

Citation for published version:
Tian, X, Yan, R, Wang, S & Laporte, G 2023, 'Prescriptive analytics for a maritime routing problem', Ocean and
Coastal Management, vol. 242, 106695. https://doi.org/10.1016/j.ocecoaman.2023.106695

DOI:
10.1016/j.ocecoaman.2023.106695

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2024

https://doi.org/10.1016/j.ocecoaman.2023.106695
https://doi.org/10.1016/j.ocecoaman.2023.106695
https://researchportal.bath.ac.uk/en/publications/302cab37-031e-4b20-928a-993ee594924d

1

Prescriptive Analytics for a Maritime Routing Problem

Xuecheng Tiana, Ran Yanb,1, Shuaian Wanga, Gilbert Laportec,d

aDepartment of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong

bSchool of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore

cDepartment of Decision Sciences, HEC Montréal, Montréal, Québec, Canada
dSchool of Management, University of Bath, Bath, United Kingdom

Abstract: Port state control (PSC) serves as the final defense against substandard ships in maritime

transportation. The port state control officer (PSCO) routing problem involves selecting ships for
inspection and determining the inspection sequence for available PSCOs, aiming to identify the highest

number of deficiencies. Port authorities face this problem daily, making decisions without prior
knowledge of ship conditions. Traditionally, a predict-then-optimize framework is employed, but its

machine learning (ML) models’ loss function fails to account for the impact of predictions on the
downstream optimization problem, potentially resulting in suboptimal decisions. We adopt a decision-
focused learning framework, integrating the PSCO routing problem into the ML models’ training process.

However, as the PSCO routing problem is NP-hard and plugging it into the training process of ML models
requires that it be solved numerous times, computational complexity and scalability present significant

challenges. To address these issues, we first convert the PSCO routing problem into a compact model
using undominated inspection templates, enhancing the model’s solution efficiency. Next, we employ a

family of surrogate loss functions based on noise-contrastive estimation (NCE) for the ML model,
requiring a solution pool treating suboptimal solutions as noise samples. This pool represents a convex

hull of feasible solutions, avoiding frequent reoptimizations during the ML model’s training process.
Through computational experiments, we compare the predictive and prescriptive qualities of both the

two-stage framework and the decision-focused learning framework under varying instance sizes. Our
findings suggest that accurate predictions do not guarantee good decisions; the decision-focused learning

framework’s performance may depend on the optimization problem size and the training dataset size;
and using a solution pool containing noise samples strikes a balance between training efficiency and

decision performance.
Keywords: prescriptive analytics; predict-then-optimize; decision-focused learning; port state control

(PSC) inspection; maritime routing

1． Introduction

Maritime safety is crucial, as maritime transportation transports over 80% of global goods. The

International Maritime Organization (IMO) has implemented resolutions on ship maintenance and

operations to enhance maritime safety, allowing port authorities to inspect foreign visiting ships through

port state control (PSC) to ensure compliance with international regulations. However, with fewer than

5% of ships inspected due to high costs and limited port state control officers (PSCOs) (Yan et al., 2021),

effectively selecting substandard ships for inspection is essential. Existing research, such as Yan et al.

1 Corresponding author. Email addresses: xuecheng-simon.tian@connect.polyu.hk (X Tian), ran-
angela.yan@connect.polyu.hk (R Yan), wangshuaian@gmail.com (S Wang), gilbert.laporte@cirrelt.net
(G Laporte)

2

(2020, 2021a), has primarily focused on ship selection without considering PSCO routing. Given varied

berthing locations and arrival and departure times of arriving ships, and PSCO constraints such as lunch

breaks and working hours, the number of ships that can be inspected strongly depends on the routing

selected by the PSCOs (see Example A.1 in Appendix A). Therefore, this paper innovatively uses PSC

inspection data for the PSCO routing problem to maximize the number of deficiencies identified while

considering various practical constraints.

Most port authorities’ ship selection schemes still rely on the sum of the weighted points of risk

factors, such as ship age and type, that determines ships’ selection scores based on expert knowledge.

However, the subjective value of these scores can be biased, thus compromising their effectiveness. To

overcome the shortcomings of the current ship selection schemes, maritime researchers have applied a

two-stage prescriptive analytics framework to solve ship selection problems. Prescriptive analytics

utilizes a combination of predictive and optimization techniques to generate informed recommendations

based on accessible auxiliary data. In the context of ship selection for PSC inspections, most of the

previous studies first use machine learning (ML) models to predict the number of deficiencies or the

probability of detention for foreign visiting ships, and the predictions are used to guide ship selection for

inspection through mathematical optimization models (Yang et al., 2018a, 2018b; Yan et al., 2020, 2021a,

2021b). However, it is important to note that predictive models only aim to minimize the prediction error,

while the impact of prediction results on the downstream decisions is totally ignored (see Example A.2

in Appendix A), leading to suboptimal decisions. Therefore, to overcome this drawback, a more

appropriate prescriptive analytics framework is developed to integrate the prediction and optimization

tasks, aiming at creating a decision-focused learning framework to improve the decision quality

(Mulamba et al., 2021).

In this study, we adopt such a framework that considers the interactions between ships in both the

optimization model and the predictive model. Specifically, we adopt a prescriptive analytics framework

that uses the criterion of minimizing the decision error measured by the suboptimality of the decisions

generated by the predictions during the training process, rather than minimizing the prediction error to

improve the decision quality. Because the PSCO routing problem applies the team orienteering problem,

which has been proven to be NP-hard (Vansteenwegen et al., 2009), computational complexity and

scalability are two major obstacles to putting this method into practice (Mulamba et al., 2021). To remove

these obstacles, we first exploit the structure of the PSCO routing problem by designing undominated

inspection templates (Yan et al., 2021a), allowing the decision-focused learning framework to efficiently

solve the PSCO routing problem. We then adopt a new family of surrogate loss functions motivated by

the NCE literature (Gutmann and Hyvärinen, 2010) for the decision-focused learning framework

(Mulamba et al., 2021). These surrogate loss functions require building a solution pool with suboptimal

solutions, which are regarded as noise samples. This solution pool can be interpreted as the convex hull

of the feasible solutions, and its use avoids frequent reoptimizations when training the predictive model

(Mulamba et al., 2021).

Our scientific contributions can be summarized as follows. First, our study innovatively uses PSC

inspection data for the PSCO routing problem. Second, we compare two prescriptive analytics

frameworks, which are the two-stage framework and the decision-focused learning framework.

3

Specifically, the decision-focused learning framework considers the PSCO routing problem in the ship

deficiency prediction model. To overcome the obstacles of computational complexity and scalability for

the decision-focused learning framework, we first transform the original PSCO routing model and then

adopt a family of surrogate loss functions. Third, through computational experiments using real PSC

inspection records, we compare the performance of the two-stage framework with that of the decision-

focused learning framework to answer the following questions: 1) Does a good prediction lead to a good

decision? 2) Does the decision-focused learning framework outperform the two-stage framework for the

PSCO routing problem? 3) How can we achieve a balance between solution quality and solution

efficiency in the decision-focused learning framework?

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section

3 first formulates the PSCO routing problem, and then uses a route generation method to transform the

original combinatorial model into a more compact model. Third, we compare the two models and discuss

the results of our comparison. Section 4 describes the traditional two-stage framework. Based on this

framework, Section 5 describes a decision-focused learning framework that uses a new family of noise-

contrastive loss functions. Section 6 describes the results of our computational experiments that compare

the traditional two-stage framework with the decision-focused learning framework and conducts a

sensitivity analysis. Section 7 concludes the paper and outlines future research directions.

2． Literature Review

Because current ship risk profile schemes do not efficiently identify substandard ships, most PSC

studies have aimed at improving inspection efficiency by using ML technologies to identify ships with

more deficiencies or higher detention probabilities. For example, Wang et al. (2019) developed a tree

augmented naïve (TAN) Bayes classifier to identify high-risk ships with more deficiencies. Chung et al.

(2020) and Yan et al. (2021c) used the Apriori algorithm to determine the type and sequence of ship items

that should be inspected. In recent years, maritime researchers have begun to adopt ship deficiency

prediction models to allocate scarce inspection resources. This issue, which is known as the PSCO

scheduling problem, was studied by Yan et al. (2020) and Yan et al. (2021a). Yan et al. (2020) first

compared the results of three random forest models with different loss functions to predict the number of

ship deficiencies under four deficiency categories and then developed optimization models to efficiently

match officers’ expertise with ship deficiency conditions. Subsequently, Yan et al. (2021a) improved the

prediction performance by integrating shipping domain knowledge into an XGBoost model, and then

modified the downstream PSCO scheduling models to be more consistent with practice. In their study,

the authors considered practical constraints concerning ship berthing time windows and PSCO lunch

break requirements but did not consider either the berthing locations of foreign visiting ships or the time

it took PSCOs to travel between two locations. Therefore, their optimization model did not fully capture

the PSCO routing problem. Accordingly, our study represents an advance in the field.

Xu et al. (2007a) developed a support vector machine (SVM) model to predict ship detention using

both generic and historical factors. Xu et al. (2007b) subsequently enhanced their prediction performance

by considering new features extracted by web mining technology. Gao et al. (2007) further predicted ship

detention by integrating the SVM model, the k-nearest neighbor model, and the bag-of-words model.

4

Yang et al. (2018a) predicted the ship detention probability of bulk carriers within the Paris Memorandum

of Understanding (MoU) using a data-driven Bayesian network model based on TAN learning. To

determine a port’s optimal inspection scheme, Yang et al. (2018b) combined the results of the ship

detention prediction model with a game model that considers the benefits associated with both port

authorities and ship operators. Recently, Wu et al. (2022) predicted ship detention with an SVM model

using an analytic hierarchy process and gray relational analysis to select input features. To address the

issues caused by the low-probability detention outcome, Yan et al. (2021b) adopted a balanced random

forest model to predict ship detention. Tian and Wang (2023) proposed a cost-sensitive Laplacian logistic

regression model for ship detention prediction, addressing the two challenges arising from the

imbalanced and unlabeled data.

