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SUMMARY

There are numerous statistical methods for quantitatarelinkage analysis in human studies.
An ideal such method would have high power to detect genaticcbntributing to the trait,
would be robust to non-normality in the phenotype distiidmtwould be appropriate for general
pedigrees, would allow the incorporation of environmentalariates, and would be appropriate
in the presence of selective sampling. We recently destalgeneral framework for quantitative
trait linkage analysis, based on generalized estimatingtéuns, for which many current methods
are special cases. This procedure is appropriate for geretmrees and easily accommodates
environmental covariates. In this paper, we use computaulations to investigate the power and
robustness of a variety of linkage test statistics builtrupor general framework. We also
propose two novel test statistics which take account ofdrigmoments of the phenotype
distribution, in order to accommodate non-normality. Tehesw linkage tests are shown to have
high power and to be robust to non-normality. While we haveyebt examined the performance
of our procedures in the context of selective sampling viamater simulations, the proposed

tests satisfy all of the other qualities of an ideal quatitiggtrait linkage analysis method.

http://biostats.bepress.com/jhubiostat/paper28



INTRODUCTION

Many human disease phenotypes are inherently quanti{atige hypertension). Others are
generally viewed as dichotomous (e.g., diabetes) but aselyl associated with intermediate
guantitative phenotypes (e.g., glucose tolerance). Nousestatistical methods have been
developed for linkage analysis of quantitative traits imfam studies (reviewed in Feingold 2001,
2002). Haseman-Elston regression (Haseman and Elstor) i@g2ne of the first such methods
and remains widely used. In this approach, the squaredeiiftes between the quantitative
phenotypes in sibling pairs are regressed upon the estimpabdportion of alleles that they share
identical by descent (IBD). A statistically significant rige slope in the regression indicates
linkage to a quantitative trait locus (QTL). Based on an oleéon by Wright (1997), a number
of extensions to Haseman-Elston regression, which exadditional information from the
sibling pairs’ phenotypes, have been proposed (Drigalé®ia8; Elston et al. 2000; Xu et al.
2000; Forrest 2001; Sham and Purcell 2001). Haseman-Hisgpassion has also been extended
for use with larger sibships (Olson and Wijsman 1993).

A second approach for quantitative trait linkage analysisuman pedigrees involves the use
of variance components models (Amos 1994, Almasy and Blanb@98). The quantitative
phenotypes for the individuals in a pedigree are assumedltmfa multivariate normal
distribution, with the correlation between relatives’ pbg/pes depending on the proportion of
alleles IBD at a putative QTL. The variance components aggrdvas been shown to have
essentially optimal power in the case that the normal madebirect (Feingold 2001), but is not
robust to departures from normality: when the normal moslabit correct, the type | error rate

for the test of linkage can be greatly inflated (Allison etl#199).
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A third approach involves the use of score tests (Tang argh@iad 2001, Putter et al. 2002,
Wang and Huang 2002a). Such score tests have the advansdgetliiie they are based on a
normal model, they can be made robust to departures fromaiyntinally, Sham et al. (2002)
described a regression-based approach in which the rotes phenotype and IBD status are
interchanged: IBD status is regressed upon the quangtptienotype. This approach has been
shown to be both powerful and robust.

Chen et al. (in press) described a general framework fortgative trait linkage analysis in
human pedigrees, for which many of the above approachepacescases. The framework
makes use of generalized estimating equations (GEE; Liad@ager 1986), in which one must
specify a working covariance matrix. Different choiceslostworking covariance matrix lead to
different methods, and, in particular, one may specify wuaglcovariance matrices so that this
GEE method is identical to Haseman-Elston regressioraicegktensions to Haseman-Elston
regression (including those of Sham and Purcell (2001) dadrCand Wijsman (1993)), and the
variance components approach. Under the GEE frameworkluaéns estimates of the various
genetic parameters, with different choices of the workiogaciance matrix leading to different
estimates. There is additional flexibility in the choiceiokhge test statistic.

