
Bayesian Quadrature for Gaussian
Process Kernel Learning, Neural

Ensemble Search, and High
Dimensional Integrands

Saad Hamid

Kellogg College and Department of Engineering Science

University of Oxford, Oxford, UK

Supervised by

Prof. Michael Osborne

and

Prof. Stephen Roberts

A thesis presented for the degree of Doctor of Philosophy

Hilary Term 2023

Abstract

The central challenge of performing inference in a model is the computation of mar-

ginalisation integrals over the model’s parameters. In most cases of interest, these

integrals are intractable, and evaluation of the integrand is expensive. A probabil-

istic approach to numerical integration offers a principled framework for allocating

computation in such a setting. This is achieved by using a probabilistic surrogate to

model the integrand, and selecting evaluations Bayesian Decision Theoretically. We

offer Bayesian Quadrature (BQ) schemes that incorporate special structure in the

model parameters for two widely-used model classes: Gaussian Processes (for which

we marginalise over a broad class of stationary kernels), and Neural Networks (for

which we marginalise over a large space of architectures). We further investigate

the use of scalable approximations of Gaussian Processes for scaling BQ to higher

dimensional (Euclidean) spaces for non-negative integrands.

For GP kernel learning, our BQ framework makes use of the maximum mean

discrepancies between distributions to define a kernel over kernels that captures in-

variances between Spectral Mixture (SM) Kernels. Kernel samples are then selected

by generalising an information-theoretic acquisition function for warped BQ.

By viewing ensembling as approximately marginalising over architectures, we

bring the tools of BQ to bear upon Neural Ensemble Search. Additionally, the

resulting ensembles consist of architectures weighted commensurately with their

performance, unlike previous approaches that use equally weighted ensembles.

The core challenge of scaling BQ to higher dimensions is the cubic complex-

i

ity of GP regression. We explore the use of scalable approximations to GPs for

BQ, particularly the recently proposed VISH model – a Variational GP for which

the inter-domain inducing variables are projections of the modelled function onto

the spherical harmonics – and Bézier GP model – defined by placing a Gaussian

distribution over the control points of a Bézier curve.

ii

Acknowledgements

I am grateful to the EPSRC (Engineering and Physical Sciences Research Council)

and Kellogg College for providing the funding that allowed me to undertake this

DPhil.

I would like to thank my primary supervisor Mike Osborne for his constant

support throughout my DPhil. His encouragement fostered in me an interest in

Probabilistic Numerics, and the academic freedom he provided allowed me to develop

my confidence as a researcher. I thank also my co-supervisor, Steve Roberts, for his

erudite guidance and his unwavering patience.

I owe thanks to my collaborators, Martin Jørgensen, Sebastian Schulze, Xingchen

Wan, Binxin Ru, and Vincent Dutordoir, for insightful discussions and for their

infectious enthusiasm. The wider BXL and MLRG also derserve my thanks for the

many interesting conversations.

I am deeply grateful to my parents and my brothers for their love and support

over these last few years.

Finally, I would like to thank the many friends who have been a constant source

of warmth for me, and of whom Yee He and Ada Hermelink deserve special mention.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5
2.1 Hierarchical Bayesian Modelling . 5
2.2 Gaussian Processes . 7

2.2.1 Scalable Gaussian Process Approximations 10
2.2.2 Covariance Functions on non-Euclidean Spaces 12
2.2.3 Kernel Learning . 14

2.3 Bayesian Quadrature . 16
2.3.1 Warped Bayesian Quadrature 17
2.3.2 Acquisition Functions . 19
2.3.3 Recombination . 20

2.4 Neural Architecture Search . 21
2.4.1 Neural Ensemble Search . 23

3 Marginalising over Stationary Kernels for Gaussian Process Re-
gression with Probabilistic Integration 24
3.1 Abstract . 26
3.2 Introduction . 27
3.3 Background . 29

3.3.1 Gaussian Processes . 29
3.3.2 Bayesian Quadrature . 31

3.4 Related Work . 31
3.4.1 Kernel learning . 31
3.4.2 Bayesian Quadrature . 33
3.4.3 Gaussian Processes on Spaces of Measures 34

3.5 Our Method: MASKERADE . 34
3.5.1 The generative model . 34
3.5.2 Posterior Inference . 37
3.5.3 Bayesian Quadrature . 37
3.5.4 Computational Complexity . 42

3.6 Results . 42
3.6.1 Experiment setup . 43

iv

3.6.2 Qualitative Analysis . 44
3.6.3 Medium scale data sets . 45
3.6.4 Large scale data sets . 46
3.6.5 Ablation Study . 47

3.7 Discussion . 49
3.8 Supplement . 50

3.8.1 Summary of WSABI . 50
3.8.2 A Remark on Posterior Inference 52
3.8.3 Full Algorithm Description . 54

4 Bayesian Quadrature for Neural Ensemble Search 57
4.1 Abstract . 58
4.2 Introduction . 59
4.3 Background . 61

4.3.1 Neural Architecture Search . 61
4.3.2 Bayesian Optimisation for Neural Architecture Search 64
4.3.3 Neural Ensemble Search . 65
4.3.4 Bayesian Quadrature . 66
4.3.5 Recombination . 68

4.4 Bayesian Quadrature for Neural Ensemble Search 68
4.4.1 Building the Candidate Set 69
4.4.2 Selecting the Ensemble . 71

4.5 Experiments . 73
4.5.1 Ablation Study . 75

4.6 Discussion and Future Work . 82
4.7 Supplement . 83

4.7.1 Verification of Surrogate Quality 83
4.7.2 Additional Experiments . 84

5 Scalable Bayesian Quadrature with Gaussian Process Approxima-
tions 89
5.1 Abstract . 90
5.2 Introduction . 91
5.3 Background . 92

5.3.1 Probabilistic Integration . 92
5.3.2 Variational Gaussian Processes and the VISH Model 94
5.3.3 Bézier Gaussian Process . 96

5.4 Methods . 97
5.4.1 Using VISH for Active Learning of the Integrand 97
5.4.2 Bayesian Quadrature with the Bézier Log-Normal Process . . 99

5.5 Related Work . 101
5.6 Experiments . 102
5.7 Discussion . 106
5.8 Supplement . 106

5.8.1 Mixed Inducing Variables for VISH 106

v

6 Conclusion 111
6.1 Future Directions . 112

Bibliography 114

vi

List of Figures

3.1 Bayesian Network of our model. The number of mixture components
n is drawn from a uniform prior; α parameterises a Dirichlet distri-
bution over mixture weights w; µ and Σ parameterise Gaussians over
mixture means; ν and τ parameterise Log-Normal distributions over
mixture scales. Not shown are hyperparameters of the hyper-kernel,
λ and l. 36

3.2 A comparison of a 5 component SM kernel with optimised hyper-
parameters, and two variants of MASKERADE – one that places a
prior over up to 3 mixture components, and the other up to 8 mix-
ture components – on a toy dataset drawn from a 5 component SM
kernel. Each column plots attributes of the labelled model. The
first row shows the posterior conditioned on the training data (for
the MASKERADE models we show the moment-matched posterior).
The second row shows the spectra (for positive frequencies) of the
data generating kernel, and (for the 5 component SM kernel model)
the optimised or (for the MASKERADE models) the sampled ker-
nels. For the MASKERADE model, the opacity of a sampled kernel
is proportional to the quadrature weight for all GP products of which
that kernel is a part. (Recall that the posterior is a weighted sum
of products of GP posteriors.) MASKERADE 1–3 is able to select
samples near the data generating kernel, and therefore produce a
posterior that generalises better than the other two models. Despite
having the same number of mixture components as the data generat-
ing kernel, the optimised SM kernel sets the weights of 3 components
to be very small. MASKERADE 1–8 struggles to explore its larger
hyperparameter space with the same budget (500 likelihood evalu-
ations) as MASKERADE 1–3. This can be seen by the fact that it
spreads its posterior mass more evenly over a larger number of samples. 44

3.3 Posteriors for several methods on the Mauna Loa dataset (For MASK-
ERADE and FKL we show moment matched posteriors). All methods
struggle to model the linear trend, but MASKERADE is best able to
extrapolate the periodic structure. 45

vii

3.4 MASKERADE and VSSGP on the Solar Irradiance Data Set. “MAS”
in the legend refers to MASKERADE, and “Conf.” refers to the (2
standard deviation) confidence interval. For clarity, we show only the
posterior mean for VSSGP. Note that VSSGP is a sparse spectrum
method, which is why it sometimes fails to achieve low error at the
training points. Whilst VSSGP is able to approximate well the un-
derlying periodic structure of the function, MASKERADE is able to
generalise better. 46

3.5 A schematic representation of the inference procedure under our model.
The left column shows the GP posterior for different Spectral Mix-
ture Kernels on the same dataset. The centre column shows the SM
kernels in their spectral domain. The right column illustrates a GP
posterior on a space indexed by the spectral densities of the SM ker-
nels. BQ can then be used to marginalise over SM kernels which may
have different numbers of mixture components. 55

4.1 A diagram showing the process of building the WL Kernel’s feature
vectors for NAS. At the top is the macro-skeleton which is varied
by changing the cell. Defining the search space in this way allows
us to model the objective function on the space of cells. Cells are
represented as labelled DAGs. The h = 0 level features are simply
histograms of the labels for each node in the graph. To compute
the features at the next level, each node has its label appended with
the aggregated labels of all nodes in its 1-out-neighbourhood. The
h = 1 level features are histograms of these modified labels. Higher
level features are computed by aggregating the labels for larger out-
neighbourhoods. 63

4.2 A schematic representation of our proposal. The plot on the left shows
a Gaussian Process modelling the likelihood over the space of archi-
tectures. The architectures to train and evaluate the likelihood for
are selected by maximising a Bayesian Quadrature acquisition func-
tion, as described in Section 4.4.1. One of the algorithms described
in Section 4.4.2 is then used to select the subset of architectures to
include in the ensemble, along with their weights. The final predic-
tion is then a linear combination of the predictions of each ensemble
member. 69

4.3 Visualisation of the (WL) covariance matrix for the 500 unique ar-
chitectures with the highest likelihoods in the search space for each
dataset, sorted by (a smoothed estimate, using a GP, of the) like-
lihood. The colourscale varies from 1 (yellow) to 0 (blue). We ob-
serve larger blocks of architectures within the top 500 that covary
strongly for CIFAR-100 than for ImageNet16-120, which implies that
the modes of the architecture likelihood surface are wider for CIFAR-
100. This suggests that a more exploratory strategy will do better on
ImageNet16-120, and a more exploitative strategy for CIFAR-100. . . 75

viii

List of Tables

3.1 Test set RMSE for the Solar Irradiance Data Set. 45
3.2 Posterior log likelihood of and RMSE on the test set for UCI MLR

datasets. The P-values are based on paired Student-t tests. 47
3.3 MSE on the (normalised) test set for two UCI data sets. Results for

BaNK taken from (Oliva et al. 2016). 47
3.4 Posterior log likelihood of and RMSE on the test set for FKL and

MASKERADE fit to two large datasets. Both methods were given a
time budget of 20 minutes for training. 48

3.5 Test set RMSE for the Airline Passenger and Mauna Loa datasets.
MASKERADE-I indicates the use of our proposed information the-
oretic acquisition function, MASKERADE-U indicates uncertainty
sampling (Gunter et al. 2014), and MASKERADE-R indicates ran-
dom sampling under the prior. 48

3.6 The effect of number of Monte Carlo samples used to estimate the ker-
nel integrals (i.e. the those described in Section 3.8.1). For a MASK-
ERADE model that marginalises over up to 5 mixture components we
randomly sample sets of 100, 500 and 1000 hyperparameters from the
prior, and compute their corresponding likelihoods on the UCI Airfoil
Self-Noise dataset. We then infer the model evidence with WSABI
using the MASKERADE hyper-kernel. For a given number of MC
samples, we repeat this five times and report the mean and SEM for
the posterior mean of the model evidence. We observe that the es-
timate for the model evidence is not highly sensitive to the number
of monte carlo samples used to compute the kernel integrals. 53

4.1 Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on CIFAR-100 for our proposals (NES-BQ and NES-USS) and
baselines. For reference we also include the performance of the best
architecture (measured by validation loss) on the test set (labelled
Best Single). The numbers shown are means and standard error of the
mean over 10 repeats. Where applicable, the candidate set selection
method is initialised with 10 random architectures, and used to build
a set of 150 architectures. We find that NES-RE performs best in
terms of accuracy and LL. Particularly for larger ensembles, NES-
BQ performs best in terms of ECE. 76

ix

4.2 Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on ImageNet16-120 for our proposals (NES-BQ and NES-USS)
and baselines. For reference we also include the performance of the
best architecture (measured by validation loss) on the test set (la-
belled Best Single). The numbers shown are means and standard
error of the mean over 10 repeats. Where applicable, the candid-
ate set selection method is initialised with 10 random architectures,
and used to build a set of 150 architectures. We see that NES-USS
performs best across ensemble sizes in terms of LL, and joint best
with NES-RE in terms of accuracy. Particularly for larger ensembles,
NES-BQ performs best in terms of ECE. 77

4.3 Test accuracy, expected calibration error, and log likelihood on CIFAR-
100 for our candidate set selection method (US) and baselines. The
numbers shown are means and standard error of the mean over 10
repeats. Each candidate set selection method is initialised with 10
random architectures, and used to build a set of 150 architectures.
The ensemble is chosen and weighted using our variant of weighted
stacking. We see that the RE candidate set performs best for CIFAR-
100. We speculate that this is because the wide peaks of the likelihood
surface for CIFAR-100 favour a more exploitative strategy. 78

4.4 Test accuracy, expected calibration error, and log likelihood on ImageNet16-
120 for our candidate set selection method (US) and baselines. The
numbers shown are means and standard error of the mean over 10
repeats. Each candidate set selection method is initialised with 10
random architectures, and used to build a set of 150 architectures.
The ensemble is chosen and weighted using our variant of weighted
stacking. We see that the US candidate set performs best in terms of
accuracy and LL across the ensemble sizes. 79

4.5 Test accuracy, expected calibration error, and log likelihood on CIFAR-
100 for Beam Search (BS), Weighted Stacking (WS), Posterior Re-
combination (PR), and Re-weighted Stacking (RS). The numbers
shown are means and standard error of the mean over 10 repeats. The
candidate set selection method is our method – Uncertainty Sampling
with a WSABI-L surrogate – initialised with 10 random architectures,
and used to build a set of 150 architectures. We see that the stack-
ing variants consistently perform best for accuracy and LL, with RS
slightly improving upon WS. For ECE, RS and WS perform well for
small ensembles, but PR works best for larger ensembles. 80

x

4.6 Test accuracy, expected calibration error, and log likelihood on ImageNet16-
120 for Beam Search (BS), Weighted Stacking (WS), Posterior Re-
combination (PR), and Re-weighted Stacking (RS). The numbers
shows are means and standard error of the mean over 10 repeats. The
candidate set selection method is our method – Uncertainty Sampling
with a WSABI-L surrogate – initialised with 10 random architectures,
and used to build a set of 150 architectures. Again, we see that the
stacking variants consistently perform best for accuracy and LL, but
PR for ECE. 81

4.7 The (normalised) RMSE and NLPD of a WSABI-L surrogate and a
GP surrogate on the test sets. 83

4.8 Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on CIFAR-10 and CIFAR-100 for NES-USS (our proposal) and
NES-RE (the strongest baseline). 85

4.9 Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on CIFAR-10 for NES-RE (the strongest baseline), and NES-
USS (our strongest proposal). 86

4.10 Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on CIFAR-100 for NES-RE (the strongest baseline), and NES-
USS (our strongest proposal). 87

5.1 The final fractional integration error after the evaluation budget is
exhausted for our proposals, VISH-PI and BLNBQ, compared against
several baselines. All values shown are means and standard error of
the mean over 3 repeats. We see that our proposals often compare
favourably to existing BQ methods, but do not perform well compared
to other baselines when given the same wall-clock time budget. 105

5.2 The runtime in seconds required for each algorithm to build up the
design set for each problem. The values shown are means and stand-
ard deviations over 3 repeats. 105

5.3 The modelling performance of VISH and VISH-M, measured by the
Negative Log Predictive Density (NLPD) and Root Mean Squared
Error (RMSE) of a held-out test set sampled from the prior. The
dimensionality of the integrand (i.e. the function being modelled) is
shown under the heading “D”, the number of training points under
“N”, the number of inter-domain inducing variables under “Ms”, and
the number of pseudo-input inducing variables under “Mi”. The size
of the test set is always a quarter of the size of the training set.
The values shown are means and standard deviations over 5 repeats.
Surprisingly, introducing pseudo-input inducing variables degrades
the performance of the model in most cases. 109

5.4 A comparison of integration performance between VISH-PI and VISH-
PI-M, which has additional pseudo-input inducing variables. The
fractional error in the posterior mean for the integral is reported (in
log space for BLR and GPR). The values shown are means and stand-
ard deviations over 5 repeats. 109

xi

Chapter 1

Introduction

Recent years have seen significant improvements in the performance of machine

learning models on a range of tasks from signal processing (Lim et al. 2021) to se-

mantic segmentation of images (Ronneberger, Fischer and Brox 2015) and speech

recognition (Ott et al. 2019). These impressive results have been achieved by lever-

aging larger datasets and more expressive models. It is reasonable, therefore, to

assume that further growth in dataset sizes and model expressivity will lead to fur-

ther improvements in modelling performance. However, one of the key challenges in

this is performing inference, which becomes computationally more demanding com-

mensurately with dataset size and often with model complexity. It is this challenge

that is the focus of the present work.

To infer means to characterise a distribution over, and this process requires the

computation of marginalisation integrals (see Bishop (2006), Chapter 1, Section 2 for

an introduction). In particular, the machine learning practitioner is often interested

in computing posterior distributions over the parameters θ of a model M . This can

be achieved using Bayes’ rule,

p(θ | D,M) =
p(D | θ,M)p(θ |M)

p(D |M)
(1.1)

=
p(D | θ,M)p(θ |M)∫
p(D | θ,M)p(θ |M)dθ

, (1.2)

where D is a dataset. The marginalisation integral required here is the one in

1

the denominator, referred to as the marginal likelihood or the model evidence. This

quantity is often intractable, and has to be numerically approximated. The difficulty

is in the fact that, for expressive models of the kinds in which modern practitioners

are interested, the dimensionality of the parameters θ can be high, and the likelihood

p(D | θ,M) can be expensive to evaluate.

Inferring a distribution over a target quantity (i.e. making a prediction) using

a machine learning model also requires the computation of an integral. Once the

posterior over the parameters (i.e. Equation 1.1) has been characterised, the distri-

bution over a target variable y at a predictand x is given by a marginalisation over

θ.

p(y | x,D,M) =

∫
p(y | x,D, θ,M)p(θ | D,M)dθ. (1.3)

This distribution is referred to as the posterior predictive. For non-probabilistic

models p(y | x,D, θ,M) can be considered a delta distribution. The computation of

this integral can be challenging for the same reasons outlined previously – that θ can

be high dimensional, and either term in Equation 1.3 can be expensive to evaluate.

Almost ubiquitously, the purpose of making a prediction is to make a decision.

The appropriate framework for this, from a Bayesian perspective, is provided by

Bayesian Decision Theory (see Murphy (2012), Chapter 5, Section 7 for an introduc-

tion). An agent requires, in addition to a probabilistic model for making predictions,

a loss function over possible decisions x ∈ X and outcomes y ∈ Y . A rational agent

then takes the decision x∗ that minimises its loss, in expectation,

x∗ = min
x∈X

∫
Y
L(x, y)p(y | x,D,M)dy. (1.4)

This integral is often intractable due to the expense of characterising p(y | x,D,M),

so point estimates are frequently used. Such overconfidence can lead to poor decision

making, especially far from the training data where the model may not be accurate.

Bayesian Quadrature (BQ), or probabilistic integration (PI), is a probabilistic

2

approach to integration, and is well suited to approximating integrals for computing

model evidences, characterising posterior predictive distributions, and calculating

expectations of loss functions (See Chapter 2, Hennig and Osborne (2021) for an

introduction). Let Z ∈ R denote the integral of a function f of some input x ∈ X

with respect to π, some density over X ,

Z =

∫
X
f(x)π(x)dx. (1.5)

BQ maintains a probabilistic surrogate, typically a Gaussian Process (see Rasmussen

and Williams (2006) for an introduction), over the integrand f (conditioned on po-

tentially noisy observations of f) which induces a distribution over Z. The surrogate

can be used to decision theoretically select new points to evaluate the integrand (Os-

borne, Duvenaud et al. 2012). This process has been shown to be sample efficient,

and therefore appropriate for expensive black box integrands such as those required

for Bayesian machine learning. The key contributions of this thesis concern the

application of BQ for model selection in two widely used model classes – Gaussian

Processes and Neural Networks (see Goodfellow, Bengio and Courville (2016) for an

introduction) – and extending BQ to higher dimensional spaces. These follow after

the background in Chapter 2.

Chapter 3 develops a BQ scheme for marginalising over a broad class of sta-

tionary kernels for Gaussian Processes. Using Bochner’s theorem (Bochner 1959),

we work with the spectral representation of Spectral Mixture (SM) kernels (Wilson

and Adams 2013). By using the maximum mean discrepancy between distributions

(Gretton et al. 2012), we define a kernel over kernels that captures the invariances

between SM kernels. We also extend an information-theoretic acquisition function

for warped BQ, and use this to select new SM kernels to evaluate. We show empir-

ically that the proposed method achieves superior regression performance compared

to state-of-the-art baselines.

3

Chapter 4 addresses the problem of model selection for Neural Networks. By

taking the view of ensembling as approximately performing marginalisation over

NN architectures we can use the tools of Bayesian Quadrature to select the set

of architectures (a subset of the support of the prior over architectures) to train.

Additionally, BQ can be used to set the relative weights of these architectures to

form the ensemble. We empirically demonstrate that our method outperforms state-

of-the-art methods from the recent literature.

Chapter 5 investigates how to extend Bayesian Quadrature to higher dimen-

sional (Euclidean) spaces. The key challenge in this context is that the volume of

the integration domain increases exponentially in the number of dimensions. The

surrogate model, typically a GP with a stationary kernel, therefore requires a very

large number of data points to effectively “cover” the space. As the computational

complexity of GP regression scales cubically in the number of observations, this

becomes infeasible. We therefore investigate the use of scalable approximations for

GP regression, in particular the recently proposed VISH (Dutordoir, Durrande and

Hensman 2020) and Bézier GP (Jørgensen and Osborne 2022) models, in the context

of BQ. We empirically compare our proposals to existing approaches for computing

high dimensional model evidence integrals.

Finally, Chapter 6 concludes and suggests directions for future work.

4

Chapter 2

Background

Contents
2.1 Hierarchical Bayesian Modelling 5

2.2 Gaussian Processes . 7

2.2.1 Scalable Gaussian Process Approximations 10

2.2.2 Covariance Functions on non-Euclidean Spaces 12

2.2.3 Kernel Learning . 14

2.3 Bayesian Quadrature . 16

2.3.1 Warped Bayesian Quadrature 17

2.3.2 Acquisition Functions . 19

2.3.3 Recombination . 20

2.4 Neural Architecture Search 21

2.4.1 Neural Ensemble Search 23

2.1 Hierarchical Bayesian Modelling

The task of specifying a model is referred to as the model selection problem (see

Murphy (2022), Chapter 2, Section 2 for a discussion). Almost always, models are

specified hierarchically so that one must select a model from a model class M ∈M,

and the parameters of the model θ ∈ Θ | M . The Bayesian approach to model

selection performs inference at each “level” in the hierarchy.

At the parameter-level, we begin with Bayes rule, as in Equation (1.1), repeated

here for clarity:

p(θ | D,M) =
p(D | θ,M)p(θ |M)

p(D |M)
.

5

Then, at the model-level

p(M | D) = p(D |M)p(M)

p(D)
, (2.1)

where

p(D) =
∑
m∈M

p(D |M)p(M). (2.2)

Note that the likelihood at the model-level p(D | M) is the marginal likelihood

at the parameter-level. As p(D | M) can be expensive to compute, characterising

p(M | D) is also often challenging.

It is common to replace the prior p(θ |M) with a delta distribution δ(θ∗) at the

maximiser of the likelihood (the maximum likelihood estimate or MLE)

θ∗ |M = argmaxθ∈Θ|Mp(D | θ,M) (2.3)

or the maximiser of the numerator in Equation (1.1) (the maximum a posteriori or

MAP estimate)

θ∗ |M = argmaxθ∈Θ|Mp(D | θ,M)p(θ |M). (2.4)

A similar approach can be taken at the model-level.

Note that, if using MLE or MAP estimates at multiple levels, models are not

appropriately penalised for excessive modelling capacity. This creates a higher risk

of overfitting – the modelling of statistical artefacts that are present in the training

data, but not in the underlying function that is to be modelled. Therefore, it is

common to partition the dataset into a training set Dtrain and a validation set Dval.

p(θ |M) is then replaced by δ(θ∗) where

θ∗ |M = argmaxθ∈Θ|Mp(Dtrain | θ,M)p(θ |M), (2.5)

6

and p(M) by δ(M∗) where

M∗ = argmaxMp(Dval |M)p(M)

= argmaxMp(Dval | θ∗,M)p(M). (2.6)

By using a separate validation set at the model-level the likelihood is approximated

by p(Dval | θ∗,M) which is a better proxy for generalisation error than p(Dtrain |

θ∗,M) (Rasmussen and Williams 2006).

Whilst MLE/MAP estimation is cheaper computationally, it increases the risk of

overfitting by ignoring the uncertainty in the parameters/model class. It is possible

that the likelihood (or product of likelihood and prior) may not have a unique max-

imiser, in which case this risk is exacerbated. Additionally, the estimate will perform

poorly if the true posterior distribution is skewed (MacKay 1999). Therefore, the

preferred approach is to marginalise over both the parameters and the model class

p(y | x,D) = 1

p(D)
∑
m∈M

p(M)

∫
Θ

p(y | x,D, θ,M)p(θ | D,M)p(M | D)dθ. (2.7)

Chapters 3 and 4 will focus on developing methods to achieve this for two popular

model classes – Gaussian Processes and Neural Networks.

2.2 Gaussian Processes

A stochastic process is a collection of random variables, and a Gaussian Process (GP)

is such a process for which all subsets of the variables are jointly normally distributed

(Rasmussen and Williams 2006). They are non-parametric models, meaning that

the complexity of the model grows commensurately with the size of the data. This

property is desirable in machine learning models as it provides robustness against

overfitting – the tendency for models with excessive capacity compared to the dataset

size to model statistical artefacts that are present in the sample but not characteristic

7

of the underlying relationship.

