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Abstract: Port state control (PSC) serves as the final defense against substandard ships in maritime 

transportation. The port state control officer (PSCO) routing problem involves selecting ships for 
inspection and determining the inspection sequence for available PSCOs, aiming to identify the highest 

number of deficiencies. Port authorities face this problem daily, making decisions without prior 
knowledge of ship conditions. Traditionally, a predict-then-optimize framework is employed, but its 

machine learning (ML) models’ loss function fails to account for the impact of predictions on the 
downstream optimization problem, potentially resulting in suboptimal decisions. We adopt a decision-
focused learning framework, integrating the PSCO routing problem into the ML models’ training process. 

However, as the PSCO routing problem is NP-hard and plugging it into the training process of ML models 
requires that it be solved numerous times, computational complexity and scalability present significant 

challenges. To address these issues, we first convert the PSCO routing problem into a compact model 
using undominated inspection templates, enhancing the model’s solution efficiency. Next, we employ a 

family of surrogate loss functions based on noise-contrastive estimation (NCE) for the ML model, 
requiring a solution pool treating suboptimal solutions as noise samples. This pool represents a convex 

hull of feasible solutions, avoiding frequent reoptimizations during the ML model’s training process. 
Through computational experiments, we compare the predictive and prescriptive qualities of both the 

two-stage framework and the decision-focused learning framework under varying instance sizes. Our 
findings suggest that accurate predictions do not guarantee good decisions; the decision-focused learning 

framework’s performance may depend on the optimization problem size and the training dataset size; 
and using a solution pool containing noise samples strikes a balance between training efficiency and 

decision performance. 
Keywords: prescriptive analytics; predict-then-optimize; decision-focused learning; port state control 

(PSC) inspection; maritime routing 
 

1． Introduction 

Maritime safety is crucial, as maritime transportation transports over 80% of global goods. The 

International Maritime Organization (IMO) has implemented resolutions on ship maintenance and 

operations to enhance maritime safety, allowing port authorities to inspect foreign visiting ships through 

port state control (PSC) to ensure compliance with international regulations. However, with fewer than 

5% of ships inspected due to high costs and limited port state control officers (PSCOs) (Yan et al., 2021), 

effectively selecting substandard ships for inspection is essential. Existing research, such as Yan et al. 
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(2020, 2021a), has primarily focused on ship selection without considering PSCO routing. Given varied 

berthing locations and arrival and departure times of arriving ships, and PSCO constraints such as lunch 

breaks and working hours, the number of ships that can be inspected strongly depends on the routing 

selected by the PSCOs (see Example A.1 in Appendix A). Therefore, this paper innovatively uses PSC 

inspection data for the PSCO routing problem to maximize the number of deficiencies identified while 

considering various practical constraints. 

Most port authorities’ ship selection schemes still rely on the sum of the weighted points of risk 

factors, such as ship age and type, that determines ships’ selection scores based on expert knowledge. 

However, the subjective value of these scores can be biased, thus compromising their effectiveness. To 

overcome the shortcomings of the current ship selection schemes, maritime researchers have applied a 

two-stage prescriptive analytics framework to solve ship selection problems. Prescriptive analytics 

utilizes a combination of predictive and optimization techniques to generate informed recommendations 

based on accessible auxiliary data. In the context of ship selection for PSC inspections, most of the 

previous studies first use machine learning (ML) models to predict the number of deficiencies or the 

probability of detention for foreign visiting ships, and the predictions are used to guide ship selection for 

inspection through mathematical optimization models (Yang et al., 2018a, 2018b; Yan et al., 2020, 2021a, 

2021b). However, it is important to note that predictive models only aim to minimize the prediction error, 

while the impact of prediction results on the downstream decisions is totally ignored (see Example A.2 

in Appendix A), leading to suboptimal decisions. Therefore, to overcome this drawback, a more 

appropriate prescriptive analytics framework is developed to integrate the prediction and optimization 

tasks, aiming at creating a decision-focused learning framework to improve the decision quality 

(Mulamba et al., 2021).  

In this study, we adopt such a framework that considers the interactions between ships in both the 

optimization model and the predictive model. Specifically, we adopt a prescriptive analytics framework 

that uses the criterion of minimizing the decision error measured by the suboptimality of the decisions 

generated by the predictions during the training process, rather than minimizing the prediction error to 

improve the decision quality. Because the PSCO routing problem applies the team orienteering problem, 

which has been proven to be NP-hard (Vansteenwegen et al., 2009), computational complexity and 

scalability are two major obstacles to putting this method into practice (Mulamba et al., 2021). To remove 

these obstacles, we first exploit the structure of the PSCO routing problem by designing undominated 

inspection templates (Yan et al., 2021a), allowing the decision-focused learning framework to efficiently 

solve the PSCO routing problem. We then adopt a new family of surrogate loss functions motivated by 

the NCE literature (Gutmann and Hyvärinen, 2010) for the decision-focused learning framework 

(Mulamba et al., 2021). These surrogate loss functions require building a solution pool with suboptimal 

solutions, which are regarded as noise samples. This solution pool can be interpreted as the convex hull 

of the feasible solutions, and its use avoids frequent reoptimizations when training the predictive model 

(Mulamba et al., 2021).  

Our scientific contributions can be summarized as follows. First, our study innovatively uses PSC 

inspection data for the PSCO routing problem. Second, we compare two prescriptive analytics 

frameworks, which are the two-stage framework and the decision-focused learning framework. 



3 
 

Specifically, the decision-focused learning framework considers the PSCO routing problem in the ship 

deficiency prediction model. To overcome the obstacles of computational complexity and scalability for 

the decision-focused learning framework, we first transform the original PSCO routing model and then 

adopt a family of surrogate loss functions. Third, through computational experiments using real PSC 

inspection records, we compare the performance of the two-stage framework with that of the decision-

focused learning framework to answer the following questions: 1) Does a good prediction lead to a good 

decision? 2) Does the decision-focused learning framework outperform the two-stage framework for the 

PSCO routing problem? 3) How can we achieve a balance between solution quality and solution 

efficiency in the decision-focused learning framework? 

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 

3 first formulates the PSCO routing problem, and then uses a route generation method to transform the 

original combinatorial model into a more compact model. Third, we compare the two models and discuss 

the results of our comparison. Section 4 describes the traditional two-stage framework. Based on this 

framework, Section 5 describes a decision-focused learning framework that uses a new family of noise-

contrastive loss functions. Section 6 describes the results of our computational experiments that compare 

the traditional two-stage framework with the decision-focused learning framework and conducts a 

sensitivity analysis. Section 7 concludes the paper and outlines future research directions. 

 

2． Literature Review 

Because current ship risk profile schemes do not efficiently identify substandard ships, most PSC 

studies have aimed at improving inspection efficiency by using ML technologies to identify ships with 

more deficiencies or higher detention probabilities. For example, Wang et al. (2019) developed a tree 

augmented naïve (TAN) Bayes classifier to identify high-risk ships with more deficiencies. Chung et al. 

(2020) and Yan et al. (2021c) used the Apriori algorithm to determine the type and sequence of ship items 

that should be inspected. In recent years, maritime researchers have begun to adopt ship deficiency 

prediction models to allocate scarce inspection resources. This issue, which is known as the PSCO 

scheduling problem, was studied by Yan et al. (2020) and Yan et al. (2021a). Yan et al. (2020) first 

compared the results of three random forest models with different loss functions to predict the number of 

ship deficiencies under four deficiency categories and then developed optimization models to efficiently 

match officers’ expertise with ship deficiency conditions. Subsequently, Yan et al. (2021a) improved the 

prediction performance by integrating shipping domain knowledge into an XGBoost model, and then 

modified the downstream PSCO scheduling models to be more consistent with practice. In their study, 

the authors considered practical constraints concerning ship berthing time windows and PSCO lunch 

break requirements but did not consider either the berthing locations of foreign visiting ships or the time 

it took PSCOs to travel between two locations. Therefore, their optimization model did not fully capture 

the PSCO routing problem. Accordingly, our study represents an advance in the field. 

Xu et al. (2007a) developed a support vector machine (SVM) model to predict ship detention using 

both generic and historical factors. Xu et al. (2007b) subsequently enhanced their prediction performance 

by considering new features extracted by web mining technology. Gao et al. (2007) further predicted ship 

detention by integrating the SVM model, the k-nearest neighbor model, and the bag-of-words model. 
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Yang et al. (2018a) predicted the ship detention probability of bulk carriers within the Paris Memorandum 

of Understanding (MoU) using a data-driven Bayesian network model based on TAN learning. To 

determine a port’s optimal inspection scheme, Yang et al. (2018b) combined the results of the ship 

detention prediction model with a game model that considers the benefits associated with both port 

authorities and ship operators. Recently, Wu et al. (2022) predicted ship detention with an SVM model 

using an analytic hierarchy process and gray relational analysis to select input features. To address the 

issues caused by the low-probability detention outcome, Yan et al. (2021b) adopted a balanced random 

forest model to predict ship detention. Tian and Wang (2023) proposed a cost-sensitive Laplacian logistic 

regression model for ship detention prediction, addressing the two challenges arising from the 

imbalanced and unlabeled data.  