As mentioned above, some PSC studies have used both prediction and optimization methods to

make ship selection decisions (Yan et al., 2020, 2021a, 2023) by considering structural characteristics of

the downstream optimization problem when training their predictive models. Tian et al. (2023) is the first

study to use PSC data to design ship maintenance schemes for ship operators. Recently, an emerging

stream of literature has combined prediction and optimization in developing prescriptive analytics

frameworks for many domains, such as human resource planning (Berk et al., 2019), charging

infrastructure planning (Brandt et al., 2021), vehicle routing (Soeffker et al., 2021), and queuing (Notz et

al., 2023). Detailed reviews of prescriptive analytics frameworks are available in He et al. (2022), Qi and

Shen (2022), and Tian et al. (2023).

The predictions involved in the decision-focused learning framework have been most trained by

gradient-descent predictive models in the computer science field. The main obstacle to plugging the

optimization problem into the training process of gradient-descent predictive models is that the discrete

and discontinuous solution space prevents the algorithm from easily differentiating the decision loss over

the predicted values, and so it is infeasible to pass back the gradients to inform the predictive model with

respect to how it should adjust its weights to improve the decision quality of the solutions it prescribes

(Ferber et al., 2020). To overcome this problem, Wilder et al. (2019) added a quadratic regularization

term to the objective function of the relaxed form of the combinatorial problem, but this method can only

be applied to combinatorial problems with a totally unimodular matrix. Ferber et al. (2020) strengthened

this method by employing a cutting-plane solution approach, which tightened the continuous relaxation

by adding constraints to eliminate fractional solutions. Instead of computing the real decision loss by

directly solving the combinatorial problem during the training process, some studies, including

Elmachtoub and Grigas (2021) and Mandi et al. (2020), have designed a class of surrogate loss functions

based on subgradient. One issue common to these approaches is that they need to repeatedly solve the

(possibly relaxed) optimization problem, imposing a huge burden on computational efficiency. In contrast,

Mulamba et al. (2021) used a noise-contrastive approach by viewing suboptimal solutions as noise

examples and caching them, thus replacing optimization calls with a look-up table in the solution cache.

In summary, to the best of our knowledge, no studies have used PSC inspection records to support

PSCO routing. Because PSC inspection data are public, port authorities can apply prescriptive analytics

methods to improve decision performance in ship selection and PSCO routing. Identifying ships with

more deficiencies and routing PSCOs to maximize the number of identified deficiencies while satisfying

5

the required constraints would eliminate the adverse impacts of substandard ships on maritime

transportation and improve the efficiency of port operations. Therefore, we bridge the following research

gaps. First, we innovatively use PSC data to inform the decisions of PSCO routing while considering

multiple practical constraints, including the berthing locations and berthing time windows of foreign

visiting ships, and the lunch breaks of PSCOs. Because the PSCO routing problem is NP-hard, we recast

this problem into a more compact combinatorial problem by generating undominated inspection

templates. Second, we use a traditional two-stage framework to investigate this problem and apply the

decision-focused framework to plug the transformed PSCO routing problem into the training process of

the predictive model. This approach enables us to consider the impact of the predictions on downstream

decisions. Our study is the first PSC-related study to fully combine prediction and combinatorial

optimization.

3． PSCO Routing Problem

Section 3.1 mathematically presents the PSCO routing problem. Section 3.2 transforms the original

PSCO routing problem into a more compact formulation by generating undominated inspection templates.

Finally, Section 3.3 conducts several groups of computational experiments to compare the solution

efficiency of the two proposed models.

3.1 PSCO routing model M1

The PSCO routing model stems from the PSCO scheduling problem, which involves selecting the

set of ships to be inspected and assigning these ships to PSCOs with the goal of maximizing the number

of deficiencies identified among the inspected ships (Yan et al., 2021). Based on the PSCO scheduling

problem, the proposed PSCO routing problem considers not only the matching of ships and PSCOs, but

also the inspection sequence of the ships assigned to each PSCO. To solve this problem, human resources,

time resources, the ships’ predicted deficiency numbers, and the ships’ berthing locations and time

windows are considered simultaneously.

Denote the number of foreign visiting ships that need to be inspected on a given working day by

N and the ships by 1,...,i N= . Each ship i is characterized by a vector of features ia , an arrival

time iO , a departure time iC , a fixed berthing location iP , and the duration required for an inspection

it′ . The arrival and departure times constitute the berthing time window [,]i iO C of ship i during

which the ship is available for inspection. Following Yan et al. (2021), we assume that for all of the

inspected ships, a typical PSC inspection lasts two hours, that is, 2, 1,...,it i N′ = = . Denote the number

of available PSCOs on duty for a working day by M and the PSCOs by 1,...,m M= . The PSCOs

generally work from 8:00 to 11:00 in the morning and from 14:00 to 17:00 in the afternoon. They depart

from the office to perform inspections, and the office is denoted by the index 0i = . The fact that the

PSCOs can leave the office to perform inspections at any time between 8:00 and 17:00 implies that the

time window during which their office can be visited as a starting location is denoted by

0 0[,] [8,17]O C = . Between 11:00 and 14:00, the PSCOs spend one hour having a lunch break and another

two hours working. The lunch break index is denoted by 1i N= + and the duration required for the

6

lunch break is denoted by 1 1Nt +′ = . Similarly, the time window during which the PSCOs can have lunch

at location 1N + is denoted by 1 1[,] [11,14]N NO C+ + = . When the PSCOs finish their assigned work or

when the working day is over, the PSCOs return to the office. Commonly, the PSCOs both start and finish

their work at the office. However, for modeling convenience, we denote the office location by two indices.

Different from the index 0i = when the office is regarded as the starting location for the PSCOs’ daily

work, the office is denoted by 2i N= + when it is regarded as the ending location. Similarly, because

the PSCOs can return to the office at any time between 8:00 and 17:00 in a working day, the time window

during which the ending location can be visited is denoted by 2 2[,] [8,17]N NO C+ + = . Therefore, there are

3 (0,..., 2)N i N+ = + location indices to be considered in this problem, including (1,...,)N i N=

berthing locations of foreign visiting ships, the location of start of work (0i =), the location of end of

work (2i N= +), and the location of lunch break (1i N= +). Furthermore, the duration spent at the

starting and ending locations is denoted by 0, (0, 2)it i N′ = = + . Therefore, each location

 (0,..., 2)i i N= + is characterized with a time window [,]i iO C and a duration it′ . Finally, we denote

the travel time from location i to location j by ijt .

Before solving the PSCO routing problem, information concerning each ship’s berthing time

window and berthing location, and the PSCO’s travel time between different locations is known to the

port authority; the deficiency conditions of the foreign visiting ships are not known. We denote the set of

actual numbers of ship deficiencies by : { | 1,..., }id i N= =d . The sets of decision variables are denoted

by : { | , 0,..., 2; 1,..., }ijmx i j N m M= = + =x , where 1ijmx = if a visit to location i is followed by a

visit to location j by PSCO m and 0 otherwise; : { | 1,..., ; 1,..., }imy i N m M= = =y , where 1imy =

if ship i is assigned to be inspected by PSCO m and 0 otherwise; and

: { | 0,..., 2; 1,..., }ims i N m M= = + =s , where ims represents the start time of the visit to location i by

PSCO m . We then use P to denote a large constant. The PSCO routing problem is as follows:

[M1]

1 1

max (,) max
M N

i im
m i

z d y
= =

= ∑∑y y
d y (1)

subject to

2 1

0 , 2,
1 1 1 0

M N M N

jm i N m
m j m i

x x M
+ +

+
= = = =

= =∑∑ ∑∑ (2)

1 2

0 1
 1,..., 1; 1,...,

N N

ikm kjm km
i j

x x y k N m M
+ +

= =

= = = + =∑ ∑ (3)

 (1) , 0,..., 2; 1,...,im ij i jm ijms t t s P x i j N m M′+ + − ≤ − = + = (4)

1

1 1,...,
M

im
m

y i N
=

≤ =∑ (5)

7

 1 0, 1, 2; 1,...,imy i N N m M= = + + = (6)

 (1) 0,..., 2; 1,...,i im imO P y s i N m M− − ≤ = + = (7)

 (1) 0,..., 2; 1,...,im i i ims t C P y i N m M′+ ≤ + − = + = (8)

 , {0,1} , 0,..., 2; 1,...,ijm imx y i j N m M∈ = + = (9)

 0 , 0,..., 2; 1,..., .ims i j N m M≥ = + = (10)

Objective function (1) maximizes the number of deficiencies identified among all foreign visiting

ships to be inspected. Constraint (2) guarantees that all PSCOs start work at location 0 and end work at

location 2N + . Constraints (3) and (4) guarantee each PSCO’s connectivity and timeline. Constraints

(5) mean that each ship is inspected no more than once. Constraints (6) ensure that all PSCOs must visit

locations 0, 2N + , and 1N + to start and end their work and have their lunch breaks. Constraints (7)

and (8) restrict the visit to each ship’s time window and the lunch break to a specific period; that is, a

ship can only be inspected during its berthing time window and the PSCOs can only have lunch break

during the specified time window.