Cuenco et al. (2003) and Szatkiewicz et al. (2003) used ctanpimulations to investigate
the relative performance, in terms of power and robustridsssentially all available approaches
for quantitative trait linkage analysis in sibling pairstmparticular emphasis on the case of
selected samples. In this paper, we extend their researohestigate a variety of approaches for
guantitative trait linkage analysis in sibships and exéehpedigrees, though we focus exclusively

on the case of random ascertainment. We make use of the g&ieEeframework of Chen et al.
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(in press), and investigate the power and robustness of@waidety of test statistics, including
the likelihood ratio test, Wald tests, score tests, andsbbersions of these statistics.

In addition, we propose two additional test statistics Whitke account of the higher
moments (skewness and kurtosis) of the phenotype distrifpuh order to accommodate
non-normality. These new linkage tests are shown to be tabumn-normality but maintain the

power of the variance components method.
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METHODS

Chen et al. (in press) described a general framework fortgative trait linkage analysis in
general pedigrees which makes use of generalized estgredumations (GEE) and for which
many of the current quantitative trait linkage methods aecgl cases, corresponding to different
choices for a working covariance matrix. The approach hasiderable flexibility, both in the
choice of working covariance matrix and in the ultimate cleadf test statistic. In this section, we
describe a variety of linkage tests based on this generakfnark. In the following section, we
present the results of computer simulations to investithegpower and robustness of these
statistics.

Consider a set of general pedigrees with no inbreeding,etng;ldenote the quantitative
phenotype for théth individual in thekth pedigree. Le®,;; andA;;; denote the kinship and
fraternity coefficients, respectively, for individualand; in pedigreet, and letr,;; andsy;;
denote their expected proportion of alleles shared IBD aagtobability that they share 2 alleles
IBD, respectively, at a putative QTL, given multipoint merldata. Let> ando? denote the
additive and dominance variance, respectively, due toatipatQTL, and let?,, 072, 02 ando?
denote the additive polygenic variance, dominance polggeriance, shared environmental
variance and non-shared residual environmental variaaespectively. Define
pa = (07 + 05,)/20%, pa = (0] + 02,)/40?, andp, = o2 /o*. Note thatp, + p, is the phenotypic
correlation for parent-child pairs, and + p; + ps is the phenotypic correlation for sibling pairs.

While our general GEE method allows the easy incorporati@meironmental covariates, we

will focus here on the simple case of no covariates, and whduassume that the population

mean phenotype is known. Without loss of generality, wemssH yy;) = E(yxi| M) = 0,
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whereM ,; denotes the available multipoint marker data for individua pedigreek. The

covariance of the phenotypes for individuabend; in pedigreek is

o? 1=
Q. =
kij —

(4®pijpa + 40kijpa + ps)o® i F
The covariance of the phenotypes for individuadsd; in pedigreet, conditioned on the

available marker data, is

o? i=3
Qrij =

02 (Thij — 2®hij) + 03 (Rrij — Drig) + Qy; 147
The parameters used are linkage parameteendc?, and segregation parameters py, ps, o>
This parameterization is equivalent to the more commonddysarameters
{02,03,00,, 02,02, 02}, but results in somewhat simplified calculations. In theeaafsdata
exclusively on sibships., p4, andp, cannot be separately estimated, and so we consider the
reduced parameter set?, o2, p, o?).

In the GEE method of Chen et al. (in press), one considerpddigreek, the vector

Sy = ( yh (Y2 — 02 Veclyuyl — Q) )/, where Ve€A) is a vector consisting of the upper

off-diagonal elements of a matri%, and a matrix,D;, whose columns consist of the derivatives
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of S with respect to each of the parameters, as follows:

Dy = 0 0 0 0 0 1

T — 201 R — Ap 40’2(I>k 40‘2Ak o? 4p, P + 4pdAk + Ps

Here thery, ki, i, Ay are vectors of lengthy(n, — 1)/2, and the Os and 1s in the first two rows
are vectors of length,. One then chooses a working covariance matifiy,(that is, an assumed

form for the conditional covariance matrix 6f), and takes as parameter estimates the solutions

of the equations
> DIW'S = 0 1)
k

Different choices of the working covariance matni¥;,, lead to different estimates. In

particular, one may choose the following Gaussian workimgadance matrix (Prentice and Zhao

1991):

Q. 0 0
G, = 0 2Q7,] (2% 2kim)

0 [QQkuijvj] [kaulezvm + Qkqukvl]

forl1 <i,j<ng,1<u<v<ngandl <[ < m < ng, wheren, is the number of individuals in

pedigreek, and[2Q;, ;] denotes a matrix consisting of eleme2e¥ .. This is the conditional

covariance matrix of}, if i, given the available marker data is assumed to follow a naritite
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normal distribution. Wheu-,, is used as the working covariance matfii,, in the estimating
equations (1), then the GEE estimates correspond exadtig tmaximum likelihood estimates
(MLESs) for the variance components model with the usual raditgnassumption.