As mentioned above, some PSC studies have used both prediction and optimization methods to 

make ship selection decisions (Yan et al., 2020, 2021a, 2023) by considering structural characteristics of 

the downstream optimization problem when training their predictive models. Tian et al. (2023) is the first 

study to use PSC data to design ship maintenance schemes for ship operators. Recently, an emerging 

stream of literature has combined prediction and optimization in developing prescriptive analytics 

frameworks for many domains, such as human resource planning (Berk et al., 2019), charging 

infrastructure planning (Brandt et al., 2021), vehicle routing (Soeffker et al., 2021), and queuing (Notz et 

al., 2023). Detailed reviews of prescriptive analytics frameworks are available in He et al. (2022), Qi and 

Shen (2022), and Tian et al. (2023). 

The predictions involved in the decision-focused learning framework have been most trained by 

gradient-descent predictive models in the computer science field. The main obstacle to plugging the 

optimization problem into the training process of gradient-descent predictive models is that the discrete 

and discontinuous solution space prevents the algorithm from easily differentiating the decision loss over 

the predicted values, and so it is infeasible to pass back the gradients to inform the predictive model with 

respect to how it should adjust its weights to improve the decision quality of the solutions it prescribes 

(Ferber et al., 2020). To overcome this problem, Wilder et al. (2019) added a quadratic regularization 

term to the objective function of the relaxed form of the combinatorial problem, but this method can only 

be applied to combinatorial problems with a totally unimodular matrix. Ferber et al. (2020) strengthened 

this method by employing a cutting-plane solution approach, which tightened the continuous relaxation 

by adding constraints to eliminate fractional solutions. Instead of computing the real decision loss by 

directly solving the combinatorial problem during the training process, some studies, including 

Elmachtoub and Grigas (2021) and Mandi et al. (2020), have designed a class of surrogate loss functions 

based on subgradient. One issue common to these approaches is that they need to repeatedly solve the 

(possibly relaxed) optimization problem, imposing a huge burden on computational efficiency. In contrast, 

Mulamba et al. (2021) used a noise-contrastive approach by viewing suboptimal solutions as noise 

examples and caching them, thus replacing optimization calls with a look-up table in the solution cache. 

In summary, to the best of our knowledge, no studies have used PSC inspection records to support 

PSCO routing. Because PSC inspection data are public, port authorities can apply prescriptive analytics 

methods to improve decision performance in ship selection and PSCO routing. Identifying ships with 

more deficiencies and routing PSCOs to maximize the number of identified deficiencies while satisfying 
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the required constraints would eliminate the adverse impacts of substandard ships on maritime 

transportation and improve the efficiency of port operations. Therefore, we bridge the following research 

gaps. First, we innovatively use PSC data to inform the decisions of PSCO routing while considering 

multiple practical constraints, including the berthing locations and berthing time windows of foreign 

visiting ships, and the lunch breaks of PSCOs. Because the PSCO routing problem is NP-hard, we recast 

this problem into a more compact combinatorial problem by generating undominated inspection 

templates. Second, we use a traditional two-stage framework to investigate this problem and apply the 

decision-focused framework to plug the transformed PSCO routing problem into the training process of 

the predictive model. This approach enables us to consider the impact of the predictions on downstream 

decisions. Our study is the first PSC-related study to fully combine prediction and combinatorial 

optimization.  

 

3． PSCO Routing Problem 

Section 3.1 mathematically presents the PSCO routing problem. Section 3.2 transforms the original 

PSCO routing problem into a more compact formulation by generating undominated inspection templates. 

Finally, Section 3.3 conducts several groups of computational experiments to compare the solution 

efficiency of the two proposed models.  

3.1 PSCO routing model M1 

The PSCO routing model stems from the PSCO scheduling problem, which involves selecting the 

set of ships to be inspected and assigning these ships to PSCOs with the goal of maximizing the number 

of deficiencies identified among the inspected ships (Yan et al., 2021). Based on the PSCO scheduling 

problem, the proposed PSCO routing problem considers not only the matching of ships and PSCOs, but 

also the inspection sequence of the ships assigned to each PSCO. To solve this problem, human resources, 

time resources, the ships’ predicted deficiency numbers, and the ships’ berthing locations and time 

windows are considered simultaneously.  

Denote the number of foreign visiting ships that need to be inspected on a given working day by 

N  and the ships by 1,...,i N= . Each ship i  is characterized by a vector of features ia , an arrival 

time iO , a departure time iC , a fixed berthing location iP , and the duration required for an inspection 

it′  . The arrival and departure times constitute the berthing time window [ , ]i iO C   of ship i   during 

which the ship is available for inspection. Following Yan et al. (2021), we assume that for all of the 

inspected ships, a typical PSC inspection lasts two hours, that is, 2,  1,...,it i N′ = = . Denote the number 

of available PSCOs on duty for a working day by M  and the PSCOs by 1,...,m M= . The PSCOs 

generally work from 8:00 to 11:00 in the morning and from 14:00 to 17:00 in the afternoon. They depart 

from the office to perform inspections, and the office is denoted by the index 0i = . The fact that the 

PSCOs can leave the office to perform inspections at any time between 8:00 and 17:00 implies that the 

time window during which their office can be visited as a starting location is denoted by 

0 0[ , ] [8,17]O C = . Between 11:00 and 14:00, the PSCOs spend one hour having a lunch break and another 

two hours working. The lunch break index is denoted by 1i N= +  and the duration required for the 
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lunch break is denoted by 1 1Nt +′ = . Similarly, the time window during which the PSCOs can have lunch 

at location 1N +  is denoted by 1 1[ , ] [11,14]N NO C+ + = . When the PSCOs finish their assigned work or 

when the working day is over, the PSCOs return to the office. Commonly, the PSCOs both start and finish 

their work at the office. However, for modeling convenience, we denote the office location by two indices. 

Different from the index 0i =  when the office is regarded as the starting location for the PSCOs’ daily 

work, the office is denoted by 2i N= +  when it is regarded as the ending location. Similarly, because 

the PSCOs can return to the office at any time between 8:00 and 17:00 in a working day, the time window 

during which the ending location can be visited is denoted by 2 2[ , ] [8,17]N NO C+ + = . Therefore, there are 

3 ( 0,..., 2)N i N+ = +   location indices to be considered in this problem, including  ( 1,..., )N i N=  

berthing locations of foreign visiting ships, the location of start of work ( 0i = ), the location of end of 

work ( 2i N= + ), and the location of lunch break ( 1i N= + ). Furthermore, the duration spent at the 

starting and ending locations is denoted by 0,  ( 0, 2)it i N′ = = +  . Therefore, each location 

 ( 0,..., 2)i i N= +  is characterized with a time window [ , ]i iO C  and a duration it′ . Finally, we denote 

the travel time from location i  to location j  by ijt .  

Before solving the PSCO routing problem, information concerning each ship’s berthing time 

window and berthing location, and the PSCO’s travel time between different locations is known to the 

port authority; the deficiency conditions of the foreign visiting ships are not known. We denote the set of 

actual numbers of ship deficiencies by : { | 1,..., }id i N= =d . The sets of decision variables are denoted 

by : { | , 0,..., 2; 1,..., }ijmx i j N m M= = + =x  , where 1ijmx =   if a visit to location i  is followed by a 

visit to location j  by PSCO m  and 0 otherwise; : { | 1,..., ; 1,..., }imy i N m M= = =y , where 1imy =  

if ship i   is assigned to be inspected by PSCO m   and 0 otherwise; and 

: { | 0,..., 2; 1,..., }ims i N m M= = + =s , where ims  represents the start time of the visit to location i  by 

PSCO m . We then use P  to denote a large constant. The PSCO routing problem is as follows: 

[M1] 

 
1 1

max ( , ) max
M N

i im
m i

z d y
= =

= ∑∑y y
d y  (1) 

subject to 

 
2 1

0 , 2,
1 1 1 0

M N M N

jm i N m
m j m i

x x M
+ +

+
= = = =

= =∑∑ ∑∑  (2) 

 
1 2

0 1
    1,..., 1; 1,...,

N N

ikm kjm km
i j

x x y k N m M
+ +

= =

= = = + =∑ ∑  (3) 

 (1 )    , 0,..., 2; 1,...,im ij i jm ijms t t s P x i j N m M′+ + − ≤ − = + =  (4) 

 
1

1    1,...,
M

im
m

y i N
=

≤ =∑  (5) 



7 
 

 1    0, 1, 2; 1,...,imy i N N m M= = + + =  (6) 

 (1 )      0,..., 2; 1,...,i im imO P y s i N m M− − ≤ = + =  (7) 

 (1 )     0,..., 2; 1,...,im i i ims t C P y i N m M′+ ≤ + − = + =  (8) 

 , {0,1}     , 0,..., 2; 1,...,ijm imx y i j N m M∈ = + =  (9) 

 0     , 0,..., 2; 1,..., .ims i j N m M≥ = + =  (10) 

Objective function (1) maximizes the number of deficiencies identified among all foreign visiting 

ships to be inspected. Constraint (2) guarantees that all PSCOs start work at location 0 and end work at 

location 2N + . Constraints (3) and (4) guarantee each PSCO’s connectivity and timeline. Constraints 

(5) mean that each ship is inspected no more than once. Constraints (6) ensure that all PSCOs must visit 

locations 0, 2N + , and 1N +  to start and end their work and have their lunch breaks. Constraints (7) 

and (8) restrict the visit to each ship’s time window and the lunch break to a specific period; that is, a 

ship can only be inspected during its berthing time window and the PSCOs can only have lunch break 

during the specified time window. 