3.2 PSCO routing model M2

Observing the structure of model M1, we note that it is a practical application of the team

orienteering problem with time windows (Vansteenwegen et al., 2009). The team orienteering problem

with time windows is a highly constrained problem that is difficult to solve. Golden et al. (1987) proved

that the orienteering problem is NP-hard. Therefore, it is reasonable to believe that model M1 is unlikely

to be solved to optimality using a polynomial-time algorithm. To improve the solution efficiency of the

PSCO routing problem M1, we adopt a route generation method to transform model M1 into a more

compact model M2. Through the route generation method, the PSCO routing problem is modified to first

select the set of inspection templates that maximize the number of deficiencies identified, while ensuring

that each ship is inspected no more than once by a PSCO, and then to route the PSCOs based on the

selected inspection templates. The method of selecting the inspection templates is illustrated in Appendix

B, which follows the method shown in Yan et al. (2021a), and the method of routing the available PSCOs

is illustrated in Procedure 1.

Through Procedure B.1 shown in Appendix B, we obtain the set of all undominated inspection

templates, denoted by H . After obtaining the set of undominated inspection templates H and

parameters h
iη (binary parameter indicating whether ship i is contained in inspection template h),

we further introduce a binary decision variable hy′ , which equals 1 if an undominated inspection

template h∈H is assigned to one PSCO, and a binary decision variable , 1,...,iu i N∈ =u , which

equals 1 if and only if ship i is inspected by one PSCO. Then, model M2 is as follows:

[M2]

1

max (,) max
N

i i
i

z d u
=

= ∑u u
d u (11)

subject to

8

 h
h

y M
∈

′ ≤∑
H

 (12)

 1,...,h
i i h

h
u y i Nη

∈

′≤ =∑
H

 (13)

 {0,1} hy h′ ∈ ∈H (14)

 {0,1} 1,..., .iu i N∈ = (15)

Objective function (14) maximizes the total number of deficiencies identified. Constraint (15) provides

that the maximum number of adopted inspection templates cannot exceed the number of available PSCOs.

Constraints (16) indicate the relationship between iu and hy′ .

We note that M2 is more compact than M1, but solving M2 can only yield the selection of the

optimal inspection templates, and does not provide information on how to route the PSCOs. Next, we

describe how to route the available PSCOs based on these selected inspection templates. Because there

may be several feasible routes to finish the tasks in a selected inspection template, to determine the

optimal route, we first define an optimal route as the one with the earliest return time to the office. Given

an optimal inspection template oS containing oS ships, adopting this inspection template requires

visiting 3oS + locations and generating (1)!oS + candidate routes for the PSCOs to complete their

tasks. The above-defined earliest return time to the office is denoted by 3oSζ + . The Subprocedure to

find the optimal route for a selected inspection template is introduced as follows.

Subprocedure. Find the optimal route for an inspection template.

Input: a selected inspection template oS ; set of locations {0,..., 2}i N∈ + (including berthing
locations of ships in oS , lunch break location, and starting and ending location); duration spent at
each location (0,..., 2)it i N= + ; time window of each location [,] (0,..., 2)i iO C i N= + .
Output: Optimal_route .
Define set cV that contains all of the routes of starting work, inspecting the ships in oS , having
lunch break, and ending work. Denote a candidate route as , , 1,..., (1)!j j c op p V j S∈ = + and the
earliest return time to the office for jp as

jpζ .

Initialize Optimal_route =∅ , Earliest_finish_time = ∞ .
For 1,..., (1)!oj S= + do:

Test the feasibility of a candidate route jp using Proposition B.1.
If jp is feasible and Earliest_finish_time

jpζ ≤ :

Earliest_finish_time
jpζ← .

Optimal_route jp← .
End if

End for

After obtaining the optimal routes for all of the selected inspection templates, we cannot directly

assign the determined optimal routes to available PSCOs, because model M2 cannot guarantee that each

ship is inspected no more than once, since two inspection templates may contain the same ship. Hence,

to avoid duplicate inspections for a ship while adopting optimal routes for the selected inspection

9

templates, we further require that a selected ship be inspected only once. Therefore, we introduce a set

dS containing the ships that have already been inspected. The overall procedure of PSCO routing after

solving M2 is shown in Procedure 1.

Procedure 1. PSCO routing after solving M2.

Input: set of undominated inspection templates H, optimal solution hy′ .
Output: Scheduling results.
Define { | 1}hh y′ ′= =H as the set of selected inspection templates, and the size of this set is defined
by ′H .
Denote d = ∅S as the set of inspected ships.
For 1,...,j ′= H do:

If 1j = :
Determine the optimal route 1p for inspection template 1h by applying Subprocedure.
Assign 1p to PSCO 1.

Else:
Update dS by merging the last inspection template 1jh − : 1d d jh −← ∪S S .
Delete dS from the current inspection template jh : \j j dh h← S .
Determine the optimal route jp for inspection template jh by applying Subprocedure.
Assign jp to PSCO j .

End if
End for
For 1,...,m M′= +H do:

Not assign any route to PSCO m.
End for

Finally, by observing Constraint (15), we note that it is possible that in an optimal solution, some

PSCOs are not assigned to any inspection task. In other words, not all PSCOs have ships to inspect

according to an optimal solution. To ensure temporal fairness in work assignments, we recommend that

the port state shuffle the index of PSCOs each working day so that each PSCO has a prioritized

opportunity to be assigned inspection work.

3.3 Comparison of M1 and M2

To facilitate the introduction of the decision-focused learning framework proposed for the PSCO

routing problem, which requires high computational efficiency, we first conduct a basic computational

experiment to compare the solution efficiency of M1 and M2. To obtain the travel time ijt between each

pair of locations (,)i j , we divide the port area of concern into five parts, with each location belonging

to one part. We then introduce (0,..., 2)ie i N= + as the part index of each location i and an auxiliary

index
i je et′ indicating the travel time between a pair of area parts (,)i je e . We further assume that the

location of the office and the lunch break is in part 1, indexed by 0 1 2, , 1N Ne e e+ + = , and the berthing

locations of foreign visiting ships are randomly set to parts 2 to 5. Then, the travel time ijt can be

obtained by mapping (,)i je e with
i je et′ . For example, assuming that ships 1 and 2 berth at parts 1 2e =

10

and 2 4e = , respectively, and the travel time between parts 2 and 4, 24t′ , is one hour, we can thus obtain

that the travel time between ships 1 and 2, 12t , is one hour. The travel times,
i je et′ , between two area

parts (,)i je e are shown in Table 1. Furthermore, we randomly set the values of the time window

[,]i iO C , part indexes ie , and number of deficiencies id for ship i following the ranges shown in

Table 2.

Table 1. Travel time (hour)
i je et between two area parts (,)i je e

i je et / (,)i je e 1 2 3 4 5

1 0 0.2 0.4 0.3 0.2

2 0.2 0 0.1 0.3 0.2

3 0.4 0.1 0 0.4 0.2

4 0.3 0.3 0.4 0 0.3

5 0.2 0.2 0.2 0.3 0

Table 2. The ranges of input integer parameters for models M1 and M2

Parameter iO iC ie id

Range 8~11 13~17 2~5 0~10

To compare the solution efficiency of models M1 and M2 with different groups of input parameters

and under different instance sizes, we design four groups of instances. One group is denoted by (,)M N ,

where M represents the number of available PSCOs with values of 2, 4, 6, and 8, and N represents

the number of foreign visiting ships with values of 10, 15, 20, and 25, respectively. For each instance, we

rerun the experiments with 10 groups of randomly generated input parameters. The programs are coded

in Python and the models are solved by Gurobi. Because the PSCO routing problem is NP-hard, it may

be impractical to solve large-scale instances. To save computational efforts, we limit the solution time of

each model to 200 seconds. That is, given a model M1 or M2, Gurobi stops when a specified time limit

is reached. Next, the current best solution found by Gurobi is retrieved as the near-optimal solution. The

computational results for models M1 and M2 are shown in Table 3.

As we can see from Table 3, for model M1, the average solution time increases greatly as the

instance size increases. For instance size (8,25), nearly all of the models cannot be solved to optimality

within 200 seconds. Furthermore, the standard deviations of problems with different groups of parameters

in the same instance size show that their solution time may vary greatly due to the difference parameters

involved in the model. For example, assigning visiting ships with longer time windows can increase the

computing time required to solve M1, because doing so can increase the search space of the optimal

solutions. Compared with the average solution time of M1 under different instance sizes, solving M2

takes a much shorter time. For M2, the time spent on Procedure B.1 to find undominated inspection

templates is the determinant of the overall CPU time, followed by the solution time for M2. However,

11

solving M2 under different instance sizes never costs more than one second and the solution time for M2

does not fluctuate very much in different groups of input parameters under the same instance size. Finally,

by observing the average gap of the objective functions between M2 and M1, the solution qualities of

M1 and M2 only show a slight difference under instance size (8,25). Although the solution qualities of

M1 and M2 are nearly the same, because M2 is much more computationally efficient than M1, the rest

of the analysis in the paper will use M2 as the target optimization problem, which is plugged into the ML

algorithm in the following sections.

Table 3. Computational results for models M1 and M2

Instance (2,10) (4,15) (6,20) (8,25)

M1

Model solution time (s)

Average

(Avg.)
2.22 92.16 164.55 200.93

Standard

deviation

(Std.).

3.94 93.48 75.81 0.08

Number of groups where the optimal solution is not

found within 200s
0 4 8 10

M2

Time spent on Procedure B.1 (s)
Avg. 0.29 1.11 2.68 5.61

Std. 0.04 0.16 0.30 0.19

Model solution time (s)
Avg. 0.02 0.08 0.27 0.52

Std. 0.02 0.05 0.11 0.13

Time spent on Procedure 1 (s)
Avg. 0.00 0.01 0.01 0.01

Std. 0.00 0.00 0.00 0.00

Overall CPU time (s)
Avg. 0.32 1.20 2.95 6.14

Std. 0.04 0.11 0.20 0.09

Average objective function value gap of M2 to M12 0.00% 0.00% 0.00% 0.09%

4． The Two-Stage Framework

Before the port state authority routes the PSCOs, the number of deficiencies of foreign visiting ships

is unknown. Fortunately, the authority has access to a historical dataset 1{(,)}R
i i iD d == a with an R

number of PSC inspection records, where q
i ∈a denotes a vector of q features for ship i , and id

is an integer indicating the ship’s number of deficiencies. One traditional and straightforward way to

solve the PSCO routing problem is to first train an ML model (,)f ω a with a as the input and ω as

the weights (parameters) to predict the value of d , denoted by ˆ (,)d f= ω a . This ML model is trained

to minimize a specified loss function using dataset D , such as the mean squared error (MSE) loss

2 objective function value of M2 objective function value of M1 100%.
objective fun

G
v

ap of
u

 M2 to
ction al e of M1

 M1 −
×= .

