures, our results may not be representative of those 

from other racial, ethnic, or cultural backgrounds. This is particularly relevant here as previous 

studies have found that visual representations and productions of emotion vary across cultures 

(e.g., 388,389,462,464). For example, one study found that (non-autistic) individuals from Western 

cultures tended to emphasise the eyebrows and mouth in their visual representations, while 

those from East Asian cultures tended to emphasise expressive information in the eye region388. 

As such, the Western (non-autistic) participants involved in the current study may have 

displayed greater activation of the eyebrow and mouth in their facial expressions, relative to 

what would be seen with East Asian participants. Furthermore, since we found that the autistic 

participants tended to exhibit lower activation of eyebrow and mouth regions when posing 

specific emotional expressions (e.g., happiness), it may be that differences between autistic and 

non-autistic people in facial expressions are smaller in East Asian cultures. Alternatively, it 

could be that these group differences are consistent across Western and East Asian cultures, 

due to both autistic and non-autistic individuals in East Asian cultures showing comparably 

lower activation of these regions relative to their Western peers (thus maintaining the difference 
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between groups). Further research is necessary to characterise and compare the facial 

expressions of autistic and non-autistic people across cultures.  
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Chapter 8: General Discussion 
 

8.1. Overview of findings 

In this project, across six empirical chapters, I have developed novel experimental 

paradigms to assess the conceptualisation, experience, visual representation, production, and 

recognition of emotion in autism, and created new, mathematically plausible, mechanistic 

models which shed light on the processes involved in emotion recognition for both autistic and 

non-autistic people. In doing so, I have provided significant methodological and theoretical 

contributions to the literature, and addressed a number of limitations of previous research.  

Prior to this project, the majority of studies investigating emotion-processing in autism 

had not controlled for alexithymia – a subclinical condition highly prevalent in the autistic 

population199 theorised to be responsible for autistic individuals’ difficulties with emotions207. 

As such, one of the primary aims of this project was to determine whether there are differences 

between autistic and non-autistic individuals in the conceptualisation, experience, visual 

representation, production, and recognition of emotion, after controlling for this important 

confound. In sum, our results suggest that there are no differences between groups in the 

understanding or differentiation of emotion concepts (Chapter 6), the precision or 

differentiation of emotional experiences (Chapter 6), and the speed (Chapter 3) or 

differentiation of visual emotion representations (Chapter 5), after controlling for alexithymia. 

Nevertheless, I did find differences between groups in the precision of visual representations 

(Chapter 5), the production of emotional facial expressions (Chapter 7), and the recognition of 

specific emotions (Chapter 2), even after accounting for this confound. As such, alexithymia 

may underlie some, but not all, of the differences between autistic and non-autistic people in 

emotion-processing.  
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Despite long-standing suggestions that autistic individuals adopt alternative strategies 

to read the emotions of others (e.g., 256, 257), at the onset of this project, very few studies had 

compared the mechanisms underpinning emotion recognition for autistic and non-autistic 

people. Therefore, another principal aim of this project was to characterise and compare the 

mechanisms involved in emotion recognition for these groups. Here I found evidence for 

similarities and differences in the processes involved, and constructed theoretical, mechanistic 

models of, autistic and non-autistic emotion recognition (see section 8.6.2 for a full discussion).  

Throughout the remainder of the discussion, I synthesise these findings with existing 

literature, reflect on general strengths and limitations of this project (see Chapters for more 

specific limitations), and outline future research directions to explore outstanding questions.  

 

8.2. The conceptualisation and experience of emotion in autism 

Prior to this project, a limited body of work had assessed the understanding, 

conceptualisation, and experience of emotion in autism. However, as highlighted in Chapters 1 

and 6, such previous research had rarely employed objective methods to assess these constructs, 

and those that had, did not control for alexithymia. As such, at the onset of this project there 

were limited objective tools, and it was unclear whether differences in the understanding, 

conceptualisation and experience of emotion in autism were underpinned by co-occurring 

alexithymia (as suggested by the alexithymia hypothesis207). To remedy these limitations, in 

Chapter 6, I compared the performance of autistic and non-autistic adults on a series of 

objective, emotion-based, tasks that I developed after controlling for alexithymia. Despite being 

sufficiently powered to detect small-moderate effects, I found that there were no differences 

between groups in their ability to understand or differentiate semantic emotion concepts, nor 

any differences in the precision or differentiation of emotional experiences, after controlling 
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for alexithymia. These results contradict previous findings suggesting that autistic individuals 

are less able to differentiate semantic concepts and experiences of emotion148. This disparity 

could arise due to the fact that I controlled for alexithymia or that I employed a task that did not 

require labelling of emotional state, in contrast to the previous study conducted by Erbas and 

colleagues (wherein participants rated their responses on numerous emotion rating scales)148. 

Alternatively, this discrepancy may be caused by differences in sample demographics between 

studies; our study involved adults whilst the previous study involved adolescents. Thus, autistic 

individuals may struggle to differentiate experiences and semantic concepts of emotion relative 

to their non-autistic counterparts during adolescence, which disappear as they transition into 

adulthood. To test this possibility, future studies should employ our EmoMap paradigm, which 

is less confounded by language ability than previous methods450, to assess the emotion 

differentiation performance of autistic and non-autistic children and adolescents, while 

controlling for the influence of alexithymia. Such work could allow researchers to determine 

under what conditions and tasks autistic people display difficulties with emotion differentiation.  

My finding that neither autism nor alexithymia predicted emotional precision 

contradicts the previous results (from Huggins et al292) suggesting that the level of alexithymic, 

but not autistic traits, contributes to the precision of emotional experiences292. There are also 

multiple potential explanations for this discrepancy. Firstly, the task employed by Huggins et 

al292 assessed emotional precision for positive (i.e., “pleasing”) and negative (i.e., “upsetting”) 

affective states, whereas here I indexed emotional precision for discrete emotions. As such, it 

is possible that those high in alexithymia have lower precision when evaluating the valence of 

their affective experiences, but intact precision when evaluating whether these experiences map 

on to discrete emotion labels. Secondly, Huggins and colleagues292 selected images associated 

with varied valence, but constant arousal levels, whereas the images employed here varied 
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across both dimensions. Consequently, those high in alexithymia may struggle to evaluate 

which image evokes a stronger emotional response when this judgement is solely based on 

valence (i.e., when arousal is fixed at a constant), and not when it can be based on both valence 

and arousal (i.e., when both valence and arousal vary). Further research is necessary to formally 

test these possibilities.  

 

8.3. Visual representations of emotion in autism 

As highlighted in Chapter 1, the results from previous studies (e.g., 147,222,240,256,257) have 

led researchers to indirectly infer that visual emotion representations may be atypical in autism. 

Specifically, prior to this project, previous work had found differences in the production of 

emotional facial expressions147, the appraisal of highly exaggerated stimuli256,257, and in 

identification thresholds 222,240, indicating that there may be differences in visual representations 

between groups. Notably, however, all previous work had specifically relied on static snapshots 

of faces, thus pointing towards differences in representations between groups in the spatial 

domain. Adding to this literature, in Chapter 2, I identified that autistic individuals had higher 

identification thresholds than their non-autistic counterparts for angry facial expressions in the 

kinematic domain: compared to controls, the autistic participants required a higher speed (and 

thus higher intensity of anger239) before they could accurately identify angry expressions. This 

evidence raised the possibility that autistic and non-autistic individuals have different visual 

emotion representations, with the former possessing more caricatured angry representations 

with respect to speed. However, further research, which directly examined visual emotion 

representations, was necessary to test this possibility.  

Therefore, in Chapter 3 I asked autistic and non-autistic individuals to adjust the speed 

of angry, happy and sad expressions until they matched their visual representations for these 
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emotions. In conflict with our hypothesis, I found no differences between groups in the speeds 

attributed to angry, happy and sad facial expressions across both full-face and partial-face 

conditions, in all statistical analyses. Thus, our results suggest that autistic and non-autistic 

individuals do not have different visual representations of angry, happy and sad facial 

expressions in terms of speed (at least for point-light displays; see Chapter 8.7). As highlighted 

in Chapter 3, further research is necessary to determine whether there are differences in the 

visual representations of autistic and non-autistic individuals in the spatial domain. Such work 

could follow similar methods to those used here (e.g., method of adjustment284), or reverse 

correlation techniques (e.g., 384,388,389,463-465), to index and then compare such representations.  

As highlighted in Chapter 1, I theorised that there could be other features of imagined 

representations, in addition to speed, that influence our ability to read others’ emotions, such as 

precision and differentiation. To assess these factors, in Chapter 4, I asked participants to 

manipulate a dial to change the speed of numerous angry, happy and sad expressions until they 

matched their visual representation for these emotions. The precision of visual representations 

was calculated based on the variability in the speeds attributed to the same emotional 

expression, while differentiation was calculated based on the absolute difference in the speeds 

attributed to distinct emotions. In Chapter 4, I confirmed an involvement of precision in 

emotion recognition for non-autistic individuals (see section 8.6 for a full discussion), thus 

illuminating a potential candidate mechanism that may underpin emotion recognition 

difficulties in autism (e.g., difficulties recognising anger147, 219-223). Therefore, in Chapter 5 I 

compared autistic and non-autistic individuals with respect to these variables. Although I found 

no differences between groups in differentiation, unexpectedly, I found that the autistic 

participants had more precise visual emotion representations even after controlling for 

alexithymia. Notably, however, this enhanced precision did not confer any benefit for their 
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emotion recognition performance: there were no differences between groups in this ability, and 

the precision of representations did not contribute to emotion recognition for autistic 

individuals. In sum, these results suggest that autistic individuals have more precise visual 

emotion representations (at least in terms of speed) but are nevertheless weakly influenced by 

them when recognising others’ emotions (see section 8.6.1 for a full discussion). As discussed 

in Chapter 5, further work is necessary to determine whether autistic individuals have more 

precise visual emotion representations with respect to other cues, such as the degree of spatial 

exaggeration.  

 

8.4. Production of emotion in autism 

Prior to this project, there was some evidence to suggest that there may be differences 

in the facial expressions produced by autistic and non-autistic individuals (see 146,150). However, 

this research had failed to delineate clear expressive differences because methods with low 

sensitivity had been used, naturalistic forms of movement (e.g., while speaking) had been 

underexplored, and both facial morphology and alexithymia had not been accounted for. 

Therefore, in Chapter 7, I employed facial motion capture to track the facial movements of 

autistic and non-autistic individuals across two conditions (posed and spoken), retargeted the 

expressions onto avatar faces to minimise the influence of morphological differences, and 

modelled the contribution of both autism and alexithymia to the spatiotemporal and kinematic 

properties of the expressions. Specifically, I aimed to establish whether there were differences 

in activation between groups, thus disentangling the mixed findings in the literature: some 

previous studies had found increased expressivity in autism, while others had found reduced 

expressivity, or no differences between groups (e.g., 263,265-270,274,517). Moreover, I aimed to test 

the hypothesis that the autistic participants would display significantly more jerky expressions 
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than their non-autistic counterparts (in line with findings in the body movement512-516). Finally, 

I aimed to assess whether alexithymia, and not autism, is responsible for differences between 

autistic and non-autistic individuals in the production of emotional facial expressions (as 

suggested by the alexithymia hypothesis207).  

In Chapter 7, I found that both autism and alexithymia contributed to the degree of 

activation and jerk when producing emotional expressions. Notably, however, these 

contributions, differed as a function of the displayed emotion, the facial action unit, and the 

posing condition. That is, the autistic participants did not exhibit consistently higher or lower 

activation or jerk across all facial features, for all emotions, than their non-autistic peers (after 

controlling for alexithymia). Rather, the autistic and non-autistic participants produced facial 

expressions that differed in appearance – varying in the relative activation of facial features 

(i.e., in spatial configuration) across emotions. In conflict with our hypothesis, the autistic 

participants did not display consistently higher jerk across all emotions and posing conditions.  

Specifically, I found that for anger, both when posing and speaking, the autistic 

participants displayed lower activation of the brow down blendshapes, and higher activation of 

specific mouth blendshapes, than their non-autistic counterparts (even after controlling for 

alexithymia). Concurrently, the autistic participants displayed higher jerk for all mouth facial 

landmarks in the posing condition. As stated in Chapter 7, these results suggest that autistic 

individuals may rely more on the mouth, and less on the eyebrows, to signal anger than their 

non-autistic peers when voluntarily producing emotional expressions. For happiness, across 

both posing conditions, the autistic participants displayed less exaggerated smiles that did not 

“reach the eyes”, even after controlling for alexithymia. That is, while the non-autistic 

participants activated both the zygomaticus major muscle – which pulls the lip corners 

upwards535-538 – and the orbicularis oculi muscle – which lifts the cheeks, gathers the skin 
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around the eyes and pulls the brow down535-538 – the autistic participants tended to activate 

solely the former. Hence, the autistic participants tended to rely more on the mouth than the 

eyes, eyebrows, and cheek to signal happiness. For sadness, the autistic and non-autistic 

participants displayed different mouth configurations across both conditions. Specifically, the 

autistic participants tended to make their mouth appear downturned by raising their upper lip 

more than their non-autistic peers. In sum, our results point to group differences in facial 

configurations when producing voluntary expressions of anger, happiness and sadness, even 

after controlling for alexithymia and minimising the influence of facial morphology. Such 

differences could, at least in part, explain why non-autistic individuals find it difficult to 

recognise the emotions of autistic people, and vice versa (e.g., 147,534; though see 267). 

Alexithymia, on the other hand, was associated with less differentiated angry and happy 

facial expressions (i.e., similar patterns of activation across facial action units) in both the posed 

and spoken condition. Such findings suggest that previous results of less differentiated facial 

muscle activation for anger, happiness and fear273, and positive and negative emotions518 for 

autistic than non-autistic individuals may be underpinned by co-occurring alexithymia. Here, I 

also found that, for non-autistic individuals, alexithymia was associated with less precise, or 

more variable, spoken facial expressions. This could be due to the fact that those high in 

alexithymia have proprioceptive differences520-522 which may lead to poorer control of their 

facial movements, and hence greater variability. As discussed in Chapter 7, another possibility 

is that alexithymic individuals are less able to draw on their own emotion concepts or emotional 

experiences when attempting to pose the expressions, thus resulting in more variable 

productions. This is plausible since previous work has found that individuals high in 

alexithymia typically have difficulties retrieving emotional information and memories (e.g., see 



 279 

539). Further research is necessary to determine why alexithymia is associated with more 

variable expressions.  

 

8.5. Recognition of emotion in autism  

Prior to this project, studies assessing the contribution of both autistic and alexithymic 

traits to emotion recognition had solely relied on static snapshots of faces209,123, omitted a non-

autistic comparison group212, and/or exclusively included female participants212. Therefore, it 

was unclear whether autistic versus non-autistic group differences in emotion recognition for 

dynamic stimuli, for both males and females, remain after controlling for alexithymia. To 

mitigate these limitations, in Chapter 2 I assessed whether there were differences in the ability 

to recognise emotions from dynamic stimuli for male and female autistic and non-autistic 

individuals matched on alexithymia. Contrary to the alexithymia hypothesis207, the autistic 

participants displayed reduced recognition of angry, but not happy or sad, facial motion (at the 

normal 100% spatial and speed level), relative to alexithymia-matched non-autistic participants. 