3.2 PSCO routing model M2 

Observing the structure of model M1, we note that it is a practical application of the team 

orienteering problem with time windows (Vansteenwegen et al., 2009). The team orienteering problem 

with time windows is a highly constrained problem that is difficult to solve. Golden et al. (1987) proved 

that the orienteering problem is NP-hard. Therefore, it is reasonable to believe that model M1 is unlikely 

to be solved to optimality using a polynomial-time algorithm. To improve the solution efficiency of the 

PSCO routing problem M1, we adopt a route generation method to transform model M1 into a more 

compact model M2. Through the route generation method, the PSCO routing problem is modified to first 

select the set of inspection templates that maximize the number of deficiencies identified, while ensuring 

that each ship is inspected no more than once by a PSCO, and then to route the PSCOs based on the 

selected inspection templates. The method of selecting the inspection templates is illustrated in Appendix 

B, which follows the method shown in Yan et al. (2021a), and the method of routing the available PSCOs 

is illustrated in Procedure 1. 

Through Procedure B.1 shown in Appendix B, we obtain the set of all undominated inspection 

templates, denoted by H  . After obtaining the set of undominated inspection templates H   and 

parameters h
iη  (binary parameter indicating whether ship i  is contained in inspection template h ), 

we further introduce a binary decision variable hy′  , which equals 1 if an undominated inspection 

template h∈H   is assigned to one PSCO, and a binary decision variable ,  1,...,iu i N∈ =u  , which 

equals 1 if and only if ship i  is inspected by one PSCO. Then, model M2 is as follows: 

[M2] 

 
1

max ( , ) max
N

i i
i

z d u
=

= ∑u u
d u  (11) 

subject to 
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 h
h

y M
∈

′ ≤∑
H

 (12) 

  1,...,h
i i h

h
u y i Nη

∈

′≤ =∑
H

 (13) 

 {0,1} hy h′ ∈ ∈H  (14) 

 {0,1} 1,..., .iu i N∈ =  (15) 

Objective function (14) maximizes the total number of deficiencies identified. Constraint (15) provides 

that the maximum number of adopted inspection templates cannot exceed the number of available PSCOs. 

Constraints (16) indicate the relationship between iu  and hy′ .  

We note that M2 is more compact than M1, but solving M2 can only yield the selection of the 

optimal inspection templates, and does not provide information on how to route the PSCOs. Next, we 

describe how to route the available PSCOs based on these selected inspection templates. Because there 

may be several feasible routes to finish the tasks in a selected inspection template, to determine the 

optimal route, we first define an optimal route as the one with the earliest return time to the office. Given 

an optimal inspection template oS  containing oS  ships, adopting this inspection template requires 

visiting 3oS +  locations and generating ( 1)!oS +  candidate routes for the PSCOs to complete their 

tasks. The above-defined earliest return time to the office is denoted by 3oSζ + . The Subprocedure to 

find the optimal route for a selected inspection template is introduced as follows. 

 
Subprocedure. Find the optimal route for an inspection template. 

Input: a selected inspection template oS  ; set of locations {0,..., 2}i N∈ +  (including berthing 
locations of ships in oS , lunch break location, and starting and ending location); duration spent at 
each location  ( 0,..., 2)it i N= + ; time window of each location [ , ] ( 0,..., 2)i iO C i N= + .  
Output: Optimal_route . 
Define set cV  that contains all of the routes of starting work, inspecting the ships in oS , having 
lunch break, and ending work. Denote a candidate route as ,  ,  1,..., ( 1)!j j c op p V j S∈ = +  and the 
earliest return time to the office for jp  as 

jpζ . 

Initialize Optimal_route =∅ , Earliest_finish_time = ∞ . 
For 1,..., ( 1)!oj S= +  do: 

Test the feasibility of a candidate route jp  using Proposition B.1. 
If jp  is feasible and Earliest_finish_time

jpζ ≤ : 

Earliest_finish_time
jpζ← . 

Optimal_route jp← . 
End if 

End for 
 

After obtaining the optimal routes for all of the selected inspection templates, we cannot directly 

assign the determined optimal routes to available PSCOs, because model M2 cannot guarantee that each 

ship is inspected no more than once, since two inspection templates may contain the same ship. Hence, 

to avoid duplicate inspections for a ship while adopting optimal routes for the selected inspection 
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templates, we further require that a selected ship be inspected only once. Therefore, we introduce a set 

dS  containing the ships that have already been inspected. The overall procedure of PSCO routing after 

solving M2 is shown in Procedure 1.  

 

 
Procedure 1. PSCO routing after solving M2. 

Input: set of undominated inspection templates H, optimal solution hy′ . 
Output: Scheduling results. 
Define { | 1}hh y′ ′= =H  as the set of selected inspection templates, and the size of this set is defined 
by ′H . 
Denote d = ∅S  as the set of inspected ships. 
For 1,...,j ′= H  do: 

If 1j = : 
Determine the optimal route 1p  for inspection template 1h  by applying Subprocedure. 
Assign 1p  to PSCO 1. 

Else: 
Update dS  by merging the last inspection template 1jh − : 1d d jh −← ∪S S . 
Delete dS  from the current inspection template jh : \j j dh h← S . 
Determine the optimal route jp  for inspection template jh  by applying Subprocedure. 
Assign jp  to PSCO j . 

End if 
End for 
For 1,...,m M′= +H  do: 

Not assign any route to PSCO m. 
End for 

 

Finally, by observing Constraint (15), we note that it is possible that in an optimal solution, some 

PSCOs are not assigned to any inspection task. In other words, not all PSCOs have ships to inspect 

according to an optimal solution. To ensure temporal fairness in work assignments, we recommend that 

the port state shuffle the index of PSCOs each working day so that each PSCO has a prioritized 

opportunity to be assigned inspection work. 

3.3 Comparison of M1 and M2 

To facilitate the introduction of the decision-focused learning framework proposed for the PSCO 

routing problem, which requires high computational efficiency, we first conduct a basic computational 

experiment to compare the solution efficiency of M1 and M2. To obtain the travel time ijt  between each 

pair of locations ( , )i j , we divide the port area of concern into five parts, with each location belonging 

to one part. We then introduce  ( 0,..., 2)ie i N= +  as the part index of each location i  and an auxiliary 

index 
i je et′  indicating the travel time between a pair of area parts ( , )i je e . We further assume that the 

location of the office and the lunch break is in part 1, indexed by 0 1 2,  ,  1N Ne e e+ + = , and the berthing 

locations of foreign visiting ships are randomly set to parts 2 to 5. Then, the travel time ijt   can be 

obtained by mapping ( , )i je e  with 
i je et′ . For example, assuming that ships 1 and 2 berth at parts 1 2e =  
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and 2 4e = , respectively, and the travel time between parts 2 and 4, 24t′ , is one hour, we can thus obtain 

that the travel time between ships 1 and 2, 12t , is one hour. The travel times, 
i je et′ , between two area 

parts ( , )i je e   are shown in Table 1. Furthermore, we randomly set the values of the time window 

[ , ]i iO C , part indexes ie , and number of deficiencies id  for ship i  following the ranges shown in 

Table 2.  

 

Table 1. Travel time (hour) 
i je et  between two area parts ( , )i je e  

i je et / ( , )i je e  1 2 3 4 5 

1 0 0.2 0.4 0.3 0.2 

2 0.2 0 0.1 0.3 0.2 

3 0.4 0.1 0 0.4 0.2 

4 0.3 0.3 0.4 0 0.3 

5 0.2 0.2 0.2 0.3 0 

 

Table 2. The ranges of input integer parameters for models M1 and M2 

Parameter iO  iC  ie  id  

Range 8~11 13~17 2~5 0~10 

 

To compare the solution efficiency of models M1 and M2 with different groups of input parameters 

and under different instance sizes, we design four groups of instances. One group is denoted by ( , )M N , 

where M  represents the number of available PSCOs with values of 2, 4, 6, and 8, and N  represents 

the number of foreign visiting ships with values of 10, 15, 20, and 25, respectively. For each instance, we 

rerun the experiments with 10 groups of randomly generated input parameters. The programs are coded 

in Python and the models are solved by Gurobi. Because the PSCO routing problem is NP-hard, it may 

be impractical to solve large-scale instances. To save computational efforts, we limit the solution time of 

each model to 200 seconds. That is, given a model M1 or M2, Gurobi stops when a specified time limit 

is reached. Next, the current best solution found by Gurobi is retrieved as the near-optimal solution. The 

computational results for models M1 and M2 are shown in Table 3. 