There are two common perspectives of GP regression: a “weight-space” view and

a “function-space” view. The function-space view regards a GP as a distribution

over functions, defined by a mean function m that specifies the mean at each point

in the index set x ∈ X , and a covariance function (also referred to as a kernel) k

that defines the covariance between two variables in the process in terms of their

index set locations

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (2.8a)

m(x) = E [f(x)] , (2.8b)

k(x, x′) = Cov
(
f(x), f(x′)

)
. (2.8c)

A covariance function must produce a valid covariance matrix (also referred to as a

Gram Matrix) – one that is positive semi-definite. The most frequently used kernels

are stationary kernels, which specify the covariance between two points in terms of

the Euclidean distance between them. A commonly used covariance function is the

Radial Basis Function or Squared Exponential,

k(x, x′) = σf exp

(
−(x− x′)2

2l2

)
. (2.9)

The signal variance σf and the lengthscale l are hyperparameters which need to

be learnt. Other frequently used covariance functions include the Rational Quad-

ratic, Mateŕn, and Periodic Covariance Functions (see e.g. Rasmussen and Williams

(2006) for details). The choice of covariance function specifies the class of functions

that the GP can model, and this choice significantly affects the resulting posteriors

(Duvenaud et al. 2013). Therefore, much attention has been devoted to learning ker-

nels from data for GPs (Benton et al. 2019; Duvenaud et al. 2013; Remes, Heinonen

and Kaski 2017; Samo and Roberts 2015).

A GP prior can be conditioned on observations by exploiting the joint normality

8

of all the variables in the process

f
f

 ∼ N

mX

mx

 ,

kXX kXx

kxX kxx


 , (2.10)

where f ∈ Rn are the observations of the function at the set X ⊂ X , and n is the

dataset size. mX ∈ Rn is the mean function evaluated at the data locations, and

kXX indicates the Rn×n covariance matrix formed by evaluating the kernel between

all pairs of points in X. kXx is the real-valued n× 1 vector of covariances between

the data points and the query point x, and kxX is its transpose. Gaussian identities

then provide the posterior distribution

f | f ,X ∼ GP
(
m̂f (x), k̂f (x, x

′)
)
, (2.11a)

m̂f (x) = kxXk−1
XX(f −mX) +m(x), (2.11b)

k̂f (x, x
′) = k(x, x′)− kxXk−1

XXkXx. (2.11c)

It is often the case that only noisy observations of the function are available. Under

an I.I.D. noise model p(y | f) = N (f, σ2
n), the posterior over f becomes

f | y,X ∼ GP
(
m̂y(x), k̂y(x, x

′)
)
, (2.12a)

m̂y(x) = kx,X(kXX + σ2
nI)

−1(y −mX) +m(x), (2.12b)

k̂y(x, x
′) = k(x, x′)− kx,X(kXX + σ2

nI)
−1kXx. (2.12c)

where I is an n× n identity matrix.

The prior mean and covariance functions are usually parameterised by a set of

hyperparameters θ = {θm, θk}. These hyperparameters can be marginalised out

(Svensson, Dahlin and Schön 2015), or set to their MAP estimates. The key quant-

ity required for either approach is the marginal likelihood – the probability of the

9

observations having marginalised out the function f – the log of which is given by

log p(y|X, θ) =− 1

2

(
y −mX(θm)

)T (
kXX(θk) + σ2

nI
)−1(

y −mX(θm)
)

− 1

2
log |kXX(θk) + σ2

nI| −
n

2
log 2π. (2.13)

2.2.1 Scalable Gaussian Process Approximations

The computational cost of exact Gaussian Process regression with standard kernels

is dominated by the cost of inverting the kernel matrix kXX , which is cubic in the size

of the training set. This presents a challenge for scaling Gaussian Processes to high

number of data points. Typically, a stationary covariance function, which depends

only on the distance between data points is used. In high dimensional spaces, the

volume increases exponentially in the number of dimensions, so stationary kernels

require more data to “cover” the space. As a result, the intractability of inference in

a GP with a large number of data points limits their use to relatively low-dimensional

problems.

One approach to the scaling of Gaussian Processes, that we will encounter in

Chapter 5, is to perform Variational Inference in these models (Hensman, Fusi and

Lawrence 2013; Matthews 2016; Titsias 2009). Our exposition follows Leibfried et

al. (2021) and we denote by u a set of “inducing variables” that are joint normally

distributed with the latent function f

f
u

 ∼ N

mf

mu

 ,

kff kfu

kuf kuu


 . (2.14)

The conditional distribution p(f | u) takes the same form as Equation (2.11a). We

now place a variational distribution over u which takes the form of a Gaussian whose

moments are referred to as the variational parameters,

q(u) = N (µu,Σu). (2.15)

10

Using standard Gaussian identities, we can then marginalise out u

q(f) =

∫
p(f | u)q(u)du

= N (k·uk
−1
uu (µu −mu) +m·, k··′ − k·uk

−1
uu (kuu − Σuu)k

−1
uu ku·). (2.16)

Importantly, the moments of the variational posterior q(f) only require the inversion

of an m×m matrix, kuu, where m is the number of inducing variables, rather than

the inversion of an n × n matrix. As the cost of matrix inversion is cubic in the

size of the matrix, this is a significant computational saving. It remains to tune

the variational posterior so that it matches the true posterior p(f | D) as closely

as possible. To achieve this, we perform Variational Inference (Blei, Kucukelbir

and McAuliffe 2018), which seeks to minimise the Kullback-Leibler (KL) divergence

between the two distributions,

KL(q(f) || p(f | D)) = Eq(f)[log q(f)]− Eq(f)[log p(f | D)]

= Eq(f)[log q(f)]− Eq(f)[log p(f,D)] + log p(D)

= log p(D)− ELBO(q). (2.17)

(2.18)

where ELBO is an acronym for Evidence Lower Bound, so called as it lower bounds

the log model evidence log p(D) since the KL divergence must be non-negative. As

log p(D) is unavailable (and expensive to compute), instead of minimising the KL

divergence directly, the ELBO is maximised.

ELBO(q) = Eq(f)[log p(f,D)]− Eq(f)[log q(f)]

= Eq(f)[log p(D | f)] + Eq(f)[log p(f)]− Eq(f)[log q(f)]

= Eq(f)[log p(D | f)]−KL(q(f) || p(f))

= E
q
(
f(X)

)[log p(y | f(X)
)]
−KL

(
q(u) || p(u)

)
. (2.19)

11

When the likelihood p
(
y | f(X)

)
is Gaussian, the ELBO can be computed analyt-

ically.

2.2.2 Covariance Functions on non-Euclidean Spaces

Often, the most natural representation of members of the set over which regression

is to be performed, X , is not simply as vectors in Euclidean space. Recall that GP

regression on an index set requires the definition of a kernel k : X × X → R that

gives rise to positive semi-definite matrices. This has motivated much work in the

definition of kernels over esoteric spaces.

Riemannian manifolds are surfaces for which, at each point, there is a tangent

space which is endowed with an inner product, and so a norm. The manifold must

be smooth, meaning that the inner product varies smoothly across the manifold.

This allows for the definition of certain geometric notions, including the length of

curves. Euclidean space is a specific case of a Riemannian manifold. The shortest

curve between two points on a Riemannian manifold is called the geodesic. Feragen,

Lauze and Hauberg (2015) consider kernels based on geodesic distances, d(x, y), of

the form

k(x, y) = exp(−λd(x, y)q), λ, q > 0. (2.20)

For q = 2, the kernel is positive definite only when the metric space is flat, meaning

that it must be possible to map all points into a Euclidean domain whilst preserving

the distance between them (Jayasumana et al. 2015). For q = 1, the kernel is

positive definite if and only if the metric is conditionally negative definite, meaning

that it must give rise to matrices, D, such that cTDc < 0,∀c :
∑

i ci = 0.

Of interest, particularly in Chapter 3, is the definition of kernels over a space

of distributions. To use kernels of the form in Equation 2.20 we require a distance

between distributions that either produces conditionally negative definite matrices,

or isometrically maps all distributions into a Euclidean domain. Recent work has

12

proposed the use of Sinkhorn divergences with respect to a reference measure (Ba-

choc, Suvorikova et al. 2019). Another possibility is the maximum mean discrepancy

between distributions (Muandet et al. 2017). These are an instance of an integral

probability metric (Sriperumbudur et al. 2012), which calculates distances between

distributions p and q supported on some domain X as

d(p, q) = max
f∈F

(∫
X
f(x)dp(x)−

∫
X
f(x)dq(x)

)
(2.21)

where F is a class of functions on X . The choice of F gives rise to different metrics

between distributions, and when it is the unit ball of a Reproducing Kernel Hil-

bert Space (RKHS) (Berlinet and Thomas-Agnan 2004) the resulting metric is the

maximum mean discrepancy.

In Chapter 4 we will be interested in defining kernels over a space of graphs,

where a graph is defined as a tuple (V,E, l) where V is the set of nodes, E is the

set of (directed) edges, and l is a collection of labels from a fixed alphabet for each

node. Typically, such kernels are defined by creating feature representations ϕ,

and taking an inner product in an RKHS H, k(x, y) = ⟨ϕ(x), ϕ(y)⟩H (Ghosh et al.

2018; Kriege, Johansson and Morris 2020; Nikolentzos, Siglidis and Vazirgiannis

2021). In particular, we will be making use of the Weisfeiler-Lehman (WL) kernel

(Shervashidze 2011), which generates feature vectors from a graph in the following

way:

1. Compute a histogram of the labels. These are the h = 0 level features.

2. Relabel each node with a new label generated by aggregating the labels of

the nodes in its 1-out-neighbourhood (as we are now computing the h = 1

level features). The h-out-neighbourhood of a node is the set of nodes that

are reachable by traversing h edges starting from that node. Then compute a

histogram of these aggregated labels. These are the h = 1 level features.

3. Repeat (2) up to a pre-specified depth h = H.

13

4. Generate the feature representation as the aggregate of the histograms for each

level h = 0 to h = H.

The WL kernel has been shown to work especially well for modelling the likelihood

surface over cell-based search spaces for Neural Architecture Search (Ru, Wan et al.

2021).

2.2.3 Kernel Learning

Learning covariance functions from data by composing sums and products of a

standard set of kernels (Duvenaud et al. 2013) has been attempted, but more recent

work focusses on learning kernels by representing them in their spectral domain

(Benton et al. 2019; Gal and Turner 2015; Jang et al. 2017; Lázaro-Gredilla et al.

2010; Oliva et al. 2016; Remes, Heinonen and Kaski 2017; Samo 2017; Simpson,

Lalchand and Rasmussen 2021; Wilson and Adams 2013).

Bochner’s theorem (Bochner 1959) states that all stationary covariance functions,

k, are the inverse fourier transform of a spectral density, µ, so that

k(x,x′) =

∫
Rd

exp(2πi(sTτ))µ(ds). (2.22)

where τ is the Euclidean distance between the kernel’s arguments. Bochner’s the-

orem can be extended to include non-stationary kernels (Genton 2001; Kakihara

1985),

k(x,x′) =

∫
Rd×Rd

exp(2πi(sTx− s′Tx′))µ(ds, ds′). (2.23)

When the spectral density has mass only along the diagonals si = s′i, Equation

(2.23) simplifies to Equation (2.22) (Samo and Roberts 2015).

The constraint of positive semidefiniteness is difficult to enforce when search-

ing over covariance functions defined over the data domain. One is often restricted

to specifying a covariance function (such as an RBF or Rational Quadratic) and

learning it’s hyperparameters. Arbitrary distributions, and therefore arbitrary cov-

14

ariance functions, can be constructed in the spectral domain, however. This enables

a broader class of covariance functions to be explored during learning.

Using the spectral density representation is also advantageous when dealing with

large datasets, as it enables efficient approximation of the kernel matrix. Recall that

kernels compute inner products between feature vectors

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ ≈ z(x)Tz(x′), (2.24)

where we choose z to be feature vectors of sines and cosines. This means that the

kernel can be approximated with a Monte Carlo sum by sampling from the spectral

density (Rahimi and Recht 2008). If the number of samples, m, is less than the

number of data points, n, we can define A = ZZT where Z is the m × n matrix

of feature vectors for each data point. The posterior process can then be computed

without using the kernel trick, so that the cost is O(m3) rather than O(n3). Its

moments are given by

E[y∗] = ϕ(x∗)
TA−1Zy and (2.25a)

Var[y∗] = ϕ(x∗)
TA−1ϕ(x∗). (2.25b)

The locations of the samples can be optimised using the log marginal likelihood

(Lázaro-Gredilla et al. 2010). This approach often overfits; an issue that can be

alleviated by using a variational approximation (Gal and Turner 2015) to account

for the uncertainty in the spectral locations.

Of particular interest in Chapter 3 of this work is the Spectral Mixture Kernel

(Wilson and Adams 2013) which is characterised by a Gaussian Mixture Model in

the spectral domain. The inverse fourier transform can be analytically computed as

k(τ) =

Q∑
q=1

wq cos
(
2πτ Tµq

) P∏
p=1

exp
(
−2π2τ 2p v

(q)
p

)
(2.26)

15

for a symmetric mixture of Gaussians,

µ(s) =

Q∑
q=1

wq (N (s;µq,Σq) +N (−s;µq,Σq)) , (2.27)

where Σq is a diagonal covariance, diag(v
(q)
1 , . . . , v

(q)
P). Extensions to mixtures of

Laplacians (Samo and Roberts 2015) have also been proposed. Oliva et al. (2016)

and Samo (2017) use MCMC sampling to approximately marginalise over such co-

variance functions.

Recently attempts have been made to learn spectral densities as Gaussian Pro-

cesses (Benton et al. 2019; Remes, Heinonen and Kaski 2017) by designing appro-

priate sampling schemes, and enforcing positivist by placing the spectral GP over

the log of the spectrum of the covariance function of the data GP.

2.3 Bayesian Quadrature

Bayesian Quadrature (BQ) (Minka 2000; O’Hagan 1991, 1992; Rasmussen and

Ghahramani 2003), or Probabilistic Integration (PI), is a probabilistic approach

to the numerical approximation of integrals. A probabilistic surrogate, often a GP,

is used to model the integrand. This induces a belief over the value of the integral.

This approach is advantageous in particular for black-box integrands that are ex-

pensive to evaluate because the design set – the set of observation of the integrand

– can be selected in a decision-theoretic way.

Defining the quantity of interest,

Z =

∫
X
f(x)dπ(x), (2.28)

the expectation of a function f with respect to some distribution π over some domain

x ∈ X , we can condition a GP on observations of f . Since integration is an affine

16

transform, the joint distribution between Z and f is a multivariate Gaussian

y
Z

 ∼ N

 mX∫

m(x)dπ(x)

 ,

 kXX + σnI
∫
k(X, x)dπ(x)∫

k(x,X)dπ(x)
∫ ∫

k(x, x′)dπ(x)dπ(x′)


 ,

(2.29)

The moments of the marginal distribution over Z are then given by

Ep(Z|D)[Z] =

∫
k(x,X)dπ(x)(kXX + σnI)

−1(y −mX) +

∫
m(x)dπ(x) (2.30)

and

Varp(Z|D)[Z] =

∫ ∫
k(x,x′)π(x)π(x′)dxdx′

−
∫

K(x,X)π(x)dxK−1
X

∫
K(X,x′)π(x′)dx′.

From Equations (2.30) and (2.31) we see that it is necessary to compute

∫
k(x, x′)dπ(x)dx; and (2.31)∫ ∫

k(x, x′)dπ(x)dπ(x′). (2.32)

Briol, Oates, Girolami, Osborne and Sejdinovic (2015) provide analytical expressions

for several combinations of kernel and prior. We note that, if the combination of

kernel and prior does not admit a closed-form integral, approximating via Monte

Carlo can still be a better strategy than MC approximation of Z due to the cost of

evaluating f .

2.3.1 Warped Bayesian Quadrature

Frequently, it is known a-priori that the integrand is non-negative. This is the case

when f is a likelihood function, as in Equation (1.1), or a predictive distribution, as

in Equation (1.3). Recent work has focussed on incorporating this prior knowledge.

17

Chai and Garnett (2019) outline the general framework which has emerged:

1. Define g(x) = γ−1
(
f(x)

)
, where γ maps from R to R+.

2. Place a GP prior on g.

3. Use the posterior over g to approximate, with a GP, a belief over f .

4. Query the integrand at additional points using the belief over f to build up a

set of observations, D.

5. Compute p(Z | D).

The square-root g(x) =
√

2
(
f(x)− β

)
(where β is a small positive scalar) (Gunter

et al. 2014) and log g(x) = log
(
f(x)

)
(Chai and Garnett 2019; Osborne, Duvenaud

et al. 2012) transforms have received attention in the literature.

For the square-root transform, the true posterior over f is a non-central χ2 distri-

bution. Gunter et al. (2014) investigate both a moment-matched and a linearisation

approximation. Empirically, they show that a linearisation approximation performs

better. Denoting the posterior over g ∼ GP
(
mg(x), kg(x, x

′)
)
we take a first order

Taylor expansion around the posterior mean mg(x). This allows us to approximate

f as a linear transform of g,

f(x) ≃ β − 1

2
mg(x)

2 + g(x)mg(x). (2.33)

The GP approximation over f is then given by

p
(
f(x) | D

)
≈ GP

(
µ(x),Σ(x, x′)

)
, (2.34a)

µ(x) = β +
1

2
mg(x)

2, (2.34b)

Σ(x, x′) = mg(x)kg(x, x
′)mg(x

′). (2.34c)

This model is referred to in the literature as the WSABI model.

18

For the log transform, (Chai and Garnett 2019) showed that moment matching

outperforms linearisation. In this case, the true posterior over f is a Log-Normal

distribution. Moment matching yields a GP

p
(
f(x) | D

)
≈ GP

(
µ(x),Σ(x, x′)

)
, (2.35a)

µ(x) = exp
(
mg(x) + 1/2kg(x, x)

)
, (2.35b)

Σ(x, x′) = mg(x)
(
exp
(
kg(x, x

′)
)
− 1
)
mg(x

′). (2.35c)

This model is referred to in the literature at the MMLT model.

2.3.2 Acquisition Functions

Maintaining a probabilistic surrogate over the integrand allows for a decision-theoretic

approach to the selection of new evaluations. Such an approach requires the max-

imisation of an expected utility (or, equivalently, the minimisation of an expected

loss)

x∗ = argmax
x∈X

u(x, f)p(f | x,D)df

= argmax
x∈X

α(x) (2.36)

where α is referred to as an acquisition function.

The most commonly used acquisition function for Bayesian Quadrature is un-

certainty sampling, which corresponds to the variance of the integrand

Var
[
f(x)π(x)

]
= π(x)2Var

[
f(x)

]
. (2.37)

Note that this acquisition function does not depend directly on the observed integ-

rand values – only their locations – in the case when the surrogate is an ordinary

GP. (There is an indirect dependence, however, due to the optimisation of the sur-

19

rogate’s hyperparameters.) For the warped Bayesian Quadrature variants, however,

the marginal variance of the approximate posterior depends on both the observed

integrand values and locations. This encodes an explicit exploration-exploitation

trade off that is justifiable for non-negative integrands. As the majority of the mass

is under the peaks, exploitation corresponds to sampling where the integrand is high.

Exploration corresponds to sampling where the posterior variance is high.

Of interest in Chapter 3 will also be the mutual information acquisition function

suggested by Gessner, Gonzalez and Mahsereci (2019) for ordinary GP surrogates

I[Z; y | x,D] = H[Z | D] +H[y | x,D]−H[Z, y | x,D]. (2.38)

2.3.3 Recombination

Bayesian Quadrature with an ordinary GP surrogate (with zero mean) takes the

form of a classical quadrature rule – the mean estimate for the integral is a weighted

sum of integrand evaluations

Ep(Z|D)[Z] =
N∑
i=1

wiyi, (2.39)

where wi are the elements of the vector

w =

∫
k(x,X)dπ(x)(kXX + σnI)

−1, (2.40)

and yi the elements of y, the observations at the set {xn}Nn=i. If the number of

evaluations N is large, we may be interested in reducing it, as will be the case in

Chapter 4.

Carathéodory’s theorem states that if a point x lies within the convex hull of a

set P ⊂ Rd, then x can be written as a convex combination of at most d+1 extremal

points in P (Carathéodory 1911). When the weights are convex – meaning that wi ≥

0 for all i and
∑N

i=1wi = 1 (which is not the case for BQ) – Carathéodory’s theorem

20

can be used to reduce the support of a measure, and achieve the objective of reducing

the number of evaluations. In the literature, this is referred to as recombination

(Tchernychova 2015). Provided M − 1 “test” functions {ϕt(·)}M−1
t=1 , it is possible to

find a subset of M < N points {xi}Mm=1 ⊂ {xi}Ni=1 for which

M∑
m=1

wmϕt(xm) =
N∑

n=1

wnϕt(xn) (2.41)

for all ϕt, with wm ≥ 0 and
∑M

m=1wm = 1.

The Nyström approximation of the kernel matrix can be used to define a set

of test functions (Hayakawa, Oberhauser and Lyons 2022). Let S be a subset of

M − 1 locations at which integrand observations are available. The kernel can

be approximated k̃(x, x′) = k(x, S)k(S, S)−1k(S, x′). Using an eigendecomposition

k(S, S) = UΛUT ,

k̃(x, x′) =
M−1∑

t

1

λt

(
uT
t k(S, x)

)(
uT
t k(S, x

′)
)

(2.42)

where ui are the columns of U , and λi the diagonal elements of Λ. ϕt(·) = uT
t k(S, ·)

can be used as test functions. In this way one can perform kernel quadrature whilst

constraining the weights to be convex.

2.4 Neural Architecture Search

Neural Networks (NNs) have been shown to be excellent function approximators,

achieving state-of-the-art performance across a range of application domains includ-

ing object detection (Wang, Bochkovskiy and Liao 2022), speech recognition (Ott

et al. 2019), and even modelling dynamic systems (Chen, Rubanova et al. 2018). It

is well known that the architecture of a NN significantly impacts its performance, as

the architecture implicitly defines the space of possible functions representable by

the NN. Such a view is supported by a body of literature that seeks to incorporate

21

salient invariances into NN architectures (Cohen and Welling 2016; Worrall et al.

2017; Zaheer et al. 2017).

Neural Architecture Search (NAS) refers to the problem of automatically select-

ing the architecture of an NN (Ren et al. 2020). This problem has received significant

attention in the AutoML community, as the manual design of NN architectures is

time-consuming and requires specialist expertise. The key challenges are that the

space of possible architectures is very large, and that training each architecture is

computationally expensive.

Elsken, Metzen and Hutter (2019) outline three sub-components of a NAS pipeline:

the definition of a search space; a strategy for efficiently exploring the space; and a

performance estimation for evaluating architectures with the search space.

Broadly, there are two approaches to defining a search space. The first is a cell-

based search space, which consists of architectures made by swapping out “cells” in

a fixed macro-skeleton (Dong, Liu et al. 2021; Dong and Yang 2020). These cells are

represented as directed acyclic graphs where each edge corresponds to an operation

from a pre-defined set of operations. Typically, the macro-skeleton will be structured

so that repeating copies of the same cell are stacked within the macro-skeleton. This

structure allows for the representation of the architecture by the corresponding cell.

The second is a search space defined by varying structural parameters such as kernel

size, number of layers, and layer widths. Such a search space can be defined using a

“slimmable” network (Yu et al. 2019) – the largest possible network is trained and

all other networks in the search space are given as sub-networks or “slices”.

A number of strategies have been proposed for selecting an architecture from a

NAS search space, including Differentiable Architecture Search (DARTS), Bayesian

Optimisation, and evolutionary strategies. DARTS (Liu, Simonyan and Yang 2019)

and its derivatives (Chen, Xie et al. 2019; Xu et al. 2020) are a search strategy

for cell-based search spaces. The core idea is to take a softmax over all possible

operations between nodes to define a continuous relaxation of this categorical choice.

22

This enables searching over the space of cells using backpropagation. Evolutionary

strategies (Liu, Sun et al. 2021; Real, Aggarwal et al. 2019; Real, Moore et al. 2017)

maintain a population of architectures and iteratively apply random perturbations

to the cells, retaining architectures that perform better and culling those that do

not. Bayesian Optimisation (Kandasamy et al. 2019; Ma, Cui and Yang 2019; Ru,

Wan et al. 2021; White, Neiswanger and Savani 2020) maintains a probabilistic

surrogate over the architecture likelihood (or accuracy) function, and uses this to

decision-theoretically select new architectures to train.

Performance estimation is typically done by training the architecture for a fixed

number of epochs on a training set, and then evaluating the loss on a separate

validation set.

2.4.1 Neural Ensemble Search

Neural Ensemble Search refers to the problem of selecting an ensemble of architec-

tures from a NAS search space, which we will consider in Chapter 4. This involves

two steps – the selection of a set of candidate architectures to train, and the selec-

tion of a subset of these to include in the ensemble along with their relative weights.

Zaidi et al. (2022) suggest using a regularised evolutionary strategy to build up the

candidate set of architectures. The ensemble members are then chosen by Beam

Search, which starts of with the most performant architecture and greedily adds the

architecture (from the candidate set) that most improves the validation loss. Shu

et al. (2022) instead propose approximating the posterior over architectures with

a Variational distribution. The ensemble members are selected by sampling from

(a continuous relaxation of) the Variational distribution, using Stein Variational

Gradient Descent to select a diverse set.

23

Chapter 3

Marginalising over Stationary
Kernels for Gaussian Process
Regression with Probabilistic
Integration

Contents
3.1 Abstract . 26

3.2 Introduction . 27

3.3 Background . 29

3.3.1 Gaussian Processes . 29

3.3.2 Bayesian Quadrature . 31

3.4 Related Work . 31

3.4.1 Kernel learning . 31

3.4.2 Bayesian Quadrature . 33

3.4.3 Gaussian Processes on Spaces of Measures 34

3.5 Our Method: MASKERADE 34

3.5.1 The generative model . 34

3.5.2 Posterior Inference . 37

3.5.3 Bayesian Quadrature . 37

3.5.4 Computational Complexity 42

3.6 Results . 42

3.6.1 Experiment setup . 43

3.6.2 Qualitative Analysis . 44

3.6.3 Medium scale data sets 45

3.6.4 Large scale data sets . 46

3.6.5 Ablation Study . 47

3.7 Discussion . 49

24

3.8 Supplement . 50

3.8.1 Summary of WSABI . 50

3.8.2 A Remark on Posterior Inference 52

3.8.3 Full Algorithm Description 54

Preface

Gaussian Processes are an expressive class of models whose probabilistic founda-

tions allow for data-efficient inference, and whose nonparametric nature provides

some degree of robustness to overfitting. However, the choice of covariance function

significantly affects how well the model generalises, as it encodes a strong inductive

bias. Additionally, inference in GPs scales cubically in the number of data points,

limiting their use in practice to relatively small datasets. As volume increases ex-

ponentially in the number of dimensions, larger datasets are required for regression

in this setting. Limitation to small datasets therefore limits GPs also to relatively

low dimensional regression problems.