Furthermore, I found that the level of autistic, but not alexithymic, traits was a significant 

(negative) predictor of emotion recognition accuracy for angry facial motion. As such, our 

findings contradict the alexithymia hypothesis207, by demonstrating that difficulties recognising 

anger from facial motion specifically pertain to autism, and not alexithymia. These findings 

contribute to a growing literature suggesting that autistic individuals have particular difficulties 

recognising angry expressions (e.g., 147,191,219-223). Notably, however, the majority of these 

previous studies did not measure alexithymia (e.g., 219-223) and in those that did, autistic and 

alexithymic traits were highly correlated147, making it difficult to determine whether differences 

in anger recognition were attributable to autism or alexithymia. Our study resolves this 
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ambiguity and highlights that difficulties with recognising angry expressions at the ‘normal’ 

spatial and speed level may be related to autism, not alexithymia. 

Although I found moderate evidence that autistic individuals have difficulties 

recognising anger in Chapter 2 (N = 60), it is important to note that I did not replicate this 

finding in Chapter 5 (N = 90). There are a number of potential explanations for this discrepancy. 

One explanation is that were differences in the characteristics of the samples investigated in 

Chapters 2 and 5, which led to the discrepant findings. Since I found emotion recognition 

difficulties in a younger (mean age = 30.14), and not older (mean age = 35.51), sample of 

autistic adults, it could be that the older participants had developed effective compensatory 

mechanisms to allow them to achieve comparable accuracy (see section 8.6.1). Although this 

is a possibility, meta-analytic evidence suggests that differences between autistic and non-

autistic individuals in emotion recognition become larger with age (see 191), thus contradicting 

this explanation. Alternatively, the discrepant findings could be due to variation in the 

proportion of males and females in each of the samples. Whilst I found differences in the ability 

to recognise anger when approximately 45% of the sample were female, I did not find such 

differences when 67% were female. Therefore, it is possible that female autistic individuals 

have less difficulty recognising facial expressions than their male counterparts, which resulted 

in comparable emotion recognition when this group were the majority (Chapter 5). This is 

particularly plausible as previous studies have demonstrated that autistic women tend to have 

better emotion recognition than their male peers (e.g., 544). Further research is necessary to 

characterise what subgroups of autistic individuals have difficulties with emotion recognition, 

and for which tasks, and for which emotions.  

If it is true that autistic individuals have greater difficulties recognising anger than 

happiness or sadness, as found in Chapter 2 and in numerous empirical studies (e.g., 147,191,219-
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223), an important question concerns why. Our results suggest that such difficulties are not 

underpinned by challenges recognising high-speed expressions (see Chapter 2), or due to group 

differences in the core speed representation (Chapter 3), the precision or differentiation of 

visual representations (Chapter 5) or emotional experiences (Chapter 6), or the understanding 

or differentiation of semantic emotion concepts (Chapter 6). As such, our results force us to 

consider alternative explanations for why autistic individuals may have specific difficulties 

recognising angry facial expressions.  

As suggested in Chapters 2 and 7, one possible explanation concerns facial information 

sampling. Previous work has demonstrated that autistic individuals typically attend more to the 

mouth, and less to the eye region, than their non-autistic peers when recognising emotional 

expressions (e.g., 224-226; though also see 359). This could be due to a number of factors. For 

example, it could be that autistic individuals adopt this strategy to modulate the activity of their 

amygdala – which may be atypical in response to faces229,390-399 – since the amygdala is highly 

responsive to the eye region of emotional expressions400. As highlighted in Chapter 7, another 

potential explanation is that, since autistic individuals rely more on the mouth, and less on the 

eyebrows to signal anger themselves, they are more likely to attend to this area more. In either 

case, such attentional biases could result in difficulties recognising angry faces because the 

majority of the expressive information is thought to be displayed in the upper part of the 

face227,228. This may not be the case for happiness and sadness because, for these emotions, the 

mouth contains relatively more expressive information379,401. Future research should aim to 

formally test whether differences in facial information sampling underpin any emotion-specific 

recognition difficulties in autism, and determine whether differences in the production of 

emotional facial expressions contribute to differences in the sampling and recognition of them. 
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8.6. Links between the conceptualisation, experience, visual representation, 
production and recognition of emotion 

Throughout this project, I discovered links between the conceptualisation, experience, 

visual representation, production and recognition of emotion (for non-autistic individuals; see 

section 8.6.1 for a description of links for autistic individuals). When considering these links, 

it is useful to consider theoretically how they could arise developmentally. Such developmental 

perspectives provide suggestions about how these links form, are maintained and updated. 

According to constructionist theories, an emotion concept like happiness evolves as sensory, 

affective, and motor information (amongst other information) is integrated across numerous 

instances where happiness is perceived in oneself or others13,43. From a developmental 

standpoint, when a caregiver labels a child’s emotion as “happiness”, the child will bind 

together sensory information from their environment (e.g., the sight of one’s beloved teddy 

bear), neurophysiological information about their own core affective state (e.g., positive 

valence, medium-high arousal), motor responses (e.g., a smiling facial expression), and so on, 

with this emotion label, to form an instance of happiness13. Similarly, when a caregiver 

describes themselves as feeling “happy”, the child will integrate sensory cues from the 

environment – including information concerning their caregivers’ facial expression, body 

language, tone of voice, and so on – into their concept for happiness13. Across these instances, 

the multimodal information is integrated, and thus the conceptual knowledge about happiness 

accumulates13. Hence, over time, the experience (i.e., core affect), visual representation (i.e., 

sensory information), production (i.e., motor responses), and recognition of emotion all become 

linked, bound together by emotion labels.  

According to constructionist theories, after a child forms such concepts, they can 

combine the corresponding information in diverse and flexible ways to help them make 

predictions about their own and others’ emotions13. Over time these predictions are thought to 
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become increasingly precise: the accumulation of conceptual knowledge allows children to 

move away from experiencing and perceiving emotions as “good” and “bad” (i.e., based on 

valence), towards experiencing and perceiving them more precisely – based on arousal, context, 

motor responses, and so on50. Following this idea, I reasoned that individuals with more precise 

and differentiated information within their emotion concepts – in terms of the semantic 

meanings, affective states, visual representations (i.e., sensory information), and facial 

expressions (i.e., motor responses) associated with distinct emotions – would have a more 

precise and differentiated framework for categorizing their own and others’ emotions. Our logic 

was that if, for example, your concepts for anger and sadness are overlapping – perhaps they 

are associated with similar core affect, visual representations, motor responses (e.g., facial 

expression), or have a similar semantic meaning to you – it will be difficult to distinguish 

whether you and others are feeling angry or sad. If, on the other hand, your concepts are 

differentiated for highly similar emotions, such as irritation and frustration, you are likely to be 

able to categorise yours and others’ emotions precisely as such. In the current project, I found 

some evidence to support this idea for non-autistic participants in Chapters 4, 5, 6, and 7 (see 

section 8.6.1 for a visual representation of these relationships). This evidence will be discussed, 

along with potential theoretical explanations for these links, below.  

Although contemporary theories suggest that emotion concepts play a vital role in 

shaping how individuals “construct” both emotional experiences and emotion perceptions13,50-

55, prior to this project, there were no clear predictions about the mechanistic pathway by which 

this may occur. As mentioned in Chapter 6, there are a few logical possibilities: (1) semantic 

emotion concepts could impact upon emotional experiences and emotion perceptions directly 

and independently, (2) semantic emotion concepts could influence emotion perceptions and 

then in turn emotional experiences, or (3) semantic emotion concepts could influence emotional 
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experiences and then in turn emotion perceptions. In Chapter 6, through systematic comparison 

of mediation models, I demonstrated that the latter is the most mathematically plausible – 

having more differentiated semantic emotion concepts may lead to individuals having more 

differentiated emotional experiences, and then in turn to greater emotion recognition accuracy 

(see Figure 8.1 left). This work provides a unique theoretical contribution to the literature by 

identifying a potential mechanistic pathway between the conceptualisation, experience, and 

perception of emotion. Nevertheless, future research employing causal manipulation and/or 

longitudinal methods should be conducted to test this hypothesis formally (see section 8.7 for 

a full discussion).  

Following on from these findings, an important question concerns how theoretically 

these variables are linked. That is, why is it that an individual with more differentiated semantic 

emotion concepts also tends to have more differentiated emotional experiences, and why an 

individual with more differentiated emotional experiences tends to have better emotion 

recognition. With respect to the former, it is conceivable that having precise and differentiated 

definitions allows individuals to draw boundaries between the meaning of different emotions, 

and thus distinguish how they are feeling. For example, some individuals may use labels like 

“frustration” and “irritation” interchangeably to describe “a form of annoyance” whereas others 

may make more precise distinctions. These latter individuals may conceptualise frustration as 

“annoyance that arises when an individual is prevented from achieving their goal or fulfilling 

a need” and irritation as “annoyance that arises in response to a repetitive unpleasant event”, 

thus defining the boundary between these highly similar emotions – here, based on context. 

While the former individual may struggle to distinguish whether they are feeling “frustrated” 

or “irritated” when they experience the relevant affective state, the latter individual will be able 

to identify that they are feeling “frustrated” rather than “irritated” because their emotion 
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occurred in response to being prevented from achieving their goal (for example). Hence, 

understanding the meaning associated with an emotion may help an individual to categorise 

and differentiate their own experiences of those emotions.  

The latter relationship, that those with more differentiated emotional experiences tend 

to have a better ability to read others’ emotions, is perhaps more difficult to explain. One 

potential explanation concerns motoric simulation (see 545). It is well-documented that 

neurotypical individuals spontaneously simulate other people’s facial expressions (i.e., recreate 

the motor production to some extent)546-552. Notably, contemporary theories propose that such 

simulation (i.e., subthreshold motor activity) triggers partial, often unconscious, activation of 

other neural systems implicated in experiencing the relevant emotional state, which helps the 

perceiver to implicitly infer the emotion of the expresser (see 545). Supporting this idea, a 

substantial body of evidence suggests that producing emotional facial expressions modulates 

one’s experience of emotion (e.g., 553-558; though see 559), and that motoric simulation leads to 

enhanced facial emotion recognition560-564. Compelling evidence for the latter comes from 

studies demonstrating that targeted disruption of specific facial muscles selectively impairs the 

recognition of expressions that involve such muscles563,564. Together, this evidence raises the 

possibility that when an individual encounters an emotional expression, they simulate it, leading 

to partial induction of an emotional state, which then helps them to infer the emotion of the 

interaction partner (see 545 for a full discussion). So how could these findings explain the 

relationship between emotion differentiation and emotion recognition specifically (as found in 

Chapters 4 and 6)?  

One idea is that, if an individual has overlapping emotional experiences, after simulating 

an incoming facial expression, it will be difficult for them to determine whether the partially 

activated affective state is one emotion or another, thus leading to downstream difficulties 
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recognising the displayed emotion. For example, consider an individual who perceives and then 

simulates an expression with a downturned mouth, which induces a negatively valenced 

affective state with medium-high levels of arousal. If this individual has poorly differentiated 

experiences of anger and sadness, the affective state induced by the motoric simulation could 

be perceived as either one of these emotions, which could lead to this individual incorrectly 

categorising the expresser’s emotion. Conversely, if an individual has well-differentiated 

experiences of these emotions, they will be able to determine that the state induced by the 

motoric simulation is anger, for example (assuming that they express anger in the same way as 

the expressor). Notably, under this simulation account, the reverse direction of causality is also 

possible. That is, this model can explain why having a superior ability to recognise emotional 

facial expressions may lead to a better ability to differentiate one’s own emotions. To illustrate 

this idea, consider an individual who produces an expression with a downturned mouth, which 

is then accurately mimicked by an observer. If this individual has superior emotion recognition, 

they will be able to identify that the emotion mimicked by the observer corresponds to sadness, 

thus allowing them to indirectly infer that they themselves are feeling sad (providing this 

individual assumes that they are experiencing the same emotion as the interaction partner). In 

contrast, an individual with poorer emotion recognition may struggle to recognise the mimicked 

emotion, and thus incorrectly categorise their own emotions. These explanations are compatible 

with our results suggesting a bidirectional relationship between emotion differentiation and 

emotion recognition (see Chapter 4). Nevertheless, although such explanations are plausible, 

further work is needed to test whether motoric simulation underpins the link between the 

differentiation and recognition of emotion, and to determine the degree of causality and 

directionality between these variables.  
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Relatedly, our finding that the precision of one’s own facial expressions contributes to 

the recognition of others’ expressions (as found in Chapter 7) can also be explained under the 

simulation account. In Chapter 7, I found that non-autistic individuals high in alexithymia 

tended to produce less precise (i.e., more variable) emotional facial expressions, and had co-

occurring difficulties recognising other people’s emotions. Taking influence from simulation 

accounts, it is plausible that highly alexithymic individuals are less able to precisely simulate 

the facial expression of the interaction partner (perhaps due to poorer proprioceptive awareness; 

see 520-522), and thus are less likely to trigger the congruent emotional state, leading to incorrect 

categorization of the interaction partner’s emotion. At present, this is merely speculation. 

Further work is necessary to test whether alexithymia is associated with poorer facial motor 

control, and whether difficulties simulating facial expressions contribute to the emotion 

recognition challenges often seen for highly alexithymic individuals.   

Prior to conducting this project, based on template matching and signal detection 

models, I theorised that the precision and differentiation of visual representations could 

contribute to emotion recognition. As discussed in Chapter 1, according to template matching 

models, incoming facial expressions are compared to stored “templates” of anger, happiness 

and sadness (and so on), which are each represented as the average of all previous encounters 

(e.g., the average angry expression, the average happy expression, etc.)108-111. Under these 

models, when an individual perceives that an incoming expression is perceptually similar to, 

and thus close to a template in face-space, the expression will be categorised as the 

corresponding emotion108-111. Taking influence from signal detection theory140, I identified two 

features of these “templates” that could potentially influence emotion recognition: precision 

and differentiation. As discussed, this theory proposes that signal and noise distributions that 

are precise (i.e., narrow) and distinct (i.e., not overlapping) provide high sensitivity to 
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distinguish the signal from the noise. Applying this principle, I reasoned that an individual with 

a precise template for anger, that is distinct from the template for sadness, should be adept at 

discriminating whether encountered facial expressions are closer to their angry or their sad 

templates, thus facilitating accurate emotion recognition. Conversely, an individual with 

imprecise and overlapping templates for these emotions should struggle to determine whether 

the incoming expression matches their angry or sad template, thus leading to emotion 

recognition difficulties. In this project, I found partial support for this idea: the precision, but 

not differentiation, of one’s visual representations contributed to emotion recognition (for non-

autistic individuals; Chapters 4 and 5). These results provide a significant theoretical 

contribution to the literature by elucidating, for the first time, that possessing precise visual 

emotion representations contributes to enhanced emotion recognition performance.  