As we can see from Table 3, for model M1, the average solution time increases greatly as the 

instance size increases. For instance size (8,25), nearly all of the models cannot be solved to optimality 

within 200 seconds. Furthermore, the standard deviations of problems with different groups of parameters 

in the same instance size show that their solution time may vary greatly due to the difference parameters 

involved in the model. For example, assigning visiting ships with longer time windows can increase the 

computing time required to solve M1, because doing so can increase the search space of the optimal 

solutions. Compared with the average solution time of M1 under different instance sizes, solving M2 

takes a much shorter time. For M2, the time spent on Procedure B.1 to find undominated inspection 

templates is the determinant of the overall CPU time, followed by the solution time for M2. However, 
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solving M2 under different instance sizes never costs more than one second and the solution time for M2 

does not fluctuate very much in different groups of input parameters under the same instance size. Finally, 

by observing the average gap of the objective functions between M2 and M1, the solution qualities of 

M1 and M2 only show a slight difference under instance size (8,25). Although the solution qualities of 

M1 and M2 are nearly the same, because M2 is much more computationally efficient than M1, the rest 

of the analysis in the paper will use M2 as the target optimization problem, which is plugged into the ML 

algorithm in the following sections. 

 

Table 3. Computational results for models M1 and M2 

Instance (2,10) (4,15) (6,20) (8,25) 

M1 

Model solution time (s) 

Average 

(Avg.) 
2.22 92.16 164.55 200.93 

Standard 

deviation 

(Std.). 

3.94 93.48 75.81 0.08 

Number of groups where the optimal solution is not 

found within 200s 
0 4 8 10 

M2 

Time spent on Procedure B.1 (s) 
Avg. 0.29 1.11 2.68 5.61 

Std. 0.04 0.16 0.30 0.19 

Model solution time (s) 
Avg. 0.02 0.08 0.27 0.52 

Std. 0.02 0.05 0.11 0.13 

Time spent on Procedure 1 (s) 
Avg. 0.00 0.01 0.01 0.01 

Std. 0.00 0.00 0.00 0.00 

Overall CPU time (s) 
Avg. 0.32 1.20 2.95 6.14 

Std. 0.04 0.11 0.20 0.09 

Average objective function value gap of M2 to M12 0.00% 0.00% 0.00% 0.09% 

 

4． The Two-Stage Framework 

Before the port state authority routes the PSCOs, the number of deficiencies of foreign visiting ships 

is unknown. Fortunately, the authority has access to a historical dataset 1{( , )}R
i i iD d == a  with an R  

number of PSC inspection records, where q
i ∈a   denotes a vector of q  features for ship i , and id  

is an integer indicating the ship’s number of deficiencies. One traditional and straightforward way to 

solve the PSCO routing problem is to first train an ML model ( , )f ω a  with a  as the input and ω  as 

the weights (parameters) to predict the value of d , denoted by ˆ ( , )d f= ω a . This ML model is trained 

to minimize a specified loss function using dataset D  , such as the mean squared error (MSE) loss 

 

2 objective function value of M2  objective function value of M1 100%.
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function MSEL  for a regression task defined as follows: 

 2

1

1 ˆ( ) .
R

MSE i i
i

L d d
R =

= −∑  (16) 

Given the loss function MSEL , ML model f  is trained by solving the following optimization problem 

to learn the optimal *ω : 

 * 2

1

1 ˆarg min arg min ( )
R

MSE i i
i

L d d
R =

= = −∑
ω ω

ω . (17) 

Then, when presented with a new example with feature vector a , model f  with the optimal *ω  can 

be applied to predict the number of deficiencies of the new example *ˆ ( , )d f= ω a . Finally, the predicted 

values d̂  of all of the foreign visiting ships that may be inspected are put into the PSCO routing problem 

to derive the routing results. This framework is generally termed either the predict-then-optimize 

framework or the two-stage framework. As described in Section 2, gradient-descent ML algorithms are 

most commonly used in the decision-focused learning framework. To facilitate our comparison of the 

two-stage framework and the decision-focused learning framework, we specify that the ML algorithm 

used in our study is the artificial neural network (ANN) (Yegnanarayana, 2009) because of its high 

popularity and good performance.  

An ANN generally has three layers: an input layer, a hidden layer, and an output layer 

(Yegnanarayana, 2009). The outputs of the input and hidden layers act as the input to the ANN’s direct 

downstream layer. Training an ANN refers to adjusting its weights (i.e., ω  as mentioned above) that 

connect the neurons of consecutive layers, with the goal of minimizing the loss. Backpropagation is the 

most widely used training algorithm for ANNs. It is a way of computing the gradients of the loss on the 

weights by recursively applying chain rules such that the current prediction loss in the output layer can 

be reversely passed to the preceding layers, and the weights can be adjusted to minimize the loss. 

Backpropagation computes gradients in an efficient manner, making it feasible to use the gradient-

descent method to train multilayer ANNs. The hyperparameters considered in an ANN mainly include 

learning rate, epochs (number of iterations), and batch size, which together deal with the problems of 

underfitting and overfitting. The learning rate controls the speed of weight update by determining the 

step size at each iteration when moving toward a minimum loss value. Epochs refer to the number of 

times the whole training dataset is trained. The batch size refers to the number of examples in a mini-

batch, and a mini-batch is a strict and non-empty subset of the whole training set. Examples in a mini-

batch are passed to the network at one time to update the weights. Therefore, the total number of batches 

in an epoch is equal to the ratio of the size of the whole training set to the batch size. For a more detailed 

introduction to ANN, please refer to Yegnanarayana (2009). Algorithm D.1 in Appendix D depicts the 

two-stage framework including a standard gradient-descent learning procedure. 

 

5. The Decision-Focused Learning Framework 

This section introduces the decision-focused learning framework. Section 5.1 defines the regret loss. 

Section 5.2 introduces a new family of noise-contrastive loss functions. Section 5.3 describes the 
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gradient-descent decision-focused learning framework using the noise-contrastive losses proposed in 

Section 5.2. We mainly follow the decision-focused learning framework proposed by Mulamba et al. 

(2021). 

5.1 The regret loss 

One possible disadvantage of the two-stage framework is that it does not consider the impact of the 

predictions on the downstream optimization problem, which consequently generates suboptimal 

decisions. Therefore, a more appropriate approach is to integrate the prediction and the decision 

procedures when training the ML model, which requires using a decision-focused loss to take decision 

errors into account. For the PSCO routing problem under the decision-focused learning framework, 

another ML model, denoted by ( , )if ′ ′ω a , is trained to generate predictions ˆ
id ′  for ship i  that can 

provide optimal decisions with respect to the real values of id . To measure the accuracy of the prescribed 

decisions, instead of using the loss function (19), we adopt the regret loss denoted by regretL . Unlike the 

traditional loss function, which is computed by summing the prediction error of each data example, the 

regret loss is computed based on the instance level, that is, summing the decision error of  /T R N=  

instances (recall that there are R  PSC inspection records and an instance contains N  foreign visiting 

ships). Because we plug model M2 into the decision-focused learning framework and recall that the 

objective function of model M2 is ( , )z d u , finding the optimal parameters in *′ω  over a set of T  

training instances can be established as 

 * * *

1

1arg min arg min ( , ( )) ( , ( ( , )))
T

regret j j j j
j

L z z f
T′ ′ =

′ ′ ′ = = − ∑
ω ω

ω d u d d u ω A , (18) 

where 1 2( , ,..., )j N=A a a a   is an N q×   feature matrix for instance j   (recall that a ship has q  

features), and ( , )jf ′ ′ω A  is the vector of the predicted number of deficiencies ˆ
j′d . By observing Eq. 

(21), we find that the regret loss is the sum of the difference between the objective function values derived 

from 1) the perfect solution * ( )u d   under the real deficiency number vector d  ; and 2) the optimal 

solution * ˆ( )′u d  under the predicted deficiency number vector ˆ ′d .  

As mentioned above, we use an ANN as our predictive model. However, we cannot directly use the 

original regret loss regretL  during its training process because model M2 involves integer variables and 

regretL  cannot differentiate over the arg min on ˆ ′d . Therefore, our goal is to find a differentiable and 

efficient-to-compute loss function for the decision-focused learning framework, which is introduced in 

the next section.  