Recent years have seen attention devoted to the scaling of GPs to enable inference

for larger datasets. The core challenge is the inversion of the kernel matrix, which

is required not just for computing posterior moments but also for calculating the

marginal likelihood. Broadly, the approaches seen in the literature are:

• Approximating the inversion of the kernel matrix, often by taking an approach

based on conjugate gradient decent for solving a linear system.

• Using an approximation to the kernel, such as the Random Fourier Feature

approximation or the Nyström approximation.

• Performing Variational Inference by minimising the distance between the func-

tional posterior and a parameterised approximation, the variational posterior.

With the exception of the last, these approaches are orthogonal to our proposal, and

can be used in conjunction with it.

25

This chapter concerns the application of Bayesian Quadrature to the kernel learn-

ing problem for Gaussian Process regression. The core benefit is to allow for the

inference of, and marginalisation against, a posterior over a broad class of stationary

kernels. Additionally, the sample-efficient framework provided by active Bayesian

Quadrature reduces the number of marginal likelihood evaluations required, which

improves the scalability of Gaussian Process regression.

Bochner’s theorem states that all stationary covariance functions are the inverse

Fourier Transform of a positive spectral density. As a consequence, we can define

a prior over a large class of stationary covariance functions by defining a prior over

positive spectral densities. This is convenient as the constraint of point-wise positiv-

ity is significantly easier to enforce than that of positive definiteness. In particular,

we will use Gaussian Mixture Models in the spectral domain to define stationary

covariance function, following Wilson and Adams (2013). By using the maximum

mean discrepancy between distributions, we have a distance d between distributions

that isometrically maps distributions into a Euclidean space, and therefore gives

rise to valid covariance function of form k(x, y) = exp
(
−d(x, y)2

)
(where x and y

represent distributions). We use such a covariance function to perform Bayesian

Quadrature. Additionally, we extend an information-theoretic acquisition function

for use with warped Bayesian Quadrature.

3.1 Abstract

Marginalising over families of Gaussian Process kernels produces flexible model

classes with well-calibrated uncertainty estimates. Existing approaches require like-

lihood evaluations of many kernels, rendering them prohibitively expensive for larger

datasets. We propose a Bayesian Quadrature scheme to make this marginalisation

more efficient and thereby more practical. Through use of the maximum mean

discrepancies between distributions, we define a kernel over kernels that captures

26

invariances between Spectral Mixture (SM) Kernels. Kernel samples are selected

by generalising an information-theoretic acquisition function for warped Bayesian

Quadrature. We show that our framework achieves more accurate predictions with

better calibrated uncertainty than state-of-the-art baselines, especially when given

limited (wall-clock) time budgets.

3.2 Introduction

Gaussian Processes (GPs) (Rasmussen and Williams 2006) are a rich class of models,

which place probability distributions directly on classes of functions. Crucially, the

success of these models is tied to the choice of their kernels. Analogously to archi-

tecture design in deep learning, kernels control the expressiveness and complexity

of a GP model. If the correct kernel is chosen, GPs have shown the ability to make

accurate predictions based on comparatively small training data sets. Beyond that,

they natively provide predictive uncertainties with little additional computation.

These confidence measurements can be vital for various down-stream tasks such as

decision-making in the real world.

If, however, the chosen kernel is misspecified, little probability mass will be

assigned to the neighbourhood of the true function, resulting in a poor fit. Many

commonly used kernels, such as the Radial Basis Function and Matérn kernels, have

been shown to be universal kernels (Lugosi 2006), meaning they can approximate

arbitrary functions given sufficient data. Despite this they, in practice, encode strong

and frequently task-inappropriate inductive biases, significantly delaying learning

progress.

To increase model flexibility and avoid such pathologies practitioners typically

define parameterised kernel families. The selection of a particular kernel is delayed

until training and made data-dependent, e.g. via a maximum likelihood estimate

(MLE). A fully Bayesian approach gains further expressivity and robustness by

27

marginalising across the chosen family instead of settling on a single kernel instance

for test-time predictions. This is particularly valuable when working with large,

complex data sets that exhibit complicated interactions between data points.

Our approach aims to create a flexible regression model capable of representing

arbitrary stationary kernels and efficiently learning complex functions from large

data sets. We draw on several previously separate strands of research to achieve

this.

The analysis of kernels in the spectral domain has been shown to be an effective

tool in learning expressive kernels (Wilson and Adams 2013). Due to Bochner

(1959) a link between stationary kernel functions and frequency measures can be

established. The former is a general class of kernels encompassing many popular

families (e.g. RBF, Matérn, periodic). The link to the latter allows the construction

of posterior distributions in a principled and computationally efficient way with little

user intervention and opens up clear avenues for their interpretation.

Rather than settling on a specific kernel via MLE, we conduct inference in the

spectral-kernel framework by marginalising over the entire kernel family. The res-

ulting integrals are computationally intractable and solutions can only be approxim-

ated. Previous approaches (Benton et al. 2019; Oliva et al. 2016; Simpson, Lalchand

and Rasmussen 2021) based on Monte Carlo variants effectively average across like-

lihood evaluations of kernels randomly sampled from the posterior. Each likelihood

evaluation requires an inversion of the kernel Gram matrix over all data points,

making such approaches increasingly expensive as we scale to larger data sets.

To stay efficient even in large data, expensive likelihood settings, we adopt

a model-based approach to integral approximation. Bayesian Quadrature (BQ)

(O’Hagan 1991; Rasmussen and Ghahramani 2003) methods model the function

to be integrated directly, to incorporate and exploit prior knowledge of regularit-

ies (e.g. smoothness and non-negativity of likelihood surfaces (Osborne, Duvenaud

et al. 2012)). This enables more careful sample acquisition, yielding performance

28

superior to MCMC methods in wall-clock time for moderate-dimensional problems

(Gunter et al. 2014).

Throughout this paper, we make the following contributions. Firstly, the con-

struction of a custom hyper -kernel based on the maximummean discrepancy between

distributions. This kernel is cheap to evaluate, whilst producing meaningful covari-

ances between spectral densities, regardless of their parameterisation. Secondly, a

BQ framework based on this kernel to conduct computationally efficient GP infer-

ence on large data sets. Thirdly, the derivation of an information-theoretic acquisi-

tion function for the selection of new parameter evaluations. Finally, we empirically

demonstrate the viability of the resulting approach on several synthetic examples

and real world data sets. Our algorithm chooses informative likelihood evaluations

and achieves high performance (log-likelihoods) on limited computational budgets

measured in wall-clock time.

3.3 Background

3.3.1 Gaussian Processes

A Gaussian Process (GP) defines a probability distribution over the space of func-

tions f : X → R, such that for any finite subset X ′ ⊂ X , the vector {f(x)}x∈X ′ is

normally distributed. We denote such a distribution f ∼ GP
(
m, k

)
, where the mean

m(x) = E[f(x)] and kernel functions k(x1, x2) = E[(f(x1)−m(x1))(f(x2)−m(x2))]

encode our prior beliefs about the function. Analytic expressions for posterior mean

and kernel of a process conditioned on a set of observations D under a Normal

likelihood are readily available.1

1A detailed discussion of the GP framework can be found in (Rasmussen and Williams 2006).

29

Spectral Covariance Functions

In this work the prior kernel functions k(x1, x2) are assumed to be stationary. With

slight abuse of notation, they take the form:

k(x1, x2) = k(|x1 − x2|) = k(ρ), (3.1)

such that two function values covary only depending on their separation ρ and not

their location.

Bochner’s Theorem (Bochner 1959) states that k(ρ) is a positive-definite function

on R (and valid kernel) if and only if its Fourier transform, S(ω), is a positive spectral

density, i.e.:

k(ρ) =

∫
e2πiρωdS(ω). (3.2)

As a consequence, any parameterisation of a set of spectral measures induces a

corresponding parameterisation of stationary kernels2.

Kernels based on distance metrics

Distance-based kernels which often take the form k(x1, x2) = λ2 exp
(
−d(x1,x2)q

l2

)
(λ,

and l being hyper-parameters), are valid, i.e. positive definite, for q = 1 if and

only if the underlying metric d(x1, x2) is conditionally negative definite (Feragen,

Lauze and Hauberg 2015; Jayasumana et al. 2015), meaning that it must give rise

to matrices, D, such that cTDc < 0,∀c :
∑

i ci = 0. For q = 2 the underlying metric

must be Hilbertian, meaning that there must be an isometry between the metric

space defining d and a Hilbert space (Feragen, Lauze and Hauberg 2015).

2For k(ρ) to be real, we only consider symmetric S(ω)

30

3.3.2 Bayesian Quadrature

Bayesian inference in machine learning frequently involves computation of intract-

able integrals of the form:

Z =

∫
f(x)p(x)dx, (3.3)

where p(x) is a known prior density and f(x) a (likelihood-)function. Bayesian

quadrature is a model-based approach to approximately evaluating such integrals

by modelling f as a GP. Since GPs are closed under affine transforms the posterior

over Z is then Gaussian. For suitable kernel-prior combinations the quadrature

weights can be evaluated analytically.

While the maintenance of the GP model requires some computational effort,

it enables the generalisation of sample information across the integration domain.

Consequently, samples can be chosen in a targeted fashion and BQ has been shown

to be a competitive, more evaluation-efficient alternative to Monte Carlo methods,

particularly in moderate-dimensional domains.

Recent work (Chai and Garnett 2019; Gunter et al. 2014; Osborne, Duvenaud

et al. 2012) further increases sample efficiency by encoding model-constraints such

as the positivity of likelihood functions using warped GPs. This work builds upon

WSABI (Gunter et al. 2014) in particular, which places a GP prior over the square-

root of f and is described in more detail in Appendix 3.8.1.

3.4 Related Work

3.4.1 Kernel learning

Early work in kernel learning focussed on searching over compositions (sums and

products) of a set of basic covariance functions (Duvenaud et al. 2013). More recent

work has proposed learning kernels using their spectral representations (Ambrogioni

and Maris 2018; Benton et al. 2019; Gal and Turner 2015; Jang et al. 2017; Lázaro-

31

Gredilla et al. 2010; Oliva et al. 2016; Remes, Heinonen and Kaski 2017; Samo

2017; Samo and Roberts 2015; Teng et al. 2019; Tobar 2018; Wilson and Adams

2013). Beyond the ability to capture more complex structures, this approach also

lends itself to approximate inference, reducing learning time complexity (Gal and

Turner 2015; Hensman, Durrande and Solin 2018; Rahimi and Recht 2008). A

model similar to ours uses a Dirichlet Process prior over the number of components

in a Gaussian Mixture Model (GMM) residing in the spectral domain (Oliva et al.

2016). Simpson, Lalchand and Rasmussen (2021) use Nested Sampling to marginal-

ise over the parameters of a Spectral Mixture kernel with a fixed number of mixture

components.

Inference in spectral models reduces to the marginalisation of the likelihood

function against the posterior over kernels (or, equivalently, their spectral decom-

positions). The resulting integrals are intractable and have to be approximated –

usually through the use of an appropriate MCMC scheme, such as Gibbs sampling,

RJ-MCMC (Green 1995) or elliptical slice sampling (Murray, Adams and MacKay

2010). Scaling MCMC marginalisation over the spectral kernel parameters up to

large datasets is problematic. The computational cost of likelihood evaluations

scales poorly in the size of the training data set and the collection of sufficiently

many samples for an accurate Monte-Carlo estimate becomes prohibitively expens-

ive. As above, BQ may be a more appropriate choice in these settings.

The recently proposed baselines we will compare against in our experiments

include:

Variational Sparse Spectrum Gaussian Process Gal and Turner (2015) which

performs Variational Inference over a sparse spectrum approximation.

Bayesian Nonparametric Kernel Learning Oliva et al. (2016) which learns

the posterior distribution over Spectral Mixture kernels via a parameterisation

of spectral densities based on GMMs and a Gibbs sampling scheme.

32

Functional Kernel Learning Benton et al. (2019) which places a GP prior over

the kernel’s spectral density and infers a posterior over kernels using an El-

liptical Slice Sampling scheme.

Various approximations to reduce the cost of likelihood evaluations have been

proposed in the literature, such as PCG (Cutajar et al. 2016) and BBMM (Gardner

et al. 2018) – modified conjugate gradient methods – and Random Fourier Features

(Rahimi and Recht 2008). This is orthogonal to our investigation and our framework

is optionally capable of leveraging both of these for scalability.

3.4.2 Bayesian Quadrature

Recent work in BQ (Chai and Garnett 2019; Gunter et al. 2014; Osborne, Duven-

aud et al. 2012) has proposed the use of warped GPs (Snelson, Ghahramani and

Rasmussen 2004) to incorporate a priori known model-constraints into the surrogate.

This work builds upon WSABI (Gunter et al. 2014) in particular, which places a

GP prior over the square-root of the integrand. The acquisition function developed

in Section 3.5.3 also applies to this setting and is an extension of the information-

theoretic scheme discussed in Gessner, Gonzalez and Mahsereci (2019). Osborne,

Garnett et al. (2012) also proposed a BQ framework to infer ratios of integrals, which

is relevant to the computation of marginalised posteriors. However, the combina-

tion with WSABI and our framework introduces further intractable integral terms,

which must be approximated with Monte Carlo sampling and would prohibitively

raise the cost of inference. Additionally, the work of Xi, Briol and Girolami (2018)

and Chai, Ton et al. (2019) is related as it concerns the use of BQ for computing

correlated integrals, and for automatic model selection.

33

3.4.3 Gaussian Processes on Spaces of Measures

The BQ integrand model requires the specification of a positive-definite kernel across

the integration domain – the space of spectral densities. While numerous metrics

and divergences have been proposed to measure differences between probability dis-

tributions, many do not give rise to valid kernels.

Recent work has used Wasserstein distances (Bachoc, Gamboa et al. 2018) to

define Gaussian Processes on a space of measures. However, Wasserstein distances

are only Hilbertian in 1D (Peyré and Cuturi 2019) so extensions to multidimen-

sional distributions rely on Hilbert space embeddings of optimal transport maps to

a reference distribution (Bachoc, Suvorikova et al. 2019). Furthermore, evaluating

Wasserstein distances can be expensive as it involves finding the solution to an op-

timal transport problem. The Independence kernel based on the Sinkhorn distance

(Cuturi 2013) has been shown to be a valid positive definite kernel, but the distance

between identical distributions may not be zero. An elegant alternative that satis-

fies our desiderata are maximum mean discrepancies (MMDs), which are defined in

terms of kernel mean embeddings. MMDs are Hilbertian, so are a valid metric for

kernels of the form (3.6) (Muandet et al. 2017).

3.5 Our Method: MASKERADE

In the following we present a flexible, data efficient Gaussian Process framework and

show how to conduct Bayesian inference within it.

3.5.1 The generative model

Without loss of generality, we assume input dimensions of the training data to be

rescaled to the interval [0, 1] and outputs to be normalised to have zero mean and

unit variance.

By this construction, a zero mean prior for our GP model is the most logical

34

choice. As mentioned above, kernels are only assumed to be stationary. Following

(Wilson and Adams 2013) and (Oliva et al. 2016), we parameterise spectral densities

through Gaussian Mixture Models (GMMs) to induce a corresponding parameterisa-

tion of stationary kernels. In the limit of infinitely many components GMMs can

approximate any spectral density to arbitrary precision. For multi-dimensional data-

sets we use GMMs with a diagonal covariance structure (note that this assumption

is not a limitation of our framework and can be relaxed). The number of parameters

of a given density is then n(1 + 2d), where n is the number of mixture components,

and d is the dimensionality of the dataset.

The kernel, matching a spectral density parameterised by θ, can be recovered

via (3.2). To create only real-valued kernels, we reflect all mixtures at the origin.

We also note, that an additional output-scale k(0) is required to cover the space of

(unnormalised) measures and recover arbitrary stationary kernels. Since data has

unit variance, however, we omit this in the following.

Kernels defined in this way are expressive, but inferring their parameters has

been shown to be challenging. This is because the likelihood surface is multi-modal

and difficult to explore, and the number of parameters grows quickly with the di-

mensionality (Simpson, Lalchand and Rasmussen 2021).

To perform Bayesian inference and marginalise across stationary kernels, we

define a hyperprior p(θ) (see next section). A graphical representation of the result-

ing generative model is shown in Figure 3.1.

The Hyperprior p(θ)

The definition of our Bayesian model necessitates the choice of a suitable hyperprior.

We see this is an advantage to the practitioner, as they are able to include existing

knowledge to reduce the space of kernels needing to be explored. In the absence of

such information, we motivate a set of heuristics based on general properties of the

training data.

35

DX f DY

k

mw σn

N α µ Σ ν τ

n

Figure 3.1: Bayesian Network of our model. The number of mixture components n
is drawn from a uniform prior; α parameterises a Dirichlet distribution over mixture
weights w; µ and Σ parameterise Gaussians over mixture means; ν and τ paramet-
erise Log-Normal distributions over mixture scales. Not shown are hyperparameters
of the hyper-kernel, λ and l.

The prior over the number of mixture components n is uniform up to some

maximum N , limiting the size of the overall parameter space. The n components

are weighted against one another through a Dirichlet prior.

Mixture means are drawn from a normal distribution with zero mean and stand-

ard deviation Fs/5 so that negligible mass lies above the Nyquist frequency Fs of

the data. Recall that the Nyquist frequency is the highest frequency identifiable by

a data set.3

Mixture scales can be seen as approximate inverse lengthscales of the kernel.

Accordingly their log-normal prior is set such that most of its mass lies between the

inverse of the maximum distance between data points and the Nyquist frequency

– so that log(1/|Dx|) (where |Dx| is the size of the data window) is 5 standard

deviations below the mean (of the normal distribution in log-space), and log(Fs) is

5 standard deviations above.

We stress that the prior outlined above is, in our view, the widest reasonable

prior, and that performance is likely to be improved considerably by specifying

narrower priors, if possible, especially for high dimensional datasets.

3For unevenly-spaced data we choose Fs as the Nyquist frequency of a fictitious dataset with
sampling frequency equal to the inverted average distance between datapoints.

36

3.5.2 Posterior Inference

As we are epistemically uncertain about the kernel parameters, we seek to margin-

alise them out. Accordingly, the predictive distribution at some location x∗ under

the above model, after observing data D = {xD, yD}, is given by:

p(y∗ | x∗, D) =

∫
p(y∗ | x∗, θ,D) p(θ | D)dθ

=

∫
p(y∗ | x∗, θ,D)

p(D | θ)p(θ)
p(D)

dθ

=

∫
p(y∗ | x∗, θ,D) p(D | θ)p(θ)dθ∫

p(D | θ)p(θ)dθ
,

(3.4)

where θ = (n, {wi,mi, σi}ni=1) is the parameterisation of a spectral GMM with

n components, each described by a weight wi, mean mi and scale σi. The pre-

dictive distributions p(y∗ | x∗, θ,D) and likelihoods p(D | θ) for the spectral kernel

corresponding to a particular θ are given by the GP framework.

Unfortunately, both integrals in (3.4) are intractable and require approximation.

We note that a major cost here is the evaluation of Gaussian Process likelihoods.

These involve an inversion of the kernel Gram matrix of the entire data set whose

computational cost increases quickly with data set size (typically cubically). To

reduce the number of likelihood evaluations required, we propose to adopt a Bayesian

Quadrature approach.

3.5.3 Bayesian Quadrature

We begin by constructing GP models of the functions p(y∗ | x∗, θ,D) p(D | θ) and

p(D | θ) that are to be integrated against the prior. Since the locations x∗ of test

points are unknown at training time, inference separates into two steps.

During training, a “hyper-dataset” D of decompositions and matching likelihood

evaluations (and model evidences respectively) is compiled through active sampling

(see Section 3.5.3) to shape our surrogate models and improve approximation qual-

37

ity. Hereby, we follow (Gunter et al. 2014) and enforce positivity of the likelihood

surrogate by placing a GP prior over the square-root of the likelihood function

L(θ) = P (D | θ):

z =
√

2(L(θ)− ϵ) ∼ GP(0, κ), (3.5)

where κ(θ1, θ2) is a kernel between spectral decompositions (see section 3.5.3) and ϵ

is a small non-negative constant.

Under this model L(θ) is not a GP, but can be approximated with one using

a linear transformation of the surrogate. The posterior mean and covariance func-

tions mD(θ) and KD(θ1, θ2) then remain functions of the kernel κ and the likelihood

observations. To ensure a good fit to the actual likelihood function, hyperparamet-

ers are re-optimised after each evaluation. Since GPs are closed under continuous

bounded linear transformations (Bogachev 1961), we obtain a Gaussian posterior

over the model evidence – the integral in the denominator of (3.4). The mean of

this Gaussian takes the form zTQz, where Q are the BQ weights – a full derivation

is given in Appendix 3.8.1.

To make a prediction, we compute the integral in the numerator of (3.4) in the

same fashion. p(y∗ | x∗, θ,D) is a GP posterior. Since we employ the same kernel κ

to measure similarity between spectral densities, and we reuse the same likelihood

evaluations from the training stage, the quadrature weights are identical and only z

differs, allowing for efficient computation of the desired quantities.

The Hyper-Kernel

Noting that the densities under consideration are GMMs with a limited number of

components, it becomes apparent that a suitable hyper -kernel, κ, has to overcome

two obstacles. Firstly, it needs to cope with varying numbers of parameters, or

otherwise assign a predefined covariance between GMMs with differing numbers of

components. Secondly, it should capture a number of invariances in the paramet-

erisation of GMMs (e.g. reordering of components, subdivision or recombination of

38

components etc.). A näıve approach for the construction of such a kernel would base

distances between densities on the Euclidean distance between their parameters and

fails to achieve either desiderata.

Instead we construct a kernel based on the distance between the spectral densities

represented by those parameters. Accordingly, we seek a conditionally-negative

definite or Hilbertian metric between distributions. The maximummean discrepancy

meets our criteria, and is cheap to compute.

We obtain the following kernel:

κ(θ1, θ2) = λ2 exp

(
−d(θ1, θ2)

q

l2

)
, (3.6)

where λ > 0 is an output-scale, l > 0 is a length-scale parameter, q = {1, 2}

and d is a maximum mean discrepancy between the spectral densities (GMMs)

parameterised by θ1 and θ2. The exact form of the MMD depends on the underlying

kernel. Our experiments use the Energy Distance MMD (Feydy 2020), which arises

from using the underlying kernel κ(x, y) = −||x− y||. The resulting metric is given

by

d(θ1, θ2) = wT
1 M12w2 −

1

2
wT

1 M11w1 −
1

2
wT

2 M22w2 (3.7)

where w1 and w2 are vectors of component weights and M12 is a matrix of euclidean

distances between all pairs of component parameters {(mi, σi)}n1
i=1 and {(mi, σi)}n2

i=1,

but our framework allows for alternatives (e.g. the Gaussian MMD, which can

also be computed analytically for GMMs). The expression is similar for (diagonal)

multi-dimensional GMMs – M12 remains a matrix of euclidean distances between

all pairs of component parameters, which are now means and standard deviations

along each dimension. Note that, since the MMD is analytically computed (rather

than approximated through sampling as is usual in the MMD literature), it is a valid

distance between unnormalised densities. The hyper-kernel therefore remains valid

when kernels with arbitrary, non-unit output-scales are considered.

39

The only drawback is that integration of this kernel against the hyperprior dis-

tribution is no longer possible analytically, so Monte Carlo integration is necessary.

(This is because the parameters appear in the squared exponential of Equation (3.6),

which needs to be integrated against Dirichlet, Gaussian and Log-Normal distribu-

tions.) Arguably, however, the integration of the kernel against the prior lends itself

better to such an approximation than that of the data likelihood. Intuitively, the

likelihood function will have many sharp peaks for large datasets requiring samples

to be drawn at very specific (unknown) locations for an accurate estimate. The

kernel function by comparison is smoother, cheaper to evaluate and the resulting

integral easier to approximate via random sampling from the prior. Our empir-

ical results justify this approach, showing that we outperform competing methods

despite the requirement for sampling.

Information-theoretic point acquisition

The GP surrogate is trained based on a set of sampled spectral distributions, D =

{(θi, Li)}, and the likelihood values of their corresponding kernels. Since adding a

new point θnew to this set requires a computationally expensive likelihood evaluation,

it should be chosen to maximise its informativeness w.r.t. the quantity we care about

– the predictive distribution at test locations x∗.

As we do not expect the model to have access to the test locations at training

time, we choose a different acquisition criterion for the new point. Instead, we aim

to improve the approximation of the denominator of (3.4) – and thereby the fit of

the posterior distribution over spectral mixtures – at training time. In (Gunter et al.

2014) an acquisition function based on the uncertainty of the integrand is proposed.

We extend the work of (Gessner, Gonzalez and Mahsereci 2019) and (Ru, McLeod

et al. 2018) to propose an information-theoretic criterion instead.

We observe that the expected reduction in the entropy of our integral estimate

40

after making an observation at sample location θs is given by

α(θ∗) = H(L∗ | D, θ∗)− Ep(Z|D,θ∗)[H(L∗ | D, θ∗, Z)]. (3.8)

Here L∗ is the predicted observation at location θ∗ and Z is the integral in the

denominator of (3.4). Within the GP framework, the entropy of the predictive dis-

tribution H(L∗ | D, θ∗) is the entropy of a Normal distribution and can be calculated

in closed form. The second term turns out to be the expectation of a constant and

the predictive distribution conditioned on Z can once more be computed in closed

form. Gessner, Gonzalez and Mahsereci (2019) discuss this acquisition function in

the context of ordinary and multi-source Bayesian Quadrature. We note that it

is available for warped Bayesian Quadrature. In particular, the acquisition func-

tion can be computed analytically when the linearisation approximation is used,

provided that the kernel integrals are analytic. This is because the composition of

the approximation and integration remains an affine transformation. Therefore, the

integral of the approximate warped surrogate is jointly Gaussian distributed with

the unwarped surrogate.

The acquisition function (3.8) is also valid for selecting batches of a fixed size.

Importantly, our combination of hyper-kernel and acquisition function allows for the

selection of (batches of) GMMs that are maximally informative about the overall

evidence,
∫
p(D | θ)p(θ)dθ, rather than selecting GMMs for each parameter domain

(corresponding to a fixed number of components) separately. This is because the

kernel is able to define covariances between GMMs with different numbers of mixture

components. Incorporating such information represents an improvement over (Chai,

Ton et al. 2019) whose framework, in this instance, would be näıve as it assumes

that the GPs over each domain are independent.

41

3.5.4 Computational Complexity

During learning, each iteration requires optimising the hyperparameters of the sur-

rogate GP and the acquisition function. The time complexity of hyperparameter

optimisation is dominated by the cost of making likelihood evaluations, O(h3) where

h is the number of Spectral Mixture kernels evaluated thus far. Acquisition func-

tion optimisation incurs an initial cost of O(h3+mh2+m2), where m is the number

of Monte Carlo samples used to approximation the kernel integrals. Subsequent

evaluations require O(bh2) operations, where b is the batch size. The memory com-

plexity during hyperparameter optimisation is dominated by the cost of storing the

hyper-kernel evaluated between observed SM kernels O(h2). During the initialisa-

tion of the acquisition function, O(m2) memory is additionally required to store the

hyper-kernel evaluated between the MC samples.