12

function MSEL for a regression task defined as follows:

 2

1

1 ˆ() .
R

MSE i i
i

L d d
R =

= −∑ (16)

Given the loss function MSEL , ML model f is trained by solving the following optimization problem

to learn the optimal *ω :

 * 2

1

1 ˆarg min arg min ()
R

MSE i i
i

L d d
R =

= = −∑
ω ω

ω . (17)

Then, when presented with a new example with feature vector a , model f with the optimal *ω can

be applied to predict the number of deficiencies of the new example *ˆ (,)d f= ω a . Finally, the predicted

values d̂ of all of the foreign visiting ships that may be inspected are put into the PSCO routing problem

to derive the routing results. This framework is generally termed either the predict-then-optimize

framework or the two-stage framework. As described in Section 2, gradient-descent ML algorithms are

most commonly used in the decision-focused learning framework. To facilitate our comparison of the

two-stage framework and the decision-focused learning framework, we specify that the ML algorithm

used in our study is the artificial neural network (ANN) (Yegnanarayana, 2009) because of its high

popularity and good performance.

An ANN generally has three layers: an input layer, a hidden layer, and an output layer

(Yegnanarayana, 2009). The outputs of the input and hidden layers act as the input to the ANN’s direct

downstream layer. Training an ANN refers to adjusting its weights (i.e., ω as mentioned above) that

connect the neurons of consecutive layers, with the goal of minimizing the loss. Backpropagation is the

most widely used training algorithm for ANNs. It is a way of computing the gradients of the loss on the

weights by recursively applying chain rules such that the current prediction loss in the output layer can

be reversely passed to the preceding layers, and the weights can be adjusted to minimize the loss.

Backpropagation computes gradients in an efficient manner, making it feasible to use the gradient-

descent method to train multilayer ANNs. The hyperparameters considered in an ANN mainly include

learning rate, epochs (number of iterations), and batch size, which together deal with the problems of

underfitting and overfitting. The learning rate controls the speed of weight update by determining the

step size at each iteration when moving toward a minimum loss value. Epochs refer to the number of

times the whole training dataset is trained. The batch size refers to the number of examples in a mini-

batch, and a mini-batch is a strict and non-empty subset of the whole training set. Examples in a mini-

batch are passed to the network at one time to update the weights. Therefore, the total number of batches

in an epoch is equal to the ratio of the size of the whole training set to the batch size. For a more detailed

introduction to ANN, please refer to Yegnanarayana (2009). Algorithm D.1 in Appendix D depicts the

two-stage framework including a standard gradient-descent learning procedure.

5. The Decision-Focused Learning Framework

This section introduces the decision-focused learning framework. Section 5.1 defines the regret loss.

Section 5.2 introduces a new family of noise-contrastive loss functions. Section 5.3 describes the

13

gradient-descent decision-focused learning framework using the noise-contrastive losses proposed in

Section 5.2. We mainly follow the decision-focused learning framework proposed by Mulamba et al.

(2021).

5.1 The regret loss

One possible disadvantage of the two-stage framework is that it does not consider the impact of the

predictions on the downstream optimization problem, which consequently generates suboptimal

decisions. Therefore, a more appropriate approach is to integrate the prediction and the decision

procedures when training the ML model, which requires using a decision-focused loss to take decision

errors into account. For the PSCO routing problem under the decision-focused learning framework,

another ML model, denoted by (,)if ′ ′ω a , is trained to generate predictions ˆ
id ′ for ship i that can

provide optimal decisions with respect to the real values of id . To measure the accuracy of the prescribed

decisions, instead of using the loss function (19), we adopt the regret loss denoted by regretL . Unlike the

traditional loss function, which is computed by summing the prediction error of each data example, the

regret loss is computed based on the instance level, that is, summing the decision error of /T R N=

instances (recall that there are R PSC inspection records and an instance contains N foreign visiting

ships). Because we plug model M2 into the decision-focused learning framework and recall that the

objective function of model M2 is (,)z d u , finding the optimal parameters in *′ω over a set of T

training instances can be established as

 * * *

1

1arg min arg min (, ()) (, ((,)))
T

regret j j j j
j

L z z f
T′ ′ =

′ ′ ′ = = − ∑
ω ω

ω d u d d u ω A , (18)

where 1 2(, ,...,)j N=A a a a is an N q× feature matrix for instance j (recall that a ship has q

features), and (,)jf ′ ′ω A is the vector of the predicted number of deficiencies ˆ
j′d . By observing Eq.

(21), we find that the regret loss is the sum of the difference between the objective function values derived

from 1) the perfect solution * ()u d under the real deficiency number vector d ; and 2) the optimal

solution * ˆ()′u d under the predicted deficiency number vector ˆ ′d .

As mentioned above, we use an ANN as our predictive model. However, we cannot directly use the

original regret loss regretL during its training process because model M2 involves integer variables and

regretL cannot differentiate over the arg min on ˆ ′d . Therefore, our goal is to find a differentiable and

efficient-to-compute loss function for the decision-focused learning framework, which is introduced in

the next section.

5.2 Contrastive losses

We note that model M2 cannot be easily embedded in the ANN training algorithm as it cannot be

easily differentiated due to its structure and discontinuity. Using the contrastive losses proposed by

Mulamba et al. (2021), we adopt the following decision-focused learning framework for the PSCO

routing problem. Contrastive losses are proposed based on the fact that probabilistic models can define a

parametric probability distribution over feasible solutions for an optimization problem, and maximum

14

likelihood estimation can be used to find the distribution parameters, making the observed perfect

solution appear with the greatest probability (Mulamba et al., 2021). The exponential distribution is

ubiquitous in ML research among popular probabilistic models, as it has the required form of the optimal

solution to maximum entropy problem (Berger et al., 1996). This paper thus uses an exponential

distribution to fit model M2 (Mulamba et al., 2021).

Let U denote the state space of the feasible solutions of an optimization problem max (,)z
∈u

d u
U

with input data A , where u is a feasible solution that satisfies ∈u U . Then, we define the following

exponential distribution over U , which represents the probability of deriving solution u under

prediction (,)f ′ ′ω A :

 ()1P(| (,)) exp ((,),)f z f′ ′ ′ ′=u ω A ω A u
Z

, (19)

where Z normalizes the distribution over the state space U and is expressed as

 ()exp ((,),)z f
′∈

′ ′ ′= ∑
u

ω A u
U

Z . (20)

If * ((,))f ′ ′u ω A is the maximizer of max (,)z
∈u

d u
U

 for an instance with input data A , it can maximize

Eq. (22) among all ∈u U . This implies that if we can learn the parameter ′ω , which can maximize

the likelihood of *P(() | (,))f ′ ′u d ω A , we can obtain the true perfect solution * ()u d with the highest

probability under the prediction (,)f ′ ′ω A . Consequently, for all training instances, our goal is to learn

the parameters in ′ω that can maximize the likelihood that the true perfect solutions are prescribed.

However, obtaining an accurate Z is almost impossible for most integer programming problems

because it is necessary to find all of the possible solutions belonging to U . Therefore, we apply NCE

(Mikolov et al., 2013) to obtain an estimation of Z , which requires establishing a solution pool with a

limited number of noise samples that are feasible solutions to the optimization problem, but not a perfect

solution; we denote the solution pool of noise samples by ′U . In Section 5.3, we describe the method

of establishing the solution pool. In Appendix C, we introduce the detailed four forms of decision loss

functions based on NCE that are proposed by Mulamba et al. (2021).

5.3 Gradient-descent decision-focused learning with noise samples

Based on the four types of contrastive losses shown in Appendix C, the main problem to be solved

now is how to formulate the solution pool of noise samples ′U . We note that any feasible solution in

U is a noise sample in ′U . However, finding all of the feasible solutions in U is time-consuming

and nearly impossible, especially for large-scale combinatorial problems. Therefore, following Mulamba

et al. (2021), we first initialize ′U by solving models using the real values of d before the training

process, and then expand while obtaining a new solution by solving model M2 using the predicted d̂

during the training process. Algorithm D.2 in Appendix D shows the procedure of the gradient-descent

decision-focused learning framework with noise samples (Mulamba et al., 2021).

15

Notably, there are three main differences between Algorithm D.1 and Algorithm D.2. First, the

data records used to train the ML model in Algorithm D.2 are averagely divided into T instances, with

each instance represented by a feature matrix A and a vector of deficiency numbers d . Instantiating

this training dataset is to compute the regret loss at the instance level and formulate the solution pool

using these training instances. Second, in addition to initializing the parameters in ′ω , Algorithm D.2

initializes the solution pool ′U by solving all of the training instances beforehand. An initialized

solution pool can be expanded by adding a new solution ˆ()u d after obtaining the predicted d̂ and

solving the optimization model M2 using d̂ . Furthermore, the solution pool can be regarded as an inner

approximation of U , because the noise samples in ′U can represent the convex hull of U if it

contains all potentially optimal solutions. When more new solutions are added to the solution pool, we

expect to obtain a tighter inner approximation for U (Mulamba et al., 2021). Third, there is a parameter

solvep representing the probability of calling a solver to obtain the current prescribed solution in

Algorithm D.2. If a random number between 0 and 1 is smaller than solvep , the algorithm needs to call

the solver and add the solution to the solution pool if it is not in the solution pool; otherwise, an arg max

operation on the solution pool is performed to find an existing solution that maximizes the estimated

objective function value. This parameter may have an influence on the trade-off between efficiency and

accuracy. That is, a larger solvep leads to more intensive calls to the solver so that computational time is

increased but decision error may be decreased.