5.2 Contrastive losses 

We note that model M2 cannot be easily embedded in the ANN training algorithm as it cannot be 

easily differentiated due to its structure and discontinuity. Using the contrastive losses proposed by 

Mulamba et al. (2021), we adopt the following decision-focused learning framework for the PSCO 

routing problem. Contrastive losses are proposed based on the fact that probabilistic models can define a 

parametric probability distribution over feasible solutions for an optimization problem, and maximum 
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likelihood estimation can be used to find the distribution parameters, making the observed perfect 

solution appear with the greatest probability (Mulamba et al., 2021). The exponential distribution is 

ubiquitous in ML research among popular probabilistic models, as it has the required form of the optimal 

solution to maximum entropy problem (Berger et al., 1996). This paper thus uses an exponential 

distribution to fit model M2 (Mulamba et al., 2021).  

Let U  denote the state space of the feasible solutions of an optimization problem max ( , )z
∈u

d u
U

 

with input data A , where u  is a feasible solution that satisfies ∈u U . Then, we define the following 

exponential distribution over U  , which represents the probability of deriving solution u   under 

prediction ( , )f ′ ′ω A : 

 ( )1P( | ( , )) exp ( ( , ), )f z f′ ′ ′ ′=u ω A ω A u
Z

, (19) 

where Z  normalizes the distribution over the state space U  and is expressed as 

 ( )exp ( ( , ), )z f
′∈

′ ′ ′= ∑
u

ω A u
U

Z . (20) 

If * ( ( , ))f ′ ′u ω A  is the maximizer of max ( , )z
∈u

d u
U

 for an instance with input data A , it can maximize 

Eq. (22) among all ∈u U . This implies that if we can learn the parameter ′ω , which can maximize 

the likelihood of *P( ( ) | ( , ))f ′ ′u d ω A , we can obtain the true perfect solution * ( )u d  with the highest 

probability under the prediction ( , )f ′ ′ω A . Consequently, for all training instances, our goal is to learn 

the parameters in ′ω  that can maximize the likelihood that the true perfect solutions are prescribed.  

However, obtaining an accurate Z  is almost impossible for most integer programming problems 

because it is necessary to find all of the possible solutions belonging to U . Therefore, we apply NCE 

(Mikolov et al., 2013) to obtain an estimation of Z , which requires establishing a solution pool with a 

limited number of noise samples that are feasible solutions to the optimization problem, but not a perfect 

solution; we denote the solution pool of noise samples by ′U . In Section 5.3, we describe the method 

of establishing the solution pool. In Appendix C, we introduce the detailed four forms of decision loss 

functions based on NCE that are proposed by Mulamba et al. (2021).  

5.3 Gradient-descent decision-focused learning with noise samples 

Based on the four types of contrastive losses shown in Appendix C, the main problem to be solved 

now is how to formulate the solution pool of noise samples ′U . We note that any feasible solution in 

U  is a noise sample in ′U . However, finding all of the feasible solutions in U  is time-consuming 

and nearly impossible, especially for large-scale combinatorial problems. Therefore, following Mulamba 

et al. (2021), we first initialize ′U  by solving models using the real values of d  before the training 

process, and then expand while obtaining a new solution by solving model M2 using the predicted d̂  

during the training process. Algorithm D.2 in Appendix D shows the procedure of the gradient-descent 

decision-focused learning framework with noise samples (Mulamba et al., 2021). 
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Notably, there are three main differences between Algorithm D.1 and Algorithm D.2. First, the 

data records used to train the ML model in Algorithm D.2 are averagely divided into T  instances, with 

each instance represented by a feature matrix A  and a vector of deficiency numbers d . Instantiating 

this training dataset is to compute the regret loss at the instance level and formulate the solution pool 

using these training instances. Second, in addition to initializing the parameters in ′ω , Algorithm D.2 

initializes the solution pool ′U   by solving all of the training instances beforehand. An initialized 

solution pool can be expanded by adding a new solution ˆ( )u d  after obtaining the predicted d̂  and 

solving the optimization model M2 using d̂ . Furthermore, the solution pool can be regarded as an inner 

approximation of U  , because the noise samples in ′U   can represent the convex hull of U   if it 

contains all potentially optimal solutions. When more new solutions are added to the solution pool, we 

expect to obtain a tighter inner approximation for U  (Mulamba et al., 2021). Third, there is a parameter 

solvep   representing the probability of calling a solver to obtain the current prescribed solution in 

Algorithm D.2. If a random number between 0 and 1 is smaller than solvep , the algorithm needs to call 

the solver and add the solution to the solution pool if it is not in the solution pool; otherwise, an arg max

operation on the solution pool is performed to find an existing solution that maximizes the estimated 

objective function value. This parameter may have an influence on the trade-off between efficiency and 

accuracy. That is, a larger solvep  leads to more intensive calls to the solver so that computational time is 

increased but decision error may be decreased. 

 

6. Computational Experiments 

This section presents the results of our computational experiments. In Section 6.1, we describe our 

dataset and the settings for each ML model. In Section 6.2, we compare the performance of the two-stage 

framework and the decision-focused learning framework and present several interesting findings. In 

Section 6.3, we conduct a sensitivity analysis on solvep .  

6.1 Data description 

This study uses a dataset with 3,026 PSC initial inspection records from January 2015 to December 

2019 at the Hong Kong Port and the corresponding ship-related factors of the inspected ships. Hong Kong 

Port is a member of the Tokyo MoU, which governs the Asia-Pacific region. The PSC inspection records 

are retrieved from the Asia Pacific Computerized Information System3 provided by the Tokyo MoU, and 

the ship-related factors are obtained from the World Shipping Register database4. The main work of this 

study is to route the PSCOs to maximize the number of deficiencies identified on the foreign visiting 

ships selected for inspection. This is achieved by training ML models whose input is the ships’ auxiliary 

features and whose output is the predicted number of deficiencies. This paper considers 14 auxiliary 

features that are closely related to ship condition, according to the literature (Yan et al., 2020, 2021b), 

 
3 https://apcis.tmou.org/public/. 
4 https://world-ships.com/. 
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namely, ship age, gross tonnage (GT), length, depth, beam, type, flag performance, recognized 

organization performance, company performance in the Tokyo MoU, last PSC inspection date in the 

Tokyo MoU, the number of ship deficiencies identified in the last inspection in the Tokyo MoU, the 

number of detentions in all historical PSC inspections, flag change times, and whether a ship has had a 

casualty in the last five years. We follow the data processing method used by Yan et al. (2020, 2021b) for 

these features.  

Because the regret loss is computed at the instance level, we need to instantiate the original dataset 

by dividing the original dataset into same-sized instances. We note that due to the limited size of the 

dataset, if we divide the original dataset into instances with different sizes, we can obtain different 

numbers of instances. For example, for instances in sizes (2,10) and (4,15), we can obtain a maximum of 

302 (  3026 /10 302=  ) and 201 (  3026 /15 201=  ) instances, respectively. To maintain identical 

numbers of training and test instances under different sizes in the following experiments, we generate 

more instances by adopting a bootstrap sampling method, which is a statistical procedure that resamples 

a single dataset with replacement to generate more simulated examples. Using this method, we generate 

300 instances under each instance size and divide them into a training instance set (80%, 240 instances) 

and a test instance set (20%, 60 instances). The predictive model used in this study is an ANN with a 

hidden layer of 100 neurons and ReLU (short for rectified linear unit) as the activation function 

implemented by PyTorch. A tuple of the following three hyperparameters needs to be tuned for these 

models: learning rate, epoch, and batch size. We use a grid search with fivefold cross validation on the 

training set to tune these hyperparameters in each ML model. All of the ANN models are trained using 

ADMM (short for alternating direction method of multipliers), which is an algorithm that solves convex 

optimization problems by breaking them into smaller pieces, each of which is easier to handle (Kingma 

and Ba, 2015). The proposed models are constructed using the training instance set, and their performance 

is validated using the test instance set. 

6.2 Comparison of the two-stage framework and the decision-focused learning framework 

Recall that model M2 has higher solution efficiency than model M1, and thus the following 

experiments use model M2 as the target optimization problem. Following the parameter settings for 

model M2 in Section 3.3, we compare the performance of the two-stage framework and the decision-

focused learning framework using different contrastive losses under four instance sizes, namely, (2,10), 

(4,15), (6,20), and (8,25). For the ANN models, we set the search range for the learning rate at {0.0001, 

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7}, the search range for the epochs at {5, 10, 15, 20, 25}, 

and the search range for the batch size at {1, 2, 4, 8, 16, 32}. The best hyperparameter tuples for each 

model are shown in Table E.1 in Appendix E.   