Once the evaluation budget is exhausted the quadrature weights can be computed

in O(h3 + mh2 + m2) time and O(h2 + m2) memory. Inference takes O(h|D|3)

operations, though this can be reduced significantly by disregarding terms that

have low quadrature weight. The memory complexity of inference is O(h2|D|2) for

a näıve implementation, and can be reduced to O(h|D|2) by looping appropriately

(note that this leaves the asymptotic time complexity unchanged).

3.6 Results

In the following we empirically assess the performance of our model on a variety of

tasks.

42

3.6.1 Experiment setup

The experiments were conducted on Nvidia Titan V4 and Nvidia GeForce GTX

10805 GPUs. We report the Root Mean Squared Errors (RMSE) of the mean func-

tion of the predictive posterior as well as the Log-Likelihoods (LL) of the predictive

posterior on held out test data after training each model for a fixed training time

budget. Since the cost of likelihood evaluations depends on the dataset size, so does

the training budget. The numbers given indicate either mean performance or mean

performance and standard deviation.

We compare our approach of MArginalising Spectral KERnels As DEnsities

(MASKERADE)6 to models previously proposed in the literature including VSSGP

(Gal and Turner 2015), BaNK (Oliva et al. 2016), and FKL (Benton et al. 2019).

For VSSGP we use the VSSGP7 toolkit with parameters tuned to obtain the best

performance on the relevant dataset. Results for BaNK are directly taken from

the paper. FKL hyperparameters were set to the defaults for the spectralgp8 Py-

thon package, with the ωmax (maximum frequency) argument modified to match the

Nyquist frequency of the dataset.

We limit the parameter space MASKERADE considers to GMMs with up to 5

components (N=5). The concentration of the Dirichlet prior over weights is set to

α = 1. The remaining priors are chosen as described in section 3.5.1. We initialise

the BQ surrogate GPs with likelihood evaluations of parameters randomly chosen

from the prior and thereafter acquire additional evaluations using the acquisition

function. LBFGS is used to optimise both the acquisition function as well as the

parameters of the hyper-kernel.

4Comparisons to BaNK and VSSGP, and ablation studies.
5Comparison to FKL.
6https://github.com/saadhamidml/maskerade
7https://github.com/yaringal/VSSGP
8https://github.com/wjmaddox/spectralgp

43

(a) SM Kernel (b) MASKERADE 1–3 (c) MASKERADE 1–8

Figure 3.2: A comparison of a 5 component SM kernel with optimised hyperpara-
meters, and two variants of MASKERADE – one that places a prior over up to 3
mixture components, and the other up to 8 mixture components – on a toy dataset
drawn from a 5 component SM kernel. Each column plots attributes of the labelled
model. The first row shows the posterior conditioned on the training data (for the
MASKERADE models we show the moment-matched posterior). The second row
shows the spectra (for positive frequencies) of the data generating kernel, and (for
the 5 component SM kernel model) the optimised or (for the MASKERADE mod-
els) the sampled kernels. For the MASKERADE model, the opacity of a sampled
kernel is proportional to the quadrature weight for all GP products of which that
kernel is a part. (Recall that the posterior is a weighted sum of products of GP
posteriors.) MASKERADE 1–3 is able to select samples near the data generating
kernel, and therefore produce a posterior that generalises better than the other two
models. Despite having the same number of mixture components as the data gener-
ating kernel, the optimised SM kernel sets the weights of 3 components to be very
small. MASKERADE 1–8 struggles to explore its larger hyperparameter space with
the same budget (500 likelihood evaluations) as MASKERADE 1–3. This can be
seen by the fact that it spreads its posterior mass more evenly over a larger number
of samples.

3.6.2 Qualitative Analysis

We qualitatively inspect the behaviour of MASKERADE in Figure 3.2 by examining

the spectra of kernels assigned the highest weights in the posterior, and the effect

of varying the number of mixture components that are marginalised over.

Next, we visually verify that our method improves upon baselines by plotting

44

VSSGP MASKERADE

RMSE 0.328 0.224

Table 3.1: Test set RMSE for the Solar Irradiance Data Set.

fits on the Mauna Loa dataset. These are shown in Figure 3.3. MASKERADE

is parameterised to marginalise over 5 mixture components, with priors set as in

Section 3.1.1. FKL uses the defaults in the spectralgp Python package, with the

maximum frequency set to the Nyquist frequency of the Mauna Loa dataset. The

Spectral Mixture kernel uses 5 mixtures, initialised using the empirical spectrum of

the dataset.

(a) MASKERADE (b) FKL (c) Spectral Mixture Kernel

Figure 3.3: Posteriors for several methods on the Mauna Loa dataset (For MASK-
ERADE and FKL we show moment matched posteriors). All methods struggle to
model the linear trend, but MASKERADE is best able to extrapolate the periodic
structure.

3.6.3 Medium scale data sets

We next fit MASKERADE to the Solar dataset (Lean 2004) to compare against

VSSGP. We replicate the setup from Gal and Turner (2015), withholding 5 sets of

length 20 as the test set. For VSSGP we follow Gal and Turner (2015) in choos-

ing 50 inducing inputs, and allow LBFGS 5000 iterations to optimise the model’s

parameters. Table 3.1 and Figure 3.4 show the results.

45

1600 1650 1700 1750 1800 1850 1900 1950 2000

1

0

1

2

Train Data
Test Data
VSSGP
MAS Mean
MAS Conf.

Figure 3.4: MASKERADE and VSSGP on the Solar Irradiance Data Set. “MAS” in
the legend refers to MASKERADE, and “Conf.” refers to the (2 standard deviation)
confidence interval. For clarity, we show only the posterior mean for VSSGP. Note
that VSSGP is a sparse spectrum method, which is why it sometimes fails to achieve
low error at the training points. Whilst VSSGP is able to approximate well the
underlying periodic structure of the function, MASKERADE is able to generalise
better.

We further examine the algorithms’ performance on four datasets from the UCI

Machine Learning Repository (Dua and Graff 2017): Yacht Hydrodynamics (308

instances, 6 input dimensions) (Lopez 2013), Auto MPG (398 instances, 8 input

dimensions) (Ross 1993), Concrete Compressive Strength (1030 instances, 8 input

dimensions) (Yeh 2007), and Airfoil Self-Noise (1503 instances, 5 input dimensions)

(Lopez 2014).

To compare against FKL we follow (Benton et al. 2019) and average over 10

runs, randomly partitioning the data into 90/10 train/test sets every time. These

results are presented in Table 3.2.

Similarly, to compare against BaNK we follow (Oliva et al. 2016) and perform 3

repeats of 5-fold cross-validation on the Concrete Compressive Strength and Airfoil

Self-Noise datasets, for which we present results in Table 3.3.

3.6.4 Large scale data sets

Finally we compare MASKERADE against FKL on two large datasets, with a lim-

ited time budget of 20 minutes for learning. We average over 10 runs with a 90/10

46

LL P-value

Dataset FKL MASKERADE

yacht -32.071 ± 8.45 47.163 ± 5.757 2.97 × 10-9

autompg -103.57 ± 5.638 -57.265 ± 3.95 3.56 × 10-9

concrete -300.953 ± 34.136 -122.696 ± 6.485 9.72 × 10-8

airfoil -863.545 ± 35.959 -151.54 ± 13.263 1.65 × 10-13

RMSE P-value

Dataset FKL MASKERADE

yacht 0.631 ± 0.358 2.013 ± 0.576 1.08 × 10-6

autompg 3.089 ± 0.358 8.137 ± 0.655 6.77 × 10-9

concrete 5.808 ± 2.651 13.148 ± 1.314 2.78 × 10-5

airfoil 83.854 ± 12.335 4.592 ± 0.623 1.06 × 10-8

Table 3.2: Posterior log likelihood of and RMSE on the test set for UCI MLR
datasets. The P-values are based on paired Student-t tests.

Dataset BaNK MASKERADE

concrete 0.1195 ± 0.0108 0.6889 ± 0.0168
airfoil 0.3359 ± 0.0354 0.2578 ± 0.0866

Table 3.3: MSE on the (normalised) test set for two UCI data sets. Results for
BaNK taken from (Oliva et al. 2016).

train/test split and report results in Table 3.4. The P-values are based on paired

t-tests. MASKERADE once more achieves superior performance to FKL on the

same time budget in terms of log likelihood. The datasets are the Sterling Broad

Based Exchange Rate (England 2020) (data from 1990-01-02–2020-10-08, totalling

7781 data points) and the UCI 3D Road Network (Kaul 2013) (10,000 data point

subset of 250,000 data points. We choose the first 10,000 instances with a unique

OSM-ID) for which the task is to predict altitude from latitude and longitude.

3.6.5 Ablation Study

We conduct an ablation study to verify the effectiveness of two components of our

model in Table 3.5. Firstly, we verify that marginalising across the kernel family

does indeed lead to better predictive performance. As a baseline, we compare against

47

LL P-value

Dataset FKL MASKERADE

sterling -1053.566 ± 30.697 335.37 ± 53.582 7.81 × 10-8

road alt -4355.296 ± 219.847 -1070.571 ± 21.548 7.19 × 10-12

RMSE

Dataset FKL MASKERADE

sterling 1.042 ± 0.028 0.523 ± 0.042 1.77 × 10-10

road alt 10.17 ± 0.62 12.798 ± 0.427 3.68 × 10-6

Table 3.4: Posterior log likelihood of and RMSE on the test set for FKL and MASK-
ERADE fit to two large datasets. Both methods were given a time budget of 20
minutes for training.

a GP using Spectral Mixture kernel (SM) whose hyperparameters were optimised

via gradient descent to maximise the likelihood of the training data. Secondly, we

compare our proposed acquisition function against uncertainty sampling (Gunter

et al. 2014) and random point acquisition. We set an evaluation budget of 1000

and evaluate performance on the Airline Passenger (Makridakis, Wheelwright and

Hyndman 1998) and Mauna Loa Atmospheric CO2 Concentration (NOAA 2020)

datasets. We average over 10 runs with a 90/10 train/test split. In both cases, our

chosen approach compares favourably to alternative designs.

Dataset SM MASKERADE-I

airpass 0.283 ± 0.000 0.162 ± 0.020
mauna loa 0.802 ± 0.685 0.026 ± 0.002

MASKERADE-U MASKERADE-R

0.164 ± 0.027 0.163 ± 0.022
0.029 ± 0.001 0.030 ± 0.002

Table 3.5: Test set RMSE for the Airline Passenger and Mauna Loa datasets.
MASKERADE-I indicates the use of our proposed information theoretic acquisition
function, MASKERADE-U indicates uncertainty sampling (Gunter et al. 2014), and
MASKERADE-R indicates random sampling under the prior.

48

3.7 Discussion

We have introduced a novel framework for kernel learning for Gaussian Processes

that seeks to marginalise over Spectral Mixture Kernels using Bayesian Quadrature.

Specifically we use a maximum mean discrepancy as a metric underlying an exponen-

tial kernel to define a Gaussian Process on a space of GMMs, and show how this can

be efficiently computed. This elegantly incorporates invariances between Spectral

Mixture Kernels into our model. Additionally we show that an information-theoretic

acquisition function is applicable for warped Bayesian Quadrature, and how to use

it within our framework. We empirically evaluate our method on several datasets

and find that it is competitive with state-of-the-art baselines.

The key limitation of our method is due to the curse of dimensionality. The

most scalable instantiation of our framework handles multi-dimensionality by using

GMMs in which each Gaussian has a diagonal covariance structure. This means that

the number of parameters for an SM kernel with M mixtures is M(1 + 2D), which

grows faster than the number of data dimensions, D. This limits the effectiveness

of any Bayesian Quadrature regime. Note that Monte Carlo methods also suffer

in high dimensional spaces, especially if likelihood evaluations are expensive. (Our

method relies on MC integration of kernel integrals, but these are considerably easier

to compute than the marginalisation integrals because our method only requires

samples from the priors over hyperparameters rather than the posteriors, and the

kernel is much cheaper to evaluate than the likelihood.) Our approach is most

beneficial for inference based on large, low dimensional datasets.

The societal impacts of this work will depend on the problems that practitioners

apply it to, as it is a general-purpose framework.

49

3.8 Supplement

3.8.1 Summary of WSABI

For completeness we include a summary of the Warped Sequential Active Bayesian

Integration (WSABI) algorithm proposed by (Gunter et al. 2014), upon which our

work builds heavily.

Recall that we are interested in integrals of the form
∫
f(θ)dπ(θ), where f(θ)

is non-negative. We enforce this constraint by modelling g(θ) =
√
2
(
f(θ)− ϵ

)
∼

GP(0, κ). This induces a non-central Chi-squared distribution over f(θ).

Now, denote by Θ the set of observation locations, the matching transformed

observations by z =
√
2
(
f(Θ)− ϵ

)
, the covariance between all pairs of observations

as κΘΘ, the covariance between an arbitrary point θ and the set of observations

as κΘΘ and the kernel between two arbitrary points as κθ1θ2 . Additionally, let

D = (Θ, z).

Further, recall that the posterior over g(θ) conditioned on z is given by GP(µD,ΣD)

with:

µD = κθΘκ
−1
ΘΘz

ΣD = κθ1θ2 − κθ1Θκ
−1
ΘΘκ

T
θ2Θ

By taking a Taylor expansion around the posterior mean of g(θ), µD, we can

approximate

f(g) ≈ f(µD) + (g − µD)
df

dg

∣∣∣∣
g=µD

= ϵ− 1

2
µ2
D + µDg.

As this is a linear transform of g, we can approximate the distribution over f as

50

GP(mD,KD) with moments

mD(θ) = ϵ+
1

2
µD(θ)

2,

KD(θ1, θ2) = µD(θ1)ΣD(θ1, θ2)µD(θ2).

Then the first two moments of the integral of interest are given by

E
[∫

f(θ)dπ(θ)

]
=

∫
E[f(θ)]dπ(θ) =

∫ (
ϵ+

µD(θ)
2

2

)
dπ(θ)

= ϵ+
1

2

(
zTκ−1

ΘΘ

∫
κT
θΘκθΘdπ(θ)κ

−1
ΘΘz

)
= ϵ+

1

2
zTQz.

and

Cov

[∫
f(θ)dπ(θ)

]
=

∫ ∫
µD(θ)ΣD(θ, θ

′)µD(θ
′)dπ(θ)dπ(θ′)

= zTκ−1
ΘΘ

(∫ ∫
κθθ′κ

T
θΘκθ′Θdπ(θ)dπ(θ

′)

−
∫

κT
θΘκθΘdπ(θ)κ

−1
ΘΘ

∫
κT
θ′Θκθ′Θdπ(θ

′)

)
κ−1
ΘΘz

Where the quadrature weights, Q = κ−1
ΘΘ

∫
κT
θΘκθΘdπ(θ)κ

−1
ΘΘ, only depend on the

particular kernel choice and locations of already observed function values.

For the numerator of Equation (4) in the main text we simply substitute z∗ =√
2
(
p(y∗ | x∗, D, θ)p(D | θ)− ϵ

)
for z =

√
2
(
p(D | θ)− ϵ

)
. The predictive posterior

is then a weighted sum of products of Gaussians.

51

3.8.2 A Remark on Posterior Inference

The predictive posterior given in (3.4) is typically viewed through the hierarchical

Bayesian framework:

p(y∗ | x∗, D) =

∫
p(y∗ | x∗,Θ, D) p(D | Θ)p(Θ)dΘ∫

p(D | Θ)p(Θ)dΘ

=

∫ ∫
p(y∗ | x∗, θ

(n), D) p(D | θ(n))p(θ(n), n)dθ(n)dn∫ ∫
p(D | θ(n))p(θ(n), n)dθ(n)dn

=

∑N
n=1 p(n)

∫
p(y∗ | x∗, θ

(n), D) p(D | θ(n))p(θ(n))dθ(n)∑N
n=1 p(n)

∫
p(D | θ(n))p(θ(n))dθ(n)

,

(3.9)

where θ(n) is the description of a GMM with exactly n components. For our ex-

periments we choose uniform priors over n, which cancel (note that this is not an

inherent limitation of our method).

A näıve approach performs the integrals over θ(n) separately before computing

the sums over n. The ability of MASKERADE to share information across models

enables the selection of acquisitions which are maximally informative about the sum

of integrals rather than each individual integral separately, improving the convergence

rate. Additionally, accounting for the covariance between integrals over θ(n) improves

the quality of the posterior over the result of the summations.

Derivation of Information Theoretic Sample Acquisition

The acquisition function is the expected information gained about the integral by

making a set of likelihood observations

α(θ(n)∗) =

∫ (
H[Z | z,Θ]−H[Z | z∗, θ(n)∗ , z,Θ]

)
p(z∗ | θ(n)∗ , z,Θ)dz∗

Due to the symmetry of the mutual information, we can swap of Z and z∗ [52]

α(θ(n)∗) = H[z∗ | z,Θ]−
∫

H[z∗ | θ(n)∗ , Z, z,Θ]p(Z | z,Θ)dZ

52

= H[z∗ | z,Θ]−H[z∗ | θ(n)∗ , Z, z,Θ]

where H is differential entropy (always of Gaussians). The second line follows be-

cause the entropy of the Gaussian p(z∗ | θ(n)∗ , Z, z,Θ) does not depend on the value

of Z.

Monte Carlo approximation to the kernel integrals

The kernel integrals are approximated using Quasi Monte Carlo sampling under the

prior. Table 3.6 shows the effect of varying the number of QMC samples.

No. of MC samples

No. Observations 100 1000 10000

100 0.02546± 0.00149 0.02542± 0.00020 0.02526± 0.00012
500 0.00369± 0.00035 0.00379± 0.00013 0.00358± 0.00003
1000 0.00333± 0.00095 0.00292± 0.00031 0.00292± 0.00006

Table 3.6: The effect of number of Monte Carlo samples used to estimate the kernel
integrals (i.e. the those described in Section 3.8.1). For a MASKERADE model
that marginalises over up to 5 mixture components we randomly sample sets of 100,
500 and 1000 hyperparameters from the prior, and compute their corresponding
likelihoods on the UCI Airfoil Self-Noise dataset. We then infer the model evidence
with WSABI using the MASKERADE hyper-kernel. For a given number of MC
samples, we repeat this five times and report the mean and SEM for the posterior
mean of the model evidence. We observe that the estimate for the model evidence
is not highly sensitive to the number of monte carlo samples used to compute the
kernel integrals.

53

3.8.3 Full Algorithm Description

For completeness we once more give the full generative model:

n ∼ Uniform({1, 2, ..N}),

w ∼ Dirichlet(α),

m1..n ∼ N (µ,Σ),

σ1..n ∼ Log-Normal(ν, τ),

S(ω) =
n∑

j=1

wj

2

(
N (ω;mj, σj) +N (ω;−mj, σj)

)
,

k(x, x′) =

∫
e2πi|x−x′|ωS(ω)dω,

f ∼ GP(0, k).

(3.10)

Below, we provide a summary of the MASKERADE framework in Algorithm 1.

A schematic outlining our method is made available in Figure 3.5.

Algorithm 1 Pseudocode for both the learning and prediction phases of our al-
gorithm.

obtain initial samples Θ, z ▷ z are likelihood evaluations at Θ.
λ, l← argmaxλ,lp(z | Θ, λ, l) ▷ Optimise BQ Surrogate
while i ≥ 0 do
{θ(n)s }1:b ← argmax{θ(n)

s }1:b
α({θ(n)s }1:b) ▷ Optimise acquisition function

append {θ(n)s }1:b to Θ.

append likelihood({θ(n)s }1:b) to z.
λ, l← argmaxλ,lp(z | Θ, λ, l) ▷ Optimise BQ surrogate
i← i− 1

end while
Q← compute bq weights(Θ, z, λ, l, ϕ) ▷ Q defined as in Appendix on WSABI
above. ϕ are all prior parameters.
for θ

(n)
s in Θ do

µ∗,Σ∗ ← predict(x∗, D, θ
(n)
s)

end for
return predictive posterior(Q, {µ∗}, {Σ∗}, z) ▷ See Appendix on WSABI

for details.

54

x f θ

Figure 3.5: A schematic representation of the inference procedure under our model.
The left column shows the GP posterior for different Spectral Mixture Kernels on the
same dataset. The centre column shows the SM kernels in their spectral domain.
The right column illustrates a GP posterior on a space indexed by the spectral
densities of the SM kernels. BQ can then be used to marginalise over SM kernels
which may have different numbers of mixture components.

55

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Marginalising over Stationary Kernels with Bayesian Quadrature

Publication Status

 □Published Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Hamid, S., Schulze, S., Osborne, M. & Roberts, S. (2022). Marginalising over

Stationary Kernels with Bayesian Quadrature. In Proceedings of the 25th

International Conference on Artificial Intelligence and Statistics (AISTATS)

Student Confirmation

Student Name:

Saad Hamid

Contribution to the
Paper

• Joint formulation of initial research direction.
• Investigated approaches for incorporating salient invariances into BQ scheme.
• Joint discussion of experimental design.
• Majority of coding of experiments.
• Contributed to writing-up the paper.

Signature

Date

11/01/2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Prof Michael A. Osborne

Supervisor comments

I certify that the candidate made a substantial contribution to the publication, just as described above.

Signature

Date

11 January 2023

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 4

Bayesian Quadrature for Neural
Ensemble Search

Contents
4.1 Abstract . 58

4.2 Introduction . 59

4.3 Background . 61

4.3.1 Neural Architecture Search 61

4.3.2 Bayesian Optimisation for Neural Architecture Search . . 64

4.3.3 Neural Ensemble Search 65

4.3.4 Bayesian Quadrature . 66

4.3.5 Recombination . 68

4.4 Bayesian Quadrature for Neural Ensemble Search 68

4.4.1 Building the Candidate Set 69

4.4.2 Selecting the Ensemble . 71

4.5 Experiments . 73

4.5.1 Ablation Study . 75

4.6 Discussion and Future Work 82

4.7 Supplement . 83

4.7.1 Verification of Surrogate Quality 83

4.7.2 Additional Experiments 84

Preface

The previous chapter focussed on using Bayesian Quadrature for model selection in

Gaussian Processes. In a similar vein, this chapter will explore the use of Bayesian

Quadrature for model selection in Neural Networks.

57

Neural Networks (NNs) are a flexible class of models that have achieved state-

of-the-art results in recent years on a range of tasks from image classification to

semantic segmentation and speech recognition. The architecture of a neural net-

work encodes strong inductive biases, and is well known to significantly affect the

performance achievable by a network. This has motivated authors to design sys-

tems for automatic selection of NN architectures, a problem referred to as Neural

Architecture Search. The community has developed several methods of specifying

search spaces from which an architecture α ∈ A is to be selected, along with a range

of search strategies. More recently, is has been shown that ensembles of NNs can

outperform single architectures, motivating the automatic selection of ensembles of

NNs, a problem referred to as Neural Ensemble Search. The key challenges in this

setting are that the search space of possible architectures can be very large, and that

the evaluation of a given architecture is computationally expensive since it requires

training that architecture (or marginalising over its weights).

In this chapter, we view ensembling as approximately performing marginalisa-

tion over architectures. This perspective allows us to bring the tools of Bayesian

Quadrature to bear upon the problem of Neural Ensemble Search. Specifically, the

contributions of this chapter are:

• To investigate the use of active Bayesian Quadrature as a means of selecting

the candidate set of architectures to train.

• To compare methods of selecting the ensemble from this candidate set, and

setting the relative weights of the members.

4.1 Abstract

Ensembling can improve the performance of Neural Networks, but existing ap-

proaches struggle when the architecture likelihood surface has dispersed, narrow

peaks. Furthermore, existing methods construct equally weighted ensembles, and

58

this is likely to be vulnerable to the failure modes of the weaker architectures. By

viewing ensembling as approximately marginalising over architectures we construct

ensembles using the tools of Bayesian Quadrature – tools which are well suited to

the exploration of likelihood surfaces with dispersed, narrow peaks. Additionally,

the resulting ensembles consist of architectures weighted commensurate with their

performance. We show empirically – in terms of test likelihood, accuracy, and ex-

pected calibration error – that our method outperforms state-of-the-art baselines,

and verify via ablation studies that its components do so independently.

4.2 Introduction

Neural Networks (NNs) are extremely effective function approximators but their

architectures are typically designed by hand, a painstaking process. To address this

there has been significant interest in the definition of, and the automatic selection

from, search spaces of NN architectures. Recent work shows that ensembles of ar-

chitectures from a given search space can outperform the single best architecture

(Shu et al. 2022; Zaidi et al. 2022). Such ensembles improve performance on a range

of metrics, including the test set’s predictive accuracy, likelihood, and expected

calibration error. The latter two metrics measure the quality of the model’s uncer-

tainty estimates, which have been shown for single architectures to be poor (Guo

et al. 2017). Performant models in this regard are crucial for systems which make

critical decisions, such as self-driving vehicles. Naturally, ensemble selection is an

even more difficult problem to tackle manually than selecting a single architecture.

Hence, interest in methods for automatic ensemble construction is growing. This

paper targets exactly this problem.

Conceptually, Neural Ensemble Search (NES) algorithms can be split into two

stages. The first is the candidate selection stage, which seeks to characterise the

posterior distribution, p(α | D), given the training data D, over architectures from

59

a given search space α ∈ A. Multiple approaches have been proposed. One such is an

evolutionary strategy which seeks the modes of this distribution (Zaidi et al. 2022);

another is training a “supernet” and using it to learn the parameters of a variational

approximation to this distribution (Shu et al. 2022). This involves evaluating the

likelihood of a set of architectures from the search space, an evaluation which requires

first training the architecture weights. The second stage is ensemble selection, where

the ensemble members are selected from the candidate set and each member’s weight

is chosen. Several approaches have also been suggested for ensemble selection, such

as beam search and sampling from the (approximate) posterior over architectures.

In this work, we investigate novel approaches to both stages of a NES algorithm.

Taking a hierarchical Bayesian perspective, we view ensembling as approximately

performing marginalisation over a given search space of architectures. This paradigm

allows us to bring the tools of Bayesian Quadrature to bear upon the problem of

Neural Ensemble Search. Specifically, the contributions of this work are to:1

• Propose using an acquisition function for adaptive Bayesian Quadrature to

select the candidate set of architectures to train. It is from these that the

ensemble members are later selected.

• Show how recombination of the approximate posterior over architectures can

be used to construct a weighted ensemble from the candidate set.

• Undertake an empirical comparison of our proposals against state-of-the-art

baselines. Additionally, we conduct ablation studies to understand the effect

of our proposals for each stage of the NES pipeline.