One may question why I did not find a significant contribution of the differentiation of 

visual representations to emotion recognition. As discussed in Chapters 4 and 7, it may be that 

the angry, happy and sad expressions that I examined here are perceptually dissimilar, and thus 

instances of overlap between the signal and noise distributions are relatively uncommon, 

leading to no effect of differentiation. Independent of this, the precision of visual 

representations could conceivably contribute to emotion recognition. It could be, for example, 

that the precision of visual representations comprises a proxy for the clarity of one’s 

representations, which could influence emotion recognition irrespective of perceptual overlap. 

Moreover, as discussed in Chapter 4, the expectation literature would predict that more precise 

representations of upcoming stimuli would lead to enhanced emotion recognition accuracy, as 

higher precision signals increase prediction accuracy (see 434-437). As such, the precision of 

visual representation could contribute to emotion recognition independent of the differentiation 



 289 

of such representations. Further research should include other emotions, which may introduce 

more instances of overlap, in order to assess whether an effect of differentiation emerges.  

Due to the nature of how our studies unfolded, I have not yet tested whether there are 

links between particular emotion-related factors. For example, it is unknown whether there are 

links between the production of emotion, and the conceptualisation, experience, and 

visualisation of emotion, respectively. Determining the existence, strength, and direction of the 

relationships between these variables will facilitate the creation of comprehensive theoretical 

models linking these different emotional processes. Such work could elucidate chains of 

causality amongst the variables; one could ask whether having precise emotional experiences 

contributes to precise visual representations, and then in turn precise productions, thus leading 

to greater emotion recognition accuracy (for example). Future work could also benefit from 

applying network theory techniques to identify the most connected nodes (i.e., abilities) in the 

network, thus identifying the fundamental building blocks for successful emotion-processing. 

Such well-connected nodes could then be targeted for interventions, potentially leading to broad 

benefits across the whole emotion network. These interventions would also have great utility 

for determining directionality and causality within the network, and therefore such work 

comprises an important future direction for research.  

 

8.6.1. Mechanisms involved in autistic and non-autistic emotion recognition 

In the current project, I discovered that there are similarities and differences in the 

mechanisms involved in autistic and non-autistic emotion recognition. Specifically, I found that 

for both groups, the ability to differentiate one’s own emotions facilitates the recognition of 

others’ emotions (Chapters 4 and 6). However, whilst having a comprehensive understanding 

of emotion concepts facilitated emotion recognition for autistic people, the differentiation of 
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such concepts was important for non-autistic emotion recognition (Chapter 6). Here I also found 

that, for non-autistic people, the ability to precisely visualise and match expressions, 

contributed to enhanced emotion recognition (Chapters 4 and 5). Specifically, across three 

distinct samples, I found robust evidence for a representational precision x matching interaction 

(see Chapters 4 and 5); the precision of visual representations contributed to emotion 

recognition for participants with a poorer ability to visually match two expressions (and not 

those with intact matching). Finally, for non-autistic individuals, the ability to precisely produce 

facial expressions also contributed to enhanced emotion recognition accuracy (Chapter 7). By 

contrast, the precision of visual representations and productions, and matching ability, did not 

predict autistic emotion recognition (see Figure 8.1). As can be seen in Figure 8.1, I identified 

considerably fewer abilities that contributed to autistic, than non-autistic, emotion recognition.  
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Figure 8.1. 

A diagram illustrating the relationships I identified between the conceptualisation, experience, 
visualisation, production and recognition of emotion for the autistic (right) and non-autistic 
(left) participants. 
 
 

 
Note. Positive relationships are shown by black lines. Negative relationships are shown by red 
lines. Full lines correspond to direct effects. Dashed lines correspond to indirect effects. 
Arrowheads illustrate hypothesised path directions.  
 

Although there could be fewer contributing factors for autistic individuals due to 

additional noise, stemming from greater heterogeneity with respect to attention, perception, and 

general cognitive functioning (e.g., 153-155), our Bayesian analyses provided moderate-strong 

evidence for these null effects (i.e., that the representational precision x matching interaction 

and the precision of spoken productions do not contribute to emotion recognition). As such, it 
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seems unlikely that there are fewer contributing factors for autistic individuals due to 

methodological and/or statistical artefacts, but rather that there are true mechanistic differences 

in emotion recognition between these groups. Therefore, it is important to consider potential 

explanations for these findings.  

The fact that fewer abilities predicted emotion recognition for autistic individuals 

(relative to non-autistic individuals) aligns well with Bayesian accounts of autism. Such 

accounts propose that autistic individuals are less affected by their prior experiences than 

neurotypicals, and instead place greater weight on incoming sensory information (e.g., 259-261). 

In the current project, our results suggest that autistic individuals place less emphasis on stored 

visual (Chapter 5) and motoric (Chapter 7) representations of facial expressions (i.e., priors), 

than their non-autistic peers, thus supporting Bayesian theories. However, in conflict with these 

accounts, I found that the autistic participants were just as affected by the spatial and kinematic 

manipulations to facial expressions as their non-autistic peers (Chapters 2 and 5), suggesting 

that these individuals are not necessarily more influenced by incoming sensory information (as 

such manipulations influenced the sensory properties of the stimuli). Further research is 

necessary to determine the extent to which autistic individuals are influenced by their prior 

experiences, versus incoming sensory information, when interpreting others’ emotions. To 

more sensitively assess the extent to which autistic and non-autistic participants are influenced 

by the sensory properties of stimuli, such future work could employ tasks with more levels of 

spatial and kinematic manipulation than used here (i.e., 3 spatial levels, 3 kinematic levels).  

Since our results suggest that autistic individuals may be less guided by their visual and 

motoric representations (Chapters 5 and 7), an important question concerns how these 

individuals are able to recognise the emotion of others. As discussed in Chapters 1, 5, 6 and 7, 

converging evidence suggests that autistic individuals may adopt alternative compensatory 



 293 

strategies to facilitate emotion recognition. Previous researchers have proposed that, rather than 

comparing incoming expressions to their visual representations (as is likely to be the case for 

non-autistic individuals108-111), autistic people may follow a cognitively mediated “rule-based 

strategy”, wherein they assess the degree to which the expression matches a list of features they 

have learnt to be associated with distinct emotions (e.g., for anger, this could be “furrowed 

brow)256,257. If this is true, one might expect emotion recognition performance to be more 

strongly related to cognitive ability for autistic individuals, and to visuo-spatial abilities for 

non-autistic individuals. Supporting this idea, here I found that IQ (Chapter 7; see also 215,258) 

and the ability to understand semantic emotion concepts (Chapter 6) contributed to emotion 

recognition accuracy for autistic individuals, whereas non-verbal reasoning ability contributed 

for their non-autistic peers (Chapters 2, 4, 5 and 6). Moreover, if autistic individuals employ 

more effortful cognitive mechanisms, one might expect longer emotion recognition response 

latencies, which has repeatedly been found in the literature229-238 (though note that there could 

be other explanations for this finding).  Finally, if autistic individuals are following a rule-

based, rather than template-matching, strategy, one may expect these individuals to have a 

higher tolerance for exaggeration of facial expressions (see 256,257). The logic follows that 

unnaturally exaggerated expressions will appear less realistic to those employing a template-

matching strategy, as these expressions will not match their templates, than those adopting a 

rule-based strategy, as the rules such as “furrowed brow” and “downturned mouth” are still 

met. Notably, previous studies have found that autistic adults select a higher proportion of 

exaggerated faces as realistic (than non-autistic adults), thus raising the possibility of a more 

rule-based strategy256,257.  As discussed in Chapter 1, these findings do not necessarily rule out 

template-matching as the autistic participants could just have more exaggerated templates than 

their non-autistic peers (thus leading to higher tolerance for exaggeration). Nevertheless, here 
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I did not find evidence to suggest that autistic individuals have more caricatured visual 

representations in terms of speed (for point-light displays), nor consistently more exaggerated 

motoric representations in the spatial and kinematic domains. As such, our results point to the 

former possibility that autistic individuals may adopt alternative compensatory mechanisms, 

such as a rule-based strategy, to recognise the emotions of others. Nevertheless, future studies 

should aim to test this explicitly.  

Relatedly, here I identified that different constellations of traits were involved in autistic 

and non-autistic emotion recognition. Specifically, for non-autistic individuals, I identified that 

those with superior non-verbal reasoning ability (Chapters 2, 4, 5, and 6) enhanced 

communication (as indexed by low scores on the AQ Communication subscale; Chapter 6, 

though see Chapter 5), and lower levels of alexithymia (Chapter 7; though note that this effect 

was marginally significant) displayed elevated emotion recognition accuracy. By contrast, for 

autistic individuals, those with higher IQ (Chapter 7), better understanding of semantic emotion 

concepts (Chapter 6) and (surprisingly) greater difficulties identifying feelings (Chapter 6) were 

typically more accurate at recognising emotional expressions. As discussed in Chapter 6, one 

potential explanation for this latter, unexpected, finding is that participants who had greater 

difficulties identifying their feelings tried harder on the emotion recognition task to compensate 

for their difficulties, resulting in elevated performance. This effect may be larger in the autistic 

group because these individuals are more likely than their non-autistic counterparts to 

underestimate their emotional abilities292.  Further research is necessary to test whether effort 

mediates the relationship between difficulties identifying feelings and emotion recognition for 

autistic individuals, and to elucidate other traits contributing to autistic and non-autistic emotion 

recognition.  
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8.7. Implications, strengths, limitations and future directions 

In the following section, I discuss the implications of our findings, outline general 

strengths and limitations of our studies (see specific limitations for each study in each empirical 

chapter), and highlight important future directions for research.  

There are a number of important implications of our findings. Firstly, the results of this 

project illuminate pathways to supportive interventions to help both autistic and non-autistic 

people to accurately recognise emotional facial expressions. As mentioned previously, here I 

have identified similarities and differences in the factors involved in emotion recognition 

between groups: for autistic individuals, understanding semantic emotion concepts and being 

able to differentiate one’s own emotions contributes to enhanced emotion recognition; for non-

autistic individuals, being able to differentiate semantic concepts and experiences of emotions 

and precisely visualise and match emotional facial expressions predicts superior emotion 

recognition performance. These abilities comprise useful candidate mechanisms that, if trained, 

may improve emotion recognition within each group.  

  For both groups, training individuals to be able to differentiate their own emotions could 

lead to improvements in the recognition of others’ emotions. Such interventions could elicit 

broad benefits - enhanced emotion differentiation is not only associated with superior emotion 

recognition but also with adaptive emotion regulation, improved psychosocial functioning, and 

decreased mental health difficulties (see 293,440,501-505 for reviews). This is particularly pertinent 

here as mental health issues are highly prevalent in the autistic population565-574, with as many 

as 71% of autistic individuals meeting criteria for at least one mental health disorder565. 

Alternatively, one could aim to improve conceptual understanding of emotions for autistic 

people, and improve the differentiation of these concepts for non-autistic people, thus leading 

to enhanced emotion recognition. In line with this, recent work employed a five-day 
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intervention which aimed to increased conceptual emotion knowledge by giving detailed 

information about each emotion concept and then by comparing the emotion concepts to one 

another (thus targeting both general understanding of emotions and the differentiation of 

emotion concepts)506. This intervention successfully improved conceptual emotion knowledge 

and downstream emotion differentiation performance, relative to an active control group, which 

remained at follow-up a month later506. Our results suggest that this intervention may also have 

a positive impact on emotion recognition accuracy for both autistic and non-autistic people, 

though this should be tested in future investigations.  

Beyond these implications, here I make a significant methodological contribution to the 

literature by introducing a variety of novel paradigms, each with their own advantages, for 

assessing the conceptualisation, experience, visualisation, and production of emotion, and 

making these openly accessible to the broader scientific community. Firstly, our EmoMap 

paradigm facilitates the assessment of emotion differentiation without requiring participants to 

translate their emotional experiences into words. By contrast, existing methods (e.g., 

momentary time sampling and photo emotion differentiation tasks) rely on participants 

labelling their emotions or rating the extent to which they experience different emotions on 

several scales. Although language plays a constitutive role in the experience of emotion (see 

55), the tasks we use to assess it (e.g., emotion differentiation) should not require labelling of 

emotional state for several reasons. Firstly, the differentiation of emotional states is not 

necessarily dependent on labelling those states. For example, someone might struggle to label 

their butterfly sensation as ‘excitement’, but still be able to identify that the feeling is not the 

same as contentment or nervousness. Second, individual differences on existing tasks may 

simply be the product of differences in language ability (e.g., ease or difficulty accessing 

appropriate emotion labels). That is, on these tasks, someone may score poorly on ‘emotion 
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differentiation’ simply because they struggle to translate their emotional experiences into 

words, rather than due to any difficulties differentiating emotional signals. This is plausible 

since verbal IQ is associated with emotion differentiation on such language-dependent tasks295. 

Finally, existing tasks may not be appropriate for assessing emotion differentiation across 

development (see 438), clinical groups with varying language ability (e.g., autistic people, people 

with aphasia, dementia, etc.151,495,496), or across languages, where there are often no direct 

translations of emotion labels. By asking participants to respond based on the similarity of their 

emotional experiences, our EmoMap paradigm mitigates these limitations, and thus could have 

great utility across numerous populations (see 450 for full discussion).  

Secondly, to our knowledge, our ExpressionMap paradigm is the first task specifically 

designed to index the precision and differentiation of visual emotion representations. By 

contrast, previous studies have typically adopted psychophysical approaches (e.g., 384,388,389,463-

465), which facilitate the construction of comprehensive visual emotion representations that can 

vary across numerous spatiotemporal dimensions (e.g., onset latency, offset latency, 

acceleration, peak amplitude). Whilst these methods allow researchers to quantify many aspects 

of participants’ imagined representations, these methods typically require thousands of trials, 

and thus can take many hours to complete (usually over 6 hours if studying all six basic 

emotions). So far, such methods have overlooked accompanying features of these 

representations, for example precision and differentiation. Nevertheless, assessing these 

features should be a priority because the precision and differentiation of visual emotion 

representations may vary across emotions, cultures and participant groups (as is the case with 

the appearance of these representations384,388,389,464,464,472), and play a key role in emotion 

recognition (Chapters 4 and 5). Here, I have introduced a method that facilitates the assessment 

of these important constructs in just 20-30 minutes (see 468 for full discussion).  
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Finally, to the best of our knowledge, our FaceMap paradigm is the first to assess the 

spatiotemporal and kinematic properties of emotional expressions, after minimising the 

influence of facial morphology across participants (using facial motion retargeting). As such, 

our task is appropriate for analysing expressions across ages, genders, ethnicities and clinical 

groups, which may all differ in morphology279-282,575-577. In addition, by allowing researchers to 

retarget emotional expressions on to photorealistic avatars, this paradigm facilitates the 

production of stimulus videos which can be used in future experiments (with participants’ 

consent). Here, there is the opportunity to retarget the same facial movements onto different 

identities, which vary in age, gender, ethnicity, or spatial configuration (e.g., larger eyebrows, 

more angular eyebrows), to assess the influence of these factors on the social (e.g., trustworthy, 

dominant, kind, etc.) and emotional judgments we make about others, whilst controlling for 

differences in facial movements. For example, researchers could retarget the same angry 

expression on to avatars that differ in race (e.g., Asian, Black, Latinx, White, etc.), and then ask 

participants to make a social judgement about the expresser (e.g., how aggressive the expresser 

appeared), thus assessing the contribution of race to social judgements in a highly controlled 

manner. In sum, this paradigm and the associated stimuli have great utility for numerous 

scientific fields (e.g., social psychology, affective science, clinical psychology).  