6. Computational Experiments

This section presents the results of our computational experiments. In Section 6.1, we describe our

dataset and the settings for each ML model. In Section 6.2, we compare the performance of the two-stage

framework and the decision-focused learning framework and present several interesting findings. In

Section 6.3, we conduct a sensitivity analysis on solvep .

6.1 Data description

This study uses a dataset with 3,026 PSC initial inspection records from January 2015 to December

2019 at the Hong Kong Port and the corresponding ship-related factors of the inspected ships. Hong Kong

Port is a member of the Tokyo MoU, which governs the Asia-Pacific region. The PSC inspection records

are retrieved from the Asia Pacific Computerized Information System3 provided by the Tokyo MoU, and

the ship-related factors are obtained from the World Shipping Register database4. The main work of this

study is to route the PSCOs to maximize the number of deficiencies identified on the foreign visiting

ships selected for inspection. This is achieved by training ML models whose input is the ships’ auxiliary

features and whose output is the predicted number of deficiencies. This paper considers 14 auxiliary

features that are closely related to ship condition, according to the literature (Yan et al., 2020, 2021b),

3 https://apcis.tmou.org/public/.
4 https://world-ships.com/.

16

namely, ship age, gross tonnage (GT), length, depth, beam, type, flag performance, recognized

organization performance, company performance in the Tokyo MoU, last PSC inspection date in the

Tokyo MoU, the number of ship deficiencies identified in the last inspection in the Tokyo MoU, the

number of detentions in all historical PSC inspections, flag change times, and whether a ship has had a

casualty in the last five years. We follow the data processing method used by Yan et al. (2020, 2021b) for

these features.

Because the regret loss is computed at the instance level, we need to instantiate the original dataset

by dividing the original dataset into same-sized instances. We note that due to the limited size of the

dataset, if we divide the original dataset into instances with different sizes, we can obtain different

numbers of instances. For example, for instances in sizes (2,10) and (4,15), we can obtain a maximum of

302 (3026 /10 302=) and 201 (3026 /15 201=) instances, respectively. To maintain identical

numbers of training and test instances under different sizes in the following experiments, we generate

more instances by adopting a bootstrap sampling method, which is a statistical procedure that resamples

a single dataset with replacement to generate more simulated examples. Using this method, we generate

300 instances under each instance size and divide them into a training instance set (80%, 240 instances)

and a test instance set (20%, 60 instances). The predictive model used in this study is an ANN with a

hidden layer of 100 neurons and ReLU (short for rectified linear unit) as the activation function

implemented by PyTorch. A tuple of the following three hyperparameters needs to be tuned for these

models: learning rate, epoch, and batch size. We use a grid search with fivefold cross validation on the

training set to tune these hyperparameters in each ML model. All of the ANN models are trained using

ADMM (short for alternating direction method of multipliers), which is an algorithm that solves convex

optimization problems by breaking them into smaller pieces, each of which is easier to handle (Kingma

and Ba, 2015). The proposed models are constructed using the training instance set, and their performance

is validated using the test instance set.

6.2 Comparison of the two-stage framework and the decision-focused learning framework

Recall that model M2 has higher solution efficiency than model M1, and thus the following

experiments use model M2 as the target optimization problem. Following the parameter settings for

model M2 in Section 3.3, we compare the performance of the two-stage framework and the decision-

focused learning framework using different contrastive losses under four instance sizes, namely, (2,10),

(4,15), (6,20), and (8,25). For the ANN models, we set the search range for the learning rate at {0.0001,

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7}, the search range for the epochs at {5, 10, 15, 20, 25},

and the search range for the batch size at {1, 2, 4, 8, 16, 32}. The best hyperparameter tuples for each

model are shown in Table E.1 in Appendix E.

We then use the best hyperparameters to construct the ML models with different loss functions and

different instance sizes on the whole training instance set and compute the regret loss based on the

decision and the MSE based on the prediction on the test instance set. We rerun the models under the

same instance size 30 times with different groups of randomly generated parameters for M2 in the same

ranges as those introduced in Section 3.3. We then calculate the average regret loss and the average MSE

of each model. Furthermore, we design a vote mechanism to compare the regret loss and the MSE of

models with different loss functions and under the same instance size of 30 groups of experiments. For

17

the five experiments under the same instance size and using the same group of randomly generated

parameters for M2 but with different loss functions, the experiment with the lowest regret loss or the

lowest MSE obtains one point. If there is a tie among several experiments, all of the experiments with

the lowest score can obtain one point. The final results are shown in Table 4.

Table 4. The computational results of 30 experiments using models with different loss functions
and different instance sizes.

Instance

size
Method Loss function

Metric Vote

Average

regret

Average

MSE

Lowest

regret

Lowest

MSE

(2,10)

Decision-

focused

learning

NCE_basic 5.224 20.400 1/30 0/30

NCE_variant 4.958 23.668 0/30 0/30

MAP_basic 5.879 35.668 2/30 0/30

MAP_variant 3.447 53.228 23/30 0/30

Two-stage MSE 3.814 13.370 4/30 30/30

(4,15)

Decision-

focused

learning

NCE_basic 6.79 23.38 2/30 0/30

NCE_variant 6.01 27.27 1/30 0/30

MAP_basic 5.63 34.52 0/30 0/30

MAP_variant 2.88 77.97 23/30 0/30

Two-stage MSE 3.15 13.56 6/30 30/30

(6,20)

Decision-

focused

learning

NCE_basic 5.84 16.98 5/30 0/30

NCE_variant 3.86 25.32 8/30 0/30

MAP_basic 7.22 28.24 0/30 0/30

MAP_variant 2.80 26.09 12/30 0/30

Two-stage MSE 2.15 13.21 15/30 30/30

(8,25)

Decision-

focused

learning

NCE_basic 5.71 25.42 9/30 0/30

NCE_variant 4.70 30.39 10/30 0/30

MAP_basic 12.50 61.12 2/30 0/30

MAP_variant 1.82 27.10 14/30 0/30

Two-stage MSE 1.25 15.83 8/30 30/30

From the above results, we draw the following findings, which is consistent with recent studies (Hu

et al., 2022):

A good prediction may not lead to a good decision.

A better prediction is indicated by a lower MSE. This metric shows that the two-stage framework

significantly outperforms the decision-focused learning framework with respect to prediction

performance, as the two-stage framework can always obtain the lowest MSE loss under each of the four

instances. However, when we compare the regret loss, which indicates the decision error, the decision-

focused learning framework is superior. The ratios of the total votes of the decision-focused learning

framework to the total votes of two-stage framework under these four instance sizes are 26:4, 26:6, 25:15,

18

and 35:8. Among the four types of contrastive losses in the decision-focused learning framework, except

for (6,20), the MAP-variant loss obtains the highest votes under the other three instance sizes, thus

validating its superiority. This result is explained by the format of the MAP-variant loss shown in Eq.

(31). For example, compared with the NCE-variant loss, the MAP-variant loss does not consider

unimportant noise samples when computing the loss, thus helping the ML algorithm focus on the tightest

inner approximation. In addition, unlike the MAP-basic loss, the MAP-variant loss tries to keep its

predictions close to the real values.

The quality of the decision-focused learning framework may depend on the size of the optimization

problem and on the size of the training dataset.

Another obvious tendency shown in Table 5 is that the superiority of the MAP-variant loss declines

as the instance size increases. This is indicated by the decreasing number of least-regret votes for the

MAP-variant loss function when the instance size increases from (2,10) and (4,15) to (6,20) and (8,25).

Furthermore, the average regret values of the two-stage framework under the instance sizes (6,20) and

(8,25) are lower than those of the decision-focused learning framework. This result indicates that the

decision-focused learning framework may not always perform better than the traditional two-stage

framework. This finding was also obtained by Hu et al. (2022), and further explanations are provided

below for the optimization problem and the dataset that we use in this study.

When the instance size increases, it is much more difficult to obtain an accurate convex hull of the

solution pool. It is easy to imagine that if the solution pool contains the whole set of feasible solutions,

the size of the solution pool increases exponentially when the instance size increases. Assume that there

are approximately 50 and 600 feasible undominated inspection templates to select under the instance

sizes (2,10) and (8,25), respectively. Choosing two and eight inspection templates to constitute a feasible

routing scheme generates 2
50 1225C = and 8 17

600 3.96 10C = × feasible outcomes, respectively. That is,

the full size of the solution pool under the instance size (2,10) is only 1,225, but the full size of the

solution pool under the instance size (8,25) reaches an extremely large number. Therefore, it becomes

exponentially difficult to obtain an accurate and tight inner approximation under the instance size (8,25).

To visually represent this point, we count the mean (represented by points) and standard deviation

(represented by bands) of the number of noise samples added to the solution pool in each epoch for the

30 experiments using the MAP-variant loss function under different instance sizes, and the results are

presented in Figure 1.

19

Figure 1. The number of added noise samples in each epoch for experiments using the MAP-

variant loss under different instance sizes

As shown in Figure 1, the solution pool under a larger instance size can take in more new noise

samples generated during the training process. Furthermore, the structure of the solution pool under a

larger instance size can be more complex and unstable, as shown by a larger standard deviation. For

example, for instance sizes (2,10) and (4,15), the number of added noise samples quickly converges to 0

after epoch 2, indicating that the solution pool stops expanding. However, for instance sizes (6,20) and

(8,25), although the number of added noise samples decreases as the training process proceeds, the size

of the solution pool continues to grow until epoch 5, indicating that the current solution pool is not tight

enough. Therefore, the size of the optimization problem plays a vital role in the prescribed decision

quality of the decision-focused learning framework, which is mainly influenced by the size and structure

of the solution pool.