1An implementation of our experiments can be found at ht-
tps://github.com/saadhamidml/bq nes.

60

4.3 Background

4.3.1 Neural Architecture Search

Neural Architecture Search (NAS) is typically formulated as an optimisation prob-

lem, i.e. maximising some measure of performance f over a space of NN architectures

A,

α∗ = argmaxα∈Af(α). (4.1)

(Elsken, Metzen and Hutter 2019) identify three conceptual elements of a NAS

pipeline: a search space, a search strategy, and a performance estimation strategy.

The first part of a NAS pipeline – the search space – is the way in which the

possible space of NN architectures is defined. In this work we require that the search

space be such that a Gaussian Process (GP) can be defined upon it. In particular we

will restrict our attention to cell-based search spaces that construct architectures by

inserting stacks of a cell into a larger, fixed macro-skeleton (Dong, Liu et al. 2021),

as recent results have shown that GPs are well suited to modelling functions on such

spaces (Ru, Wan et al. 2021). (However, we investigate alternative search spaces in

Appendix 4.7.2.) Searching over architectures then becomes equivalent to searching

over cells. Cells are represented as labelled Directed Acyclic Graphs (DAG) that

connect a fixed number of nodes with operations selected from a pre-specified oper-

ation set (usually also including the possibility of a “zeroise” connection, which is

equivalent to removing the connection).

A NAS pipeline’s second phase is the search strategy. This is a procedure for

selecting which architectures to query the performance of. All strategies will ex-

hibit an exploration-exploitation trade-off, where exploration is covering the search

space well, and exploitation is selecting architectures that are similar to the well-

performing architectures in the already queried history.

The final element of a NAS pipeline is the performance estimation strategy, which

is the method for querying the performance of a given architecture. Typically, this

61

is done by training the NN weights, given the architecture, on a training dataset,

and evaluating its performance on a validation set. However, this demands excess-

ive computing and practically limits the total number of architecture evaluations

available to the search strategy.

There is a large body of literature devoted to the problem of Neural Architecture

Search, pursuing a range of strategies such as defining a differentiable search space

(Chen, Xie et al. 2019; Liu, Simonyan and Yang 2019; Xu et al. 2020), evolutionary

strategies (Liu, Sun et al. 2021; Real, Aggarwal et al. 2019; Real, Moore et al. 2017),

and Bayesian Optimisation (Kandasamy et al. 2019; Ma, Cui and Yang 2019; Ru,

Wan et al. 2021; White, Neiswanger and Savani 2020).

62

0 0

1 2

33

4

6=0,25=0,12

9=2,33

10=3,210=3,2

8=2,48=2,4

8=2,47=1,33

11=3,411=3,4

2

33

4

2

2

4 4

Graph Representation of Cells

Label Aggregation

Feature Vectors

image

Arch A Arch B

Arch A Arch B

conv cell
x 5

residual
block

cell
x 5

cell
x 5

residual
block

global
avg. pool

Macro-skeleton

Key

0
1
2
3
4

Input
1x1 conv

3x3 avg pool
Output

3x3 conv

h=0 features 0 1 2 3 4
Arch 0 1 1 2 2 1
Arch 1 1 0 2 2 1

h=1 features 5 6 7 8 9 10 11
Arch 0 1 0 1 2 0 1 1
Arch 1 0 1 0 1 1 1 1

Figure 4.1: A diagram showing the process of building the WL Kernel’s feature
vectors for NAS. At the top is the macro-skeleton which is varied by changing
the cell. Defining the search space in this way allows us to model the objective
function on the space of cells. Cells are represented as labelled DAGs. The h = 0
level features are simply histograms of the labels for each node in the graph. To
compute the features at the next level, each node has its label appended with the
aggregated labels of all nodes in its 1-out-neighbourhood. The h = 1 level features
are histograms of these modified labels. Higher level features are computed by
aggregating the labels for larger out-neighbourhoods.

63

4.3.2 Bayesian Optimisation for Neural Architecture Search

An effective approach to NAS is Bayesian Optimisation (BO). At a high level, BO

models the objective function f and sequentially selects where to query next based

on an acquisition function, with the goal of finding the optimal value of the objective

function in a sample efficient manner. Typically, the objective function is modelled

using a Gaussian Process (GP) – a stochastic process for which all finite subsets of

random variables are joint normally distributed (Rasmussen and Williams 2006).

A GP is defined using a mean function m(α) that specifies the prior mean at

α, and a kernel function k(α, α′) that specifies the prior covariance between f(α)

and f(α′). The posterior, conditioned on a set of observations A = {(αi,)}Ni and

y = [f(α1), . . . , f(αN)]
T , is also a GP with moments

mA(·) = m(·) +K·AK
−1
AA (y −m(α)) and (4.2)

kA(·, ·′) = K··′ −K·AK
−1
AAKA·. (4.3)

The prior mean function m is typically set to zero.

Ru, Wan et al. (2021) showed that the Weisfeiler-Lehman graph kernel (WL

kernel) (Shervashidze 2011) is an appropriate choice for modelling NN performance

metrics on a cell-based NAS search space with a GP. To apply the WL kernel, a cell

first needs to be represented as a labelled DAG. Next, a feature vector is built up

in the following way:

1. Compute a histogram of the labels. These are the h = 0 level features.

2. Relabel each node with a new label generated by aggregating the labels of

the nodes in its 1-out-neighbourhood (as we are now computing the h = 1

level features). The h-out-neighbourhood of a node is the set of nodes that

are reachable by traversing h edges starting from that node. Then compute a

histogram of these aggregated labels. These are the h = 1 level features.

64

3. Repeat (2) up to a pre-specified depth h = H.

4. Generate the feature representation as the aggregate of the histograms for each

level h = 0 to h = H.

The kernel is then computed as the dot product of the feature vectors for a pair of

graphs. This process is shown diagrammatically in Figure 4.1.

A common acquisition function for BO is Expected Improvement (Garnett 2021),

aEI(α) = Ep(f |D)

[
max

(
f(α)− f(α̂), 0

)]
(4.4)

where α̂ is the best architecture found so far. Using this acquisition function in

conjunction with a GP using the WL kernel was shown by Ru, Wan et al. (2021) to

be effective for NAS.

4.3.3 Neural Ensemble Search

Neural Ensemble Search (Zaidi et al. 2022) is a method for automatically construct-

ing ensembles of a given size, M , from a NAS search space A. First, a candidate

set of architectures, A ⊂ A, is selected using a regularised evolutionary strategy

(NES-RE), or random sampling from the search space. The authors propose sev-

eral ensemble selection methods to subsequently select a subset of M architectures

AM ⊂ A. Of particular interest in this work are Beam Search (BS) and Weighted

Stacking (WS).

BS initially adds the best performing architecture to the ensemble and greed-

ily adds the architecture from the candidate set (without replacement) that most

improves the validation loss of the ensemble. WS optimises the ensemble weights

over the whole candidate set on the validation loss (subject to the weights being

non-negative and summing to one). The members with the highest M weights are

included in the ensemble, and their corresponding weights renormalised. The au-

thors compare BS to WS on the CIFAR-10 dataset, and find performance in terms

65

of the log likelihood of the test set to be better for BS for small ensembles, but

similar for larger ensembles.

Neural Ensemble Search via Bayesian Sampling (Shu et al. 2022) approximates

the posterior distribution over architectures p(α | D) with a variational distribution

of the form q(α) =
∏

i qi(o | θi), where i iterates over the connections within a cell,

o is the operation for connection i, and θi are the variational parameters for qi. The

form of qi is chosen to be a softmax over θi. The ensemble is then selected by using

Stein Variational Gradient Descent with Regularised Diversity to select a diverse set

of M samples from (a continuous relaxation of) the variational distribution.

Relatedly, DeepEnsembles (Lakshminarayanan, Pritzel and Blundell 2017) seeks

to approximately marginalise over the parameters of a given NN architecture. The

architecture is trained from several random initialisations, and the ensemble makes a

prediction as an equally weighed sum of these. This is orthogonal to the work above

(and indeed our work), which seeks to construct ensembles of different architectures,

rather than ensembles of different parameter settings of the same architecture.

4.3.4 Bayesian Quadrature

Bayesian Quadrature (BQ) (Minka 2000; O’Hagan 1991) is a probabilistic numerical

integration technique that targets the computation of Z =
∫
f(x)dπ(x) based on

evaluations of the integrand f (assuming a given prior π). Similar to BO, it main-

tains a surrogate model over the integrand f , which induces a posterior over the

integral value Z. BQ also makes use of an acquisition function to iteratively select

where next to query the integrand.

The surrogate model for BQ is usually chosen to be a GP, and this induces a

Gaussian posterior over Z ∼ N (µZ , σZ). The moments of this posterior are given

by

µZ=

∫
K(x,X)dπ(x)K−1

XXf, and (4.5)

66

σZ=

∫
K(x, x′)−K(x,X)K−1

XXK(X, x′)dπ(x)dπ(x′), (4.6)

where X is the set of query points, and f are the corresponding integrand obser-

vations. Note that the posterior mean µZ takes the form of a quadrature rule – a

weighted sum of function evaluations
∑

i wif(xi) where wi are the elements of the

vector
∫
K(x,X)dπ(x)K−1

XX .

Often non-negative integrand are of interest and warped Bayesian Quadrature

(Chai and Garnett 2019; Gunter et al. 2014; Osborne, Duvenaud et al. 2012) al-

lows practitioners to incorporate this prior information into the surrogate model.

Of particular interest in this work will be the WSABI-L model (Gunter et al.

2014), which models the square-root of the integrand with a GP,
√

2
(
f(x)− β

)
∼

GP
(
µD(x),ΣD(x, x

′)
)
. This induces a (non-central) chi-squared distribution over f

which can be approximated with a GP, with moments

m(x) = β +
1

2
µD(x)

2, (4.7)

k(x, x′) = µD(x)ΣD(x, x
′)µD(x

′). (4.8)

(Gunter et al. 2014) established, empirically, that the uncertainty sampling ac-

quisition function works well for Bayesian Quadrature. This acquisition function

targets the variance of the integrand

aUS(x) = ΣD(x, x)µD(x)
2π(x)2. (4.9)

This naturally trades off between exploration (regions where ΣD(x, x) is high), and

exploitation (regions where µD(x) is high – most of the volume under the integrand

is concentrated here).

Just as BO is a natural choice for NAS – an expensive black-box optimisation

problem – so BQ is a natural choice for NES – an expensive black-box marginalisa-

tion problem. It is this realisation that inspires our proposals in Section 4.4.

67

4.3.5 Recombination

Given a non-negative measure supported on N points {(wn, xn)}Nn=1 where wn ≥ 0

and
∑N

n=1 wn = 1, and M − 1 “test” functions {ϕt(·)}M−1
t=1 , it is possible to find a

subset of M < N points {xn}Mm=1 ⊂ {xn}Nn=i for which

M∑
m=1

wmϕt(xm) =
N∑

n=1

wnϕt(xn) (4.10)

for all ϕt, with wm ≥ 0 and
∑M

m=1wm = 1 (Tchernychova 2015).

For Kernel Quadrature, one can use the Nyström approximation of the kernel

matrix to obtain a set of test functions (Hayakawa, Oberhauser and Lyons 2022).

Using a subset, S, of M − 1 data points, the kernel can be approximated k̃(x, x′) =

k(x, S)k(S, S)−1k(S, x′). By taking an eigendecomposition, k(S, S) = UΛUT , the

approximate kernel can be expressed as

k̃(x, x′) =
M−1∑

t

1

λt

(
uT
t k(S, x)

)(
uT
t k(S, x

′)
)

(4.11)

where ui are the columns of U , and λi the diagonal elements of Λ. We can then use

ϕt(·) = uT
t k(S, ·) as test functions.

4.4 Bayesian Quadrature for Neural Ensemble

Search

We decompose NES into two sub-problems:

1. The selection of a candidate set of architectures {αi}Ni=1 = A ⊂ A for which

to train the architecture parameters.

2. The selection of a set of M members from the candidate set to include in the

ensemble, and their weights, w ∈ RM .

68

} +

Ensemble predictions

Final prediction

Figure 4.2: A schematic representation of our proposal. The plot on the left shows
a Gaussian Process modelling the likelihood over the space of architectures. The
architectures to train and evaluate the likelihood for are selected by maximising a
Bayesian Quadrature acquisition function, as described in Section 4.4.1. One of the
algorithms described in Section 4.4.2 is then used to select the subset of architectures
to include in the ensemble, along with their weights. The final prediction is then a
linear combination of the predictions of each ensemble member.

We take novel approaches to each of these sub-problems, described respectively in

the following two subsections. Algorithms 2, 3 and 4 summarise our propositions.

4.4.1 Building the Candidate Set

Ensembling can appropriately be viewed as approximately performing marginal-

isation over the search space of architectures. In this light, we suggest using an

acquisition function from the Bayesian Quadrature literature for building the can-

didate set of architectures to train (from which the ensemble members will later be

selected).

The connection between ensembling and marginalisation can be seen by examin-

ing our ultimate quantity of interest – the posterior predictive – a distribution over

class labels c ∈ {1, . . . , C} given an input x ∈ X conditioned on a training dataset

D, with architectures α ∈ A marginalised out.

p(c | x,D) =
∑
α∈A

p(c | x, α,D)p(α | D)

=

∑
α∈A p(c | x, α,D)p(D | α)p(α)∑

α∈A p(D | α)p(α)
. (4.12)

69

We see that, to compute the posterior predictive, we need to compute C sums of

products of functions of the architecture and the architecture likelihoods. Intuitively,

we expect a quadrature scheme that approximates well the sum in the denominator

of (4.12) will also approximate the sum in the numerator well. Therefore, we propose

using a Bayesian Quadrature acquisition function to build up the candidate set, as

these architectures will form the nodes of a query-efficient quadrature scheme for

(4.12) and so a good basis for an ensemble. Note that we focus on single-point

acquisition functions, resulting in a sequential method. However, batch acquisition

functions can be used to parallelise our proposal.

The likelihood of an architecture p(D | α) is not typically available, as this would

require marginalisation over the NN weights, w | α, of the architecture. However, we

can approximate this by assuming the prior over the architecture weights is a delta

distribution at the maximiser of the (architecture weights’) likelihood function.

p(D | α) =
∫

p(D | w, α)p(w | α)dw

≈ p(D | ŵ, α), (4.13)

ŵ = argmaxwp(D | ŵ, α)p(w | α). (4.14)

Computing p(y | x, α,D) requires an analogous intractable marginalisation. We

approximate it similarly, noting that it depends only indirectly on the training data,

through the optimisation procedure, i.e.

p(c | x, α,D) =

∫
p(c | x,w, α,D)p(w | α,D)dw

≈ p(c | x, ŵ, α). (4.15)

Concretely, we place a functional prior on the architecture likelihood surface,

warped using the square-root transform,
√
2
(
p(D | ŵ, α)− β

)
∼ GP , and use un-

certainty sampling to make observations of the likelihood at a set of architectures

70

{αi}Ni=1 = A ⊂ A.

This provides us with an estimate of the model evidence Z =
∑

α∈A p(D |

ŵ, α)p(α), which we denote Ẑ. The computation of this estimate requires Monte

Carlo sampling to approximate sums of (products of) the WL-kernel over A. Note

this is far more feasible than approximating the original sums in Equation (4.12)

with Monte Carlo sampling as K(αj, A) is far cheaper to evaluate than p(D | ŵ, αj)

or p(c | x, ŵ, αj) – either would require training architecture αj.

Algorithm 2 NES candidate set selection algorithm using a BQ acquisition func-
tion. Returns architectures A and their corresponding validation likelihoods L.

A,L← sample(n,A) ▷ Initial samples.
θ ← argmaxθp(L | A, θ) ▷ Optimise WL kernel.
while i > 0 do

α← argmaxα∈Aacquisition function(α,A, L, θ)
A← {A,α}
L← {L, p(D | ŵ, α)}
θ ← argmaxθp(L | A, θ)

end while
return A,L

4.4.2 Selecting the Ensemble

In principle, the ensemble can be constructed using the weights provided by the

quadrature scheme, as these weights naturally trade-off between member diversity

and member performance. However, we wish to select a subset of the candidate set

for the ensemble (as it is assumed that an ensemble of the whole candidate set is

too costly to be practical for deployment). Concretely, we seek a subset AM ⊂ A,

along with weights w ∈ RM such that

p(c | x,D) ≈
N∑
n

p(D | αn)p(αn)

Ẑ
p(c | x, αn, D) + ϵ (4.16)

≈
M∑
m

wmp(c | x, αm, D) + ϵ. (4.17)

71

We expect ϵ to be small if regions of high likelihood have been well-explored by

the acquisition function in the building of the candidate set. To select the weights

w and the set AM we can use any recombination algorithm, using the Nyström

approximation to generate the test functions, as described in Section 4.3.5, and the

estimated posterior over architectures as the measure to recombine. We refer to this

algorithm as Posterior Recombination (PR).

A second approach, which we refer to as Re-weighted Stacking (RS), is a modific-

ation of Weighted Stacking. Like for WS, we optimise the weights of an ensemble of

the whole candidate set to minimise the validation loss. The ensemble members are

then chosen by selecting the members with the M highest weights. However, rather

than renormalising the corresponding weights, as suggested in Zaidi et al. (2022), we

reallocate the weight assigned to excluded architectures proportionally to the relative

covariance between them and the ensemble members. Concretely, let {(αm, ωm)}Mm=1

be the ensemble members and their optimised weights, and {(αl, ωl)}N−M
l=1 be the

excluded architectures and their optimised weights. The weights of the ensemble

w ∈ RM are given by

wm = ωm +
N−M∑
l=1

k(αm, αl)∑M
m=1 k(αm, αl)

ωl. (4.18)

Algorithm 3 Posterior recombination.

T ← nystrom test functions(KAA, A) ▷ From Eq (4.11)

µ←
[
p(D|αn)p(αn)

Ẑ

]N
n=1

w, AM ← recombination(T, µ)

Algorithm 4 Re-weighted stacking.

ω ← argminω∈∆loss(
∑

i ωip(c | x, αn, D), D)
I ← select top(M,ω) ▷ Select top M.
for m in I do

wm ← reweight(m, I, ω, k(A,A)) ▷ Eq (4.18).
end for

72

Our proposals can be combined to yield two possible NES algorithms. Both

share the same candidate selection strategy that uses a WSABI-L surrogate model

with the uncertainty sampling acquisition function to select the set of architectures

to train (Algorithm 2). NES-BQ then uses posterior recombination (Algorithm 3)

to select a subset of architectures from the candidate set to include in the ensemble,

and choose their corresponding weights. NES-USS instead uses re-weighted stacking

(Algorithm 4 to select, and weight, the ensemble members from the candidate set.

Figure 4.2 is a schematic representation of these algorithms.

4.5 Experiments

We compare our proposed method to state-of-the-art baselines using the NATS-

Bench benchmark (Dong, Liu et al. 2021). Specifically, we use the provided topology

search space, which consists of cells with 4 nodes, 6 connections, and 5 possible

operations (including “zeroise” which is equivalent to removing a connection) in

a fixed macro-skeleton. The architecture weights are trained for 200 epochs on

the CIFAR-10, CIFAR-100, and ImageNet16-120 (a smaller version of ImageNet

with 16 × 16 pixel input images, and 120 classes) datasets. We compare ensemble

performance as measured by test accuracy, test likelihood, and expected calibration

error on the test set for a range of ensemble sizes.

We first compare the two variants of our algorithm – NES-BQ and NES-USS –

with several baselines:

Random The ensemble is an evenly weighted combination of M architectures ran-

domly sampled from the prior p(α) over the search space.

NES-RE The candidate set is selected using regularised evolution, and the en-

semble members are chosen using beam search. The ensemble members are

equally weighted.

73

NES-BS The posterior over architectures p(α | D) is approximated using a vari-

ational distribution. The ensemble is constructed by samplingM architectures

from the variational distribution using Stein-Variational Gradient Descent.

We then conduct an ablation study to examine the relative contributions of our

candidate selection and ensemble selection algorithms.

Tables 4.1 and 4.2 present the results on CIFAR-100 and ImageNet16-120 for a

range of ensemble sizes. Whilst NES-RE matches or does slightly better than our

proposals in terms of accuracy and LL on CIFAR-100, we find that both NES-USS

and NES-BQ often perform better in terms of expected calibration error. NES-USS

achieves the best performance on ImageNet16-120 in terms of LL across all ensemble

sizes, is joint best with NES-RE in terms of accuracy, and often outperforms NES-

RE in terms of ECE. The difference in the methods’ relative performance between

the two datasets is is likely due to the nature of the architecture likelihood surfaces

– for CIFAR-100 this has wider peaks, clustered closer together, as demonstrated

in Figure 4.3. Interestingly, NES-BQ performs quite poorly for ensembles of size 3,

but consistently achieves the best ECE for larger ensembles, for all datasets. This

is at the cost of accuracy and LL, however, which are better than for NES-BS and

Random, but worse than for NES-RE and NES-USS. Overall, these results suggest

that:

• NES-BQ with a relatively large ensemble size is most appropriate if well cal-

ibrated uncertainty estimates are desired.

• NES-USS is best overall for ensembles over architecture likelihood surfaces

with dispersed, narrow peaks, if accuracy and LL are the key performance

metrics.

• NES-RE is best suited to architecture likelihood surfaces with broad peaks, if

accuracy and LL are the key performance metrics.

74

(a) CIFAR-100 (b) ImageNet16-120

Figure 4.3: Visualisation of the (WL) covariance matrix for the 500 unique archi-
tectures with the highest likelihoods in the search space for each dataset, sorted by
(a smoothed estimate, using a GP, of the) likelihood. The colourscale varies from
1 (yellow) to 0 (blue). We observe larger blocks of architectures within the top 500
that covary strongly for CIFAR-100 than for ImageNet16-120, which implies that
the modes of the architecture likelihood surface are wider for CIFAR-100. This
suggests that a more exploratory strategy will do better on ImageNet16-120, and a
more exploitative strategy for CIFAR-100.

4.5.1 Ablation Study

Tables 4.3 and 4.4 shows the effect of the candidate selection algorithm. In all cases

we use our variant of weighted stacking, described in Section 4.4.2, to select and

weight the ensemble members. We compare Expected Improvement (EI) with a GP

surrogate with a WL kernel, Uncertainty Sampling with a WSABI-L surrogate using

a WL kernel (US), and Regularised Evolution (RE). We find that the US candidate

set performs best for ImageNet16-120 in terms of accuracy and LL, but that the

RE candidate set performs best for ECE on ImageNet16-120, and across all metrics

for CIFAR-100. We expect that this is due to the difference in the shape of the

architecture likelihood surface between the two datasets, as shown in Figure 4.3.

The surface for ImageNet16-120 appears to have narrower modes than for CIFAR-

100, which suggests that a more exploratory strategy, such as US, would be more

75

Algorithm Accuracy ECE LL

Best Single 69.1 0.088 -5871

Ensemble Size 3
Random 69.2 ± 1.5 0.075 ± 0.007 -5778 ± 291.3
NES-RE 76.6 ± 0.2 0.026 ± 0.002 -4340 ± 19.58
NES-BS 66.2 ± 1.5 0.073 ± 0.009 -6477 ± 203.0
NES-BQ 71.9 ± 0.8 0.075 ± 0.025 -5259 ± 300.9
NES-USS 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85

Ensemble Size 5
Random 72.2 ± 0.9 0.111 ± 0.009 -5304 ± 180.9
NES-RE 78.2 ± 0.1 0.042 ± 0.002 -4002 ± 17.11
NES-BS 65.9 ± 1.5 0.073 ± 0.009 -6481 ± 208.7
NES-BQ 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3
NES-USS 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60

Ensemble Size 10
Random 74.7 ± 0.3 0.150 ± 0.010 -5018 ± 82.21
NES-RE 79.4 ± 0.1 0.060 ± 0.001 -3763 ± 15.16
NES-BS 69.1 ± 0.4 0.085 ± 0.005 -6119 ± 36.31
NES-BQ 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6
NES-USS 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71

Table 4.1: Test accuracy, expected calibration error (ECE), and log likelihood (LL)
on CIFAR-100 for our proposals (NES-BQ and NES-USS) and baselines. For ref-
erence we also include the performance of the best architecture (measured by val-
idation loss) on the test set (labelled Best Single). The numbers shown are means
and standard error of the mean over 10 repeats. Where applicable, the candidate
set selection method is initialised with 10 random architectures, and used to build a
set of 150 architectures. We find that NES-RE performs best in terms of accuracy
and LL. Particularly for larger ensembles, NES-BQ performs best in terms of ECE.

appropriate for ImageNet16-120 and a more exploitative strategy, such as RE, would

be more appropriate for CIFAR-100. This is indeed what we observe.

Tables 4.5 and 4.6 shows the effect of the ensemble selection algorithm. In all

cases we use uncertainty sampling with a WSABI-L surrogate to build the candidate

set. We initialise with 10 architectures randomly selected from a uniform prior over

the search space, and use the acquisition function to build a set of 150 architectures.

We compare beam search (BS), weighted stacking (WS), recombination of the ap-

proximate posterior (PR), and re-weighted stacking (RS). We find that the stacking

variants consistently perform best (with RS slightly improving upon WS) in terms

76

Algorithm Accuracy ECE LL

Best Single 45.9 0.062 -6386

Ensemble Size 3
Random 39.7 ± 2.2 0.097 ± 0.007 -7459 ± 309.6
NES-RE 52.0 ± 0.2 0.033 ± 0.002 -5582 ± 8.858
NES-BS 45.7 ± 0.3 0.058 ± 0.003 -6403 ± 28.04
NES-BQ 46.7 ± 2.3 0.052 ± 0.021 -6347 ± 480.5
NES-USS 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87

Ensemble Size 5
Random 42.7 ± 1.5 0.129 ± 0.008 -7135 ± 216.1
NES-RE 53.4 ± 0.2 0.051 ± 0.001 -5404 ± 12.59
NES-BS 45.7 ± 0.3 0.058 ± 0.003 -6403 ± 28.04
NES-BQ 50.7 ± 0.3 0.028 ± 0.004 -5647 ± 50.58
NES-USS 53.6 ± 0.1 0.050 ± 0.002 -5380 ± 12.31

Ensemble Size 10
Random 45.1 ± 0.4 0.159 ± 0.008 -6916 ± 73.21
NES-RE 54.5 ± 0.2 0.069 ± 0.001 -5269 ± 17.83
NES-BS 45.6 ± 0.3 0.068 ± 0.004 -6442 ± 24.47
NES-BQ 52.3 ± 0.3 0.018 ± 0.001 -5412 ± 22.96
NES-USS 54.7 ± 0.1 0.072 ± 0.001 -5262 ± 9.964

Table 4.2: Test accuracy, expected calibration error (ECE), and log likelihood (LL)
on ImageNet16-120 for our proposals (NES-BQ and NES-USS) and baselines. For
reference we also include the performance of the best architecture (measured by
validation loss) on the test set (labelled Best Single). The numbers shown are means
and standard error of the mean over 10 repeats. Where applicable, the candidate
set selection method is initialised with 10 random architectures, and used to build a
set of 150 architectures. We see that NES-USS performs best across ensemble sizes
in terms of LL, and joint best with NES-RE in terms of accuracy. Particularly for
larger ensembles, NES-BQ performs best in terms of ECE.

of accuracy and LL, and PR in terms of ECE for larger datasets.