Another methodological strength of this project concerns the inclusion of dynamic, 

rather than static, emotional facial expressions. Although facial expressions are inherently 

dynamic in nature, the vast majority of studies in the literature have employed static stimuli in 

their experiments (79-100% of studies in meta-analyses; see 191,217), and thus dynamic features 

of expressions such as speed or temporal order have been overlooked. To remedy this 

limitation, here I examined visual emotion representations and emotion recognition using 

dynamic stimuli, and specifically assessed the contribution of speed cues to these factors.  
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Relatedly, in the current project, I employed point-light displays, which provide a way 

of studying core dynamic cues (e.g., speed), while controlling other perceptual 

dimensions445,446, such as identity (e.g., gender, age, ethnicity, face attractiveness), depth and 

pigmentation, which are all known to influence emotion recognition376,377,447. Hence in this 

project, by using dynamic point light displays, I was able to accurately assess the contribution 

of kinematic cues to visual emotion representations and emotion recognition, without these 

other cues confounding the results. Whilst using point-light displays facilitates highly 

controlled assessment of visual-processing, it is important to note that these stimuli have low 

ecological validity, and thus our findings may not generalise to full emotional expressions. For 

example, it could be that the expressions that autistic and non-autistic people picture in their 

“mind’s eye” differ on other dimensions not tested here, such as spatial configuration or level 

of spatial exaggeration (but not differ in speed). This is plausible since previous research 

suggests that autistic individuals require static angry expressions to be higher in intensity for 

them to be correctly identified222, suggesting that these individuals may have more exaggerated 

visual representations of anger in the spatial domain. Since I found that autistic individuals 

display lower activation of numerous eye, eyebrow, cheek and mouth blendshapes (see Chapter 

7) when expressing happiness, it could be that there are also differences between groups in 

visual representations for happy expressions in the spatial domain (assuming that there are links 

between our own productions and what we see in the mind’s eye). Alternatively, it may be that 

the emotion recognition differences documented here (lower recognition of anger for autistic 

individuals; see Chapter 2) may not be present for full emotional expressions, due to other 

perceptual cues facilitating autistic emotion recognition. Whilst this is a possibility, there are 

numerous studies suggesting that autistic individuals have difficulties with full static and 

dynamic angry expressions (e.g., 147,191,219-222), and thus our results are representative of the 



 300 

broader literature. Finally, it may be that the links I have demonstrated between the experience, 

representation and recognition of emotion exist for point-light displays (see Chapter 4), but not 

full emotional expressions. Although this is possible, since individuals are thought to compare 

incoming facial expressions to stored visual representations, which comprise the average 

expressions they have encountered previously108-111, it seems unlikely that the precision of such 

representations would only be important for recognising emotion in PLFs (which are not 

typically encountered). Similarly, there is no clear reason why an individual would draw on 

their own emotional experiences to recognise emotion specifically in PLFs. Rather, it seems 

more plausible that one’s experiences and representations facilitate the recognition of ‘real life’ 

expressions (i.e., full emotional expressions), which has a downstream effect on the ability to 

recognise abstracted versions (e.g., point-light displays). Nevertheless, future studies are 

necessary to confirm whether our results generalise to full emotional expressions. Such studies 

could make use of the avatar stimuli that I have generated as part of this project to control for 

identity-effects when assessing visual emotion representations and emotion recognition.  

Another limitation of this project is that I specifically focused on just three emotions: 

anger, happiness, and sadness. As previously discussed, I did not include all six of the basic 

emotions (i.e., include also fear, disgust and surprise) because this would have doubled the 

length of each of the tasks, thus compromising our ability to reach our desired sample sizes 

(due to limits on resources). Our decision to focus on anger, happiness and sadness, specifically, 

was motivated by a number of factors. Firstly, I selected these emotions as they occupy different 

regions within the circumplex model of affect41 – varying in both arousal and valence – and in 

face-space (e.g., 381,578,579) – varying across numerous spatiotemporal and kinematic dimensions 

(e.g., 239,384). Second, I selected anger, happiness, and sadness as previous research has 

demonstrated that it is possible to selectively induce these discrete emotions with images (e.g., 
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430), whereas it is not yet possible to do so for more complex emotions (e.g., awe, guilt, 

embarrassment, etc.). Third, in our first empirical chapter (Chapter 2), I specifically aimed to 

test whether causally manipulating the spatial and kinematic properties of angry, happy and sad 

expressions influenced emotion recognition for autistic individuals to the same extent as had 

previously been found for neurotypicals (in Sowden et al239). Thus, it was important to ensure 

that I included the same emotions as used in previous investigations. Finally, the results from 

the first empirical study raised a number of hypotheses specifically pertaining to anger, 

happiness and sadness, that I subsequently tested throughout the project (e.g., difficulties 

recognising anger, but not happiness or sadness, may be due to specific differences in speed 

representations and/or productions of anger). Thus, after this first study, my scientific line of 

enquiry concerned specifically these three emotions. Nevertheless, future studies should aim to 

replicate our findings with a broader set of emotions, perhaps starting with the six basic 

emotions, and then including more complex emotions, such as awe, guilt and embarrassment. 

As mentioned, the inclusion of other emotions may introduce greater instances of perceptual 

overlap, and thus other effects may emerge (e.g., differentiation of visual representations on 

emotion recognition).  

A further limitation is that here I assessed alexithymia using the self-report Toronto 

Alexithymia Scale. Although 89% of studies assessing emotional self-awareness in autism 

employ self-report measures149, some researchers have raised concerns about their efficacy 

(e.g., 365-367), arguing that “people with alexithymia, by definition, should not be able to report 

their psychological state”366. Essentially, using self-report measures may result in noisy 

estimates of alexithymic traits, which do not map on to true, objectively measured, levels. 

However, at present, attempts to develop objective methods to index alexithymia are in their 

infancy (e.g., 367,368), and thus researchers are forced to rely on self-report measures. 
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In the current project, our decision to use the TAS-20 was motivated by a number of 

factors. Firstly, I selected the TAS-20 because it is widely regarded as the gold-standard tool 

for assessing alexithymia (used in 62% of studies in 149) due to its strong psychometric 

properties (e.g., 344,351). Secondly, since I aimed to assess whether the alexithymia hypothesis 

applies, not only to emotion recognition for static but also dynamic expressions, it was 

important for us to employ the same measure as used previously (i.e., the TAS-20 as in 

209,212,213). Although using the TAS-20 was advantageous in the current project, it is important 

to acknowledge its limitations. For example, some researchers have argued that the TAS-20 

taps into levels of psychological distress rather than intrinsic difficulties identifying and 

describing emotions (e.g., 368-372). Other critics highlight that the TAS-20 solely assesses the 

“cognitive” component of alexithymia (i.e., reduced awareness and cognitive processing of 

emotional feelings) and not the “affective” component (i.e., reduced experiences emotional 

feelings e.g., reduced arousal)374. As such, future studies should aim to replicate our results 

using alternative measures of alexithymia such as the Perth Alexithymia Questionnaire373 or 

the Bermond Vorst Alexithymia Questionnaire374, which somewhat mitigate these limitations.  

It is also important to highlight that I am unable to conclusively infer causality and 

directionality in this project due to the observational nature of the studies. In this project, I have 

attempted to identify the most mathematically plausible path directions between the 

conceptualisation, experience, visualisation, and recognition of emotion by systematically 

reversing the paths in our structural equation models. Whilst our data highlight path directions 

that are mathematically plausible (e.g., emotional precision → representation matching → 

emotion recognition; differentiation of concepts → differentiation of experiences → emotion 

recognition), future studies are necessary to confirm that these variables are causally linked, 

and in the specified directions. Longitudinal research that examines how the conceptualisation, 
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experience, visualisation, production and recognition of emotion change across development 

will be particularly beneficial for establishing directionality. Such work could employ cross-

lagged structural equation models to unpick the relationships between variables across 

timepoints (e.g., does the differentiation of emotion concepts at age three predict the 

differentiation of emotional experiences at age ten), and latent growth models to identify 

specific developmental trajectories in emotion-processing. Additionally, research that involves 

causal manipulation (e.g., semantic satiation to cause emotion concepts to temporarily lose 

meaning, training individuals to differentiate emotion concepts) will be useful for determining 

the extent of causality between these variables.  

Finally, it is also important to highlight the limitations of this project with respect to 

sample generalisability. Although here I redressed the bias in extant autism research by 

specifically focusing on the abilities of autistic adults, and ensuring that autistic women were 

included throughout, there are a number of limitations of the samples recruited in the current 

project. In all of the studies discussed here, the participants were predominantly white, highly 

educated or intelligent, English-speaking individuals from the United Kingdom. Therefore, our 

results may not be representative of those with lower levels of education or with intellectual 

disabilities, or those from different racial, ethnic, or cultural backgrounds. With respect to the 

former, although I did not find any group differences in the understanding or differentiation of 

emotion concepts, or in the precision or differentiation of emotional experiences here, 

differences between groups may emerge for autistic individuals with intellectual disabilities. 

Similarly, whilst I found no group differences (Chapter 5) or some group differences (Chapter 

2) in emotion recognition, greater differences may emerge for those with intellectual 

disabilities. This is particularly plausible; previous evidence suggests that whilst autistic 

individuals with average to high IQs often have comparable emotion recognition performance 



 304 

(e.g., 207,244,477,478), those with co-occurring intellectual disabilities have difficulties with 

emotion recognition (e.g., 215,489,490), relative to mental age or IQ-matched comparison groups 

(though see 491). Hence, our findings may underestimate the emotion recognition difficulties 

faced by large proportions of the autistic community since the participants generally possessed 

high levels of intelligence. Further work is needed to characterise the emotion recognition 

performance of autistic people with co-occurring intellectual disabilities, and identify whether 

these difficulties are attributable to autism, intellectual disability, or the interaction between 

these factors.  

As mentioned, the results in this thesis may not represent those from different ethnic or 

cultural backgrounds. In particular, it may be that those from other cultures (e.g., Eastern) have 

different visual representations or productions of emotion, as has been found previously (e.g., 

388,389,463-465). For example, one study identified that individuals from Western Cultures tended 

to emphasise the eyebrows and mouth in their representations, while those from East Asian 

cultures tended to emphasise expressive information in the eye region388. Hence, as mentioned 

in Chapter 7, in this project it may be that the Western participants display greater activation of 

the eyebrow and mouth when posing different emotional expressions, relative to what would 

be seen with East Asian participants. Since autistic individuals also tend to exhibit lower 

activation of these regions when posing specific emotional expressions (e.g., happiness; see 

Chapter 7), it may be that differences between autistic and non-autistic people in facial 

expressions are smaller in East Asian cultures. Further research is necessary to test whether this 

is the case.  
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8.8. Conclusion 

This project examined whether there were differences between autistic and non-autistic 

adults in the conceptualisation, experience, visual representation, and production of emotion 

after controlling for alexithymia, and determined whether these abilities contributed to emotion 

recognition for autistic and non-autistic people. Taking influence from constructionist, 

template-matching, and signal detection accounts, I created mathematically plausible, 

mechanistic models elucidating the processes involved in autistic and non-autistic emotion 

recognition, and outlined how, theoretically, these links could form. Specifically, I first found 

evidence to suggest that alexithymia may underlie some, but not all, of the differences between 

autistic and non-autistic people in emotion-processing. Second, I discovered similarities and 

differences in the processes involved in emotion recognition for these groups. By elucidating 

several candidate mechanisms underpinning superior emotion recognition, the current project 

paves the way for future supportive interventions to help individuals to accurately interpret 

others’ emotions, thus ultimately fostering more successful and fluid social interactions. 
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Appendix 1 
 
Supplementary Materials for Chapter 2 
 
Differences between autistic and non-autistic adults in the recognition of anger from 
facial motion remain after controlling for alexithymia.  
 
Connor T. Keating, Dagmar S. Fraser, Sophie Sowden, and Jennifer L. Cook 
 
(Published in the Journal of Autism and Developmental Disorders) 
 
Reference: Keating CT, Fraser DS, Sowden S, Cook JL. Differences between autistic and non-autistic 
adults in the recognition of anger from facial motion remain after controlling for alexithymia. Journal 
of autism and developmental disorders. 2022 Apr;52(4):1855-71. https://doi.org/10.1007/s10803-021-
05083-9  
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Appendix 1.1 – Participants’ ethnicities in Chapter 2 
 
Table A1.1.  

Participant written responses to the question 'What is your ethnic group?'. 

Ethnic group N % 
White English/Welsh/Scottish/Northern Irish/British 25 41.7 
White/Caucasian 8 13.3 
White Polish 6 10.0 
White Portuguese 2 3.3 
White Italian 2 3.3 
Mixed/Multiple Ethnic Groups- White and Asian 2 3.3 
European 2 3.3 
Polish 2 3.3 
Black African 1 1.7 
Mixed/Multiple Ethnic Groups- Other 1 1.7 
Asian Pakistani 1 1.7 
Asian Indian 1 1.7 
White Slavic 1 1.7 
White Albanian 1 1.7 
Black Caribbean 1 1.7 
White Hungarian/Greek 1 1.7 
British 1 1.7 
Latino/Hispanic 1 1.7 
White European 1 1.7 

 
 
Appendix 1.2 – Quantity of autistic participants that met criteria for an autism diagnosis 
 

The level of autistic characteristics of 22 individuals in the ASD group was assessed 

using the Autism Diagnostic Observation Schedule (version 2 (ADOS-2)345. Of the 22 who 

completed the ADOS-2 assessments, 16 met ADOS criteria for ASD (7 autism, 9 autism 

spectrum). Although six individuals in the ASD group did not meet criteria for ASD according 

to the ADOS, they had previously received diagnoses from independent clinicians, and thus 

still participated in the study. Unfortunately, it was not feasible to complete observational 
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assessments on all ASD participants due to restrictions on face-to-face testing during the 

COVID-19 pandemic.  

 
Appendix 1.3 – Binary accuracy analysis 
 
To facilitate completion of a binary accuracy analysis (i.e. correct; 1 or incorrect; 0), we 

transformed the data such that participants scored 1 when they gave the highest emotion rating 

to the correct emotion, and 0 when they rated either of the incorrect emotions higher than the 

correct emotion. We then multiplied these values by 100 such that the emotion recognition 

scores would reflect percentage accuracy (i.e. the percentage of trials where participants gave 

the highest rating to the correct emotion). We then submitted these binary accuracy scores to a 

2 x 3 x 3 x 3 Analysis of Variance (ANOVA) with the between-subjects factor group (ASD, 

control) and the within-subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, 

S2, S3), and stimulus kinematic level (K1, K2, K3).  