Furthermore, due to the limited size of the dataset, we use bootstrap sampling to generate more

records. This method may create a “same-ships-but-different-decisions” situation because it is difficult

for the auxiliary parameters (i.e., berthing locations, berthing time windows) of two “same” ships (with

the same feature values and the same number of deficiencies) to be the same, which can lead to different

decisions. This does not influence the training process of the two-stage framework, but introduces

difficulty and noise to the training process in the decision-focused learning framework. When the instance

size increases, a ship is more likely to be resampled, and the prescribed quality of the decision-focused

learning framework is adversely affected.

20

6.3 The influence of parameter solvep

In Algorithm D.2, parameter solvep is used to control the frequency of calling the solver to solve

model M2 to expand the solution pool. A larger solvep represents a greater possibility of calling the solver,

increasing the possibility of adding a new solution to the solution pool. However, calling a solver does

not necessarily result in new information that can tighten the convex hull of the inner approximation, as

the newly derived solution may have existed in the solution pool; however, this approach definitely

increases the training time of Algorithm D.2. To investigate the influence of solvep on the trade-off

between efficiency and accuracy, we change the value of solvep from 0.2 to 1 with a step size of 0.2, and

train the models using the MAP-variant loss under different instance sizes with each value of solvep . We

rerun models 30 times with different groups of randomly generated parameters for M2. Then, we obtain

the average regret and average training time of the 30 experiments for each model. The final results are

shown in Figures 2 and 3.

Figure 2 shows that the average regret may have a downward trend when solvep increases,

especially under instance sizes (6,20) and (8,25). However, it does not show an obvious linear relationship,

indicating that not all of the solutions obtained by calling the solver are new to the solution pool.

Furthermore, Figure 2 shows that the downward trend under instance sizes (6,20) and (8,25) is more

significant than under instance sizes (2,10) and (4,15). As explained in Section 6.2, this result is due to

the difficulty of finding a good inner approximation for large-sized optimization problems. In contrast,

under instance sizes (2,10) and (4,15), the initial solution pool already functions well as a good inner

approximation. Accordingly, increasing the value of solvep does not have a significant effect on

decreasing regret for models under these instance sizes.

Figure 2. The average regret of the 30 experiments using models adopting the MAP-variant loss

with different solvep and different instance sizes

21

Figure 3. The average training time of the 30 experiments using models adopting the MAP-

variant loss with different solvep and different instance sizes

Figure 3 shows that the average training time has a strict upward trend when solvep increases. As the

model solving time shown in Section 3.3 does not exhibit a linear relationship as the instance size

increases, the slope of the fitted line connecting the scatters becomes steeper as the instance size increases.

Therefore, these results indicate that for models under instance sizes (2,10) and (4,15), calling the solver

to add new solutions to the solution pool by sampling seems to result in little improvement in decision

quality, as the initial solution can function well as a good inner approximation. Therefore, to reduce the

training time of ML models, we recommend setting a small value for solvep under instance sizes (2,10)

and (4,15). However, for models under instance sizes (6,20) and (8,25), because the initial solution pool

may not function as a good inner approximation, we recommend setting a moderate value for solvep

between 0.4 and 0.8, thus achieving a balance between efficiency and accuracy.

7. Conclusions

With the development of ML technologies and the availability of PSC data, this study investigates

the PSCO routing problem with the aim of maximizing the number of deficiencies that can be identified

from inspected ships considering practical constraints. Because ship condition is not known to port

authorities when they route PSCOs, the traditional solution to this problem involves a two-stage

framework that first predicts the number of deficiencies of each foreign visiting ship and then uses that

prediction to solve the PSCO routing problem. However, the loss function used in this framework does

not consider the issue of the decision error. Therefore, we adopt a decision-focused learning framework

to solve the PSCO routing problem by plugging the optimization problem directly into the training

process of the ML model. Under this framework, the PSCO routing problem must be solved tens of

thousands of times. Given that the original PSCO routing problem is NP-hard, computational complexity

22

and scalability are two major obstacles to putting this decision-focused learning framework into practice.

To overcome these two issues, we first transform the original PSCO routing problem to be more compact

by designing undominated inspection templates and then use a family of surrogate loss functions based

on NCE. Our computational experiments result in several interesting findings. First, a good prediction

may not lead to a good decision, which is seen from the fact that under some instance sizes, the decision-

learning framework is superior to the two-stage framework with respect to decision quality. Second, the

quality of the decision-focused learning framework may depend on the size of the optimization problem

and on the size of the dataset. This quality decreases as the instance size increases, because it is difficult

for ML models to learn the structural properties of large-scale optimization problems. Third, the adopted

decision-focused learning framework with a solution pool containing noise samples can guarantee a

balance between training efficiency and decision quality; thus, it does not require frequent

reoptimizations during the training process.

As the first study to propose routing decisions for PSCOs under different prescriptive analytics

frameworks, our research has the following limitations. Theoretically, regarding the adopted decision-

focused learning framework, the proposed decision loss functions are all surrogate loss functions that

approximate the ground-truth decision losses. To use the ground-truth decision losses, the proposed

decision-focused learning framework could be applied to other ML models by taking advantage of their

structural features, such as random forest and k-nearest neighbor. The decision-making performance of

these alternative ML algorithms for the PSCO routing problem should be analyzed and compared with

the results obtained using ANNs in our study. Practically, our formulation of the PSCO routing problem

does not consider more complex real-world constraints, which may result in deviations from actual

situations. For instance, foreign visiting ships might change their berthing locations while PSCOs conduct

their inspections, making the PSCO problem into a dynamic routing problem. Moreover, the inspection

time for each ship may vary depending on individual ship conditions. Future research could tackle these

practical limitations and explore more advanced and realistic models to better represent the complexities

of the PSCO routing problem.

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Grant Nos. 71831008,

72071173] and the Research Grants Council of the Hong Kong Special Administrative Region, China

[Project numbers 15201121, HKSAR RGC TRS T32-707-22-N]. This work is supported by the Start-Up

Grant from Nanyang Technological University, Singapore.

References

Berger, A., Pietra, S., Pietra, V., 1996. A maximum entropy approach to natural language processing.

Computational Linguistics 22(1), 39–71.

Berk, L., Bertsimas, D., Weinstein, A. M., Yan, J., 2019. Prescriptive analytics for human resource

planning in the professional services industry. European Journal of Operational Research 272(2),

636–641.

Bertsimas, D., Kallus, N., 2020. From predictive to prescriptive analytics. Management Science 66(3),

23

1025–1044.

Brandt, T., Wagner, S., Neumann, D., 2021. Prescriptive analytics in public-sector decision-making: A

framework and insights from charging infrastructure planning. European Journal of Operational

Research 291(1), 379–393.

Chung, W., Kao, S., Chang, C., Yuan, C., 2020. Association rule learning to improve deficiency

inspection in port state control. Maritime Policy & Management 47(3), 332–351.

Elmachtoub, A.N., Grigas, P., 2021. Smart “predict, then optimize”. Management Science 68(1), 9–26.

Ferber, A., Wilder, B., Dilkina, B., Tambe, M., 2020. MIPaaL: Mixed integer program as a layer. In

Proceedings of 34th AAAI Conference on Artificial Intelligence, 1504–1511.

Gao, Z., Lu, G., Liu, M., Cui, M., 2008. A novel risk assessment system for port state control inspection.

In Proceedings of 2008 IEEE International Conference on Intelligence and Security Informatics,

242–244.

Golden, B., Levy, L., Vohra, R., 1987. The orienteering problem. Naval Research Logistics 34, 307–318.

Goodfellow, I., 2015. On distinguishability criteria for estimating generative models. In Proceedings of

ICLR 2015, 1–6.

Gutmann, M., Hyvärinen, A., 2010. Noise-contrastive estimation: A new estimation principle for

unnormalized statistical models. In Proceedings of the 13th International Conference on Artificial

Intelligence and Statistics, 297–304.

He, L., Liu, S., Shen, Z., 2022. Smart urban transport and logistics: A business analytics perspective.

Production and Operations Management 31(10), 3771–3787.

Hu, Y., Kallus, N., Mao, X., 2022. Fast rates for contextual linear optimization. Management Science

68(6), 4236–4245.

Kingma, D., Ba, J., 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd

International Conference for Learning Representations, 1–13.

Mandi, J., Demirovic, E., Stuckey, P, J., Guns, T., 2020. Smart predict-and-optimize for hard

combinatorial optimization problems. In Proceedings of the AAAI Conference on Artificial

Intelligence 34, 1603–1610.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., 2013. Distributed representations of words

and phrases and their compositionality. Advances in Neural Information Processing Systems 26,

3111–3119.

Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., Guns, T., 2021. Contrastive losses

and solution caching for predict-then-optimize. In Proceedings of 2021 International Joint

Conference on Artificial Intelligence, 2833–2840.

Notz, P. M., Wolf, P. K., Pibernik, R., 2023. Prescriptive analytics for a multi-shift staffing problem.

European Journal of Operational Research 305(2), 887–901.

Qi, M., Shen, Z., 2022. Integrating prediction/estimation and optimization with applications in operations

management. In Tutorials in Operations Research: Emerging and Impactful Topics in Operations,

36–58.

Soeffker, N., Ulmer, M. W., Mattfeld, D. C., 2022. Stochastic dynamic vehicle routing in the light of

prescriptive analytics: A review. European Journal of Operational Research 298(3), 801–820.

24

Tian, X., Wang, S., 2023. Cost-sensitive Laplacian Logistic regression for ship detention prediction.

Mathematics 11(1), 119.

Tian, X., Yan, R., Liu, Y., Wang, S., 2023. A smart predict-then-optimize method for targeted and cost-

effective maritime transportation. Transportation Research Part B: Methodological 172, 32–52.