77

Algorithm Accuracy ECE LL

Ensemble Size 3
RE 77.1 ± 0.2 0.018 ± 0.001 -4385 ± 24.89
EI 76.1 ± 0.2 0.024 ± 0.001 -4472 ± 29.74
US 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85

Ensemble Size 5
RE 78.5 ± 0.2 0.033 ± 0.001 -4013 ± 19.08
EI 77.4 ± 0.2 0.039 ± 0.001 -4126 ± 22.25
US 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60

Ensemble Size 10
RE 79.4 ± 0.1 0.053 ± 0.002 -3759 ± 16.38
EI 78.2 ± 0.2 0.055 ± 0.002 -3889 ± 23.79
US 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71

Table 4.3: Test accuracy, expected calibration error, and log likelihood on CIFAR-
100 for our candidate set selection method (US) and baselines. The numbers shown
are means and standard error of the mean over 10 repeats. Each candidate set
selection method is initialised with 10 random architectures, and used to build a
set of 150 architectures. The ensemble is chosen and weighted using our variant
of weighted stacking. We see that the RE candidate set performs best for CIFAR-
100. We speculate that this is because the wide peaks of the likelihood surface for
CIFAR-100 favour a more exploitative strategy.

78

Algorithm Accuracy ECE LL

Ensemble Size 3
RE 51.9 ± 0.2 0.029 ± 0.002 -5595 ± 12.15
EI 51.4 ± 0.2 0.034 ± 0.002 -5632 ± 11.91
US 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87

Ensemble Size 5
RE 53.3 ± 0.2 0.043 ± 0.002 -5417 ± 12.90
EI 52.6 ± 0.3 0.053 ± 0.003 -5479 ± 15.55
US 53.6 ± 0.1 0.050 ± 0.002 -5380 ± 12.31

Ensemble Size 10
RE 54.5 ± 0.2 0.065 ± 0.002 -5280 ± 16.85
EI 53.4 ± 0.2 0.071 ± 0.002 -5368 ± 19.47
US 54.7 ± 0.1 0.072 ± 0.001 -5262 ± 9.964

Table 4.4: Test accuracy, expected calibration error, and log likelihood on
ImageNet16-120 for our candidate set selection method (US) and baselines. The
numbers shown are means and standard error of the mean over 10 repeats. Each
candidate set selection method is initialised with 10 random architectures, and used
to build a set of 150 architectures. The ensemble is chosen and weighted using our
variant of weighted stacking. We see that the US candidate set performs best in
terms of accuracy and LL across the ensemble sizes.

79

Algorithm Accuracy ECE LL

Ensemble Size 3
BS 75.2 ± 0.2 0.030 ± 0.002 -4500 ± 41.04
WS 76.4 ± 0.2 0.021 ± 0.001 -4426 ± 35.87
PR 71.9 ± 0.8 0.075 ± 0.025 -5259 ± 300.9
RS 76.6 ± 0.2 0.021 ± 0.001 -4417 ± 35.85

Ensemble Size 5
BS 76.4 ± 0.2 0.048 ± 0.002 -4233 ± 36.48
WS 77.7 ± 0.2 0.036 ± 0.002 -4088 ± 34.13
PR 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3
RS 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60

Ensemble Size 10
BS 76.9 ± 0.3 0.063 ± 0.001 -4079 ± 50.29
WS 78.5 ± 0.2 0.055 ± 0.002 -3848 ± 23.96
PR 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6
RS 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71

Table 4.5: Test accuracy, expected calibration error, and log likelihood on CIFAR-
100 for Beam Search (BS), Weighted Stacking (WS), Posterior Recombination (PR),
and Re-weighted Stacking (RS). The numbers shown are means and standard error
of the mean over 10 repeats. The candidate set selection method is our method
– Uncertainty Sampling with a WSABI-L surrogate – initialised with 10 random
architectures, and used to build a set of 150 architectures. We see that the stacking
variants consistently perform best for accuracy and LL, with RS slightly improving
upon WS. For ECE, RS and WS perform well for small ensembles, but PR works
best for larger ensembles.

80

Algorithm Accuracy ECE LL

Ensemble Size 3
BS 52.2 ± 0.1 0.036 ± 0.002 -5572 ± 13.17
WS 52.1 ± 0.1 0.029 ± 0.001 -5545 ± 10.57
PR 46.7 ± 2.3 0.052 ± 0.021 -6347 ± 480.5
RS 52.2 ± 0.1 0.029 ± 0.001 -5543 ± 10.87

Ensemble Size 5
BS 76.4 ± 0.2 0.048 ± 0.002 -4233 ± 36.48
WS 77.7 ± 0.2 0.036 ± 0.002 -4088 ± 34.13
PR 73.3 ± 0.9 0.040 ± 0.004 -4768 ± 174.3
RS 77.8 ± 0.2 0.040 ± 0.002 -4077 ± 33.60

Ensemble Size 10
BS 76.9 ± 0.3 0.063 ± 0.001 -4079 ± 50.29
WS 78.5 ± 0.2 0.055 ± 0.002 -3848 ± 23.96
PR 75.5 ± 0.9 0.037 ± 0.002 -4309 ± 172.6
RS 78.6 ± 0.2 0.059 ± 0.001 -3843 ± 22.71

Table 4.6: Test accuracy, expected calibration error, and log likelihood on
ImageNet16-120 for Beam Search (BS), Weighted Stacking (WS), Posterior Recom-
bination (PR), and Re-weighted Stacking (RS). The numbers shows are means and
standard error of the mean over 10 repeats. The candidate set selection method is
our method – Uncertainty Sampling with a WSABI-L surrogate – initialised with
10 random architectures, and used to build a set of 150 architectures. Again, we see
that the stacking variants consistently perform best for accuracy and LL, but PR
for ECE.

81

4.6 Discussion and Future Work

We have proposed a method for building ensembles of Neural Networks using the

tools provided by Bayesian Quadrature. Specifically, by viewing ensembling as

approximately performing marginalisation over architectures, we used the warped

Bayesian Quadrature framework to select a candidate set of architectures to train.

We then suggest two methods of constructing the ensemble based upon this can-

didate set: one based upon recombination of the approximate posterior over ar-

chitectures (NES-BQ), and one based upon optimisation of the ensemble weights

(NES-USS) using a validation set.

We demonstrate empirically that NES-BQ with a large ensemble size is the most

performant method if expected calibration error of the test set is the key metric,

as might be the case for systems which make critical decisions, such as self-driving

vehicles. If, however, test set accuracy or log likelihood are the key metrics, we show

that NES-USS is the best method for problems where the architecture likelihood

surface has dispersed, narrow peaks, such as for ImageNet16-120.

We additionally conduct a range of ablation studies to independently investig-

ate the contribution of our candidate set selection and ensemble selection methods

compared to existing baselines. We find that the benefit of our candidate set selec-

tion algorithm depends on the nature of the likelihood surface, performing better

for surfaces that require more exploration such as those with more dispersed peaks.

This is because our proposal is based on active sampling with a GP which is inher-

ently more exploratory than the existing baselines, which are based on evolutionary

search. We also find that our ensemble selection methods consistently outperform

alternatives. In particular, our proposal based on recombinations performs best for

expected calibration error, and our proposal based on optimisation of the ensemble

weights performs best for accuracy and log likelihood.

An important limitation of our work is that our proposals can be slightly out-

performed by more exploitative alternatives when the architecture likelihood surface

82

has broad peaks, such as for CIFAR-100. A potential future direction concerns ex-

tensions of our method to larger architecture search spaces, over which modelling

the architecture likelihood surface is likely to be challenging. Another possibility

is to examine the effect of marginalising over architecture weights as well as over

architectures.

This work concerns a general-purpose method, so its societal impact depends on

the specific tasks that practitioners apply it to.

4.7 Supplement

4.7.1 Verification of Surrogate Quality

The quality of the GP posteriors, measured by RMSE and NLPD on a test set, is

shown in Table 4.7. The test set is selected by ranking all the architectures in the

search space by validation loss, and selecting every 25th architecture. This ensures

that the test set contains architectures across the full range of performance. We

build on the results of Ru et al. (2021), who showed that a GP with a WL kernel

is able to model the architecture likelihood surface well. Our results show that

WSABI-L is a consistently better model than an ordinary GP.

CIFAR-100 ImageNet16-120

Model RMSE NLPD RMSE NLPD

GP 6.165 ± 0.116 0.124 ± 0.013 9.610 ± 0.626 0.121 ± 0.012
WSABI-L 5.797 ± 0.043 -2.741 ± 0.095 4.078 ± 0.058 -3.437 ± 0.040

Table 4.7: The (normalised) RMSE and NLPD of a WSABI-L surrogate and a GP
surrogate on the test sets.

83

4.7.2 Additional Experiments

Slimmable Network Search Space

We perform a study on a larger search space defined by a “slimmable network” (Yu

et al. 2019), consisting of 614,625 architectures. Sub-networks or “slices” of this

supernet constitute architectures within this search space. The architectures are

structured as a chain of 7 blocks, each of which can have up to 4 layers. These sub-

networks can be represented in a 28 dimensional ordinal space (with 4 options along

each dimension). We use an RBF kernel with WSABI-L for Uncertainty Sampling

with our method NES-USS, and compare to NES-RE. The results are shown in

Table 4.8. We see that NES-USS consistently outperforms NES-RE in terms of log

likelihood of the test set and, for CIFAR-100, in terms of expected calibration error

as well.

Robustness to Dataset Shift

Previous work has provided evidence that ensembling of Neural Networks provides

robustness to shifts in the underlying data distribution (Shu et al. 2022; Zaidi et al.

2022). However, these investigations have assumed the availability of a validation

set from the shifted distribution, which we argue is unrealistic in practice. Instead,

we examine the setting where only the test set is shifted, and the validation set is

representative of the training set. We use the benchmark established by Hendrycks

and Dietterich (2019) to generate shifted datasets by applying one of 30 corruption

types to each image for CIFAR-10 and CIFAR-100. Each corruption type has a

severity level on a 1 − 5 scale. Tables 4.9 and 4.10 show a comparison between

NES-RE and NES-USS in this setting. We see that, whilst our proposal performs

similarly in terms of accuracy, it produces ensembles that perform significantly better

in terms of expected calibration error and test set log likelihood. This trend holds

across corruption severity levels.

84

CIFAR-10

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 93.8 ± 0.0 0.029 ± 0.001 -1165 ± 5.602
NES-USS 93.7 ± 0.1 0.030 ± 0.000 -1152 ± 5.215

Ensemble Size 5
NES-RE 93.8 ± 0.0 0.030 ± 0.001 -1165 ± 5.503
NES-USS 93.7 ± 0.1 0.032 ± 0.000 -1113 ± 4.123

Ensemble Size 10
NES-RE 93.8 ± 0.0 0.030 ± 0.001 -1159 ± 5.959
NES-USS 93.8 ± 0.0 0.031 ± 0.000 -1098 ± 3.752

CIFAR-100

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 74.2 ± 0.2 0.072 ± 0.004 -5136 ± 61.49
NES-USS 74.4 ± 0.1 0.063 ± 0.002 -5021 ± 22.71

Ensemble Size 5
NES-RE 74.3 ± 0.2 0.071 ± 0.004 -5134 ± 60.72
NES-USS 74.5 ± 0.1 0.055 ± 0.002 -4897 ± 25.66

Ensemble Size 10
NES-RE 74.3 ± 0.2 0.069 ± 0.004 -5083 ± 58.42
NES-USS 74.7 ± 0.1 0.045 ± 0.001 -4766 ± 15.89

Table 4.8: Test accuracy, expected calibration error (ECE), and log likelihood
(LL) on CIFAR-10 and CIFAR-100 for NES-USS (our proposal) and NES-RE (the
strongest baseline).

85

Severity Level 1

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 86.2 ± 0.0 0.046 ± 0.001 -59259.6 ± 595.907
NES-USS 86.3 ± 0.1 0.036 ± 0.001 -54283.4 ± 642.383

Ensemble Size 5
NES-RE 86.3 ± 0.0 0.046 ± 0.001 -59178.3 ± 851.719
NES-USS 86.2 ± 0.1 0.032 ± 0.001 -52173.6 ± 202.350

Ensemble Size 10
NES-RE 86.3 ± 0.0 0.043 ± 0.001 -57010.4 ± 722.311
NES-USS 86.2 ± 0.1 0.029 ± 0.001 -50504.6 ± 443.984

Severity Level 3

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 73.2 ± 0.1 0.147 ± 0.002 -133205 ± 1537.15
NES-USS 73.3 ± 0.1 0.131 ± 0.002 -123113 ± 1498.55

Ensemble Size 5
NES-RE 73.2 ± 0.1 0.148 ± 0.002 -133239 ± 1904.50
NES-USS 73.2 ± 0.1 0.125 ± 0.001 -118756 ± 614.899

Ensemble Size 10
NES-RE 73.2 ± 0.1 0.143 ± 0.002 -128663 ± 1664.07
NES-USS 73.4 ± 0.1 0.120 ± 0.002 -114613 ± 1247.44

Severity Level 5

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 55.5 ± 0.1 0.285 ± 0.002 -239927 ± 2187.24
NES-USS 55.7 ± 0.1 0.265 ± 0.003 -226433 ± 2523.79

Ensemble Size 5
NES-RE 55.5 ± 0.1 0.286 ± 0.003 -240154 ± 2835.89
NES-USS 55.5 ± 0.1 0.260 ± 0.002 -220196 ± 1198.20

Ensemble Size 10
NES-RE 55.5 ± 0.1 0.279 ± 0.002 -233441 ± 2474.23
NES-USS 55.6 ± 0.1 0.254 ± 0.003 -214126 ± 2030.20

Table 4.9: Test accuracy, expected calibration error (ECE), and log likelihood (LL)
on CIFAR-10 for NES-RE (the strongest baseline), and NES-USS (our strongest
proposal).

86

Severity Level 1

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 62.4 ± 0.1 0.151 ± 0.004 -169235 ± 1632.43
NES-USS 62.5 ± 0.1 0.093 ± 0.002 -149022 ± 364.575

Ensemble Size 5
NES-RE 62.4 ± 0.1 0.155 ± 0.003 -169999 ± 1553.96
NES-USS 62.6 ± 0.1 0.103 ± 0.004 -152466 ± 1249.97

Ensemble Size 10
NES-RE 62.5 ± 0.1 0.145 ± 0.002 -164816 ± 975.790
NES-USS 62.5 ± 0.1 0.093 ± 0.002 -149022 ± 364.575

Severity Level 3

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 49.2 ± 0.1 0.235 ± 0.005 -270710 ± 2628.75462
NES-USS 49.5 ± 0.1 0.193 ± 0.007 -250337 ± 3304.95

Ensemble Size 5
NES-RE 49.2 ± 0.1 0.239 ± 0.004 -272004 ± 2482.09961
NES-USS 49.6 ± 0.1 0.175 ± 0.005 -241407 ± 2438.78

Ensemble Size 10
NES-RE 49.3 ± 0.1 0.227 ± 0.003 -263639 ± 1596.01214
NES-USS 49.6 ± 0.1 0.163 ± 0.003 -235152 ± 881.120

Severity Level 5

Algorithm Accuracy ECE LL

Ensemble Size 3
NES-RE 34.0 ± 0.1 0.339 ± 0.005 -415182 ± 3710.25
NES-USS 34.2 ± 0.1 0.291 ± 0.008 -385063 ± 5355.88

Ensemble Size 5
NES-RE 34.0 ± 0.1 0.344 ± 0.004 -417110 ± 3476.95
NES-USS 34.3 ± 0.1 0.270 ± 0.006 -371575 ± 4083.67

Ensemble Size 10
NES-RE 34.1 ± 0.1 0.331 ± 0.003 -405068 ± 2327.88
NES-USS 34.4 ± 0.1 0.257 ± 0.003 -361876 ± 1666.07

Table 4.10: Test accuracy, expected calibration error (ECE), and log likelihood (LL)
on CIFAR-100 for NES-RE (the strongest baseline), and NES-USS (our strongest
proposal).

87

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Bayesian Quadrature for Neural Ensemble Search

Publication Status

 □Published □ Accepted for Publication

 Submitted for Publication □Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Hamid, S., Wan, X. Jørgensen, M., Ru B. & Osborne M. (2023). Bayesian

Quadrature for Neural Ensemble Search. In Proceedings of the 26th

International Conference on Artificial Intelligence and Statistics

Student Confirmation

Student Name:

Saad Hamid

Contribution to the
Paper

• Joint formulation of initial research direction.
• Formulation of the details of the methodology.
• Joint discussion of experimental design.
• Majority of coding for the experiments.
• Majority of the paper write-up.

Signature

Date

11/01/2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Prof Michael A. Osborne

Supervisor comments

I certify that the candidate made a substantial contribution to the publication, just as described above.

Signature

Date

11 January 2023

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 5

Scalable Bayesian Quadrature
with Gaussian Process
Approximations

Contents
5.1 Abstract . 90

5.2 Introduction . 91

5.3 Background . 92

5.3.1 Probabilistic Integration 92

5.3.2 Variational Gaussian Processes and the VISH Model . . . 94

5.3.3 Bézier Gaussian Process 96

5.4 Methods . 97

5.4.1 Using VISH for Active Learning of the Integrand 97

5.4.2 Bayesian Quadrature with the Bézier Log-Normal Process 99

5.5 Related Work . 101

5.6 Experiments . 102

5.7 Discussion . 106

5.8 Supplement . 106

5.8.1 Mixed Inducing Variables for VISH 106

Preface

Bayesian Quadrature is a powerful tool for numerically approximating integrals of

integrands that are expensive to evaluate. The previous chapters sought to design

Bayesian Quadrature schemes for model selection in two expressive and widely-used

89

model classes: Gaussian Processes and Neural Networks. In this chapter we will be

considering the problem of extending Bayesian Quadrature to higher dimensional

spaces, in particular for non-negative integrands of the sort encountered in machine

learning.

The fundamental challenge of integration in high dimensional spaces is that the

volume of the integration domain increases exponentially in the number of dimen-

sions. Additionally, for marginalisation integrals, the likelihood functions of machine

learning models typically have very narrow peaks and high dynamic ranges. As most

of the mass of the integral is concentrated under these peaks, locating them is crucial

for accurately estimating the integral. To achieve this in high dimensional spaces

requires a large number of integrand observations, rendering ordinary GP surrogates

unsuitable due to their cubic computational complexity. This chapter will explore

extensions for BQ of two recently proposed scalable approximations to GPs:

VISH which is a Variational Gaussian Process with inter-domain inducing features

that correspond to the spherical harmonics (Dutordoir, Durrande and Hens-

man 2020).

Bézier GP which is defined as a Bézier curve with Gaussians over the control

points (Jørgensen and Osborne 2022).

Both methods scale linearly in the number of observations, and are therefore amen-

able to the high-dimensional integration problems of interest in this chapter.

5.1 Abstract

Scaling Bayesian Quadrature (BQ) is challenging because of the cubic computational

complexity of Gaussian Process Regression. In this paper we explore the use of

recently proposed scalable approximations to Gaussian Processes for scaling BQ.

We first investigate using a Variational Gaussian Process with inducing variables

90

that are projections of the function onto the spherical harmonics to build up the

design set. The posterior over the integral is calculated using a GP whose kernel

matrices are approximately inverted using Black-Box Matrix-Matrix Multiplication,

a method based on conjugate gradient descent. We then show how to use a Log-

Bézier Gaussian Process, a Bézier curve with Log-Normal distributions over the

control points, to perform scalable BQ. We empirically compare these proposals to

existing methods for high-dimensional integration.

5.2 Introduction

Intractable high-dimensional integrals of non-negative integrands are a key challenge

in machine learning. Typically, these are marginalisation integrals, required either

to compute a model evidence, or characterise a posterior or posterior predictive

distribution (Murphy 2022).

A promising approach to the numerical approximation such integrals is Bayesian

Quadrature (BQ), also called probabilistic integration (PI), which approximates the

integrand with a probabilistic model, typically a Gaussian Process (Diaconis 1988;

Minka 2000; O’Hagan 1991). This surrogate then induces a posterior over the value

of the integral. Additionally, the surrogate can be used to decision-theoretically

select new evaluations of the integrand to improve the estimate of the integral (Os-

borne, Duvenaud et al. 2012) – a process called adaptive Bayesian Quadrature.

However, due to the cubic (in the number of observations) time complexity of Gaus-

sian Process regression (Rasmussen and Williams 2006), probabilistic integration

is often restricted to relatively low dimensional spaces. Intuitively, this is because

more observations are required to “cover” a high-dimensional space.

Recent advances in sparse variational approximations of Gaussian Processes

(Leibfried et al. 2021; Titsias 2009) have yielded models for which the time complex-

ity of inference is scales significantly better in the number of observations. Addi-

91

tionally, there exist theoretical guarantees regarding the performance of such models

(Burt, Rasmussen and Wilk 2020). In this paper, we investigate the use for PI of the

recently proposed VISH model, a variational Gaussian Process defined on the hyper-

sphere so that the spherical harmonics can be used as inducing features (Dutordoir,

Durrande and Hensman 2020). We also investigate a modification of the recently

proposed Bézier Gaussian Process (Jørgensen and Osborne 2022), a GP defined us-

ing a Bézier curve, for BQ. Importantly, both models scale linearly in the number

of observations, significantly reducing the cost of adaptive Bayesian Quadrature as

the surrogate model must be fit to the integrand every iteration.

We make the following contributions:

• We explore the use of the VISH model as a cheap surrogate for building up

the design set – the set of locations at which the integrand is observed – for

probabilistic integration.

• We propose the Bézier Log-Normal Process, and show how it can be used to

approximate a posterior over the integral for non-negative integrands. We also

investigate its use for adaptive Bayesian Quadrature.

• We undertake an empirical study to compare the performance of our proposals

against state-of-the-art baselines for synthetic and real-world marginalisation

integrals.

5.3 Background

5.3.1 Probabilistic Integration

Probabilistic Integration, also referred to as Bayesian Quadrature, is a class of meth-

ods to infer a distribution over Z =
∫
f(x)dπ(x), based upon potentially noisy ob-

servations of f(·), Y , at locations X. A probabilistic surrogate, typically a Gaussian

Process, is used to model the integrand, f(x) | D ∼ GP
(
m(x), k(x, x′)

)
, where

92

D = (X, Y). As Gaussians are closed under bounded linear transformations, this

induces a Gaussian distribution over Z whose moments are given by
∫
m(x)π(x)dx

and
∫ ∫

k(x, x′)π(x)π(x′)dxdx′ (Diaconis 1988; Minka 2000; O’Hagan 1991). New

observations of the integrand are then chosen by maximising an acquisition function,

a process we refer to as active sampling (Chai, Ton et al. 2019; Gunter et al. 2014;

Osborne, Duvenaud et al. 2012).

It has been noted that active sampling for probabilistic integration is useful

only if the hypothesis space of the surrogate model is imbalanced or non-convex

(Kanagawa, Sriperumbudur and Fukumizu 2020; Novak 2016). When the hypo-

thesis space is the unit ball of a Reproducing Kernel Hilbert Space, the asymptotic

optimal rate can be achieved without an adaptive sampling strategy. As we focus on

non-negative integrands, and explicitly incorporate this restriction by modelling the

integrand in a warped space (Chai and Garnett 2019; Gunter et al. 2014; Osborne,

Duvenaud et al. 2012), the hypothesis space is imbalanced. Therefore, adaptively

selecting the design set can improve the rate of convergence.

The square-root transform (Gunter et al. 2014) and log transform (Chai, Ton

et al. 2019; Osborne, Duvenaud et al. 2012) have been studied as warpings for

probabilistic integration of non-negative integrands. The integrand is modelled in

the warped space, inducing a posterior over the unwarped integrand which is a

Chi-Squared (for the square-root transform) or Log-Normal (for the log transform)

distribution. These posteriors are approximated with a GP by either moment-

matching or by linearisation with a first-order Taylor expansion. In particular,

in this work we will focus on the MMLT model, which uses a moment matching

for the log transform g(x) = log
(
f(x)

)
, where f is the integrand. Placing a GP

prior over g, and conditioning on the observations (in log space) results in a GP g ∼

GP
(
mg(x), kg(x, x

′)
)
. The distribution over f is therefore Log-Normal, and we can

moment match a GP to its first two moments to approximate f ∼ GP
(
µ(x),Σ(x, x′)

)

93

where

µ(x) = exp
(
mg(x) + 1/2kg(x, x)

)
(5.1)

Σ(x, x′) = mg(x)
(
exp
(
kg(x, x

′)
)
− 1
)
mg(x

′). (5.2)

Unfortunately, the moments of the Gaussian distribution induced over Z are no

longer analytic available, and must be approximated by QMC sampling.

The computational cost of Bayesian Quadrature is O(n3) where n is the number

of observations of the integrand. For adaptive BQ the cost O
(
n3 + (n− 1)3 + . . .+

(n − i)3
)
where i is the number of initial observations. In practice, this cost is

not justifiable unless the integrand is very expensive to query. Additionally, it is

not feasible for high-dimensional integrands, as a large number of observations are

required to explore high-dimensional spaces.

5.3.2 Variational Gaussian Processes and the VISH Model

Sparse Variational Gaussian Processes are a variational approximation (Blei, Kucukel-

bir and McAuliffe 2018) for inference with Gaussian Processes (Titsias 2009). Fol-

lowing (Leibfried et al. 2021), we define the inducing variables as u. These inducing

variable are either pseudo-observations or linear transforms of the function. The

joint Gaussian over f and u then has covariance structure

f(·)
u

 ∼ GP(
µ(·)
µu

 ,

Σ(·, ·′) Σu·

Σu· Σuu

), (5.3)

and the posterior over f(·) conditioned on u is

p
(
f(·) | u

)
= GP

(
µ(·) + Σu·Σ

−1
uu (u− µu),Σ(·, ·′)− Σu·Σ

−1
uuΣu·

)
. (5.4)

94

We then place an additional variational distribution over u, q(u) ∼ N (νu, Suu).