The GEE method, as described so far, provides estimates phitameters
(02,02, pa, pa, Ps, o2). In the remainder of this section, we describe a number dipteslinkage

a’

test statistics, including likelihood ratio tests, Waldttg and score tests.

Likelihood ratio tests

In the traditional variance components model (Amos 199Mmady and Blangero 1998), the
trait values of pedigreg, conditional on the marker data, are assumed to follow aivauiate
normal distribution with covariance matriy; (defined above). The test statistic for the likelihood

ratio test is

TR = Y O+ D () e~ Y I = D e @
k k k k

where(), andQ)) are the MLESs of the covariance matrix under the full model ander the null
model, respectively.

In previous investigations (e.g., Almasy and Blangero )98 putative QTL was assumed
to exhibit no dominance (i.es;? = 0). The null distribution of the likelihood ratio test stdttsis
then asymptotically a 50:50 mixture of@(0) (that is, a point mass at 0) and¢&(1) distribution
(Self and Liang 1987). If dominance is considered in forntimgtest statistic, which we will
denotel™R P, the null distributionis d /2 — p : 1/2 : p mixture of x?(0), x*(1) andx?(2) (Self

and Liang 1987). In Appendix A, we describe a general proeethr calculating the mixing
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proportion,p, which had not previously been determined (Pratt et al. 200ér sibship data, the
null distribution is around.4 : 0.5 : 0.1 mixture of x%(0), x*(1) andx?(2), independent of the
size of the sibship.

Use of the likelihood ratio test statistic has previouslgishown to exhibit an inflated type |
error rate in the case that the multivariate normal modeidsiirect (Allison et al. 1999). This
problem may be corrected by estimating the true null distrdn of the statistic either through an
analytical approach (e.g., Blangero et al. 2000) or an aogbiapproach such as a Monte Carlo or
permutation procedure. In the simulation study in the negtisn, we consider the following
Monte Carlo procedure. We fix the genotypes for all foundmdjviduals in each pedigree and
generate random inheritance vectors for the remainingiithgals in each pedigree, calculate the
likelihood ratio test statistic, and repeat the procesdipialtimes. The null distribution of the
test statistic is estimated based on these simulated datarticular, an appropriate critical value
for the statistic is estimated. This procedure is denotdtelL R-MC or LR-MC-D, depending on

whether dominance is considered.

Wald tests

Due to the complexity of taking appropriate account of theo@nce effect in the Wald and
score tests, all of the remaining linkage tests assumeltbaiutative QTL acts strictly additively,
and the parameter set is reduceddd, p., pa, ps, o*) for general pedigrees @2, p, o) for

sibships. We will discuss the influence of ignoring the daamice effect in the simulation section.
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11
The test statistic for the Wald test is

~4

TWaId — Oq ) (3)
{(Z D6 D

11

where the 11 subscript indicates to take the (1,1) elemetheomatrix.

A robust Wald test (Liang and Zeger 1986) has test statistic

TWald-R _

(4)

{(Z0 DL D) SUDLGE SO(DLGE 1)/ (5, DG D)

Under the null hypothesis of no linkage, both Wald tests @&s®iduted asymptotically as a 50:50

mixture of x2(0) andx?(1).

Score tests
Putter et al. (2002) described the theory of score test fantjiative trait linkage analysis.
Wang and Huang (2002a) proposed a robust score test spieiiicaibships. We first

summarize these previously-described score tests.