Mirroring the results reported in the main manuscript, this analysis revealed a significant 

main effect of emotion [F(2, 116) = 27.05, p < .001, ηP2 = .32, BF10 = 5.66e21], with percentage 

accuracy highest for happy [mean(SEM) = 76.10(1.73)], and comparable for angry 

[mean(SEM) = 59.76(1.99)] and sad [mean(SEM) = 61.74(1.89)] expressions.  

We also identified a main effect of spatial level [F(2,116) = 109.11, p < .001, ηP2 = .65, 

BF10 = 6.01e29], with percentage accuracy lowest at the S1 level [mean(SEM) = 54.14(1.74)] 

and comparable at the S2 [mean(SEM) = 70.62(1.40)] and S3 [mean(SEM) = 72.84(1.26)] 

levels. In line with the findings reported in the main manuscript, the effect of spatial level was 

qualified by an emotion x spatial interaction [F(4,232) = 80.66, p < .001, ηP2 = .58, BF10 = 

2.77e54]. Post-hoc repeated measures ANOVAs revealed that whilst there was an effect of the 

spatial manipulation for all three emotions (all F > 18, all p < .001) , the direction of the effect 

varied between high and low arousal emotions (mirroring the results reported in the main 
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manuscript): percentage accuracy for angry and happy expressions were highest for 150% 

spatial extent (S3) [angry mean(SEM) = 78.82(1.84); happy mean(SEM) = 85.67(1.78)], 

followed by 100% spatial extent (S2) [angry mean(SEM) = 66.13(2.30); happy mean(SEM) = 

82.97(1.74)], followed by 50% spatial extent (S1) [angry mean(SEM) = 34.32(2.84); happy 

mean(SEM) = 59.67(3.11)]. In contrast, accuracy improved for sad expressions as the level of 

the spatial manipulation decreased [S3 mean(SEM) = 54.02(2.33); S2 mean(SEM) = 

62.76(2.27); S1 mean(SEM) = 68.44(2.42)]; Figure A1.1]. 

In addition, we identified a main effect of kinematic level [F(2,116) = 4.651, p < .05, 

ηP2 = .07, BF10 = 0.04], with percentage accuracy highest at the K2 level [mean(SEM) = 

67.64(1.33)], and comparable at the K3 [mean(SEM) = 65.48(1.37)] and K1 levels 

[mean(SEM) = 64.48(1.45)]. In line with the results reported in the main manuscript, this main 

effect of kinematic level was qualified by an emotion x kinematic interaction [F(4,232) = 38. 

59, p < .001, ηP2 = .40, BF10 = 4.80e18]. Post-hoc repeated measures ANOVAs indicated that 

whilst there was an effect of the kinematic manipulation across all three emotions (all F > 11, 

p < .001), the direction of the effect was different between high and low arousal emotions (in 

line with the results reported in the main manuscript): percentage accuracy for angry and happy 

expressions were highest for the 150% speed (K3) [angry mean(SEM) = 67.90(2.57); happy 

mean(SEM) = 78.90(1.84)], followed by 100% speed (K2) [angry mean(SEM) = 60.65(2.09); 

happy mean(SEM) = 78.30(2.01)], followed by 50% speed (K1) [angry mean(SEM) = 

50.73(2.49); happy mean(SEM) = 71.11(2.17)]. In contrast, accuracy for sad expressions 

improved as speed decreased (K3 mean(SEM) = 49.63(2.17); K2 mean(SEM) = 63.98(2.35); 

K1 mean(SEM) = 71.59(2.52); Figure A1.1]. 
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Figure A2.1. 

Percentage accuracy scores, for all participants, for each emotion across the spatial and 
kinematic levels. 
 

 

 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints. 
 

Finally, this analysis also revealed an emotion x kinematic x group interaction [F(4,232) 

= 2.74, p < .05, ηP2 = .05, BF10 = 0.13]. In order to unpack this significant emotion x kinematic 

x group interaction, we conducted post-hoc 2 x 3 (group, emotion) ANOVAs for each kinematic 

level. This analysis revealed a significant emotion x group interaction at the K2 [F(2,116) = 

*pbonf < .05
**pbonf < .01
*** pbonf < .001

*pbonf < .05 
** pbonf < .01 
***pbonf < .001 
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3.93, p < .05, ηP2 = .06, BF10 = 2.89] but not K1 [p = .616, BF10 = 1.64e-4] or K3 [p = .548, BF10 

= 0.18] levels. Bonferroni-correct post-hoc independent sample t-tests revealed that control, 

relative to autistic, participants had higher accuracy for angry videos at the 100% speed level 

(averaged across all spatial levels) [t(58) = 3.30, pbonf < .01, mean difference = 13.77, BF10 = 

20.06]. There were no significant group differences in percentage accuracy for happy [p = .133, 

BF10 = 0.30] or sad [p = .572, BF10 = 0.68] expressions at this 100% speed level (Figure A1.2). 

Figure A1.2.  

Percentage accuracy at the K2 (100%) speed level, as a function of emotion. Control in lilac, 
ASD in green. 
 

 

Note. The black line represents the mean, the coloured box represents the standard error of the 
mean, the shaded region represents the standard deviation, and the dots are individual 
datapoints. 
 

In order to establish whether any group differences at the S2K2 (100% spatial extent, 

100% speed) level (that we found in the accuracy analyses in the main paper) were driving the 

group difference we identified for angry expressions at the K2 level (when averaged across 

**pbonf < .01
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spatial levels), we conducted a further three Bonferroni-corrected independent sample t-tests 

for angry expressions at the K2 level, at each of the spatial levels. This revealed that controls 

had significantly higher emotion recognition accuracy for angry expressions at the S2K2 level 

[t(58) = 3.61, pbonf < .01, mean difference = 20.33, BF10 = 40.59], but not at the S1K2 [pbonf = 

.231, BF10 = 1.00] or S3K2 [pbonf = .072, BF10 = 2.42] levels, thus mirroring the results reported 

in the main manuscript. Hence, our findings suggest that the group difference in accuracy for 

angry expressions discovered at the K2 level (across the spatial levels) may be mainly driven 

by a group difference at the S2K2 level.  

 

Appendix 1.4 – Unpacking the significant main effects of Emotion and Spatial level 

In our main analysis, we conducted a mixed 2 x 3 x 3 x 3 ANOVA with the between-

subjects factor group (ASD, control) and the within-subjects factors emotion (happy, angry, 

sad), stimulus spatial level (S1, S2, S3), and stimulus kinematic level (K1, K2, K3). This 

analysis revealed a significant main effect of emotion [F(2,116) = 17.79, p < .001, ηP2 = .24, 

BF10 = 4.83e13], with recognition scores highest for happy [mean(SEM) = 4.19(.19)], and 

comparable for sad [mean(SEM) = 3.14(.18)] and angry [mean(SEM) = 2.96(.18)] videos. The 

main analysis also revealed a main effect of spatial level [F(2,116) = 259.57, p < .001, ηP2 = 

.82, BF10 = 7.62e61], with recognition scores improving as the spatial level increased [S1 

mean(SEM) = 2.04(.13); S2 mean(SEM) = 3.68(.16); S3 mean(SEM) = 4.56(.15)].  

 

Appendix 1.5 – Unpacking the significant main effects and interactions in the emotion 
rating analysis 

Main effects: 

In order to compare the magnitude of the ratings between groups, we conducted a mixed 

2 x 3 x 3 x 3 x 3 ANOVA with the between subjects factor group (ASD, control) and the within-
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subjects factors emotion (happy, angry, sad), stimulus spatial level (S1, S2, S3), stimulus 

kinematic level (K1, K2, K3) and rating (happy, angry, sad). This analysis revealed a significant 

main effect of emotion [F(2,116) = 34.86, p < .001, ηP2 = .38], with ratings being highest for 

angry [mean(SEM) = 3.61(.12)], intermediate for sad [mean(SEM) = 3.48(.12)] and lowest for 

happy [mean(SEM) = 3.27(.11)] facial motion. 

This analysis also revealed a main effect of spatial level [F(2,116) = 50.52, p < .001, ηP2 

= .47], with participants giving the highest ratings at the S3 [mean(SEM) = 3.70(.10)], followed 

by the S2 [mean(SEM) = 3.43(.11)], followed by the S1 level [mean(SEM) = 3.22(.13)]. The 

effect of spatial level was qualified by an emotion x spatial interaction [F(4,232) = 3.48, p < 

.05, ηP2 = .06]. Post-hoc repeated measures ANOVAs revealed that the effect of the spatial 

manipulation was strongest for angry facial motion [F(2,116) = 39.74, p < .001, ηP2 = .41] 

followed by sad facial motion [F(2,116) = 35.25, p < .001, ηP2 = .38], followed by happy facial 

motion [F(2,116) = 15.75, p < .001, ηP2 = .21].  

The 3 x 3 x 3 x 3 ANOVA also revealed a main effect of kinematic level [F(2,116) = 

3.51, p < .05, ηP2 = .06]: participants gave the highest ratings at the K1 level [mean(SEM) = 

3.50(.11)], followed by the K3 [mean(SEM) = 3.44(.11)], followed by the K1 level 

[mean(SEM) = 3.42(.11)]. 

This analysis revealed a significant main effect of rating [F(2,116) = 3.592, p < .05, ηP2 

= .06], with participants giving the highest sad ratings [mean(SEM) = 3.65(.13)], and 

comparable angry [mean(SEM) = 3.37(.15)] and happy ratings [mean(SEM) = 3.33(.13)] 

(regardless of which emotion was shown in the PLF).  

Interactions: 

This main effect of rating was qualified by an emotion x rating interaction [F(4,232) = 

489.95, p < .001, ηP2 = .89]. Whilst there was a main effect of rating for all three emotions (all 
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F > 179, all p < .001), the direction of the effect differed across all three emotions. As one might 

expect, for angry facial motion, angry ratings were highest [mean(SEM) = 5.59(.18)], followed 

by sad ratings [mean(SEM) = 3.41(.18)], followed by happy ratings [mean(SEM) = 1.85(.15)]. 

For happy facial motion, happy ratings were higher [mean(SEM) = 6.06(.16)] than angry 

[mean(SEM) = 1.77(.14)] and sad [mean(SEM) = 1.98(.13)] ratings (which were comparably 

low). Finally, for sad facial motion, sad ratings were highest [mean(SEM) = 5.57(.15)], 

followed by angry ratings [mean(SEM) = 2.77(.17)] and then happy ratings [mean(SEM) = 

2.09(.15)]. 

In addition, we identified a spatial x rating interaction [F(4,232) = 64.26, p < .001, ηP2 

= .53]. Whilst there was a main effect of spatial for all three ratings (all F > 32, all p < .001), 

the direction of the effect differed for high and low arousal emotion ratings. Regardless of 

which emotion was shown, angry and happy ratings were highest at the S3 level [angry 

mean(SEM) = 4.19(.14); happy mean(SEM) = 3.62(.11)], followed by the S2 level [angry 

mean(SEM) = 3.33(.14); happy mean (SEM) = 3.48(.13)], followed by the S1 level [angry 

mean(SEM) = 2.61(.19); happy mean(SEM) = 2.89(.17)]. In contrast, regardless of which 

emotion was shown, sad ratings were highest at the S1 level [mean(SEM) = 4.17(.16)], 

intermediate at the S2 level [mean(SEM) = 3.49(.13)] and lowest at the S3 level [mean(SEM) 

= 3.30(.14)] 

Our main analysis also revealed a kinematic x rating interaction [F(4,232) = 49.08, p < 

.001, ηP2 = .46]. Whilst there was a main effect of spatial for all three ratings (all F > 11, all p 

< . 001), the direction of the effect across emotions. Regardless of which emotion was shown: 

angry ratings were highest at the K3 level [mean(SEM) = 3.74(.15)] and comparable at the K1 

[mean(SEM) = 3.15(.17)] and K2 [mean(SEM) = 3.23(.14)] levels; happy ratings were highest 

at the K3 [mean(SEM) = 3.45(.13)] and K2 [mean(SEM) = 3.40(.13)] levels, and lower at the 
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K1 [mean(SEM) = 3.15(.13)] level; and sad ratings were highest at the K1 [mean(SEM) = 

4.20(.14)], followed by the K2 [mean(SEM) = 3.62(.14)], followed by the K3 [mean(SEM) = 

3.13(.14)] level.  

These interactions were further qualified by an emotion x spatial x rating interaction 

[F(8,464) = 111.13, p < .001, ηP2 = .66]. Unpacking this interaction facilitated exploration of 

which specific emotion confusions were made as the PLF stimulus videos transitioned away 

from their typical spatial extent. Post-hoc repeated measures ANOVAs indicated that a spatial 

x rating interaction was present for all emotional videos (all F > 98, p < .001), but that this 

effect differed across these emotions. As the spatial level of angry facial motion decreased, they 

were rated as less angry [F(2,116) = 247.43, p < .001, ηP2 = .81], and were more likely to be 

confused for happy [F(2,116) = 21.96, p < .001, ηP2 = .28] and sad [F(2,116) = 23.54, p < .001, 

ηP2 = .29]. In addition, as the spatial level of happy facial motion decreased, they were rated as 

less happy [F(2,116) = 143.11, p < .001, ηP2 = .71], and were more likely to be confused for sad 

[F(2,116) = 62.17, p < .001, ηP2 = .52] but not angry [p = .061]. In contrast, as the spatial level 

of sad facial motion increased, there were no differences in sad ratings [p = .894,] or happy 

ratings [p = .256], but they were more likely to be confused for angry [F(2,116) = 40.54, p < 

.001, ηP2 = .41].  

 In addition, our main analysis found an emotion x kinematic x rating interaction 

[F(8,464) = 12.02, p < .001, ηP2 = .17]. Unpacking this interaction facilitated exploration of 

which specific emotion confusions were made as the PLF stimulus videos transitioned away 

from their typical spatial extent. Post-hoc repeated measures ANOVAs indicated that whilst a 

kinematic x rating interaction was present for all emotional videos (all F > 179, p < .001), but 

that this effect differed across these emotions. Our analysis identified that as the speed of angry 

facial motion decreased, they were rated as less angry [F(2,116) = 25.39, p < .001, ηP2 = .30], 
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and were more likely to be confused for sad [F(2,116) = 21.11, p < .001, ηP2 = .27]. Note that 

there were no differences in happy ratings for angry facial motion as speed changes [p = .264]. 