Marginalising over u with q(u) then results in

q
(
f(·)

)
= GP

(
µ(·) + Σu·Σ

−1
uu (νu − µu),Σ(·, ·′)− Σu·Σ

−1
uu (Σuu − Suu)Σ

−1
uuΣu·

)
. (5.5)

We note that, for regression with Gaussian noise, the optimal moments of q(u) are

analytically available (Titsias 2009),

νs = σ−2Σuu(Σuu + σ−2ΣuxΣxu)
−1Σuxy and (5.6)

Suu = Σuu(Σuu + σ−2ΣuxΣxu)
−1Σuu. (5.7)

The VISH model is a variational GP defined on the sphere, with the inducing

variables as projections of the function onto the spherical harmonics (Dutordoir,

Durrande and Hensman 2020). The spherical harmonics are a set of orthogonal

basis functions on the hypersphere {ϕl,k}l∈N,k∈Kl
, where Kl is an integer between 1

and the number of spherical harmonics, Nd
l for a given level l (Dai and Xu 2013).

Zonal kernels are a class of kernels defined on the hypersphere that are invariant to

rotations. They can be decomposed, by Mercer’s theorem, in terms of the spherical

harmonics

Σ(xs, x
′
s) =

∞∑
l=0

Nd
l∑

k=1

λl,kϕl,k(xs)ϕl,k(x
′
s). (5.8)

Using the RKHS inner product (of a zonal kernel) to define the inducing variables,

ul,k = ⟨f(·), ϕl,k(·)⟩H, then leads to covariances of the form

Σ
(
ul,k, f(x)

)
= ϕl,k(x) (5.9)

Σ(ul,k, ul′,k′) =
δl,l′δk,k′

λl,k

(5.10)

The orthogonality of the spherical harmonics means that the Kuu matrix is diagonal,

allowing for very cheap inference. Note that data is mapped from Rd onto the

95

sphere in Sd+1 by first appending a scalar bias (so that xb = [x, b]), and applying

the transform (xs, ys) = (xb/||xb||, y/||xb||). This construction is inspired by neural

networks with ReLU activation functions. As the ReLU, σ, is homogeneous the

computation for a single layer can be expressed σ(wTxb) = ||w||||xb||σ(cos(θ)) where

θ is the angle between the weights w and the input xb. In the limit of infinite width,

the inner product between outputs of the network are given by the arc-cosine kernel

(Cho and Saul 2009). Additionally, many architectures – with a prior over weights

and as the width tends to infinity – are equivalent to Gaussian Processes (Garriga-

Alonso, Rasmussen and Aitchison 2019; Lee et al. 2018; Matthews et al. 2018;

Neal 1996; Yang 2019). For fully connected networks, it has been shown, under

assumptions about the data distribution, that the corresponding kernels (called

Neural Tangent Kernels (Jacot, Gabriel and Hongler 2018)), are zonal (Belfer et al.

2021; Bietti and Mairal 2019).

5.3.3 Bézier Gaussian Process

A Bézier GP is a scalable GP based on Bézier curves (Jørgensen and Osborne

2022). Bézier curves are parametric models whose basis functions are the Bernstein

polynomials. The ith Bernstein polynomial of order ν is

Bν
i (x) =

ν!

i!(ν − i)!
xi(1− x)ν−i, x ∈ [0, 1]. (5.11)

A Bézier curve on a multidimensional input x = (x1, . . . , xd) ∈ [0, 1]d is then defined

f(x) =

ν1∑
i1=0

· · ·
νd∑

id=0

Bν1
i1
(x1) . . . B

νd
id
(xd)pi1,...,id , (5.12)

where each of the pi1,...,id ∈ Rd are referred to as control points. A Bézier GP is

defined by placing independent Gaussians over each of the control points pi1,...,id ∼

96

N (µi1,...,id ,Σi1,...,id). The moments of the process are given by

E
(
f(x)

)
=

ν1∑
i1=0

· · ·
νd∑

id=0

Bν1
i1
(x1) . . . B

νd
id
(xd)µi1,...,id , (5.13)

Var
(
f(x), f(z)

)
=

ν1∑
i1=0

· · ·
νd∑

id=0

Bν1
i1
(x1) . . . B

νd
id
(xd)Σi1,...,idB

ν1
i1
(z1) . . . B

νd
id
(zd). (5.14)

Inference in this model is performed using Variational inference, by approximat-

ing the posterior over control points using independent Gaussians q(pi1,...,id) =

N (µ̂i1,...,id , Σ̂i1,...,id). Assuming additive Gaussian noise, the ELBO is analytic-

ally available. The key computational challenge is that the number of control

points, and therefore the number of summands in Equations 5.13 and 5.14 increases

exponentially in the number of dimensions. This is handled by parameterising

µi1,...,id =
∏d

γ=1wiγ−1,iγ ,γ, a parameterisation known as a Bézier Buttress. This

allows for the computation of the moments of f(x) with d matrix multiplications.

Σi1,...,id can be parameterised similarly.

5.4 Methods

We investigate two possibilities for scaling Bayesian Quadrature: one based upon

the VISH model, and one based upon the Bézier GP.

5.4.1 Using VISH for Active Learning of the Integrand

The VISH model has a computational complexity that is linear in the number of

observations, so it can be used as a cheaper alternative for modelling the integrand.

Unfortunately, the moments of the induced posterior over the integral are not ana-

lytically available. (This is due to the warping used to model the non-negativity of

the integrand. Computing the moments would require integrating exponentials of

sums of spherical harmonics.) However, it is not required that these be available

for the most commonly used acquisition function for BQ – uncertainty sampling.

97

Algorithm 5 Pseudocode for VISH-PI.

obtain initial samples and integrand observations (X, Y)
(Xs, Gs)← (X/||Xb||, g(Y/||Xb||)) ▷ Map onto hypersphere, and warp
fit VISH to (Xs, Gs)
while i ≥ 0 do ▷ i is remaining evaluation budget

x̂ = argmaxxα(x) ▷ Optimise acquisition function
append x̂, ŷ to (X, Y) ▷ ŷ is integrand observation at x̂
(Xs, Gs)← (X/||Xb||, g(Y/||Xb||))
re-optimise VISH
i← i− 1

end while
fit GP to (X, Y).
infer posterior moments of Z with GP model.

We, therefore, suggest that the VISH model be used as a cheap surrogate for active

learning of the integrand – i.e. to build up the design set only. The final estimate

of the integral is then computed using an ordinary GP with this design set. The

key advantage of this approach is the reduced cost per iteration, as it is far cheaper

to optimise the VISH model’s hyperparameters and compute its posterior moments,

compared to an ordinary GP. This difference becomes significant as the number of

integrand observations increases. Such a setting arises for high-dimensional integ-

ration problems where a large number of observations are required to “cover” the

space, and where the cost of making an observation does not make this prohib-

itively expensive. The strategy that we explore in such a setting is initialisation

with a large set drawn using a low-discrepancy sequence to cover the space well;

followed by active sampling with VISH to ensure that the modes of integrand are

well explored.

Concretely, defining D = (X, Y), X ∈ Rd, Y ∈ R+, as the set of observations

of the integrand, f(x), we append a bias, b to each location in X, and project

onto (half of) the hypersphere, as described in Section 5.3.2, to yield a dataset

Ds = (Xs, Ys). We then apply the square-root transform to each element in Ys to

obtain the warped observations Gs. We place the VISH model over these warped

observations, and minimise the ELBO to optimise the model’s hyperparameters,

98

including the bias, b. Denoting the posterior moments of the VISH model as µ̃(xs)

and Σ̃(xs, x
′
s), where xs ∈ Sd+1, the posterior over the mapping of the integrand onto

the sphere can be approximated by a GP with moments given by Equations (5.1)

and (5.2). The projection back into Rd is also a linear transform, as is multiplication

by the prior. Therefore, the uncertainty sampling acquisition function under this

model has the form

α(x) = Σ̃(xs, xs)µ̃(xs)
2||xb||2π(x)2 (5.15)

where xb = [x, b], and xs = x/||xb|| as before.

In the setting of marginalisation integrals local structure is important, as the

integrand often has narrow peaks. To address this challenge we explore using mixed

inducing variables – a combination of pseudo-input and spherical harmonic inducing

variables. This is explored in the supplement, Section 5.8.1.

A challenge remains, however, and that is performing inference in an ordinary

GP following active learning of the integrand with VISH-PI. The resulting design

set contains a large number of observations, so inverting the covariance matrix via a

Cholesky decomposition is infeasible. We resort instead to a recently proposed vari-

ant of conjugate-gradient descent, Black-Box Matrix-Matrix Multiplication, which

approximates this inversion in O(n2) time, were n is the number of observations

(Gardner et al. 2018).

5.4.2 Bayesian Quadrature with the Bézier Log-Normal Pro-

cess

The Bézier Gaussian Process also has a linear computational complexity in the

number of observations, and is therefore also a promising surrogate model for scaling

Bayesian Quadrature. As the process is defined only over the unit hypercube, we

restrict our attention to integrating a uniform prior over this domain. Alternative

priors can be handled by modelling the product of the likelihood and the prior with

99

the surrogate model. As we are motivated by computing marginalisation integrals

we propose several alterations to the model to incorporate salient prior information.

Firstly, we modify the the basis functions to make them more suitable for the

“peaky” nature of the integrands typically encountered when marginalising over the

parameters of machine learning models. To achieve this we introduce an additional

the γ-Bernstein polynomials:

Bν
i (x, γ) : [0, 1]× (0,∞) 7→ C (Bν

i (x))
γ , (5.16)

where C is a constant only dependent on γ, ν, and i. It is given by,

C =

ν−νii(ν − i)(ν−i)

ν

i




−γ+1

, (5.17)

and its purpose is to ensure that the maximum value of Bν
i and Bν

i is the same for

any value of γ. This has the effect of maintaining the same function value range,

but making the new basis functions peakier. Note that Bν
i (·, 1) = Bν

i (·).

Modelling the integrand f with a Bézier Process induces a distribution over the

integral Z whose expectation is

E[Z] = E
[∫

[0,1]d

ν1∑
i1=0

· · ·
νd∑

id=0

Bν1
i1
(x1) · · ·Bνd

id
(xd)pi1,...,iddx

]

=

ν1∑
i1=0

· · ·
νd∑

id=0

E
[∫

[0,1]d
Bν1

i1
(x1) · · ·Bνd

id
(xd)pi1,...,iddx

]

=

ν1∑
i1=0

· · ·
νd∑

id=0

∫
[0,1]d

Bν1
i1
(x1) · · ·Bνd

id
(xd)dxE[pi1,...,id]

=
1

(ν1 + 1) . . . (νd + 1)

ν1∑
i1=0

· · ·
νd∑

id=0

E[pi1,...,id]. (5.18)

We are able to interchange the integral, expectation and sums because of Fubini’s

theorem Fubini 1907, and the last equality follows from the fact that
∫
[0,1]

Bν
i (x)dx =

100

(ν + 1)−1 for all i = 0. A similar argument provides the variance

Var(Z) =
1(

(ν1 + 1) . . . (νd + 1)
)2 ν1∑

i1=0

· · ·
νd∑

id=0

Var(pi1,...,id). (5.19)

Note that Equations (5.18) and (5.19) do not require distributional assumptions

besides finite second moments of all control points. This provides a high degree

of flexibility to incorporate prior information into the stochastic process defined

by the control points. In particular, we incorporate the non-negativity of the

integrand by placing Log-Normal distributions over the control points pi1,...,id ∼

LN (µi1,...,id ,Σi1,...,id).

Note that uncertainty sampling with this model would result in samples always

being selected at the control points. This is because these are locally the points

with maximum variance. We argue that an acquisition function based on this model

provides only a low-resolution indication of where to evaluate the integrand next.

We, therefore, sample from the Bernstein polynomial corresponding to the control

point which maximises the acquisition function.

5.5 Related Work

Several variants of Probabilistic Integration have been proposed in the literature,

some of which build the design set cheaply, and some of which utilise cheaper sur-

rogate models. Bayesian Monte Carlo (BMC) (Rasmussen and Ghahramani 2003)

and Bayesian Quasi-Monte Carlo (BQMC) (Briol, Oates, Girolami, Osborne and Se-

jdinovic 2015) suggest simple MC and QMC sampling under the prior to build up the

design set for PI, but adaptive strategies have outperformed these for non-negative

integrands . The Random Fourier Feature approximation has been investigated in

the context of PI (Briol, Oates, Girolami and Osborne 2015), but was found to

perform poorly unless a very large number of fourier features are used. Bayesian

Additive Regression Trees have also been suggested as an alternative to Gaussian

101

Processes as surrogate models for Probabilistic Integration (Zhu et al. 2020), and

these scale favourably but perform worse than GPs for smooth integrands.

5.6 Experiments

We empirically evaluate our proposals on a range of synthetic likelihoods and model

evidence integrals for models with real-world data. Specifically, the problem settings

are:

GMM-d A d-dimensional synthetic likelihood defined using GMM, integrated against

a uniform prior over the unit hypercube. Following Gunter et al. (2014), we

draw a random integer K from the integers 5–14, which defines the number

of mixture components. The mixture means are randomly sampled from the

inner quarter of the domain. The covariances are diagonal, with each variance

randomly drawn between the range [0.21, 0.29].

cancer Gaussian Process regression with an ARD Matern 1/2 kernel on the UCI

Breast Cancer Prognosis dataset. The task is to predict time to recurrence

using 30 attributes. This is a 32-dimensional marginalisation problem over the

kernel hyperparameters.

housing Gaussian Process regression with an ARD Matern 1/2 kernel on the UCI

Boston Housing dataset. The task is to predict the median value of owner-

occupied homes using 13 attributes. This results in a 15-dimensional margin-

alisation problem.

ionosphere Bayesian logistic regression with the UCI Ionosphere dataset, where

the task is to classify radar returns as “good” or “bad” from the ionosphere.

To marginalise over the weights of this model is a 34-dimensional integration

problem.

102

sonar Bayesian logistic regression with the UCI Connectionist Bench dataset. The

task is to classify sonar signals as those that bounced off a metal cylinder, and

those that bounced off a cylindrical rock. Marginalising over the weights of

the model requires a 60-dimensional integration.

Table 5.1 compares the performance of our proposals against several baselines.

VISH-PI and BLNBQ are our proposed methods. We evaluate VISH-PI for in-

tegrands up to 8-dimensions due to the limitations of available implementations.

(These are not limitations inherent to the model – they are due to the fact that

evaluating the spherical harmonics requires the computation of very large factori-

als, resulting in numerical overflow.) We allow the evaluation budget to increase

commensurately with the number of dimensions of the integrand. We compare to

MMLT and BQMC (Bayesian Quadrature with an ordinary GP with a design set

selected using a sobol sequence). As the scalability (in the number of observations)

of these two methods is limited, we set the evaluation budgets to 512. For methods

that use an acquisition function we initialise half the evaluation budget with a sobol

sequence, and allow the remainder to be built up using the acquisition function. For

the remaining baselines we use Annealed Importance Sampling (AIS) and Nested

Sampling (NS). Table 5.2, compares the runtime for VISH-PI, BLNBQ and MMLT.

We use the maximum runtime between VISH-PI and BLNBQ to set the time budget

for AIS and NS on the corresponding problem.

We find that VISH-PI performs well for low-dimensional integrands but its per-

formance degrades as the dimensionality increases. This appears to be because of

the difficulty in optimising the model’s parameters. Good performance requires tun-

ing the priors of these parameters to restrict them to relatively narrow ranges, and

this manual tuning becomes more challenging as the dimensionality increases. An-

other issue is that large numbers of samples are required to reduce the variance in

a particular region, making the active learning scheme heavily exploitative. Higher

dimensional integrands typically require a more exploratory approach as the initial

103

points are less likely to be in a region with high integrand values.

BLNBQ is often able to outperform MMLT, likely because it is able to leverage

significantly more evaluations of the integrand. It is also consistently faster than

MMLT in wall-clock time. For higher dimensional integrands, MMLT overestim-

ates the integral value because it learns long lengthscales due to the large distances

between integrand evaluations, the exploitative nature of the active sampling scheme

and its explicit incorporation of the integrand’s non-negativity. (Together, these cre-

ate the effect that the model believes the integrand’s peaks to be wider than they

really are.) BQMC, on the other hand, underestimates the integral values as it does

not do active sampling or model the non-negativity of the integrand. BLNBQ com-

pares favourably to BQMC, both due to the larger number of integrand evaluations

and the advantage of active sampling. However, especially as the dimensionality

increases, BLNBQ is outperformed by AIS and NS. These baselines also have low

overhead, and so are capable of gathering a large number of integrand queries in the

wall-clock time budget. Additionally training of the Bézier Log-Normal Process is

often unstable, and can result in very large moments for the variational posterior.

In the highest dimension this leads to overestimation of the integral by a significant

margin.

104

Problem Budget (Eval.) VISH-PI BLNBQ

GMM-4 1024 0.00443 ± 0.00036 0.02316 ± 0.00193
GMM-8 2048 0.46865 ± 0.08496 0.06993 ± 0.00578
housing 4096 – 0.47164 ± 0.09747
cancer 8192 – 0.18453 ± 0.01285
ionosphere 8192 – 0.61357 ± 0.38508
sonar 16384 – 1.24535 ± 0.43564

Problem Budget (Eval.) MMLT BQMC

GMM-4 512 0.00640 ± 0.01008 0.01528 ± 0.00488
GMM-8 512 0.29552 ± 0.30302 0.40825 ± 0.16655
housing 512 0.86154 ± 0.06479 1.00000 ± 0.00000
cancer 512 0.68953 ± 0.03799 1.00000 ± 0.00000
ionosphere 512 0.92627 ± 0.05207 1.00000 ± 0.00000
sonar 512 1.01423 ± 0.05007 1.00000 ± 0.00000

Problem Budget (Time) AIS NS

GMM-4 200 0.01966 ± 0.00682 0.03724 ± 0.00589
GMM-8 400 0.30340 ± 0.03879 0.08011 ± 0.00947
housing 600 0.51321 ± 0.02938 0.11465 ± 0.01935
cancer 1260 0.33170 ± 0.03758 0.08230 ± 0.01741
ionosphere 600 0.99375 ± 0.00314 0.24999 ± 0.03310
sonar 2520 0.50424 ± 0.17086 0.49598 ± 0.03398

Table 5.1: The final fractional integration error after the evaluation budget is ex-
hausted for our proposals, VISH-PI and BLNBQ, compared against several baselines.
All values shown are means and standard error of the mean over 3 repeats. We see
that our proposals often compare favourably to existing BQ methods, but do not per-
form well compared to other baselines when given the same wall-clock time budget.

Problem d VISH-PI BLNBQ MMLT

GMM-4 4 148.5 ± 2.204 171.1 ± 1.310 2163 ± 3.458
GMM-8 8 400.8 ± 9.404 230.8 ± 16.81 2389 ± 9.399
housing 15 – 498.6 ± 0.207 2598 ± 24.53
cancer 32 – 1249 ± 0.382 2483 ± 4.661
ionosphere 34 – 514.8 ± 0.195 2420 ± 0.775
sonar 60 – 2458 ± 5.614 2671 ± 2.372

Table 5.2: The runtime in seconds required for each algorithm to build up the design
set for each problem. The values shown are means and standard deviations over 3
repeats.

105

5.7 Discussion

We have investigated the use of the VISH model as a cheaper surrogate for building

up the design set for probabilistic integration. Additionally, we proposed the Bézier

Log-Normal Process, and showed how to approximate its induced posterior over the

integral of the modelled function. We also investigated the use of this model for

adaptive Bayesian Quadrature.

Our empirical evaluation indicates that VISH-PI is competitive with alternative

methods of cheaply building up design sets for probabilistic integration, especially

in lower dimension. However, it does not scale well in terms of accuracy to higher

dimensional spaces. BLNBQ scales better than VISH-PI and often improves upon

existing Bayesian Quadrature methods, but performs poorly compared to NS as

optimisation of the model parameters is often unstable.

5.8 Supplement

5.8.1 Mixed Inducing Variables for VISH

The VISH model uses inducing features which capture global properties of the func-

tion, i.e. the projection of the function onto the spherical harmonics. Local struc-

ture is very important, however, especially for the marginalisation integrals that

are typical in machine learning, as they often have narrow peaks. Therefore, it

may be advantageous to use both pseudo-input inducing variables – for modelling

local structure – and spherical harmonic inducing variables – for modelling global

structure. We refer to this model as “VISH-PI-M”.

Denote by u
(s)
l,k = ⟨f(·), ϕl,k(·)⟩H the projection of the function onto the spherical

harmonics as before, by u
(i)
m the pseudo-input inducing variable at location Zm, and

106

by u the set of all inducing variables. The Σuu matrix has the structure

Σuu =

Σu(s)u(s) Σu(s)u(i)

Σu(i)u(s) Σu(i)u(i)

 (5.20)

where Σu(s)u(s) is a diagonal matrix, whose elements are given by Equation (5.10),

and by Equation (5.9) the elements of Σu(s)u(i) are given by

Σ
(
u
(s)
l,k , u

(i)
m

)
= ϕl,k(Zm). (5.21)

We note that the diagonal structure of Σu(s)u(s) can still be exploited to reduce

the cost of inference (compared to an ordinary Variational GP which is cubic in

the total number of inducing variables) by utilising its Schur complement, C =

Σu(i)u(i) − Σu(i)u(s)Σ−1
u(s)u(s)Σu(s)u(i) , to compute the Cholesky decomposition of Σuu.

Denoting by Lu(s)u(s) the Cholesky decomposition of Σu(s)u(s) , and by LC the Cholesky

decomposition of C, the Cholesky decomposition of Σuu is

Luu =

 Lu(s)u(s) 0

Σu(i)u(s)L−T
u(s)u(s) LC

 . (5.22)

The cost of inference with VISH-PI-M is dominated by the cost of computing the

Cholesky decomposition of C and remains quadratic in the total number of inducing

variables – it is O
(
M3

i +N(Mi +Ms)
2
)
where N is the number of data points and

Mi and Ms are the number of pseudo-input and inter-domain inducing variables

respectively.

As the local structure that we most care about modelling are the peaks of the

integrand, we heuristically select the pseudo-input inducing variables to correspond

to the Mi integrand observations with the highest values.

107

Empirical Comparison

We evaluate the introduction of mixed inducing variables by comparing the model-

ling performance of VISH with and without mixed inducing variables on fixed design

sets. These datasets are drawn by sampling randomly from the prior, for each of the

integrands that we are interested in. The results are shown in Table 5.3. Addition-

ally, the integration error that results from using this model as a surrogate to build

up the design set is shown in Table 5.4 under the column heading, “VISH-PI-M”.

We examine performance on several problems:

GMM A 4D synthetic likelihood with a Gaussian Mixture Model and integrate

this against a Gaussian prior.

BLR A 5D synthetic dataset from a Bayesian Logistic Regression model with a

Gaussian prior over the weights. We compute its model evidence by margin-

alising over its weights.

GPR The marginalisation over hyperparameters for Gaussian Process regression

on the UCI Yacht Hydrodynamics dataset with an ARD RBF kernel. This

is an 8D integration problem (over 6 lengthscale hyperparameters, the signal

variance hyperparameter, and the likelihood variance hyperparameter).

The results indicate that introducing pseudo-input inducing variables often de-

grades performance significantly in terms of the NLPD of the test set. For the

largest dataset, the RMSE is also made worse. As expected, this means that the

design sets produced by VISH-PI-M yield worse estimates of the integral than the

design sets produced by VISH-PI.

108

NLPD

Problem D N Ms Mi VISH-M VISH

GMM 4 500 196 111 49.483± 19.962 15.414 ± 5.8553
BLR 5 750 378 122 382.38± 63.764 121.49 ± 9.4289
GPR 8 1250 660 222 2992700± 3651400 461360 ± 220430

RMSE

Problem VISH-M VISH

GMM 3.4304± 0.77233 3.4343± 0.72141
BLR 20.648± 1.8088 21.104± 0.95877
GPR 2085.0± 337.29 1879.4 ± 541.89

Table 5.3: The modelling performance of VISH and VISH-M, measured by the
Negative Log Predictive Density (NLPD) and Root Mean Squared Error (RMSE)
of a held-out test set sampled from the prior. The dimensionality of the integrand
(i.e. the function being modelled) is shown under the heading “D”, the number
of training points under “N”, the number of inter-domain inducing variables under
“Ms”, and the number of pseudo-input inducing variables under “Mi”. The size of
the test set is always a quarter of the size of the training set. The values shown are
means and standard deviations over 5 repeats. Surprisingly, introducing pseudo-
input inducing variables degrades the performance of the model in most cases.

Problem D N VISH-PI-M VISH-PI

GMM 4 500 0.00044 ± 0.00029 0.00024 ± 0.00023
BLR 5 750 0.02535 ± 0.00224 0.01255 ± 0.00208
GPR 8 1250 1.1982 ± 0.21376 1.0195 ± 0.20669

Table 5.4: A comparison of integration performance between VISH-PI and VISH-
PI-M, which has additional pseudo-input inducing variables. The fractional error
in the posterior mean for the integral is reported (in log space for BLR and GPR).
The values shown are means and standard deviations over 5 repeats.

109

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Scalable Bayesian Quadrature with Scalable Gaussian Processes Approximations

Publication Status

 □Published □ Accepted for Publication

 □Submitted for Publication Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Hamid, S., Jørgensen, M., Dutordoir, V. & Osborne, M. (2023). Scalable Bayesian

Quadrature with Scalable Gaussian Process Approximations.

Student Confirmation

Student Name:

Saad Hamid

Contribution to the
Paper

• Joint formulation of initial research direction.
• Contributed to discussions iterating on the methodologies.
• Joint discussion of experimental design.
• Coding for the experiments (excluding Bézier Log-Normal Process and basic

VISH implementations).
• Write-up of the paper.

Signature

Date

11/01/2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Prof Michael A. Osborne

Supervisor comments

I certify that the candidate made a substantial contribution to the publication, just as described above.

Signature

Date

11 January 2023

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 6

Conclusion

A core challenge in machine learning is performing inference in models whose like-

lihoods can be expensive to evaluate – as is common for large datasets – or for

which the dimensionality of the parameters is large. This work has addressed this

challenge by designing Bayesian Quadrature schemes. In particular, Chapter 3 has

focussed on inferring kernels for Gaussian Process Regression, Chapter 4 on infer-

ring architectures for Neural Networks, and Chapter 5 on inference in models with

a large number of real-valued parameters.

To address the kernel learning problem for Gaussian Process regression we used

the maximum mean discrepancy between distributions to define a hyper-kernel

between kernels represented as spectral densities. We also extended an information-

theoretic acquisition function for warped Bayesian Quadrature. These components

were then brought together within the active Bayesian Quadrature framework to

marginalise over a broad class of stationary kernels. An empirical investigation

showed that our proposal outperformed state-of-the-art baselines.

We proposed Bayesian Quadrature as a means of selecting ensembles of Neural

Networks from search spaces of network architectures. In particular, we showed

that uncertainty sampling with a WSABI surrogate model is an effective means of

selecting a candidate set of architectures to train. We investigated using recombin-

ation to select the ensemble members from this candidate set. However, we found

that this underperformed compared to selecting the highest weighted architectures

111

after maximising the performance on a validation set with respect to the weights of

a weighted sum of all candidate architectures in the candidate set.