We then use the best hyperparameters to construct the ML models with different loss functions and 

different instance sizes on the whole training instance set and compute the regret loss based on the 

decision and the MSE based on the prediction on the test instance set. We rerun the models under the 

same instance size 30 times with different groups of randomly generated parameters for M2 in the same 

ranges as those introduced in Section 3.3. We then calculate the average regret loss and the average MSE 

of each model. Furthermore, we design a vote mechanism to compare the regret loss and the MSE of 

models with different loss functions and under the same instance size of 30 groups of experiments. For 
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the five experiments under the same instance size and using the same group of randomly generated 

parameters for M2 but with different loss functions, the experiment with the lowest regret loss or the 

lowest MSE obtains one point. If there is a tie among several experiments, all of the experiments with 

the lowest score can obtain one point. The final results are shown in Table 4. 

 

Table 4. The computational results of 30 experiments using models with different loss functions 
and different instance sizes. 

Instance 

size 
Method Loss function 

Metric Vote 

Average 

regret 

Average 

MSE 

Lowest 

regret 

Lowest 

MSE 

(2,10) 

Decision-

focused 

learning 

NCE_basic 5.224 20.400 1/30 0/30 

NCE_variant 4.958 23.668 0/30 0/30 

MAP_basic 5.879 35.668 2/30 0/30 

MAP_variant 3.447 53.228 23/30 0/30 

Two-stage MSE 3.814 13.370 4/30 30/30 

(4,15) 

Decision-

focused 

learning 

NCE_basic 6.79 23.38  2/30 0/30 

NCE_variant 6.01 27.27  1/30 0/30 

MAP_basic 5.63 34.52  0/30 0/30 

MAP_variant 2.88 77.97  23/30 0/30 

Two-stage MSE 3.15 13.56  6/30 30/30 

(6,20) 

Decision-

focused 

learning 

NCE_basic 5.84 16.98  5/30 0/30 

NCE_variant 3.86 25.32  8/30 0/30 

MAP_basic 7.22 28.24  0/30 0/30 

MAP_variant 2.80 26.09  12/30 0/30 

Two-stage MSE 2.15 13.21  15/30 30/30 

(8,25) 

Decision-

focused 

learning 

NCE_basic 5.71 25.42 9/30 0/30 

NCE_variant 4.70 30.39 10/30 0/30 

MAP_basic 12.50 61.12 2/30 0/30 

MAP_variant 1.82 27.10 14/30 0/30 

Two-stage MSE 1.25 15.83 8/30 30/30 

 

From the above results, we draw the following findings, which is consistent with recent studies (Hu 

et al., 2022): 

A good prediction may not lead to a good decision.  

A better prediction is indicated by a lower MSE. This metric shows that the two-stage framework 

significantly outperforms the decision-focused learning framework with respect to prediction 

performance, as the two-stage framework can always obtain the lowest MSE loss under each of the four 

instances. However, when we compare the regret loss, which indicates the decision error, the decision-

focused learning framework is superior. The ratios of the total votes of the decision-focused learning 

framework to the total votes of two-stage framework under these four instance sizes are 26:4, 26:6, 25:15, 
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and 35:8. Among the four types of contrastive losses in the decision-focused learning framework, except 

for (6,20), the MAP-variant loss obtains the highest votes under the other three instance sizes, thus 

validating its superiority. This result is explained by the format of the MAP-variant loss shown in Eq. 

(31). For example, compared with the NCE-variant loss, the MAP-variant loss does not consider 

unimportant noise samples when computing the loss, thus helping the ML algorithm focus on the tightest 

inner approximation. In addition, unlike the MAP-basic loss, the MAP-variant loss tries to keep its 

predictions close to the real values.  

The quality of the decision-focused learning framework may depend on the size of the optimization 

problem and on the size of the training dataset.  

Another obvious tendency shown in Table 5 is that the superiority of the MAP-variant loss declines 

as the instance size increases. This is indicated by the decreasing number of least-regret votes for the 

MAP-variant loss function when the instance size increases from (2,10) and (4,15) to (6,20) and (8,25). 

Furthermore, the average regret values of the two-stage framework under the instance sizes (6,20) and 

(8,25) are lower than those of the decision-focused learning framework. This result indicates that the 

decision-focused learning framework may not always perform better than the traditional two-stage 

framework. This finding was also obtained by Hu et al. (2022), and further explanations are provided 

below for the optimization problem and the dataset that we use in this study.  

When the instance size increases, it is much more difficult to obtain an accurate convex hull of the 

solution pool. It is easy to imagine that if the solution pool contains the whole set of feasible solutions, 

the size of the solution pool increases exponentially when the instance size increases. Assume that there 

are approximately 50 and 600 feasible undominated inspection templates to select under the instance 

sizes (2,10) and (8,25), respectively. Choosing two and eight inspection templates to constitute a feasible 

routing scheme generates 2
50 1225C =  and 8 17

600 3.96 10C = ×  feasible outcomes, respectively. That is, 

the full size of the solution pool under the instance size (2,10) is only 1,225, but the full size of the 

solution pool under the instance size (8,25) reaches an extremely large number. Therefore, it becomes 

exponentially difficult to obtain an accurate and tight inner approximation under the instance size (8,25). 

To visually represent this point, we count the mean (represented by points) and standard deviation 

(represented by bands) of the number of noise samples added to the solution pool in each epoch for the 

30 experiments using the MAP-variant loss function under different instance sizes, and the results are 

presented in Figure 1. 
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Figure 1. The number of added noise samples in each epoch for experiments using the MAP-

variant loss under different instance sizes  

 

As shown in Figure 1, the solution pool under a larger instance size can take in more new noise 

samples generated during the training process. Furthermore, the structure of the solution pool under a 

larger instance size can be more complex and unstable, as shown by a larger standard deviation. For 

example, for instance sizes (2,10) and (4,15), the number of added noise samples quickly converges to 0 

after epoch 2, indicating that the solution pool stops expanding. However, for instance sizes (6,20) and 

(8,25), although the number of added noise samples decreases as the training process proceeds, the size 

of the solution pool continues to grow until epoch 5, indicating that the current solution pool is not tight 

enough. Therefore, the size of the optimization problem plays a vital role in the prescribed decision 

quality of the decision-focused learning framework, which is mainly influenced by the size and structure 

of the solution pool.  

Furthermore, due to the limited size of the dataset, we use bootstrap sampling to generate more 

records. This method may create a “same-ships-but-different-decisions” situation because it is difficult 

for the auxiliary parameters (i.e., berthing locations, berthing time windows) of two “same” ships (with 

the same feature values and the same number of deficiencies) to be the same, which can lead to different 

decisions. This does not influence the training process of the two-stage framework, but introduces 

difficulty and noise to the training process in the decision-focused learning framework. When the instance 

size increases, a ship is more likely to be resampled, and the prescribed quality of the decision-focused 

learning framework is adversely affected.    
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6.3 The influence of parameter solvep  

In Algorithm D.2, parameter solvep  is used to control the frequency of calling the solver to solve 

model M2 to expand the solution pool. A larger solvep  represents a greater possibility of calling the solver, 

increasing the possibility of adding a new solution to the solution pool. However, calling a solver does 

not necessarily result in new information that can tighten the convex hull of the inner approximation, as 

the newly derived solution may have existed in the solution pool; however, this approach definitely 

increases the training time of Algorithm D.2. To investigate the influence of solvep  on the trade-off 

between efficiency and accuracy, we change the value of solvep  from 0.2 to 1 with a step size of 0.2, and 

train the models using the MAP-variant loss under different instance sizes with each value of solvep . We 

rerun models 30 times with different groups of randomly generated parameters for M2. Then, we obtain 

the average regret and average training time of the 30 experiments for each model. The final results are 

shown in Figures 2 and 3. 

Figure 2 shows that the average regret may have a downward trend when solvep   increases, 

especially under instance sizes (6,20) and (8,25). However, it does not show an obvious linear relationship, 

indicating that not all of the solutions obtained by calling the solver are new to the solution pool. 

Furthermore, Figure 2 shows that the downward trend under instance sizes (6,20) and (8,25) is more 

significant than under instance sizes (2,10) and (4,15). As explained in Section 6.2, this result is due to 

the difficulty of finding a good inner approximation for large-sized optimization problems. In contrast, 

under instance sizes (2,10) and (4,15), the initial solution pool already functions well as a good inner 

approximation. Accordingly, increasing the value of solvep   does not have a significant effect on 

decreasing regret for models under these instance sizes. 

 
Figure 2. The average regret of the 30 experiments using models adopting the MAP-variant loss 

with different solvep  and different instance sizes 
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Figure 3. The average training time of the 30 experiments using models adopting the MAP-

variant loss with different solvep  and different instance sizes 

 

Figure 3 shows that the average training time has a strict upward trend when solvep  increases. As the 

model solving time shown in Section 3.3 does not exhibit a linear relationship as the instance size 

increases, the slope of the fitted line connecting the scatters becomes steeper as the instance size increases. 