In addition, we found that as the speed of happy facial motion decreased, they were rated as 

less happy [F(2,116) = 15.84, p < .001, ηP2 = .21], and were more likely to be confused for sad 

[F(2,116) = 33.73, p < .001, ηP2 = .37]. Note that happy facial motion was more likely to be 

confused for angry at the K1 and K3 levels than at the K2 level [F(2,116) = 4.37, p < .05, ηP2 = 

.07]. Finally, we found that as the speed of sad facial motion increased, they were rated as less 

sad [F(2,116) = 58.18, p < .001, ηP2 = .50], and were more likely to be confused for angry 

[F(2,116) = 30.56, p < .001, ηP2 = .35] and happy [F(2,116) = 9.54, p < .001, ηP2 = .14] 

In addition, we identified a kinematic x rating x group interaction [F(4,232) = 2.79, p < 

.05, ηP2 = .05] and a spatial x kinematic x rating x group interaction [F(8,464) = 2.76, p < .05, 

ηP2 = .05]. To unpack the first of these interactions, we conducted post-hoc 2 x 3 ANOVAs 

(group x kinematic) for each emotion rating. This analysis revealed a significant kinematic x 

group interaction for sad [F(2,116) = 3.45, p < .05, ηP2 = .06], but not angry [p = .110] or happy 

[p = .474] ratings. Whilst there was a significant effect of the kinematic manipulation on sad 

ratings for both control [F(2,56) = 46.98, p < .001, ηP2 = .63], and autistic [F(2,60) = 26.85, p 

< .001, ηP2 = .47] participants, the effect of the kinematic manipulation was greater for controls 

(see Figure A1.3). In other words, regardless of what emotion was displayed, the sad ratings 

given by autistic (relative to control) participants were less affected by the kinematic 

manipulation.  In our 2 x 3 ANOVA (group x kinematic) for sad ratings, we also identified a 

main effect of group, with autistic participants giving higher mean sad ratings (regardless of 

what emotion was displayed) [t(58) = -2.11, p < .05, mean difference = -0.56].  
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Figure A1.3.  

Mean sad ratings given by autistic and control participants across the kinematic levels 
(averaging across the displayed emotions and spatial levels). 
 

 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints 

 

In order to unpack the significant spatial x kinematic x rating x group interaction 

[F(8,464) = 2.76, p < .05, ηP2 = .05], we conducted post-hoc 2 x 3 x 3 ANOVAs (group x 

kinematic x rating) for each spatial level. This revealed a significant group x kinematic x rating 

interaction at the S2 [F(4,232) = 28.10, p < .001, ηP2 = .06] and S3 [F(4,232) = 2.46, p < .05, 

ηP2 = .04] level, but not at the S1 [p = .108] level. We then completed post-hoc 2 x 3 ANOVAs 

(group x kinematic) for each rating at the S2 and S3 level. At the S2 level we found a significant 

kinematic x group interaction for angry [F(2,116) = 4.55, p < .05, ηP2 = .07] and happy [F(2,116) 

= 3.97, p < .05, ηP2 = .06] ratings but not sad [p = .255] ratings. Whilst there was a significant 
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effect of the kinematic manipulation on angry ratings at the S2 level for control participants 

(regardless of which emotion was displayed) [F(2,56) = 19.94, p < .001, ηP2 = .42], there was 

not a significant effect for autistic participants [p =.054] (see Figure A1.4) (however, there were 

no group differences in angry ratings at the S2 level across each of the kinematic levels). In 

addition, we found that whilst there was a significant effect of the kinematic manipulation on 

happy ratings at the S2 level for autistic participants [F(2,60) = 8.88, p < .01, ηP2 = .23], there 

was not for controls [p= .424]. This difference in happy ratings across the kinematic levels led 

to a significant group difference, with autistic participants giving significantly higher happy 

ratings at the K3 [t(58) = -2.85, pbonf < .05, mean difference = -0.80] but not K1 [p = .421] or 

K2 [p = .178] level (see Figure A1.5).  

Figure A1.4. 

Mean angry ratings at the S2 level given by autistic and control participants across the 
kinematic levels (averaging across the displayed emotions). 
 

 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints 
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Figure A1.5. 

Mean happy ratings at the S2 level given by autistic and control participants across the 
kinematic levels (averaging across the displayed emotions). 
 

 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints 

At the S3 level, we found a significant kinematic x group interaction for sad [F(2,116) 

= 3.80, p < .05, ηP2 = .06], but not angry [p = .129] or happy [p = .177] ratings. Whilst there 

was a significant effect of the kinematic manipulation on sad ratings at the S3 level for both 

control [F(2,56) = 34.02, p < .001, ηP2 = .55], and autistic [F(2,60) = 7.23, p < .01, ηP2 = .19] 

participants, the effect of the kinematic manipulation was greater for controls (see Figure A1.6). 

In other words, regardless of what emotion was displayed, at the S3 level, the sad ratings given 

by autistic (relative to control) participants were less affected by the kinematic manipulation. 

This smaller effect led to significant group differences in sad ratings, with autistic participants 

giving higher ratings (after Bonferroni-correction) at the K2 [t(58) = -22.57, pbonf < .05, mean 

difference = -0.83] and K3 [t(58) = -3.35, pbonf < .01, mean difference = -1.01] level, but not 

*

*pbonf < .05
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the K1 [p = .166] level. In our 2 x 3 ANOVA (group x kinematic) for sad ratings at the S3 level, 

we also identified a main effect of group, with autistic participants giving higher mean sad 

ratings at the S3 level (regardless of what emotion was displayed) [t(58) = -2.671, p < .05, mean 

difference = -0.75].  

Figure A1.6.  

Mean sad ratings at the S3 level given by autistic and control participants across the kinematic 
levels (averaging across the displayed emotions). 
 
 

 

 

 

 

 

 

 

 

 

 

Note. The black line represents the mean, the shaded region represents the standard deviation, 
the coloured box represents 1 standard error around the mean and the dots are individual 
datapoints 

 
  

***

*pbonf < .05
** pbonf < .01
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Appendix 2 
 
Supplementary Materials for Chapter 3 
 
Comparing internal representations of facial expression kinematics between autistic and 
non-autistic adults  
 
Connor T. Keating, Sophie Sowden, and Jennifer L. Cook 
 
(Published in Autism Research) 
 
Reference: Keating CT, Sowden S, Cook JL. Comparing internal representations of facial expression 
kinematics between autistic and non‐autistic adults. Autism Research. 2022 Mar;15(3):493-506. 
https://doi.org/10.1002/aur.2642  
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Appendix 2.1 – Full and partial face PLFs 

Access examples of full-face and partial-face PLFs at: https://tinyurl.com/keatingthesis 

 

Appendix 2.2 – Participants’ ethnicities in Chapter 3 

Table A2.1.  

Ethnicity data for autistic and non-autistic participants. 

 

 

 

  

Ethnic Group Autistic 
(N=25) 

Non-autistic 
(N=25) 

White English/Welsh/Scottish/Northern Irish/British 21 3 

White Hungarian/Greek 1 0 

White European 1 2 

Mixed/Multiple Ethnic Groups- White and Black Caribbean 1 0 

White Polish 0 6 

White Italian 0 3 

White Portuguese 0 2 

White/Caucasian 0 2 

White Slavic 0 1 

White Albanian 0 1 

Black African 0 1 

Asian Pakistani 0 1 

Asian Indian 0 1 

Mixed/Multiple Ethnic Groups- White and Asian 0 1 

Mixed/Multiple Ethnic Groups- Other 0 1 

Prefer not to say 1 0 

 

 

https://tinyurl.com/keatingthesis
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Appendix 3 
 
Supplementary Materials for Chapter 4 
 
The Inside Out Model of Emotion Recognition: How the Shape of One’s Internal 
Emotional Landscape Influences the Recognition of Others’ Emotions 
 
Connor T. Keating and Jennifer L. Cook 
 
(Published in Scientific Reports) 
 
Reference: Keating CT, Cook JL. The inside out model of emotion recognition: How the shape of 
one’s internal emotional landscape influences the recognition of others’ Emotions. Scientific Reports. 
2023 Dec 6;13(1):21490. https://doi.org/10.1038/s41598-023-48469-8 
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Appendix 3.1 -  The effect of emotion on emotional precision and representational 
precision, and the effect of emotion pair on distance between clusters 
and distance between representations.  

 
To assess whether the precision of emotional experiences and visual emotion 

representations differed as a function of emotion, we constructed two linear mixed effects 

models. In the first model, emotional precision was the outcome variable; in the second, 

representational precision was the outcome variable. In both models, emotion (angry, happy, 

sad) was included as a predictor and subject number was modelled as a random intercept. Whilst 

representational precision differed as a function of emotion [original sample: F(2,194) = 86.63, 

p < .001; replication sample: F(2,384) = 252.44, p < .001], emotional precision did not [p > 

.05]. Across both samples, representational precision was highest for sadness [original sample 

mean (SEM) = -0.51(0.03); replication sample mean(SEM) = -0.49(0.02)], followed by 

happiness [original sample mean(SEM) = -0.63(0.03); replication sample mean(SEM) = -

0.62(0.02)], followed by anger [original sample mean(SEM) = -0.88(0.04), replication sample 

mean(SEM) = -0.88(0.03)].  

Next, we aimed to assess whether distance between emotion clusters and distance 

between representations differed as a function of emotion pair. Therefore, we constructed two 

linear mixed effects models predicting distance between clusters, and distance between 

representations, respectively, with emotion pair (angry-happy, angry-sad, happy-sad), and with 

subject number as a random intercept. There was a significant main effect of emotion pair for 

distance between emotion clusters [F(2,540) = 487.69, p < .001]: there were smaller distances 

between anger and sadness [mean distance (SEM) = 14.39(0.21)], than happiness and anger 

[mean distance (SEM) = 20.79(0.29)], and happiness and sadness [mean distance (SEM) = 

20.70(0.29)] in this experience domain. These results suggest that experiences of anger and 
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sadness (i.e., same-valence emotions) are more similar than experiences of happiness and anger, 

and happiness and sadness (i.e., opposite-valence emotions).  

In addition, we found a significant main effect of emotion pair for distance between 

representations [F(2,384) = 180.44, p < .001]: there were smaller distances between 

representations for anger and happiness [mean(SEM) = 1.16(0.05) pixels/frame] and happiness 

and sadness [mean(SEM) = 1.18(0.04) pixels/frame], than for anger and sadness [mean(SEM) 

= 2.23(0.07) pixels/frame] in this speed domain. These results are logical: previous findings 

suggest that visual representations of anger are typically fastest, followed by happiness, 

followed by sadness449. Since happy expressions comprise an intermediate, they are most likely 

to overlap with both anger and sadness. To illustrate these effects, we computed a distance (i.e., 

dissimilarity) matrix for both EmoMap and ExpressionMap (see Figure A3.1). In this matrix, 

you can see that there are greater distances between experiences of anger and happiness, and 

smaller distances between experiences of anger and sadness in EmoMap. Conversely, there are 

smaller distances between visual representations for anger and happiness, and larger distances 

between representations for anger and sadness in ExpressionMap.  
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Figure A3.1.  
 
Two distance matrices illustrating the mean distances between emotional experiences for 
anger, happiness and sadness (for five images each; left) and the mean distances between visual 
representations of anger, happiness and sadness (for four repetitions each; right). 

 

 
Appendix 3.2 - Building the Inside Out Model of Emotion Recognition 
 
Determining which variables are important for emotion recognition 
 

To assess the contribution of both EmoMap and ExpressionMap variables to emotion 

recognition we focused on the 193 participants that completed both tasks. First, since we had a 

large number of potential variables of interest, we determined their relative importance with 

respect to emotion recognition using a random forest analysis431. Our random forests analysis431 

employed the Boruta432 wrapper algorithm (version 7.7.0) which trains a random forest 

regression on all predictors, as well as their shuffled copies (known as “shadow features”),and 

classifies a variable as important when its importance score is higher than the highest 

importance score for a shadow feature. Our predictor variables included mean emotional 
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precision, colour (control) precision, mean distance between emotion clusters, mean distance 

within emotion clusters, mean representational precision, matching difficulty, mean distance 

between emotion representations, and representation matching. ‘Representation matching’ was 

computed by multiplying the representational precision scores for angry, happy and sad 

expressions with their corresponding matching difficulty scores (e.g., angry representational 

precision x angry matching difficulty; happy representational precision x happy matching 

difficulty; sad representational precision x sad matching difficulty). Higher representation 

matching scores indicate superior representational precision, matching ability, or both. 

This analysis revealed that, of the eight variables, five were confirmed important, and 

three were confirmed unimportant. Figure A3.2 illustrates that representation matching [median 

importance score (MIS) = 21.58], matching difficulty [MIS = 21.40], representational precision 

[MIS = 13.56], distance between emotion clusters [MIS = 7.46], and emotional precision [MIS 

= 4.08] were classified as important (green) for emotion recognition. Mean distance between 

emotion representations [MIS = 1.36], mean distance within emotion clusters [MIS = -0.39], 

and colour control precision [MIS = -1.46] were classified as unimportant (red).   
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Figure A3.2.  

Random forest variable importance scores.  

 

Note. Variable importance scores for all eight variables included in the Boruta random forest 
regression model, displayed as boxplots. Box edges correspond to the interquartile range 
(IQR); whiskers represent 1.5 × IQR distance from box edges; circles denote outliers. Box 
colour reflects the decision made by the algorithm: Green = confirmed important, yellow = 
tentative, red = rejected; grey = shadow features – shadowMin, shadowMean, shadowMax 
(minimum, mean and maximum variable importance scores of shadow features, respectively).  
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Constructing the most mathematically plausible structural equation model 

Following this, we employed structural equation modelling (SEM) to build a 

mathematically plausible mechanistic model of the pathways linking internal emotional 

experiences with emotion recognition in the outside world. To achieve this, we first estimated 

latent constructs from their manifest indicator variables while accurately isolating any 

measurement error580. The latent construct of emotional precision was estimated using 

emotional precision EmoMap scores for anger, happiness, and sadness respectively; distance 

between emotion clusters was estimated using the EmoMap distances between the angry and 

happy, angry and sad, and happy and sad clusters respectively; representation matching was 

estimated using ExpressionMap scores for the interaction between representational precision 

and matching for angry expressions, representational precision and matching for happy 

expressions, and finally representational precision and matching for sad expressions; emotion 

recognition accuracy was estimated using accuracy scores from the PLF Emotion Recognition 

Task for angry, happy and sad expressions respectively. Due to failure of model convergence 

as a result of high collinearity between manifest variables [correlation for the distance between 

angry and happy, and angry and sad representations: R = .725, p < .005], the latent construct 

distance between representations was estimated using the distance between happy and sad, and 

angry and sad representations only (i.e., the distance angry and happy representations was not 

used to estimate distance between representations). 