Tian, X., Yan, R., Wang, S., Liu, Y., Zhen, L., 2023. Tutorial on prescriptive analytics for logistics: What

to predict and how to predict. Electronic Research Archive 31(4), 2265–2285.

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009. Iterated local search

for the team orienteering problem with time windows. Computer & Operations Research 36, 3281–

3290.

Wang, S., Yan, R., Qu, X., 2019. Development of a non-parametric classifier: effective identification,

algorithm, and applications in port state control for maritime transportation. Transportation

Research Part B: Methodological 128, 129–157.

Wilder, B., Dilkina, B., Tambe, M., 2019. Melding the data-decisions pipeline: decision-focused learning

for combinatorial optimization. In Proceedings of the 33 AAAI Conference on Artificial Intelligence,

1658–1666.

Wu, S., Chen, X., Shi, C., Fu, J., Yan, Y., Wang, S., 2022. Ship detention prediction via feature selection

scheme and support vector machine (SVM). Maritime Policy & Management 49(1), 140–153.

Xu, R., Lu, Q., Li, W., Li, K., Zheng, H., 2007a. A risk assessment system for improving port state control

inspection. In Proceedings of 2007 International Conference on Machine Learning and Cybernetics,

818–823.

Xu, R., Lu, Q., Li, K., Li, W., 2007b. Web mining for improving risk assessment in port state control

inspection. In Proceedings of 2007 International Conference on Natural Language Processing and

Knowledge Engineering, 427–434.

Yan, R., Wang, S., Cao, J., Sun, D., 2021a. Shipping domain knowledge informed prediction and

optimization in port state control. Transportation Research Part B: Methodological 149, 52–78.

Yan, R., Wang, S., Falgerholt, K., 2020. A semi-“smart predict then optimize” (semi-SPO) method for

efficient ship inspection. Transportation Research Part B: Methodological 142, 100–125.

Yan, R., Wang, S., Peng, C., 2021b. An artificial intelligence model considering data imbalance for ship

selection in port state control based on detention probabilities. Journal of Computational Science 48,

101257.

Yan, R., Wang, S., Zhen, L. (2023). An extended smart “predict, and optimize”(SPO) framework based

on similar sets for ship inspection planning. Transportation Research Part E: Logistics and

Transportation Review 173, 103109.

Yan, R., Zhuge, D., Wang, S., 2021c. Development of two high-efficient and innovative inspection

schemes for PSC inspection. Asia Pacific Journal of Operational Research 38(3), 2040013.

Yang, Z., Yang, Z., Yin, J., 2018a. Realizing advanced risk-based port state control inspection using data-

driven Bayesian networks. Transportation Research Part A: Policy and Practice 110, 38–56.

Yang, Z., Yang, Z., Yin, J., Qu, Z., 2018b. A risk-based game model for rational inspections on port state

control. Transportation Research Part E: Logistics and Transportation Review 118, 477–495.

Yegnanarayana, B., 2009. Artificial Neural Networks. PHI Learning Pvt. Ltd., Delhi.

25

Appendix A. Illustrative examples

Example A.1. Assume that a PSCO at the Hong Kong port spends two hours inspecting a ship and one

hour traveling from the Kwai-Tsing Container Terminal (KTCT) to the River Trade Terminal (RTT).

Hence, in six hours, a PSCO can inspect either one ship at the KTCT and another at the RTT, or three

ships at a single terminal (i.e., KTCT or RTT). Assume that we know in advance that two foreign visiting

ships at the RTT have six and eight deficiencies, respectively, and three foreign visiting ships at the KTCT

have nine, four, and two deficiencies, respectively. Then, if routing is not considered, the optimal

inspection scheme is to inspect the two ships at the RTT that have a combined 14 deficiencies, and the

ship at the KTCT that has nine deficiencies, resulting in a total of 23 detected deficiencies. However, if

the traveling time from the RTT to the KTCT is considered, the proposed inspection scheme set forth

above is infeasible when the PSCO only has six working hours available. Thus, considering the PSCO

traveling time, the modified optimal inspection scheme should inspect all three of the ships at the KTCT,

resulting in a total of 15 detected deficiencies. □

Example A.2. Suppose that a port authority needs to choose between ship A and ship B for inspection.

Ship A has five deficiencies and ship B has 10 deficiencies, but these numbers are unknown prior to the

inspection. In an environment of perfect information, ship B should be inspected. Suppose that we have

two models: model I and model II. Model I predicts eight deficiencies in ship A and seven in ship B, and

model II predicts two deficiencies in ship A and three in ship B. It follows that model I outperforms model

II in terms of prediction accuracy. However, when using model I, ship A is selected for inspection,

because it is predicted to have more deficiencies than ship B. In contrast, when using model II, ship B is

selected for inspection, showing that the predictive model with worse performance in terms of prediction

accuracy leads to a better decision. □

26

Appendix B. Procedures of generating undominated inspection templates (Yan et al, 2021a)

Recall that the total daily working time of a PSCO is eight hours, and the duration of an inspection

is two hours. This implies that a PSCO can inspect zero, one, two, or three ships in one day, considering

both the duration of the lunch break and the time spent travelling between different locations. Therefore,

the PSCO routing problem can be reformulated as the problem of selecting and assigning the sets of ships

that can be inspected to all available PSCOs. Define the number of ships inspected by a PSCO during a

working day as L , where {0,1,2,3}L∈ . Given that L ships are selected from N visiting foreign ships,

the total number of combinations is ()!/ !()!)L
NC N L N L= − . Denote a combination of L ships by the set

S , where S L= . We then define set S as an inspection template when it is feasible for one PSCO to

inspect all the ships in the set in a single working day.

Procedure B.1 illustrates the basic idea of selecting the inspection templates as follows. Although

we can obtain L
NC combinations (sets of templates), not every combination is feasible considering the

hard constraints on the visiting time windows and the travel time between two locations. To examine

whether it is feasible for a single PSCO to inspect all of the ships in set S , we first need to verify whether

there exists a feasible route that satisfies all of the constraints. For a feasible route, a PSCO needs to visit

3L + locations (including the office as a starting location, the berthing locations of L ships, the lunch

break location, and the office as an ending location) to finish all inspection work during a day. We define

α as a location, and each location is labeled with a duration time tα , an earliest start time αλ , and a

latest end time αλ . If a PSCO visits a location where ship i is berthed for an inspection, then 2tα = ,

iOαλ = , and iCαλ = ; if a PSCO visits the office when starting work (0i =) or finishing work

(2i N= +), then 0tα = , 8αλ = , and 17αλ = ; if a PSCO visits the lunch break location, then 1tα = ,

11αλ = , and 13αλ = . Considering that the starting and ending location, which is the office, is

indifferent in each set, there are (1)!L + candidate routes for the PSCOs to complete their tasks (note

that not all of the candidate routes are feasible, because we do not consider the travel time between two

locations and the different time windows of foreign visiting ships). For a particular route, we define the

locations visited by a PSCO as 1 3(,...,)Lα α + , where lα is the thl location to visit;
l

tα ,
lα

λ , and
lα

λ

are the visiting duration, the earliest visiting time, and the latest visiting time, respectively, for location

lα . To ensure that 3L + locations can be visited in the defined sequence of a route within the specified

working time limit, we define the decision variable lζ as the start time of visiting location lα . Then,

3L + locations can be visited in the above sequence by one PSCO if and only if there is a set of solutions

, 1,..., 3l l Lζ = + , that satisfies the following constraints:

 1,..., 3
ll l Nαζ λ≥ = + (21)

 1,..., 3
l ll t l Nα αζ λ+ ≤ = + (22)

 1 , 1 1,..., 2
ll l l lt t l Nαζ ζ+ +′≥ + + = + , (23)

27

where , 1l lt +′ denotes the travel time from location lα to location 1lα + .

Proposition B.1: For a candidate route, whether constraints (11)–(13) have a feasible solution is

guaranteed by the following conditions: for location 1α , let its start time
1

*
1 8αζ λ= = ; for location

, 2,..., 3l l Lα = + , let its start time
1

* *
1 1,max{ , }, 2,..., 3

l ll l l lt t l Lα αζ ζ λ
−− −′= + + = + ; if

* , 1,..., 3
l ll t l Lα αζ λ≤ − = + , then the candidate route is feasible, otherwise it is infeasible.

Property B.1: For two inspection templates S and S ′ , if S S ′≠ and S S ′⊆ , then inspection

template S is dominated by inspection template S ′ . If inspection template S ′ does not contain any

other inspection template, it is considered an undominated inspection template because inspecting it can

always identify no fewer deficiencies than inspecting any other inspection template contained within it.

Procedure B.1. Generate undominated inspection templates.
Input: set of locations {0,..., 2}i N∈ + ; duration spent at each location (0,..., 2)it i N= + ; time
window of each location [,] (0,..., 2)i iO C i N= + .
Output: the set of undominated inspection templates H , binary variable parameter h

iη indicating
whether ship i is contained in inspection template h .
Initialize = ∅H , 0h

iη = , 1,..., , 0i N h= = .
For 0,1, 2,3L = do:

Formulate all combinations containing L ships among all visiting ships denoted by Q.
For each combination q∈Q do:

Initialize feasibility = False.
Define set V that contains all candidate routes of starting work, inspecting the ships in
q , having lunch break, and ending work.
For each candidate route v∈V do:

Test the feasibility of v using Proposition B.1.
If v is feasible:

{ }q← ∪H H .
Set 1h

iη = for those locations included in q .
Set 1h h← + .
Update feasibility = True.
Break.

End if
End for
If feasibility = True:

Continue.
 End if

End for
End for
Delete dominated inspection templates in H using Property B.1.