, /
Define D¢ = ( 0 0 7} — 2%, ) Sk = ( yi (i — o) Veclyyi — B ) and

QY 0 0

G = | 0o p@

kij

)] 2% L]

0 [29211]921)]] [qulggvm + qumggvl]
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forl1 <i,7<ng,1<u<v<ngandl <[ < m < ny,. The test statistic for the score test is

Tscore (Zk DZ,<G2:>_1S/(3)2

= _ 5
>, DY/(C) 1D} ©

A more robust version of the score test is the following:
Tscore-R — (Zk Dg/(Gg)_ISlg)Q ) (6)

2 k(DR (GR)H50)?

The test proposed by Sham et al. (2002) and implemented softvware MERLIN (Abecasis et
al. 2002) has been shown to be equivalent to another robois test (Chen et al. in press),

corresponding to the statistic

al ( 10\—1 Q0\2
TMERLIN - _ (Zk Dk (sz) Sk) (7)
0O O
Sefsrent| o [ 6ns
0 Eﬁk

where the elements in the covariance maltjx have the form

CoV(Tyij, Thim) — (ETkijTrim| Mk] — TkijTrim ), Where CoVmy,;, mm) Can be calculated given
only the structure of théth pedigree, an& |71, | M}] can be calculated based on the
posterior distribution conditional on marker informatidf,.

Wang and Huang (2002a) described a robust score test sgeciibship data; their statistic
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can be rewritten in matrix form (see Appendix B) as

Tscore-S — (Zk Dg/(Gg)_ISlg)Q (8)
- 0 0
(.. =20 )2 x 3, | SP(G)~ (GRS
0 I

where/ is an identity matrix of siz@“(";_l) X "’“("2’“_1). The robustness of this test relies on the

independence of allele-sharing between different silpiaigs, and so it is generally not
applicable for pedigrees of more complex structure (War@220Wang and Huang (2002a)
described a further approach, in which the phenotypes aneecied to ranks which are then
transformed to follow a normal distribution; a robust scie® (e.g. score-S used by Wang and
Huang 2002a) can then be applied on the transformed data.

Note that, under the null hypothesis of no linkage, all ofg¢here test statistics are distributed

as a 50:50 mixture of?(0) andy?(1).

Higher moment score tests

The above score tests are derived from the conditionalti&et under the assumption of
normality. The only difference among them is in the methadeftimating the variance of the
score (the denominator in the statistic). Here we proposdtamative approach: novel score
tests based on a quasi-likelihood that incorporates irdition on the higher moments of the

phenotype distribution.
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Rather than using the Gaussian working covariance maifixwe use the following:

Q0 4503 T 0
M= 0l R0+ 30" ] 200 ©)
0 [29211]9211]] [qulﬂgvm + qumggvl]

wherel! is an identity matrix of size,, x ny, andy; andy, are empirical moment estimates for
skewness and kurtosis parameters of the distribution df phenotype, respectively, which are
both O for the case of a normal distribution. To be more spedffines? = (Y — Y)2, where

overline represents the sample mean, then

G- V=T

T O ST

We consider two different test statistics based on the wgrkbvariance matrix}/y. The first

is a score statistic analogous to the statit©©in equation (5):

THM _ (Zk DZ/(]\A{IS)_ISQ)2 (10)
> DY (M) Dy

We can also apply the MERLIN-type robust estimator for thearece of the estimating function,
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to make the higher moment approach even more robust

) N2
>k DY (M)1S)
THUR ( k ) . (11)
o 0 0 . .
s star | T | aros

0 X

k
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COMPUTER SIMULATIONS

In order to investigate the power and robustness of the djakaethods described in the
previous section, we conducted a computer simulation stiyle the methods may
accommodate pedigrees of varying size and structure, wadened the simple case that all
pedigrees in a study were of the same structure: eithengiphirs, sibships of size four, sibships
of size six, or the three-generation cousin pedigree witmdi¥iduals investigated by Sham et al.
(2002) and displayed in Figure 1.