Therefore, these results indicate that for models under instance sizes (2,10) and (4,15), calling the solver 

to add new solutions to the solution pool by sampling seems to result in little improvement in decision 

quality, as the initial solution can function well as a good inner approximation. Therefore, to reduce the 

training time of ML models, we recommend setting a small value for solvep  under instance sizes (2,10) 

and (4,15). However, for models under instance sizes (6,20) and (8,25), because the initial solution pool 

may not function as a good inner approximation, we recommend setting a moderate value for solvep  

between 0.4 and 0.8, thus achieving a balance between efficiency and accuracy. 

 

7. Conclusions 

With the development of ML technologies and the availability of PSC data, this study investigates 

the PSCO routing problem with the aim of maximizing the number of deficiencies that can be identified 

from inspected ships considering practical constraints. Because ship condition is not known to port 

authorities when they route PSCOs, the traditional solution to this problem involves a two-stage 

framework that first predicts the number of deficiencies of each foreign visiting ship and then uses that 

prediction to solve the PSCO routing problem. However, the loss function used in this framework does 

not consider the issue of the decision error. Therefore, we adopt a decision-focused learning framework 

to solve the PSCO routing problem by plugging the optimization problem directly into the training 

process of the ML model. Under this framework, the PSCO routing problem must be solved tens of 

thousands of times. Given that the original PSCO routing problem is NP-hard, computational complexity 
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and scalability are two major obstacles to putting this decision-focused learning framework into practice. 

To overcome these two issues, we first transform the original PSCO routing problem to be more compact 

by designing undominated inspection templates and then use a family of surrogate loss functions based 

on NCE. Our computational experiments result in several interesting findings. First, a good prediction 

may not lead to a good decision, which is seen from the fact that under some instance sizes, the decision-

learning framework is superior to the two-stage framework with respect to decision quality. Second, the 

quality of the decision-focused learning framework may depend on the size of the optimization problem 

and on the size of the dataset. This quality decreases as the instance size increases, because it is difficult 

for ML models to learn the structural properties of large-scale optimization problems. Third, the adopted 

decision-focused learning framework with a solution pool containing noise samples can guarantee a 

balance between training efficiency and decision quality; thus, it does not require frequent 

reoptimizations during the training process.  

As the first study to propose routing decisions for PSCOs under different prescriptive analytics 

frameworks, our research has the following limitations. Theoretically, regarding the adopted decision-

focused learning framework, the proposed decision loss functions are all surrogate loss functions that 

approximate the ground-truth decision losses. To use the ground-truth decision losses, the proposed 

decision-focused learning framework could be applied to other ML models by taking advantage of their 

structural features, such as random forest and k-nearest neighbor. The decision-making performance of 

these alternative ML algorithms for the PSCO routing problem should be analyzed and compared with 

the results obtained using ANNs in our study. Practically, our formulation of the PSCO routing problem 

does not consider more complex real-world constraints, which may result in deviations from actual 

situations. For instance, foreign visiting ships might change their berthing locations while PSCOs conduct 

their inspections, making the PSCO problem into a dynamic routing problem. Moreover, the inspection 

time for each ship may vary depending on individual ship conditions. Future research could tackle these 

practical limitations and explore more advanced and realistic models to better represent the complexities 

of the PSCO routing problem. 
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Appendix A. Illustrative examples 

Example A.1. Assume that a PSCO at the Hong Kong port spends two hours inspecting a ship and one 

hour traveling from the Kwai-Tsing Container Terminal (KTCT) to the River Trade Terminal (RTT). 

Hence, in six hours, a PSCO can inspect either one ship at the KTCT and another at the RTT, or three 

ships at a single terminal (i.e., KTCT or RTT). Assume that we know in advance that two foreign visiting 

ships at the RTT have six and eight deficiencies, respectively, and three foreign visiting ships at the KTCT 

have nine, four, and two deficiencies, respectively. Then, if routing is not considered, the optimal 

inspection scheme is to inspect the two ships at the RTT that have a combined 14 deficiencies, and the 

ship at the KTCT that has nine deficiencies, resulting in a total of 23 detected deficiencies. However, if 

the traveling time from the RTT to the KTCT is considered, the proposed inspection scheme set forth 

above is infeasible when the PSCO only has six working hours available. Thus, considering the PSCO 

traveling time, the modified optimal inspection scheme should inspect all three of the ships at the KTCT, 

resulting in a total of 15 detected deficiencies. □ 

Example A.2. Suppose that a port authority needs to choose between ship A and ship B for inspection. 

Ship A has five deficiencies and ship B has 10 deficiencies, but these numbers are unknown prior to the 

inspection. In an environment of perfect information, ship B should be inspected. Suppose that we have 

two models: model I and model II. Model I predicts eight deficiencies in ship A and seven in ship B, and 

model II predicts two deficiencies in ship A and three in ship B. It follows that model I outperforms model 

II in terms of prediction accuracy. However, when using model I, ship A is selected for inspection, 

because it is predicted to have more deficiencies than ship B. In contrast, when using model II, ship B is 

selected for inspection, showing that the predictive model with worse performance in terms of prediction 

accuracy leads to a better decision. □ 

  



26 
 

Appendix B. Procedures of generating undominated inspection templates (Yan et al, 2021a) 

Recall that the total daily working time of a PSCO is eight hours, and the duration of an inspection 

is two hours. This implies that a PSCO can inspect zero, one, two, or three ships in one day, considering 

both the duration of the lunch break and the time spent travelling between different locations. Therefore, 

the PSCO routing problem can be reformulated as the problem of selecting and assigning the sets of ships 

that can be inspected to all available PSCOs. Define the number of ships inspected by a PSCO during a 

working day as L , where {0,1,2,3}L∈ . Given that L ships are selected from N visiting foreign ships, 

the total number of combinations is ( )!/ !( )!)L
NC N L N L= − . Denote a combination of L ships by the set 

S , where S L= . We then define set S  as an inspection template when it is feasible for one PSCO to 

inspect all the ships in the set in a single working day.  

Procedure B.1 illustrates the basic idea of selecting the inspection templates as follows. Although 

we can obtain L
NC  combinations (sets of templates), not every combination is feasible considering the 

hard constraints on the visiting time windows and the travel time between two locations. To examine 

whether it is feasible for a single PSCO to inspect all of the ships in set S , we first need to verify whether 

there exists a feasible route that satisfies all of the constraints. For a feasible route, a PSCO needs to visit 

3L +  locations (including the office as a starting location, the berthing locations of L ships, the lunch 

break location, and the office as an ending location) to finish all inspection work during a day. We define 

α  as a location, and each location is labeled with a duration time tα , an earliest start time αλ , and a 

latest end time αλ . If a PSCO visits a location where ship i  is berthed for an inspection, then 2tα = , 

iOαλ =  , and iCαλ =  ; if a PSCO visits the office when starting work ( 0i =  ) or finishing work 

( 2i N= + ), then 0tα = , 8αλ = , and 17αλ = ; if a PSCO visits the lunch break location, then 1tα = , 

11αλ =  , and 13αλ =  . Considering that the starting and ending location, which is the office, is 

indifferent in each set, there are ( 1)!L +  candidate routes for the PSCOs to complete their tasks (note 

that not all of the candidate routes are feasible, because we do not consider the travel time between two 

locations and the different time windows of foreign visiting ships). For a particular route, we define the 

locations visited by a PSCO as 1 3( ,..., )Lα α + , where lα  is the thl  location to visit; 
l

tα , 
lα

λ , and 
lα

λ  

are the visiting duration, the earliest visiting time, and the latest visiting time, respectively, for location 

lα . To ensure that 3L +  locations can be visited in the defined sequence of a route within the specified 

working time limit, we define the decision variable lζ  as the start time of visiting location lα . Then, 

3L +  locations can be visited in the above sequence by one PSCO if and only if there is a set of solutions 

,  1,..., 3l l Lζ = + , that satisfies the following constraints: 

  1,..., 3
ll l Nαζ λ≥ = +  (21) 

  1,..., 3
l ll t l Nα αζ λ+ ≤ = +  (22) 

 1 , 1  1,..., 2
ll l l lt t l Nαζ ζ+ +′≥ + + = + , (23) 
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where , 1l lt +′  denotes the travel time from location lα  to location 1lα + . 

Proposition B.1: For a candidate route, whether constraints (11)–(13) have a feasible solution is 

guaranteed by the following conditions: for location 1α , let its start time 
1

*
1 8αζ λ= = ; for location 

,  2,..., 3l l Lα = +  , let its start time 
1

* *
1 1,max{ , },  2,..., 3

l ll l l lt t l Lα αζ ζ λ
−− −′= + + = +  ; if 

* ,  1,..., 3
l ll t l Lα αζ λ≤ − = + , then the candidate route is feasible, otherwise it is infeasible. 