28

Appendix C. Four forms of contrastive loss functions (Mulamba et al., 2021)

NCE-basic loss. We first define noise samples as solutions to the optimization problem that are

feasible but different from the perfect solution * ()u d and that belong to the subset ′U , where

*{ ()}′ ⊂ u d\U U . These noise samples constitute the solution pool that can be regarded as an

approximation of Z . Therefore, ′U is the solution pool that we need. Next, our goal is to learn the

parameter ′ω by maximizing the product of the ratios between the probability of the perfect solution

*u under the prediction (,)f ′ ′ω A and the probability of any noise sample nu in ′U under the

prediction (,)f ′ ′ω A for any instance with input data A , which is expressed as

()
()

()

*
*

1

*

1

*

1

P(| (,))
arg max log

P(| (,))

exp ((,),)
arg max log

exp ((,),)

arg max ((,),) ((,),) .

n

n

n

T
j j
n

j j

T
j j

n
j j

T
n

j j j
j

f
f

z f

z f

z f z f

′ = ′∈

′ = ′∈

′ = ′∈

′ ′
′ =

′ ′

′ ′
=

′ ′

′ ′ ′ ′= −

∏∏

∏∏

∑ ∑

ω u

ω u

ω u

u ω A
ω

u ω A

ω A u

ω A u

ω A u ω A u

U

U

U

 (24)

To minimize the decision loss, the above equation can be transformed into the following NCE-basic loss

function:

 ()*

1
((,),) ((,),)

n

T
n

NCE j j j
j

L z f z f
= ′∈

′ ′ ′ ′= −∑ ∑
u

ω A u ω A u
U

. (25)

This NCE-basic loss function can be easily embedded in the training process for ML algorithms, as both
nu (noise sample) and *

ju can be computed before the training process if we can formulate a solution

pool ′U , and they can be regarded as constants.

MAP-basic loss. Furthermore, instead of considering all of the noise samples in ′U when

estimating the regret loss, we consider a special form of NCE called maximum a posteriori (MAP)

estimation (Goodfellow, 2015). MAP estimation only considers the noise sample with the highest

probability of achieving the optimal objective function value for each instance under the current

prediction. Similarly, learning the parameter ′ω by maximizing the product of the ratios between the

probabilities of the perfect solution *u and the noise sample in ′U with the highest likelihood of

generating the optimal objective function value based on the current prediction can be expressed as

()
()

()

*
*

*
1

*

*
1

* *

1

P(| (,))
arg max log

P(| (,))

exp ((,),)
arg max log

exp ((,),)

arg max ((,),) ((,),) .

T
j j

j j j

T
j j

j j j

T

j j j j
j

f
f

z f

z f

z f z f

′ =

′ =

′ =

′ ′
′ =

′ ′

′ ′
=

′ ′

′ ′ ′ ′= −

∏

∏

∑

ω

ω

ω

u ω A
ω

u ω A

ω A u

ω A u

ω A u ω A u

 (26)

where * arg max[((,),)]
n

n
j jz f

′∈

′ ′=
u

u ω A u

U
. Accordingly, the above equation can be transformed into the

following MAP-basic loss function:

29

 ()* *

1
((,),) ((,),)

T

MAP j j j j
j

L z f z f
=

′ ′ ′ ′= −∑ ω A u ω A u . (27)

NCE-variant loss and MAP-variant loss. We note that the objective function of model M2 is a

linear function. Therefore, the original NCEL and MAPL can be rewritten in the following linear form:

 ()*

1
(,)() ,

n

T
n

NCE j j
j

L f
= ′∈

′ ′= −∑ ∑
u

ω A u u
U

 (28)

 ()* *

1
(,)()

T

MAP j j j
j

L f
=

′ ′= −∑ ω A u u . (29)

By observing Eq. (28) and Eq. (29), we find that if jd for instance j is predicted to be 0 , namely,

(,) 0jf ′ ′ =ω A , NCEL and MAPL are 0, which is the minimum loss. To avoid this case, we introduce

variants of Eq. (25) and Eq. (27) by replacing (,)jf ′ ′ω A with (,)j jf ′ ′ −ω A d . This modification

can be regarded as adding a regularization term to keep (,)jf ′ ω A close to jd . Therefore, we can

obtain the NCE-variant loss and MAP-variant loss as follows:

 ()*

1
((,))() ,

n

T
n

NCE v j j j
j

L f−
= ′∈

′ ′= − −∑ ∑
u

ω A d u u
U

 (30)

 ()* *

1
((,))()

T

MAP v j j j j
j

L f−
=

′ ′= − −∑ ω A d u u . (31)

By observing Eq. (30) and Eq. (31), we find that the NCE-variant loss and MAP-variant loss cannot be

minimized by predicting jd to be 0 . These two losses can only be minimized by letting ˆ
jd be close

to jd . In this way, the prescribed solution under ˆ
jd can approach the perfect solution *

ju , which is

the ultimate goal of decision-focused learning.

30

Appendix D. Algorithms for two-stage and decision-focused learning frameworks

Algorithm D.1. Two-stage framework.

Input: Training data 1{(,)}R
i i iD d == a .

Hyperparameters: learning rate α , epochs, batch size.
Initialize ω .
For each epoch do:

For each batch do:
For each example a do:

Predict the number of deficiencies of a , denoted by ˆ (,)d f= ω a .
End for
Calculate the accumulated MSE loss b

MSEL for the set of examples in a batch.

Update
ˆ

ˆ

b b
MSE

b

L
α
∂ ∂

← −
∂∂
dω ω
ωd

 , where ˆ bd denotes the vector of predicted values of

examples in a batch.
End for

End for
Predict the numbers of deficiencies of a set of new examples ′A , denoted by a vector

*ˆ (,)f′ ′=d ω A , where *ω is the final optimal weight of the trained ANN.

Input ˆ ′d into the downstream optimization problem M2 to generate PSCO routing decisions.

Algorithm D.2. Decision-focused learning framework (Mulamba et al., 2021).

Input: Auxiliary parameters in model M2; training data 1{(,)}T
j j jD =′ = A d , a fixed parameter solvep .

Hyperparameters: learning rate α′ , epochs, batch size.
Initialize ′ω , *{ () | (,) }j j j D′ ′= ∈u d A dU .
For each epoch do:

For each batch do:
For each instance A do:

Predict the number of deficiencies of the examples in instance A , denoted by
ˆ (,)f ′ ′=d ω A .

If a random number between 0 and 1 is smaller than solvep :

Obtain ˆ()u d by solving model M2 with d̂ .
ˆ{ ()}′ ′← ∪ u dU U .

Else:
ˆarg max((,))z

′∈
′ =

u
u u d

U
.

{ }′ ′ ′← ∪ uU U .
End if

End for
Calculate the accumulated regret loss

*u
bL for the set of instances in a batch.

* ˆ
ˆ

u b
b
b

L
α

∂ ∂′ ′ ′← −
′∂∂

Dω ω
ωD

 where ˆ bD dnotes the matrix of the predicted number of

deficiencies of the examples in a batch.
End for

End for

31

Appendix E. Hyperparameter tuning results

Table E.1. Hyperparameter tuning for each model

Instance Method Loss function
Hyperparameter

Learning rate Epochs Batch size

(2,10)
Decision-focused learning

NCE_basic 0.0005 25 32

NCE_variant 0.0001 25 16

MAP_basic 0.01 25 16

MAP_variant 0.05 5 16

Two-stage MSE 0.05 5 16

(4,15)
Decision-focused learning

NCE_basic 0.0005 10 8

NCE_variant 0.0005 5 8

MAP_basic 0.05 25 16

MAP_variant 0.01 5 16

Two-stage MSE 0.005 25 32

(6,20)
Decision-focused learning

NCE_basic 0.001 5 16

NCE_variant 0.0001 25 16

MAP_basic 0.05 15 16

MAP_variant 0.0005 5 16

Two-stage MSE 0.01 25 32

(8,25)
Decision-focused learning

NCE_basic 0.0005 5 16

NCE_variant 0.0001 15 16

MAP_basic 0.05 20 16

MAP_variant 0.0005 5 16

Two-stage MSE 0.005 15 32

	Abstract: Port state control (PSC) serves as the final defense against substandard ships in maritime transportation. The port state control officer (PSCO) routing problem involves selecting ships for inspection and determining the inspection sequence ...
	Keywords: prescriptive analytics; predict-then-optimize; decision-focused learning; port state control (PSC) inspection; maritime routing
	1． Introduction
	2． Literature Review
	3． PSCO Routing Problem
	3.1 PSCO routing model M1
	3.2 PSCO routing model M2
	3.3 Comparison of M1 and M2

	4． The Two-Stage Framework
	5. The Decision-Focused Learning Framework
	This section introduces the decision-focused learning framework. Section 5.1 defines the regret loss. Section 5.2 introduces a new family of noise-contrastive loss functions. Section 5.3 describes the gradient-descent decision-focused learning framewo...
	5.1 The regret loss
	5.2 Contrastive losses
	5.3 Gradient-descent decision-focused learning with noise samples

	6. Computational Experiments
	6.1 Data description
	6.2 Comparison of the two-stage framework and the decision-focused learning framework
	6.3 The influence of parameter

	7. Conclusions
	Appendix A. Illustrative examples
	Example A.1. Assume that a PSCO at the Hong Kong port spends two hours inspecting a ship and one hour traveling from the Kwai-Tsing Container Terminal (KTCT) to the River Trade Terminal (RTT). Hence, in six hours, a PSCO can inspect either one ship at...
	Example A.2. Suppose that a port authority needs to choose between ship A and ship B for inspection. Ship A has five deficiencies and ship B has 10 deficiencies, but these numbers are unknown prior to the inspection. In an environment of perfect infor...
	Appendix B. Procedures of generating undominated inspection templates (Yan et al, 2021a)
	Appendix C. Four forms of contrastive loss functions (Mulamba et al., 2021)
	Appendix E. Hyperparameter tuning results