A quantitative phenotype was simulated with a single majadjelic QTL, with minor allele
frequency 0.3 and explaining 10% of the total phenotypicavere, plus 10 additive, unlinked
diallelic polygenes. The alleles at the QTL either actedtaddy, or the more-frequent allele was
fully recessive. In the simulations of sibships, the polyggaccounted for 30% of the total
phenotypic variance, and there was an additional sharetbenvent effect accounting for 20%
of the phenotypic variance. In the simulations with the copedigree, the polygenes accounted
for 50% of the total phenotypic variance and there was noceshanvironment effect. The
remaining phenotypic variation was due to an unshared @mvient effect that was either
normally distributed or followed &?(1) distribution.

A single marker was simulated to be either completely linkethe QTL (recombination
fraction,#=0) or unlinked ¢=0.5). For most simulations, the marker was fully informeti
though in one set of simulations, with sibships of size ftlug, marker had four equally frequent
alleles.

The number of families were chosen so that, analyticallyMiriance components method

would have 80% power to detect the QTL. There were either 2888hg pairs, 440 sibships of
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size four, 168 sibships of size six, or 387 cousin pedigraédsimulations were performed with
5000 replicates, so that the results have standard erfo007.

The simulation results are presented in Tables 1-5. Theadststudied include the
likelihood ratio test (LRT, LRT-D), the likelihood ratiogewith 100 Monte Carlo simulations
used to determine the appropriate critical value (LR-MC;MR-D), the Wald test (Wald), a
robustified Wald test (Wald-R), the score test (score), asbbcore test (score-R), the robust
score test for sibships (score-S; Wang and Huang 2002ayn¢kieod implemented in
MERLIN-REGRESS (MERLIN; Sham et al. 2002), our higher motreggproach (HM) and a
robust version of the higher moment approach (HM-R).

Table 1 corresponds to the case of a normal model with thieslé the major QTL acting
additively and with a fully informative marker. All methodse seen to have appropriate type |
error rate, though the robust score test (score-R) is somtevamservative in the case of a smaller
number of larger sibships. All methods have similar powesugh the Wald tests and the robust
score test have somewhat lower power, especially for gissifisize six. Note that the robust
score test of Wang and Huang (2002a) is appropriate onhyjilfshgs, and so was not
investigated for the case of the cousin pedigree. The LR-M&hod also has somewhat reduced
power, which may be due to the quite limited number of simoiet used to estimate the critical
value. The allowance for dominance in the likelihood ragist{LR-D and LR-MC-D) gave
slightly reduced power in the case of no dominance, but the berror rate remained correct.

Table 2 corresponds to the case that the unshared enviroeffect followed ay?(1)
distribution. Here the likelihood ratio, Wald, and scorst$eare all seen to have inflated type |

error rates (as high as 0.1), and so the power of these metfasdsot investigated further. The
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robust tests were generally seen to have type | error unaratpthough the robust Wald test
appears to have an inflated type | error rate in the case afigiphirs, and the robust score test
was again seen to be conservative for the case of a small mahlaeger sibships. The power of
the two higher moment approaches are seen to be higher thathtar methods in this
non-normal situation, the other approaches all having@apprately the same power.

Tables 3 and 4 are analogous to Tables 1 and 2, though withdhe-frequent allele at the
QTL being fully recessive. The Wald tests had very poor peréince and so were not shown in
tables. Only the likelihood ratio test takes account of the-additivity at the QTL, and it is seen
to have somewhat higher power than other methods under theahmmodel (Table 3). For the
likelihood ratio test LRT-D and LR-MC-D, the gain of the pawsy taking account of the
non-additivity is much larger than the loss of power for thee of no dominance shown in
Table 1. In the case of a non-normal model (Table 4), theihkeld ratio and score tests again
have inflated type | error. The robust versions of the tesissitzs (including the use of Monte
Carlo simulation to identify an appropriate critical vakoe the likelihood ratio test) have
appropriate type | error rates; among these, the higher mbapproaches are again seen to have
greatest power.

Table 5 displays the results for the case that the markertititpinformative (having four
equally frequent alleles) and for 440 sibships of size folwe results are similar to those seen in
Tables 1-4. In particular, our higher moment approach is s@be both robust and powerful.