Subsequently, we modelled the structural (direct and indirect) paths between latent 

constructs. To this end, we added variables classified as “important” in our random forests 

analysis into a structural equation model predicting emotion recognition accuracy, sequentially 

(starting with the most important variable), until there was a) no longer a significant 

improvement (or our goodness of fit index exceeded the specified threshold), or b) our goodness 
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of fit indices dropped below threshold [RMSEA > 0.08; SRMR > 0.08; CFI < 0.95)581. We also 

included paths for variables that were discovered to be significant predictors in our previous 

analyses (e.g., predicting emotional precision with NVR, predicting distance between clusters 

with TAS). Given that our data contained normally distributed continuous variables, we used a 

maximum likelihood estimator across all structural equation models. Within our first full 

model, there were significant direct effects of distance between emotion clusters [z = 3.96, b = 

0.32, p < .001] and representation matching [z = 6.68, b = 0.69, p < .001] on emotion recognition 

accuracy. In addition, mediation analyses to test for the presence of indirect effects on accuracy 

revealed that emotional precision contributed to accuracy [z = 2.11, b = 0.51, p < .05] by 

influencing the representational precision x matching interaction [direct effect: z = 2.22, b = 

0.73, p < .05]. Furthermore, serial mediation analyses identified that non-verbal reasoning 

exerted an indirect effect on accuracy [z = 4.99, b  = 0.33, p < .001] by influencing emotional 

precision [direct effect: z = 2.24, b = 0.65, p < .05], which contributed to the representational x 

matching interaction [direct effect: z = 2.22, b = 0.73, p < .05], which predicted emotion 

recognition [direct effect: z = 6.70, b = 0.70, p < .001]. Finally, we identified that alexithymia 

exerted an indirect effect on emotion recognition accuracy [z = -2.23, b = -0.06, p <.05] by 

influencing distance between emotion clusters [z = -2.68, b = -0.19, p < .01], which in turn 

contributed to distance between emotion representations [direct effect: z = 2.60, b = 0.26, p < 

.01]. Fit indices demonstrated that this model was a good fit for the data [RMSEA = 0.057; 

SRMR = 0.076; CFI = 0.952].  

A significant strength of structural equation modelling is that it provides the opportunity 

to reverse path directions to establish mathematically plausible directions of causality582. We 

constructed a series of structural equation models in which the direction of one (and only one) 

of the paths was reversed and calculated Bayesian Information Criterion (BIC) difference 
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scores by subtracting the sample size adjusted BIC scores of our final model from the ‘reversed 

models’. BIC difference scores between 2 and 6 reflect moderate evidence, between 6 and 10 

reflect strong evidence, and above 10 reflect very strong evidence, for model improvement583. 

There was very strong evidence that our model was better than the reversed model in three 

instances (representation matching → emotional precision: BIC difference = 50.953; accuracy 

→ representation matching: BIC difference = 16.219; distance between clusters → TAS: BIC 

difference = 1496.51). However, interestingly, there was very strong evidence that the reverse 

direction was more plausible in one instance (emotional precision → non-verbal reasoning: BIC 

difference = -184.898). Finally, our model and the reversed model were comparable in two 

instances (emotion recognition accuracy → distance between clusters: BIC difference = 0.953; 

distance between emotion representations → distance between clusters: -1.841; see Table A3.1). 

Following this, we constructed a structural equation model in which we included the path 

directions that were mathematically most plausible (i.e., reversed one of the paths such that it 

was emotional precision → non-verbal reasoning). For paths in which neither direction was 

more plausible, we modelled both path directions (i.e., distance between clusters → emotion 

recognition accuracy, and emotion recognition accuracy → distance between clusters; distance 

between emotion clusters → distance between emotion representations, and distance between 

emotion representations → distance between emotion clusters) in direct feedback loops.  

Table A3.1.  

A table showing the difference in Bayesian Information Criterion (BIC) scores between our 
final structural equation model and models in which each of the paths were reversed.  

Reversed Path BIC Difference Preferred 
Model 

Strength of 
evidence 

Distance between clusters → TAS 1496.51 Original Very strong 
Representational Precision x Matching → Emotional Precision 50.953 Original Very strong 
Accuracy → Representational Precision x Matching 16.219 Original Very strong 
Accuracy → Distance between clusters 0.953 Neither No evidence 
Distance between representations → Distance between clusters -1.841 Neither No evidence 
Emotional Precision → NVR -184.898 Reversed Very strong 
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Notably, this model revealed that only one of these bidirectional feedback loops were 

significant: there were significant direct effects of distance between emotion clusters on 

accuracy [z = 2.26, b = 0.20, p < .05], and accuracy on distance between emotion clusters [z = 

2.65, b = 0.27, p < .01], thus confirming a bidirectional feedback loop between these variables. 

By contrast, there was a marginally significant direct effect of distance between representations 

on distance between emotion clusters [z = 1.75, b = 0.54, p = .081], but not distance between 

emotion clusters on distance between representations [p = .396]. Therefore, we constructed one 

final structural equation model with the most mathematically plausible path directions, 

including a bidirectional feedback loop between distance between emotion clusters and 

accuracy, and a unidirectional path from distance between representations to distance between 

emotion clusters. There was very strong evidence that our final model, which could account for 

60.8% of the variance in emotion recognition accuracy, was more mathematically plausible 

than our original model (BIC difference = 192.427). The information about our final structural 

equation model is reported in the Results section.  

 

Appendix 3.3 – Inter-relationships between the variables in our final structural equation 
model 
 
Table A3.2.  

A table showing the degree of correlation between all of the variables in our final structural 
equation model.  

 

 

 
 
 
 
 

 
 

 1 2 3 4 5 6 7 
1. Accuracy 1.000       
2. Distance between clusters 0.412 1.000      
3. Emotional precision 0.515 0.271 1.000     
4. Representation Matching 0.724 0.170 0.434 1.000    
5. Distance between representations 0.002 0.007 0.011 -0.006 1.000   
6. NVR 0.367 0.033 0.347 0.475 0.000 1.000  
7. TAS -0.269 -0.192 -0.433 -0.196 0.002 -0.117 1.000 
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Appendix 3.4 - Partial correlations controlling for self-reported effort 
 

At the end of the study, we asked participants to report how much effort they put in 

while completing the tasks on a scale from 0 (no effort at all) to 10 (maximum effort). In order 

to elicit honest responses, we informed participants that they would still be renumerated for 

their time irrespective of their answer, and emphasised the importance of giving truthful 

responses.  

In order to assess whether our variables of interest were associated with self-reported 

effort, we ran a series of simple correlations (see Table A3.2). This revealed that self-reported 

effort was not associated with emotional precision, representational precision, distance between 

representations, matching deviation scores, or representation matching [all p > .05]. However, 

there were small-moderate correlations between self-reported effort and distance between 

clusters [R = .263, p < .001] and emotion recognition accuracy [R = .236, p = .001]. 

Table A3.3.  

A table showing the Pearson correlations between self-reported effort and our variables of 
interest. Note that these p values are not corrected for multiple comparisons.  

 Emotional 
precision 

Distance 
between 
clusters 

Representational 
precision 

Distance 
between 
representations 

Matching 
deviation  

Representation 
matching 

Emotion 
recognition 
accuracy 

Effort R = -.065 
p = .368 

R = .272* 
p < .001 

R = .071 
p = .330 

R = .035 
p = .631 

R = -.126 
p = .081 

R = .110 
p = .129 

R = .236* 
p = .001 

 

Therefore, in order to determine whether self-reported effort underpinned the 

relationships between our variables of interest, we conducted a series of partial correlations 

controlling for self-reported effort. Across all analyses, significant relationships were identified 

even after controlling for self-reported effort: the relationship between emotion recognition 

accuracy and distance between clusters [R = .260, pbonf = .002], emotion recognition accuracy 

and the representational precision x matching interaction [R = .549, pbonf < .001], the 
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representational precision x matching interaction and emotional precision [R = .251, pbonf = 

.003], emotional precision and non-verbal reasoning [R = .228, pbonf = .009], distance between 

representations and distance between clusters [R = .221, pbonf = .013], and distance between 

clusters and alexithymia [R = -.199, pbonf = .036], all held after Bonferroni-correction 

(correcting for six tests).  

 

Appendix 3.5 – The effect of sex on our pattern of results 
 

Since our samples were unbalanced with regards to sex, we conducted a series of 

analyses to determine whether sex moderated any of our primary effects. The general pattern 

of results was very similar to that reported in the main manuscript (see full results below).  

First, we conducted analyses assessing the extent to which the contribution of 

alexithymia to distance between and within clusters was moderated by sex. To test this, we 

constructed two linear mixed effects models with distance between clusters and distance within 

clusters as the outcome variables, TAS, sex, and the TAS x sex interaction as predictors, and 

with subject number as a random intercept. For distance between clusters, there was a 

significant effect of TAS [F(1,267) = -5.24, p < .05] that was not moderated by sex [p = .231]. 

As found previously, those higher in alexithymia had smaller distances between their emotion 

clusters. For distance within clusters, there was a significant TAS x sex interaction [F(1,267) = 

-4.80, p < .05]. Unpacking this interaction revealed that alexithymia was a significant negative 

predictor of distance within clusters for males [F(1,66) = 5.20, p <.05] but not females [p 

= .484]. It is important to note that this finding does not significantly change our main pattern 

of results; for our final structural equation model, TAS is modelled as a significant predictor of 

distance between clusters, while distance within clusters is not included in the model.  
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Next, we aimed to assess whether sex moderated the effect we found of distance 

between clusters, and distance within clusters on emotional precision. Therefore, we 

constructed a linear mixed model predicting emotional precision with distance between 

clusters, distance within clusters, their interactions with sex, and sex. As reported in the main 

manuscript, distance between clusters was a significant positive predictor [F(1,265) = 8.45, p 

<.01],and distance within clusters was a significant negative predictor [F(1,265) = -9.84, p<.01] 

of emotional precision. There were no significant interactions with sex [p > .05], thus 

suggesting that these predictive relationships exist for both males and females.  

Following this, we aimed to verify whether sex moderated the effect of representational 

precision on emotion recognition accuracy. Thus, we constructed a linear mixed effects model 

of emotion recognition accuracy as a function of mean representational precision, sex, and the 

representational precision x sex interaction. Across both samples, there was a significant effect 

of representational precision on emotion recognition accuracy [original sample: F(1,94) = 5.07, 

p < .05; replication sample:  F(1,189) = 42.95, p < .001], that was not moderated by sex [all p 

> .05]. These results suggest that, for both males and females, representational precision 

significantly contributes to emotion recognition accuracy.  

Next, we aimed to assess whether sex moderated the effect of the representational 

precision x matching interaction on emotion recognition accuracy. To fulfil this aim, we 

conducted a linear mixed effects model predicting emotion recognition accuracy with 

representational precision, matching difficulty, the representational precision x matching 

interaction, and the interactions of these variables with sex. In line with the results reported in 

the main manuscript, this identified a significant representational precision x matching 

interaction [F(1,185) = 12.19, p < .001], that was not moderated by sex [p > .05]. Unpacking 

this interaction, revealed that representational precision was only a significant predictor for 
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those with a lower ability to match [F(1,92) = 17.53, p < .001], and not those with a higher 

ability to match [p > .05]. Again, these effects were not moderated by sex. Together, these 

results suggest that, for both males and females, when individuals struggle to match two 

expressions, representational precision plays an important role.  

Following this, we aimed to determine whether the relationships we discovered between 

how individuals feel “on the inside” and how they expect expressions to look “on the outside” 

were moderated by sex. First, we assessed whether the contribution of emotional precision to 

representational precision was moderated by sex using a linear mixed effects model. As found 

previously, emotional precision was a significant predictor of representational precision 

[F(1,189) = 12.46, p < .001]. There was no emotional precision x sex interaction [p > .05], thus 

indicating that for both males and females, having precise emotional experiences is associated 

with precise visual representations of emotion. Second, we examined whether the contribution 

of distance between clusters to distance between representations was moderated by sex using a 

linear mixed model. This identified that, distance between clusters was a significant predictor 

of distance between representations [F(<1189) = 4.97, p < .05]. Importantly, this effect was not 

moderated by sex [p > .05]. Thus, for both males and females, having more distinct experiences 

of emotion predicts more distinct visual representations of emotion.  

Next, we aimed to confirm whether the paths stipulated in our final structural equation 

model were present for both males and females. Therefore, we attempted to conduct 

independent structural equation models in each group. However, due to the sample of males 

being relatively small (N = 41), the model conducted in this sample did not converge. Therefore, 

it was not possible to assess the relationships between our variables of interest simultaneously 

in one model (for males). Nevertheless, it is reassuring that the evidence from our previous 

models points towards a precision component that is not moderated by sex: we found significant 
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relationships between emotional precision and representational precision, representational 

precision and accuracy, and the representational x matching interaction and accuracy, 

independent of sex. We have also identified some evidence for the differentiation component 

existing for both male and females: we found significant relationships between alexithymia and 

distance between clusters, and distance between clusters and distance between representations, 

that are not moderated by sex. Further research, which employs larger samples of males, is 

necessary to determine whether the same mechanisms are involved in emotion recognition for 

both males and females.  

 

Appendix 3.6 – Participants’ ethnicity information in Chapter 4 

Table A3.4.  

A table displaying the ethnicities of participants from Experiment 1.  

Ethnicity Frequency 
Afghan 1 
Arab 2 
Asian Bangladeshi 2 
Asian British 11 
Asian Filipino 1 
Asian HongKonger 1 
Asian Indian 8 
Asian Indonesian 1 
Asian Nepali 1 
Asian Pakistani 10 
Asian Sri Lankan 1 
Asian British Pakistani 1 
Black African 37 
Black African and Caribbean 1 
Black British 3 
Black Caribbean 1 
Black/African/Caribbean background: Somali 1 
Chinese 18 
Cypriot 1 
Hispanic 1 
Mixed/Multiple ethnic groups- Asian/African 1 
Mixed/Multiple ethnic groups- Indian/Bangladeshi/Iraqi 1 
Mixed/Multiple ethnic groups- Middle East/Israeli 1 
Mixed/Multiple ethnic groups- Portuguese/Arab 1 
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Mixed/Multiple ethnic groups- Latin American 1 
Mixed/Multiple ethnic groups- White and Asian 2 
Mixed/Multiple ethnic groups- White and Black African 2 
White Albanian 1 
White American 2 
White Austrian 1 
White Baltic Finnic 1 
White Belgian 1 
White Bulgarian 1 
White Caucasian 1 
White Czech 1 
White Dutch 1 
White Eastern European 2 
White English/Welsh/Scottish/Northern Irish/British 101 
White English/White Eastern European 1 
White Estonian 1 
White European 5 
White French 1 
White German 1 
White Hispanic 2 
White Iberian 1 
White Irish 1 
White Italian 1 
White Latin 1 
White Latvian 1 
White Mediterranean 1 
White Northern European 1 
White Polish 3 
White Portuguese 5 
White Romanian 2 
White Slaav 3 
White South African 2 
White Turkish 1 
Not disclosed 12 
Total 271 

 

Table A3.5. 

A table displaying the ethnicities of participants from Experiment 2, Original Sample.  