Property B.1: For two inspection templates S   and S ′  , if S S ′≠   and S S ′⊆  , then inspection 

template S  is dominated by inspection template S ′ . If inspection template S ′  does not contain any 

other inspection template, it is considered an undominated inspection template because inspecting it can 

always identify no fewer deficiencies than inspecting any other inspection template contained within it. 

Procedure B.1. Generate undominated inspection templates. 
Input: set of locations {0,..., 2}i N∈ +  ; duration spent at each location  ( 0,..., 2)it i N= +  ; time 
window of each location [ , ] ( 0,..., 2)i iO C i N= + .  
Output: the set of undominated inspection templates H , binary variable parameter h

iη  indicating 
whether ship i  is contained in inspection template h . 
Initialize = ∅H , 0h

iη = , 1,..., ,  0i N h= = . 
For 0,1, 2,3L =  do: 

Formulate all combinations containing L ships among all visiting ships denoted by Q. 
For each combination q∈Q  do: 

Initialize feasibility = False. 
Define set V  that contains all candidate routes of starting work, inspecting the ships in 
q , having lunch break, and ending work. 
For each candidate route v∈V  do: 

Test the feasibility of v  using Proposition B.1. 
If v  is feasible: 

{ }q← ∪H H . 
Set 1h

iη =  for those locations included in q . 
Set 1h h← + . 
Update feasibility = True. 
Break. 

End if 
End for 
If feasibility = True: 

Continue. 
        End if 

End for 
End for 
Delete dominated inspection templates in H  using Property B.1.  

 

  



28 
 

Appendix C. Four forms of contrastive loss functions (Mulamba et al., 2021) 

NCE-basic loss. We first define noise samples as solutions to the optimization problem that are 

feasible but different from the perfect solution * ( )u d   and that belong to the subset ′U  , where 

*{ ( )}′ ⊂ u d\U U  . These noise samples constitute the solution pool that can be regarded as an 

approximation of Z . Therefore, ′U  is the solution pool that we need. Next, our goal is to learn the 

parameter ′ω  by maximizing the product of the ratios between the probability of the perfect solution 

*u   under the prediction ( , )f ′ ′ω A   and the probability of any noise sample nu   in ′U   under the 

prediction ( , )f ′ ′ω A  for any instance with input data A , which is expressed as 
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To minimize the decision loss, the above equation can be transformed into the following NCE-basic loss 

function: 

 ( )*

1
( ( , ), ) ( ( , ), )

n

T
n

NCE j j j
j

L z f z f
= ′∈

′ ′ ′ ′= −∑ ∑
u

ω A u ω A u
U

. (25) 

This NCE-basic loss function can be easily embedded in the training process for ML algorithms, as both 
nu  (noise sample) and *

ju  can be computed before the training process if we can formulate a solution 

pool ′U , and they can be regarded as constants.  

MAP-basic loss. Furthermore, instead of considering all of the noise samples in ′U  when 

estimating the regret loss, we consider a special form of NCE called maximum a posteriori (MAP) 

estimation (Goodfellow, 2015). MAP estimation only considers the noise sample with the highest 

probability of achieving the optimal objective function value for each instance under the current 

prediction. Similarly, learning the parameter ′ω  by maximizing the product of the ratios between the 

probabilities of the perfect solution *u   and the noise sample in ′U   with the highest likelihood of 

generating the optimal objective function value based on the current prediction can be expressed as 
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where * arg max[ ( ( , ), )]
n

n
j jz f

′∈

′ ′=
u

u ω A u

U
. Accordingly, the above equation can be transformed into the 

following MAP-basic loss function: 
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 ( )* *

1
( ( , ), ) ( ( , ), )

T

MAP j j j j
j

L z f z f
=

′ ′ ′ ′= −∑ ω A u ω A u . (27) 

NCE-variant loss and MAP-variant loss. We note that the objective function of model M2 is a 

linear function. Therefore, the original NCEL  and MAPL  can be rewritten in the following linear form: 

     ( )*

1
( , )( ) ,

n

T
n

NCE j j
j

L f
= ′∈

′ ′= −∑ ∑
u

ω A u u
U

                 (28) 

      ( )* *

1
( , )( )

T

MAP j j j
j

L f
=

′ ′= −∑ ω A u u . (29) 

By observing Eq. (28) and Eq. (29), we find that if jd  for instance j  is predicted to be 0 , namely, 

( , ) 0jf ′ ′ =ω A , NCEL  and MAPL  are 0, which is the minimum loss. To avoid this case, we introduce 

variants of Eq. (25) and Eq. (27) by replacing ( , )jf ′ ′ω A  with ( , )j jf ′ ′ −ω A d . This modification 

can be regarded as adding a regularization term to keep ( , )jf ′ ω A  close to jd . Therefore, we can 

obtain the NCE-variant loss and MAP-variant loss as follows: 

   ( )*

1
( ( , ) )( ) ,

n

T
n

NCE v j j j
j

L f−
= ′∈

′ ′= − −∑ ∑
u

ω A d u u
U

              (30) 

          ( )* *

1
( ( , ) )( )

T

MAP v j j j j
j

L f−
=

′ ′= − −∑ ω A d u u . (31) 

By observing Eq. (30) and Eq. (31), we find that the NCE-variant loss and MAP-variant loss cannot be 

minimized by predicting jd  to be 0 . These two losses can only be minimized by letting ˆ
jd  be close 

to jd . In this way, the prescribed solution under ˆ
jd  can approach the perfect solution *

ju , which is 

the ultimate goal of decision-focused learning. 
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Appendix D. Algorithms for two-stage and decision-focused learning frameworks 

Algorithm D.1. Two-stage framework. 

Input: Training data 1{( , )}R
i i iD d == a . 

Hyperparameters: learning rate α , epochs, batch size. 
Initialize ω . 
For each epoch do: 

For each batch do: 
For each example a  do: 

Predict the number of deficiencies of a , denoted by ˆ ( , )d f= ω a . 
End for 
Calculate the accumulated MSE loss b

MSEL  for the set of examples in a batch. 

Update 
ˆ

ˆ

b b
MSE

b

L
α
∂ ∂

← −
∂∂
dω ω
ωd

 , where ˆ bd   denotes the vector of predicted values of 

examples in a batch. 
End for 

End for 
Predict the numbers of deficiencies of a set of new examples ′A  , denoted by a vector 

*ˆ ( , )f′ ′=d ω A , where *ω  is the final optimal weight of the trained ANN. 

Input ˆ ′d  into the downstream optimization problem M2 to generate PSCO routing decisions. 
 

Algorithm D.2. Decision-focused learning framework (Mulamba et al., 2021). 

Input: Auxiliary parameters in model M2; training data 1{( , )}T
j j jD =′ = A d , a fixed parameter solvep . 

Hyperparameters: learning rate α′ , epochs, batch size. 
Initialize ′ω , *{ ( ) | ( , ) }j j j D′ ′= ∈u d A dU . 
For each epoch do: 

For each batch do: 
For each instance A  do: 

Predict the number of deficiencies of the examples in instance A  , denoted by 
ˆ ( , )f ′ ′=d ω A . 

If a random number between 0 and 1 is smaller than solvep : 

Obtain ˆ( )u d  by solving model M2 with d̂ . 
ˆ{ ( )}′ ′← ∪ u dU U . 

Else: 
ˆarg max( ( , ))z

′∈
′ =

u
u u d

U
. 

{ }′ ′ ′← ∪ uU U . 
End if 

End for 
Calculate the accumulated regret loss 

*u
bL  for the set of instances in a batch. 

* ˆ
ˆ

u b
b
b

L
α

∂ ∂′ ′ ′← −
′∂∂

Dω ω
ωD

  where ˆ bD  dnotes the matrix of the predicted number of 

deficiencies of the examples in a batch. 
End for 

End for 
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Appendix E. Hyperparameter tuning results 

Table E.1. Hyperparameter tuning for each model 

Instance Method Loss function 
Hyperparameter 

Learning rate Epochs Batch size 

(2,10) 
Decision-focused learning 

NCE_basic 0.0005 25 32 

NCE_variant 0.0001 25 16 

MAP_basic 0.01 25 16 

MAP_variant 0.05 5 16 

Two-stage  MSE 0.05 5 16 

(4,15) 
Decision-focused learning 

NCE_basic 0.0005 10 8 

NCE_variant 0.0005 5 8 

MAP_basic 0.05 25 16 

MAP_variant 0.01 5 16 

Two-stage MSE 0.005 25 32 

(6,20) 
Decision-focused learning 

NCE_basic 0.001 5 16 

NCE_variant 0.0001 25 16 

MAP_basic 0.05 15 16 

MAP_variant 0.0005 5 16 

Two-stage MSE 0.01 25 32 

(8,25) 
Decision-focused learning 

NCE_basic 0.0005 5 16 

NCE_variant 0.0001 15 16 

MAP_basic 0.05 20 16 

MAP_variant 0.0005 5 16 

Two-stage MSE 0.005 15 32 
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