Figure 2 contains the results of further simulations to stigate the effect of the QTL allele
frequency on power in the case of non-normality with the rfoequent QTL allele being fully

recessive, and for 440 sibships of size four. Here we inctadelts for the transformation
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procedure proposed by Wang and Huang (2002a) and denoted/INEi§ure 2A corresponds to
the case that the environment effect followg?d1) distribution, analogous to Table 4, while
Figure 2B corresponds to the case that the environment éffiémws at(5) distribution. Use of

the transformation performs extremely well in the case tQTL alleles are approximately
equally frequent, but performs poorly in the case that thaidant allele has frequency 20%.
Note Wang and Huang (2002a) showed this transformatioroagprreduces the power of the
score test when the trait values are approximately nornaiglyibuted and the alleles at the major
QTL act non-additively. Special attentions should be pai@mthis empirical approach is

applied.
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DISCUSSION

Chen et al. (in press) described a general framework fortgative trait linkage analysis,
based on generalized estimating equations (GEE), for wheuhy current methods are special
cases. The method has considerable flexibility, both in timéce of working covariance matrix
and in the choice of test statistic. In this paper, we havewedpd upon that work: we proposed
two novel higher moment statistics and investigated, thihatomputer simulations, the power
and robustness of these new methods relative to previoeskyrithed approaches, including the
variance components method (Amos 1994; Almasy and Blantfg98), the score test proposed
by Wang and Huang (2002a), and the method implemented in NIRFRREGRESS (Sham et al.
2002).

The computer simulations described here were conducted asimputer software that we
developed, LinkageExplorer (LE). This program is able towdate general pedigrees and
multipoint marker data, perform all of the linkage testsaldxed in this paper, and provide
analytical sample size calculations (unpublished data)paxt of our testing of this software, we
compared the results, for simulated data, from our softwaétfethose from GeneHunter (Pratt et
al. 2000), SOLAR (Almasy and Blangero 1998), and MERLIN-REESS (Sham et al. 2002).
The likelihood ratio test implemented in LinkageExplorastsimilar results to GeneHunter and
SOLAR in the case that the QTL alleles acted additively; ayslementation of the method of
Sham et al. (2002) gave results identical to those of MERRINGRESS.

As has been shown previously (Feingold 1999), the varianngonents approach has high
power in the case that the normal model is correct, but haglgraflated type | error rates in the

case of a non-normal phenotype. Several robust approachésuad to have similar power and
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robustness. Further simulations (data not shown) shovaawthile Haseman-Elston regression
(Haseman and Elston 1972) and its derivatives have properltgrror rate, they have much
lower power. Our higher moment approaches have power sitoitlie variance components
method in the case that the normal model is correct and hakepery controlled type | error
rate in the case that the normal model is not correct. Fyrithéne case that the normal model is
not correct, the higher moment approaches are the most fudwesthods investigated here.

The method of Sham et al. (2002), implemented in MERLIN-RESR, with segregation
parameters specified as MLEs of the unconditional likelthobphenotypes, also performed
extremely well. By using samples selected from normallyriisted population, Sham et al.
(2002) showed their approach is robust to selective saqydisilong as one can correctly specify
the segregation parameters in the random population. ®hisstness also applies to the higher
moment approach HM-R. To see this property, note that wighdri moments; and~, being
estimated as 0 in the random population, HM-R is equivalefitam et al.'s approach. The
practical performance of our higher moment approachesicdintext of selective sampling
deserves further investigation.

It should be noted that Amos et al. (1996) also proposed atijatwre trait linkage analysis
that made use of higher moments of the phenotype distritoubiat their approach was based on a
Wald test, and they found it did not perform well. In additi@kangero et al. (2000) made use of
higher moments of the phenotype distribution in order toexdirthe type | error rate of the
variance components method, but did not consideration aficatibn of the test statistic itself.