Ethnicity Frequency 

Asian Bangladeshi 1 

Asian Indian 3 

Asian Korean 1 

Asian Pakistani 1 

Black African 3 

Black British 1 

Black Caribbean 1 
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Chinese 1 

Mixed/Multiple ethnic groups- White and Asian 2 

Mixed/Multiple ethnic groups- White and Black Caribbean 1 

White Caucasian 1 

White English/Welsh/Scottish/Northern Irish/British 63 

White European 5 

White German 1 

White Irish 4 

White Italian 1 

White Lithuanian 1 

White Mixed European 1 

White Polish 2 

White Portuguese 3 

Not disclosed 1 

Total 98 
 

Table A3.6.  

A table displaying the ethnicities of participants from Experiment 2, Replication Sample. 

Ethnicity Frequency 
Afghan 1 
Arab 1 
Asian Bangladeshi 2 
Asian British 7 
Asian HongKonger 1 
Asian Indian 6 
Asian Indonesian 1 
Asian Nepali 1 
Asian Pakistani 6 
Asian Sri Lankan 1 
Asian: British Pakistani 1 
Black African 24 
Black African and Caribbean 1 
Black British 3 
Black Caribbean 1 
Black/African/Caribbean background: Somali 1 
Chinese 12 
Cypriot 1 
Mixed/Multiple ethnic groups-  Asian/A frican 1 
Mixed/Multiple ethnic groups- Indian/Bangladeshi/Iraqi 1 
Mixed/Multiple ethnic groups- Portuguese/Arab 1 
Mixed/Multiple ethnic groups- Latin American 1 
Mixed/Multiple ethnic groups- White and Asian 1 
Mixed/Multiple ethnic groups- White and Black African 2 
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White Albanian 1 
White American 1 
White Baltic Finnic 1 
White Belgian 1 
White Bulgarian 1 
White Caucasian 1 
White Czech 1 
White English/Welsh/Scottish/Northern Irish/British 81 
White Estonian 1 
White European 3 
White French 1 
White Hispanic 1 
White Irish 1 
White Italian 1 
White Latvian 1 
White Northern European 1 
White Polish 3 
White Portuguese 3 
White Romanian 2 
White Slaav 2 
White South African 1 
Not disclosed 6 
Total 193 

 

 

Appendix 3.7 - Pilot Study (N = 20) 

In the second part of the EmoMap paradigm, which assesses emotional precision, there 

are 11 images that induce anger, happiness and sadness respectively (33 images in total). If we 

were to include all of these images in the first part of the EmoMap task, which assesses emotion 

differentiation, participants would be required to complete 528 trials (one trial for every image 

pair combination). Given that providing a similarity rating for each image pair combination 

typically takes 15 seconds, the duration of this task would be over two hours. Since this task is 

part of a wider battery investigating the experience, visualization and recognition of emotion, 

it is crucial that the task is shorter in length. Therefore, in a pilot study we aimed to identify 

five images for each emotion (15 images in total) that were effective at inducing the target 

emotion, and generated well-differentiated emotion clusters. By selecting five images per 
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emotion, we knew that there would be 105 image pair combinations and therefore the task 

would take approximately 25 minutes to complete.  

To fulfil our aim, we recruited 20 participants from Prolific (participant demographics 

shown in Table A3.6) to complete a longer version of the first part of the EmoMap task that 

included all 11 possible images for each emotion. In this task, on each trial participants viewed 

pairs of emotional images and were required to rate how similar the emotions evoked by the 

images were (see full task description in the main manuscript). To map the shape and size of 

participants’ internal emotional landscapes, similarity ratings were transformed into Euclidean 

distance scores through multidimensional scaling (using the Scikit-learn library in Python). 

These distance scores were then used to plot the internal emotional landscape (see Figure A3.3). 

After completing the first part of the EmoMap task, participants also completed the ‘Emotion 

Label’ task. In this task, on each trial participants viewed one of the images they had seen 

previously and were then required to state the emotion they felt most strongly when looking at 

this image.  

 
Table A3.7.  

Means and standard deviations of participant characteristics. In the column on the right-hand 
side, means are followed by standard deviation in parentheses.  

 
 

Variable Participants (N = 20) 
Sex 9 Male, 11 Female 
Age 32.35(11.74) 
AQ-50 22.40(7.23) 
TAS-20 50.50(16.04) 
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Figure A3.3.  
 
A diagram displaying the aggregated internal emotional landscape across all pilot study 
participants.  
 
 

 
 

Following creation of the multidimensional scaling plot, we selected five images for 

each emotion based on the following criteria. Firstly, all of the selected images were rated as 

inducing the target emotion more than any other emotion in Riegel et al430 (e.g., for images 

selected to induce anger, the intensity rating for anger was higher than for all other emotions). 

Secondly, the selected images formed an emotion cluster that was visually distinct from the 

other clusters (this led to us exclude Sad_5, and Sad_6 as these sad images were close to many 

of the angry images in the map, and received relatively high angry ratings in Riegel et al., 2016). 

Thirdly, the images were freely labelled as inducing the target emotion (or a similar emotion, 

i.e., anger, frustration) by a higher number of participants than for unselected images on our 
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independent emotion labelling task. Finally, we ensured that there was a similar mean intensity 

rating and standard deviation of intensity ratings for each emotion cluster based on the ratings 

from Riegel et al430 [angry mean(SD) = 4.05(0.73); happy mean(SD) = 4.00(0.78); sad 

mean(SD) = 3.75(0.67)]. By doing so, it would not be the case that, for instance, there were 

larger distances within one emotion over another because there was a large difference in 

intensity ratings (and therefore the experience of emotion was less similar). The selected images 

for each cluster are shown in colour (see Figure A3.4).  

Figure A3.4.  

A diagram displaying the aggregated internal emotional landscape of pilot study participants. 
 

 
 
Note. The images that were selected for the short version of the similarity task are in colour, 
and the images that were not selected are in grey.  
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Appendix 4 
 
Supplementary Materials for Chapter 5 
 
Autistic adults exhibit highly precise representations of others’ emotions but a reduced 
influence of emotion representations on emotion recognition accuracy 
 
Connor T. Keating, Eri Ichijo, and Jennifer L. Cook 
 
(Published in Scientific Reports) 
 
Reference: Keating CT, Ichijo E, Cook JL. Autistic adults exhibit highly precise representations of 
others’ emotions but a reduced influence of emotion representations on emotion recognition accuracy. 
Scientific Reports. 2023 Jul 22;13(1):11875. https://doi.org/10.1038/s41598-023-39070-0 
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Appendix 4.1 - The full results from our linear mixed effects model of accuracy 
 

As stated in the main manuscript, we constructed a linear mixed effects model of 

emotion recognition accuracy (as measured by the PLF emotion recognition task) as a function 

of emotion (angry, happy, sad), spatial level (50%, 100%, 150% spatial exaggeration), 

kinematic level (50%, 100%, 150% speed), group (autistic, non-autistic), the interaction 

between these variables (independent variables), age, sex, non-verbal reasoning, and 

alexithymia (control variables) as predictors, and subject number as a random intercept. This 

analysis revealed a significant main effects of emotion [F(2,2318) = 112.12, p < .001], spatial 

level [F(1,2318) = 162.37, p < .001], and kinematic level [F(1,2318) = 10.60, p = .001], which 

were qualified by emotion x spatial [F(2,2318) = 36.75, p < .001], and emotion x kinematic 

[F(2,2318) = 18.60, p < .001] interactions. Unpacking the emotion x spatial interaction 

demonstrated that whilst emotion recognition accuracy improved with increasing spatial 

exaggeration for anger and happiness, it improved with decreasing spatial exaggeration for 

sadness (as in Sowden et al., 2021). Similarly, unpacking the emotion x kinematic interaction 

revealed that whilst emotion recognition accuracy improved with increasing speed for anger 

and happiness, it improved with decreasing speed for sadness (as in Sowden et al., 2021). 

Finally, we also identified that non-verbal reasoning ability was a significant predictor of 

emotion recognition accuracy [F(1,83) = 5.84, = .018]: those higher in non-verbal reasoning 

ability had better emotion recognition. 
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Appendix 4.2 – Participants’ ethnicities in Chapter 5 

Table A4.1.  

Participants’ ethnicities.  

Racial Group Ethnic Group N %  
White White English/ Welsh/ Scottish/ Norther Irish/ British 45 50.0% 

White European 6 6.7% 
White Irish 3 3.3% 
White Portuguese 2 2.2% 
White Greek 2 2.2% 
White Turkish 2 2.2% 
White Polish 2 2.2% 
White Caucasian 2 2.2% 
White Slavonic 1 1.1% 
White American 1 1.1% 
White Dutch 1 1.1% 
White Hungarian 1 1.1% 
White South African 1 1.1% 
White Ukrainian 1 1.1% 
White Australian 1 1.1% 
White New Zealand 1 1.1% 
White Honduran 1 1.1% 
White Scandinavian 1 1.1% 
Mixed/Multiple ethnic groups: White Lithuanian/Finish/Irish 1 1.1% 
Mixed/Multiple ethnic groups: White British and Irish 1 1.1% 
Mixed/Multiple ethnic groups: White regions 1 1.1% 
Mixed/Multiple ethnic groups: White Sardinian, Italian, Ashkenazi 1 1.1% 

Asian Asian Indian 2 2.2% 
Chinese 1 1.1% 

Black Black African 2 2.2% 
Black Afrikaans 1 1.1% 
Black British 1 1.1% 
Black South African 1 1.1% 

Latino/Latina/Latinx Latino 1 1.1% 
Mixed/Multiple 
ethnic groups 

Mixed/Multiple ethnic groups: White and Asian 1 1.1% 
Mixed/Multiple ethnic groups: White and Native American 1 1.1% 
Mixed/Multiple ethnic groups: White, Black Caribbean and Hispanic 1 1.1% 
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Appendix 4.3 – Participants’ level of education in Chapter 5.  

Table A4.2.  

Participants’ levels of education.  

Highest level of education N % 
Secondary School 10 11.1% 
Sixth Form or College  19 21.1% 
Diploma or equivalent level 8 8.9% 
Undergraduate degree or equivalent level 27 30.0% 
Master’s degree or equivalent level 24 26.7% 
PhD or equivalent level 2 2.2% 

 
 
Appendix 4.4 –  Explanation for why we calculated representational precision for each 

actor independently and then averaged across.  
 

There is evidence that individuals have identity-dependent (i.e., actor-specific) visual 

representations of emotion (see 585,585). This idea is logical: if you see someone with furrowed 

eyebrows, usually you would interpret them as angry, however, if you are aware that the actor 

naturally has angular eyebrows, you might not interpret them as such. Since individuals tend 

to build actor-specific expression representations, the most logical approach for calculating 

precision is based on one actor’s expressions at a time, and then averaging across (rather than 

taking a standard deviation across every repetition of all four actor’s expressions for each 

emotion). 

If we were to take a standard deviation across all four actor’s angry expressions, our 

results would be confounded by the extent to which participants have actor-specific 

representations. To illustrate this point, imagine that participant A has very precise visual 

representations of anger that tend to be actor-specific (in terms of speed). This participant may 

be likely to attribute 1.1 units of speed, 1.3 speed, 1.5 speed, and 1.7 speed to actor 1, and 3.5, 

3.6, 3.8, and 3.9 to actor 2. It is reasonable for this participant to attribute different speeds to 

each actor, as there may be differences in the spatial configuration and speed of facial features 
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between actors, and these cues heavily influence emotion judgements (see 239,519). To give an 

example, it may be that actor 1 naturally has a more furrowed brow, meaning that they appear 

angry at lower speeds than actor 2. Based on their speed attributions, we can see that participant 

A has highly precise visual representations for each actor, but the speed of the representations 

differs between actors. In comparison, consider participant B that has imprecise visual 

representations of facial expressions, that are not individualised across actors. This individual 

may attribute 1.5 speed, 1.9 speed, 2.3 speed and 3.8 speed to actor 1, and 1.3 speed, 2.1 speed, 

3.0 speed and 4.1 speed to actor 2 (and thus is imprecise across both actors). If we were to take 

a standard deviation across actors (as suggested by the reviewer as a potential alternative 

method), participant A would score -1.25, indicating low precision, and participant B would 

score -1.04, indicating higher precision. Hence, participant B who has considerably less precise 

visual representations would score higher than participant A in precision. However, using our 

method for calculating precision, participant A scores -0.22, indicating high precision, and 

participant B scores -1.12, indicating low precision. Hence, our method is a more valid way of 

measuring the precision of visual emotion representations. 
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Appendix 5 
 
Supplementary Materials for Chapter 6 
 
Similarities and differences in the psychological mechanisms involved in autistic and 
non-autistic emotion recognition 
 
Connor T. Keating, Carmen Kraaijkamp, and Jennifer L. Cook 
 
(Published in PsyArXiv, under review) 
 
Reference: Keating CT, Kraaijkamp C, Cook J. Similarities and differences in the psychological 
mechanisms involved in autistic and non-autistic emotion recognition. 
https://doi.org/10.31234/osf.io/6deqs 
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Appendix 5.1 – Participants’ ethnicities in Chapter 6.   
 
Table A5.1.  

Participants’ self-reported ethnicities.  
 

Ethnicity N 
Asian Bangladeshi 1 
Asian British 4 
Asian Indian 2 
Asian Iranian 1 
Asian Sri Lankan 1 
Black African 3 
Black and Indian African 1 
Black British 1 
South East Asian 1 
Turkish 1 
White American 1 
White and Asian 1 
White and Black Caribbean 1 
White and Native South American 1 
White Eastern/Southern European 1 
White English/Welsh/Scottish/Northern Irish/British 64 
White European 1 
White French 1 
White Greek Cypriot 1 
White Hungarian 1 
White Irish 3 
White Jewish 1 
White Latino 1 
White Other 1 
White Sardinian, Ashkenazi and Italian 1 
White Slavic 2 
White South African 1 
White Ukrainian 1 
Total 100 
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Appendix 6 
 
Supplementary Materials for Chapter 7 
 
Comparing the spatiotemporal and kinematic properties of autistic and non-autistic 
facial expressions 
 
Connor T. Keating, Sophie Sowden, and Jennifer L. Cook 
 
(Published in PsyArxiv, under review) 
 
Reference: Keating CT, Sowden, S, Cook J. Comparing the spatiotemporal and kinematic properties 
of autistic and non-autistic facial expressions.  
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Appendix 6.1 – Heatmaps of facial expressions 
 
Access heatmaps of the average autistic, non-autistic, highly alexithymic and lowly 
alexithymic angry, happy and sad posed and spoken expressions at: https://osf.io/8a5yw/ 
 
Key 
AP = Angry expressions in the posed condition  
HP = Happy expressions in the posed condition 
SP = Sad expressions in the posed condition 
AS = Angry expressions in the spoken condition  
HS = Happy expressions in the spoken condition 
SS= Sad expressions in the spoken condition 
 
 
Appendix 6.2 – Participants’ ethnicity information in Chapter 7 
 
Table A6.1.  

Participants’ ethnicity information.  
 

 Ethnicity N 
Asian British 2 
Asian Indian 2 
Asian Pakistani 1 
Black African 1 
Black British 1 
Black Caribbean 2 
White English/Welsh/Scottish/Northern Irish/British 40 
White European 1 
White Polish 1 

https://osf.io/8a5yw/