An ideal method for quantitative trait linkage analysis iman studies would have high

power to detect a QTL, would be robust to departures from abty(i.e., it would maintain the
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appropriate type | error rate yet maintain reasonable ptoveetect a QTL), would be applicable
for general pedigrees rather than simply sibling pairs|@mcorporate information from
environmental and other covariates, and would be appttegnahe presence of selective
sampling (e.g., the selection of discordant sibling paighile we not yet examined the
performance of our proposed procedures in the context e€set sampling via computer
simulations, the higher moment score tests, implementddmthe GEE framework of Chen et

al. (in press), satisfy all of the other qualities of an idgadntitative trait linkage analysis method.
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APPENDIX A

Self and Liang (1987) showed for the situation when 2 pararsedf interest are on the
boundary of the parameter space, the asymptotic distoib@idir the likelihood ratio test statistic

isai —p: 3 :pmixture ofx?(0), x*(1), andx?(2) , where

p = icos_l e
2 \/111]227

and/,y, I,, I, are elements of the information matrix. Now we show how tawfps theory to
obtain the null distribution of the likelihood ratio testthie variance components analysis when
the dominance effect is considered.

In a variance components model, suppose a matias(u : v, [ : m) element
() () om + (2 um (51w, WhereQy is the covariance matrix under the null hypothesis

of no linkage. Then the information is

IH = (ﬂ' — 2(I)>/B(7T — 2(1))
112 = (Ii — A)/B(’TF — 2(1))

]22 = (/{—A)/B(K’,—A)

Therefore, for a general pedigree, we have the followingida to calculate the mixing

probabilities

1 BIQs il (k — A)YB(m — 20)
frch Ase V/(m —20YB(r — 2®0) x (5 — AYB(r — A) (12)
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For sibship data, since Cpw;, m;,,,] = CoVik;;, k1] = 0 Wheni = [ or j # m, the B matrix can

be canceled out, and thus (12) can be further simplified as

1 Sic; Bl(my = 1/2)(sgy — 1/4)
@K] Bl(m; = 1/2) e El(sig = 1/4)

The critical value corresponding to the 0.05 nominal legél417. When the marker has two
alleles with equal frequency, following a procedure simitaWWang and Huang (2002b), we have
p = 0.083 and critical value becomes 3.32. In a multipoint linkagelysia, markers tend to be
much more informative. Therefore0at : 0.5 : 0.1 mixture of x?(0), x*(1), andx?(2) is a

reasonable approximation for the null distribution of likeod ratio test for sibship data.
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APPENDIX B

Supposev;, = .Y, andb, = ZKj[erj — E(7yij) | [wriwr; — E(wriwg;)]. Under the null

hypothesis, the variance estimate Jof, by is (7. — E(%..))% x 32, >~ (wriwr; — E(wriwi;))?.
Then the test statistic proposed by Wang and Huang (20028 is )2/Var (> b ) is identical to

statistic (8) following the next two equalities:

Z DY(G)7LSY
= Z ST wig — EGrrin) (@5 a5 Y lyd — Ed))

k i<y 1

+ Z Z Z Trij — EGri) (D ( QD jm + (i (1) 0) [Wki¥km — E(Yrivem)]

k i<jl<m

= D> [niy — E(ap) 2 YY)y — E(Q Y, i)l
k i<j

- Z Z Trij — E(frij)] [(wrwy)ij — E((wewy)is)]

k i<y

= Z Z szg 771%] wkiwkj - E(wkiwkj)]>

k i<y

and similarly

(’ﬁ' — E(7AT Z Z wklwkj — E wk,wkj))

1<j
0 0
__ G W) XZZ SY( (G715
<j 0 I
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Table 5: sizeand power using 440 sib quads and a marker having 4 equally-frequent alleles

model LRT LR-MC score-R score-S MERLIN HM HM-R

0 =0.5
N/add .053  .053 .046 .054 .054 .057 .055
N/rec .052  .047 .045 .054 .055 .058 .057
x*/add .076  .045 .039 .050 .050 .057 .055
X’lrec .083  .049 .041 .052 .053 .056 .053
0=0
N/add .673  .651 .644 .678 .676 .680 .674
N/rec .667  .642 591 .629 .630 .635 .627
x*/add N/A 555 .562 578 579 .647 .645
X’lrec N/A 549 .519 .548 .551 .613 .603
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FIGURE LEGEND

Figure 1: The first-cousin pedigree considered in the simulatiodystu

Figure 2: Power for 440 sibships of size 4, for five different linkagealysis methods. A. Power
as a function of the frequency of the dominant allele wherutighared environmental effect
follows ax?(1) distribution. B. Power as a function of the frequency of tbenthant allele

when the unshared environmental effect follo\is distribution.
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