To extend Bayesian Quadrature to higher-dimensional spaces we investigated the

use of scalable approximations to Gaussian Processes as surrogates for BQ. In partic-

ular, we focussed on non-negative integrands, of the sort frequently encountered in

machine learning. We explored the use of the recently proposed VISH – a variational

GP with inter-domain inducing variables corresponding to the spherical harmonics

– and Bézier GP – a Bézier Curve with Gaussians over the control points – models.

We empirically compared our proposals to existing baselines, and found that they

do not perform as well.

6.1 Future Directions

Our work makes progress towards tractable kernel learning for Gaussian Processes,

ensemble search for Neural Networks, and inference for models with large numbers

of real-valued parameters. Open questions remain, however, and several possible

avenues for future research present themselves:

• For GP kernel learning, the curse of dimensionality limits the family of kernels

that our Bayesian Quadrature scheme can marginalise over, but limiting the

number of Gaussians that we can use to represent the spectral densities in

practice. This limitation is made even more severe if we allow each Gaussian

to have full (rather than diagonal) covariance structure. An exciting possible

extension of our work would seek to address this limitation.

• Recall that Bochner’s theorem can be extended to non-stationary kernels. In

this case, the spectral decompositions are bi-variate, and representing them

will require higher-dimensional representations. However, this does provide

a potential avenue for extending our proposed methodology for GP kernel

learning to a class of kernels that includes non-stationary kernels.

112

• An exciting possible extension of our work on Bayesian Quadrature for Neural

Ensemble Search is to marginalise over both architecture weights and architec-

tures. Significant attention has been devoted in the literature to methods for

marginalising over the weights of a given architecture. These are orthogonal to

our approach and an investigation of which is most performant, and to what

extent they improve performance over MLE estimates would be of value to

the community. Our proposal for scalable BQ can also be used to perform the

marginalisation over architecture weights. In this case, a promising direction

is to explore using the information-theoretic acquisition function suggested by

Chai, Ton et al. (2019). This targets the weight setting w | α that most reduces

the entropy of the estimate of the model evidence p(D). The advantage of such

an acquisition function is that it naturally allocates a greater number of likeli-

hood evaluations to architectures with a higher marginal likelihood p(D | α).

This is likely to lead to better performance given the same evaluation budget.

• An interesting alternative our proposal for scalable BQ is to use different a

different model class as a surrogate, for example Bayesian Neural Networks.

Recent work (Müller et al. 2022) has shown that NNs can approximate well the

output of a GP, including uncertainty estimates. This is a promising direction

for extending BQ to higher-dimensional spaces.

113

Bibliography

Ambrogioni, Luca and Eric Maris (2018). ‘Integral Transforms from Finite Data:
An Application of Gaussian Process Regression to Fourier Analysis’. In: Proceed-
ings of the 21st International Conference on Artificial Intelligence and Statistics,
pp. 217–225.

Bachoc, Francois, Alexandra Suvorikova, David Ginsbourger, Jean-Michel Loubes
and Vladimir Spokoiny (2019). ‘Gaussian processes with multidimensional
distribution inputs via optimal transport and Hilbertian embedding’. In:
arXiv:1805.00753 [stat].

Bachoc, François, Fabrice Gamboa, Jean-Michel Loubes and Nil Venet (2018). ‘A
Gaussian Process Regression Model for Distribution Inputs’. In: IEEE Transac-
tions on Information Theory 64.10, pp. 6620–6637.

Belfer, Yuval, Amnon Geifman, Meirav Galun and Ronen Basri (2021). ‘Spec-
tral Analysis of the Neural Tangent Kernel for Deep Residual Networks’. In:
arXiv:2104.03093.

Benton, Gregory W., Wesley J. Maddox, Jayson P. Salkey, Julio Albinati and An-
drew Gordon Wilson (2019). ‘Function-Space Distributions over Kernels’. In:
Advances in Neural Information Processing Systems.

Berlinet, Alain and Christine Thomas-Agnan (2004). Reproducing Kernel Hilbert
Spaces in Probability and Statistics. Springer.

Bietti, Alberto and Julien Mairal (2019). ‘On the Inductive Bias of Neural Tangent
Kernels’. In: Advances in Neural Information Processing Systems 32.

Bishop, Christopher M. (2006). Pattern recognition and machine learning. Informa-
tion science and statistics. New York: Springer.

Blei, David M., Alp Kucukelbir and Jon D. McAuliffe (2018). ‘Variational Inference:
A Review for Statisticians’. In: Journal of the American Statistical Association
112.518, pp. 859–877.

Bochner, Salomon (1959). Lectures on Fourier Integrals. Vol. 42. Princeton Univer-
sity Press.

Bogachev, Vladimir Igorevich (1961). Gaussian Measures.

114

Briol, François-Xavier, Chris J. Oates, Mark Girolami and Michael A. Osborne
(2015). ‘Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with The-
oretical Guarantees’. In: Advances in Neural Information Processing Systems,
pp. 1162–1170.

Briol, François-Xavier, Chris J. Oates, Mark Girolami, Michael A. Osborne and Dino
Sejdinovic (2015). ‘Probabilistic Integration: A Role in Statistical Computation?’
In: arXiv:1512.00933 [cs, math, stat].

Burt, David R., Carl Edward Rasmussen and Mark van der Wilk (2020). ‘Con-
vergence of Sparse Variational Inference in Gaussian Processes Regression’. In:
Journal of Machine Learning Research 21, pp. 1–63.

Carathéodory, Constantin (1911). ‘Über den variabilitätsbereich der fourier’schen
konstanten von positiven harmonischen funktionen’. In: Rendiconti del Circolo
Matematico di Palermo 32, pp. 193–217.

Chai, Henry and Roman Garnett (2019). ‘Improving Quadrature for Constrained
Integrands’. In: Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics.

Chai, Henry, Jean-Francois Ton, Michael A Osborne and Roman Garnett (2019).
‘Automated Model Selection with Bayesian Quadrature’. In: 36th International
Conference on Machine Learning, pp. 1555–1564.

Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt and David Duvenaud (2018).
‘Neural Ordinary Differential Equations’. In: Advances in Neural Information
Processing Systems. Vol. 33.

Chen, Xin, Lingxi Xie, Jun Wu and Qi Tian (2019). ‘Progressive Differentiable
Architecture Search: Bridging the Depth Gap between Search and Evaluation’.
In: arXiv:1904.12760.

Cho, Youngmin and Lawrence K Saul (2009). ‘Kernel Methods for Deep Learning’.
In: Advances in Neural Information Processing Systems. Vol. 22, p. 9.

Cohen, Taco S. and Max Welling (2016). ‘Group Equivariant Convolutional Net-
works’. In: Proceedings of the 33rd International Conference on Machine Learn-
ing.

Cutajar, Kurt, Michael A Osborne, John P Cunningham and Maurizio Filippone
(2016). ‘Preconditioning Kernel Matrices’. In: Proceedings of the 33rd Interna-
tional Conference on Machine Learning.

Cuturi, Marco (2013). ‘Sinkhorn Distances: Lightspeed Computation of Optimal
Transport’. In: Advances in Neural Information Processing Systems 26, pp. 2292–
2300.

115

Dai, Feng and Yuan Xu (2013). Approximation Theory and Harmonic Analysis
on Spheres and Balls. Springer Monographs in Mathematics. New York, NY:
Springer New York.

Diaconis, Persi (1988). ‘Bayesian Numerical Analysis’. In: Statistical Decision The-
ory and Related Topics IV, pp. 163–175.

Dong, Xuanyi, Lu Liu, Katarzyna Musial and Bogdan Gabrys (2021). ‘NATS-Bench:
Benchmarking NAS Algorithms for Architecture Topology and Size’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Dong, Xuanyi and Yi Yang (2020). ‘NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search’. In: arXiv:2001.00326.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository.

Dutordoir, Vincent, Nicolas Durrande and James Hensman (2020). ‘Sparse Gaus-
sian Processes with Spherical Harmonic Features’. In: Proceedings of the 37th
International Conference on Machine Learning.

Duvenaud, David, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum and
Zoubin Ghahramani (2013). ‘Structure Discovery in Nonparametric Regression
through Compositional Kernel Search’. In: Proceedings of the 30th International
Conference on Machine Learning.

Elsken, Thomas, Jan Hendrik Metzen and Frank Hutter (2019). ‘Neural Architecture
Search: A Survey’. In: Journal of Machine Learning Research 20.55, pp. 1–21.

England, Bank of (2020). Broad Effective Exchange Rate Index, Sterling.

Feragen, Aasa, Francois Lauze and Søren Hauberg (2015). ‘Geodesic Exponential
Kernels: When Curvature and Linearity Conflict’. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 3032–3042.

Feydy, Jean (2020). ‘Geometric data analysis, beyond convolutions’. Doctor of Philo-
sophy. Paris-Saclay University.

Fubini, Guido (1907). ‘Sugli integrali multipli’. In: Rom. Acc. L. Rend. (5) 16.1,
pp. 608–614.

Gal, Yarin and Richard Turner (2015). ‘Improving the Gaussian Process Sparse
Spectrum Approximation by Representing Uncertainty in Frequency Inputs’. In:
32nd International Conference on Machine Learning. Vol. 1, pp. 655–664.

Gardner, Jacob R., Geoff Pleiss, David Bindel, Kilian Q. Weinberger and Andrew
Gordon Wilson (2018). ‘GPyTorch: Blackbox Matrix-Matrix Gaussian Process

116

Inference with GPU Acceleration’. In: Proceedings of the 32nd Conference on
Neural Information Processing Systems.

Garnett, Roman (2021). Bayesian Optimization. Cambridge University Press.

Garriga-Alonso, Adrià, Carl Edward Rasmussen and Laurence Aitchison (2019).
‘Deep Convolutional Networks as shallow Gaussian Processes’. In: International
Conference on Learning Representations.

Genton, Marc G (2001). ‘Classes of Kernels for Machine Learning: A Statistics Per-
spective’. In: Journal of Machine Learning Research 2, pp. 299–312.

Gessner, Alexandra, Javier Gonzalez and Maren Mahsereci (2019). ‘Active Multi-
Information Source Bayesian Quadrature’. In: Proceedings of the 35th Conference
on Uncertainty in Artificial Intelligence.

Ghosh, Swarnendu, Nibaran Das, Teresa Gonçalves, Paulo Quaresma and Ma-
hantapas Kundu (2018). ‘The journey of graph kernels through two decades’.
In: Computer Science Review 27, pp. 88–111.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). Deep Learning. MIT
Press.

Green, Peter J (1995). ‘Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination’. In: Biometrika 82.4, pp. 711–732.

Gretton, Arthur, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf and Alexan-
der Smola (2012). ‘A Kernel Two-Sample Test’. In: Journal of Machine Learning
Research 13, pp. 723–773.

Gunter, Tom, Michael A. Osborne, Roman Garnett, Philipp Hennig and Stephen
J. Roberts (2014). ‘Sampling for Inference in Probabilistic Models with Fast
Bayesian Quadrature’. In: Proceedings of the 28th Annual Conference on Neural
Information Processing Systems. Vol. 4, pp. 2789–2797.

Guo, Chuan, Geoff Pleiss, Yu Sun and Kilian Q. Weinberger (2017). ‘On Calibration
of Modern Neural Networks’. In: arXiv:1706.04599.

Hayakawa, Satoshi, Harald Oberhauser and Terry Lyons (2022). ‘Positively
Weighted Kernel Quadrature via Subsampling’. In: arXiv:2107.09597.

Hendrycks, Dan and Thomas Dietterich (2019). ‘Benchmarking Neural Network Ro-
bustness to Common Corruptions and Perturbations’. In: Proceedings of the In-
ternational Conference on Learning Representations.

Hennig, P and M A Osborne (2021). Probabilistic Numerics. Cambridge University
Press.

117

Hensman, James, Nicolas Durrande and Arno Solin (2018). ‘Variational Fourier
features for Gaussian processes’. In: Journal of Machine Learning Research 18,
pp. 1–52.

Hensman, James, Nicolo Fusi and Neil D Lawrence (2013). ‘Gaussian Processes for
Big Data’. In: Proceedings of the 29th Conference on Uncertainty in Artificial
Intelligence, p. 9.

Jacot, Arthur, Franck Gabriel and Clement Hongler (2018). ‘Neural Tangent Kernel:
Convergence and Generalization in Neural Networks’. In: Advances in Neural
Information Processing Systems 31.

Jang, Phillip A, Andrew Loeb, Matthew Davidow and Andrew G Wilson (2017).
‘Scalable Levy Process Priors for Spectral Kernel Learning’. In: Advances in
Neural Information Processing Systems, pp. 3941–3950.

Jayasumana, Sadeep, Richard Hartley, Mathieu Salzmann, Hongdong Li and
Mehrtash Harandi (2015). ‘Kernel Methods on Riemannian Manifolds with Gaus-
sian RBF Kernels’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 37.12, pp. 2464–2477.

Jørgensen, Martin and Michael A. Osborne (2022). ‘Bézier Gaussian Processes for
Tall and Wide Data’. In: arXiv:2209.00343.

Kakihara, Yûichirô (1985). ‘A note on harmonizable and V-bounded processes’. In:
Journal of Multivariate Analysis 16.1, pp. 140–156.

Kanagawa, Motonobu, Bharath K. Sriperumbudur and Kenji Fukumizu (2020).
‘Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Mis-
specified Settings’. In: Foundations of Computational Mathematics 20.1, pp. 155–
194.

Kandasamy, Kirthevasan, Willie Neiswanger, Jeff Schneider, Barnabas Poczos and
Eric Xing (2019). ‘Neural Architecture Search with Bayesian Optimisation and
Optimal Transport’. In: arXiv:1802.07191.

Kaul, Manohar (2013). 3D Road Network (North Jutland, Denmark) Data Set.

Kriege, Nils M., Fredrik D. Johansson and Christopher Morris (2020). ‘A Survey on
Graph Kernels’. In: Applied Network Science 5.1, p. 6.

Lakshminarayanan, Balaji, Alexander Pritzel and Charles Blundell (2017). ‘Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles’. In: Ad-
vances in Neural Information Processing Systems.

Lázaro-Gredilla, Miguel, Joaquin Quiñonero-Candela, Carl Edward Rasmussen and
Ańıbal R Figueiras-Vidal (2010). ‘Sparse Spectrum Gaussian Process Regres-
sion’. In: Journal of Machine Learning Research 11, pp. 1–17.

118

Lean, J. (2004). Solar Irradiance Reconstruction. IGBP PAGES/World Data Cen-
ter for Paleoclimatology, Data Contribution Series \# 2004-035. NOAA/NGDC
Paleoclimatology Program, Boulder CO, USA.

Lee, Jaehoon, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pen-
nington and Jascha Sohl-Dickstein (2018). ‘Deep Neural Networks as Gaussian
Processes’. In: 6th International Conference on Learning Representations.

Leibfried, Felix, Vincent Dutordoir, S. T. John and Nicolas Durrande (2021).
‘A Tutorial on Sparse Gaussian Processes and Variational Inference’. In:
arXiv:2012.13962 [cs, stat].

Lim, Bryan, Sercan Ö. Arık, Nicolas Loeff and Tomas Pfister (2021). ‘Temporal
Fusion Transformers for interpretable multi-horizon time series forecasting’. In:
International Journal of Forecasting 37.4, pp. 1748–1764.

Liu, Hanxiao, Karen Simonyan and Yiming Yang (2019). ‘DARTS: Differentiable
Architecture Search’. In: arXiv:1806.09055.

Liu, Yuqiao, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen and Kay Chen
Tan (2021). ‘A Survey on Evolutionary Neural Architecture Search’. In: IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–21.

Lopez, Roberto (2013). Yacht Hydrodynamics Data Set.

— (2014). Airfoil Self-Noise Data Set.

Lugosi, Gabor (2006). ‘Universal Kernels’. In: Journal of Machine Learning Research
7, pp. 2651–2667.

Ma, Lizheng, Jiaxu Cui and Bo Yang (2019). ‘Deep Neural Architecture Search
with Deep Graph Bayesian Optimization’. In: IEEE/WIC/ACM International
Conference on Web Intelligence. Thessaloniki Greece: ACM, pp. 500–507.

MacKay, David J. C. (1999). ‘Comparison of Approximate Methods for Handling
Hyperparameters’. In: Neural Computation 11.5, pp. 1035–1068.

Makridakis, S., S. Wheelwright and R. Hyndman (1998). Airline Passenger Data
Set.

Matthews, Alexander G. de G., Mark Rowland, Jiri Hron, Richard E. Turner and
Zoubin Ghahramani (2018). ‘Gaussian Process Behaviour in Wide Deep Neural
Networks’. In: 6th International Conference on Learning Representations.

Matthews, Alexander Graeme de Garis (2016). ‘Scalable Gaussian process inference
using variational methods’. Doctor of Philosophy. University of Cambridge.

Minka, Thomas (2000). Deriving quadrature rules from Gaussian processes. Tech-
nical. Statistics Department, Carnegie Mellon University, pp. 1–21.

119

Muandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur and Bernhard
Schölkopf (2017). ‘Kernel Mean Embedding of Distributions: A Review and Bey-
ond’. In: Foundations and Trends in Machine Learning 10.1, pp. 1–141.

Müller, Samuel, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka and
Frank Hutter (2022). ‘Transformers Can Do Bayesian Inference’. In: Proceedings
of the International Conference on Learning Representations.

Murphy, Kevin P. (2012). Machine learning: a probabilistic perspective. Adaptive
computation and machine learning series. Cambridge, MA: MIT Press.

— (2022). Probabilistic machine learning: an introduction. Adaptive computation
and machine learning series. Cambridge, Massachusetts: The MIT Press.

Murray, Iain, Ryan Prescott Adams and David J C MacKay (2010). ‘Elliptical slice
sampling’. In: Journal of Machine Learning Research 9, pp. 541–548.

Neal, Radford (1996). Bayesian Learning for Neural Networks. Vol. 118. Lecture
Notes in Statistics. Springer.

Nikolentzos, Giannis, Giannis Siglidis and Michalis Vazirgiannis (2021). ‘Graph Ker-
nels: A Survey’. In: Journal of Artificial Intelligence Research 72, pp. 943–1027.

NOAA, USA (2020). Mauna Loa Atmospheric CO\textsubscript{2} Observations.

Novak, Erich (2016). ‘Some Results on the Complexity of Numerical Integration’. In:
Monte Carlo and Quasi-Monte Carlo Methods. Vol. 163. Springer Proceedings
in Mathematics & Statistics, pp. 161–183.

O’Hagan, A. (1991). ‘Bayes–Hermite quadrature’. In: Journal of Statistical Planning
and Inference 29.3, pp. 245–260.

— (1992). ‘Some Bayesian Numerical Analysis’. In: Bayesian Statistics 4, pp. 345–
363.

Oliva, Junier B, Avinava Dubey, Andrew GWilson, Barnabas Poczos, Jeff Schneider
and Eric P Xing (2016). ‘Bayesian Nonparametric Kernel-Learning’. In: Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statistics,
pp. 1078–1086.

Osborne, Michael A, David Duvenaud, Roman Garnett, Carl E Rasmussen, Stephen
J Roberts and Zoubin Ghahramani (2012). ‘Active Learning of Model Evidence
Using Bayesian Quadrature’. In: Advances in Neural Information Processing Sys-
tems 26, pp. 46–54.

Osborne, Michael A, Roman Garnett, Stephen J Roberts, Christopher Hart, Suz-
anne Aigrain and Neale P Gibson (2012). ‘Bayesian Quadrature for Ratios’. In:

120

Proceedings of the 15th International Conference on Artificial Intelligence and
Statistics, pp. 832–840.

Ott, Myle, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier and Michael Auli (2019). ‘fairseq: A Fast, Extensible Toolkit
for Sequence Modeling’. In: Proceedings of the 2019 Conference of the North.
Minneapolis, Minnesota: Association for Computational Linguistics, pp. 48–53.

Peyré, Gabriel and Marco Cuturi (2019). ‘Computational Optimal Transport’. In:
Foundations and Trends in Machine Learning 11.5, pp. 1–257.

Rahimi, Ali and Benjamin Recht (2008). ‘Random Features for Large-Scale Kernel
Machines’. In: Advances in Neural Information Processing Systems 20. Curran
Associates, Inc., pp. 1177–1184.

Rasmussen, Carl and Zoubin Ghahramani (2003). ‘Bayesian Monte Carlo’. In: Ad-
vances in Neural Information Processing Systems 16.

Rasmussen, Carl and Christopher Williams (2006). Gaussian Processes for Machine
Learning. MIT Press.

Real, Esteban, Alok Aggarwal, Yanping Huang and Quoc V. Le (2019). ‘Regularized
Evolution for Image Classifier Architecture Search’. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33, pp. 4780–4789.

Real, Esteban, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon
Suematsu, Jie Tan, Quoc V Le and Alexey Kurakin (2017). ‘Large-Scale Evol-
ution of Image Classifiers’. In: Proceedings of the 34th International Conference
on Machine Learning.

Remes, Sami, Markus Heinonen and Samuel Kaski (2017). ‘Non-Stationary Spec-
tral Kernels’. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc., pp. 4642–4651.

Ren, Pengzhen, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen and Xin Wang (2020). ‘A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions’. In: ACM Computing Surveys 37.4.

Ronneberger, Olaf, Philipp Fischer and Thomas Brox (2015). ‘U-Net: Convolutional
Networks for Biomedical Image Segmentation’. In:Medical Image Computing and
Computer-Assisted Intervention (MICCAI) 9351.234.

Ross, Quinlan (1993). Auto MPG Data Set.

Ru, Binxin, Mark McLeod, Diego Granziol and Michael A Osborne (2018). ‘Fast
Information-theoretic Bayesian Optimisation’. In: Proceedings of the 35th Inter-
national Conference on Machine Learning, p. 9.

121

Ru, Binxin, Xingchen Wan, Xiaowen Dong and Michael Osborne (2021). ‘Inter-
pretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-
Lehman Kernels’. In: Proceedings of the 9th International Conference on Learn-
ing Representations.

Samo, Yves-Laurent Kom (2017). ‘Advances in Kernel Methods’. DPhil. Oxford,
UK: University of Oxford.

Samo, Yves-Laurent Kom and Stephen Roberts (2015). ‘Generalized Spectral Ker-
nels’. In: arXiv:1506.02236 [stat].

Shervashidze, Nino (2011). ‘Weisfeiler-Lehman Graph Kernels’. In: Journal of Ma-
chine Learning Research 12, pp. 2539–2561.

Shu, Yao, Yizhou Chen, Zhongxiang Dai and Bryan Kian Hsiang Low (2022). Neural
Ensemble Search via Bayesian Sampling.

Simpson, Fergus, Vidhi Lalchand and Carl Rasmussen (2021). ‘Marginalised Spectral
Mixture Kernels with Nested Sampling’. In: Advances in Neural Information
Processing Systems. Vol. 34.

Snelson, Edward, Zoubin Ghahramani and Carl E Rasmussen (2004). ‘Warped
Gaussian Processes’. In: Advances in Neural Information Processing Systems 17,
pp. 1–8.

Sriperumbudur, Bharath K., Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf
and Gert R. G. Lanckriet (2012). ‘On integral probability metrics, \phi-
divergences and binary classification’. In: Electronic Journal of Statistics 6,
pp. 1550–1599.

Svensson, Andreas, Johan Dahlin and Thomas B. Schön (2015). ‘Marginalizing
Gaussian Process Hyperparameters using Sequential Monte Carlo’. In: 6th IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, pp. 477–480.

Tchernychova, Maria (2015). ‘Caratheodory cubature measures’. Doctor of Philo-
sophy. University of Oxford.

Teng, Tong, Jie Chen, Yehong Zhang and Kian Hsiang Low (2019). ‘Scalable Vari-
ational Bayesian Kernel Selection for Sparse Gaussian Process Regression’. In:
Proceedings of the 34th AAAI Conference on Artificial Intelligence.

Titsias, Michalis K (2009). ‘Variational Learning of Inducing Variables in Sparse
Gaussian Processes’. In: Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, pp. 567–574.

Tobar, Felipe (2018). ‘Bayesian Nonparametric Spectral Estimation’. In: Proceedings
of the 32nd Conference on Neural Information Processing Systems, p. 11.

122

Wang, Chien-Yao, Alexey Bochkovskiy and Hong-Yuan Mark Liao (2022).
‘YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time ob-
ject detectors’. In: arXiv:2207.02696.

White, Colin, Willie Neiswanger and Yash Savani (2020). ‘BANANAS: Bayesian
Optimization with Neural Architectures for Neural Architecture Search’. In:
arXiv:1910.11858.

Wilson, Andrew Gordon and Ryan Prescott Adams (2013). ‘Gaussian Process Ker-
nels for Pattern Discovery and Extrapolation’. In: 30th International Conference
on Machine Learning, pp. 2104–2112.

Worrall, Daniel E., Stephan J. Garbin, Daniyar Turmukhambetov and Gabriel J.
Brostow (2017). ‘Harmonic Networks: Deep Translation and Rotation Equivari-
ance’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Xi, Xiaoyue, François-Xavier Briol and Mark Girolami (2018). ‘Bayesian Quadrature
for Multiple Related Integrals’. In: 35th International Conference on Machine
Learning. Vol. 12, pp. 8533–8564.

Xu, Yuhui, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian and
Hongkai Xiong (2020). ‘PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search’. In: arXiv:1907.05737.

Yang, Greg (2019). ‘Tensor Programs I: Wide Feedforward or Recurrent Neural
Networks of Any Architecture are Gaussian Processes’. In: Advances in Neural
Information Processing Systems 32.

Yeh, I-Cheng (2007). Concrete Compressive Strength Data Set.

Yu, Jiahui, Linjie Yang, Ning Xu, Jianchao Yang and Thomas Huang (2019). ‘Slim-
mable Neural Networks’. In: International Conference on Learning Representa-
tions.

Zaheer, Manzil, Satwik Kottu, Siamak Ravanbhakhsh, Barnabas Poczos, Ruslan
Salakhutdinov and Alex Smola (2017). ‘Deep Sets’. In: Advances in Neural In-
formation Processing Systems. Vol. 31.

Zaidi, Sheheryar, Arber Zela, Thomas Elsken, Chris Holmes, Frank Hutter and
Yee Whye Teh (2022). ‘Neural Ensemble Search for Uncertainty Estimation and
Dataset Shift’. In: arXiv:2006.08573.

Zhu, Harrison, Xing Liu, Ruya Kang, Zhichao Shen, Seth Flaxman and François-
Xavier Briol (2020). ‘Bayesian Probabilistic Numerical Integration with Tree-
Based Models’. In: Proceedings of the 34th Conference on Neural Information
Processing Systems.

123

	List of Figures
	List of Tables
	Introduction
	Background
	Hierarchical Bayesian Modelling
	Gaussian Processes
	Scalable Gaussian Process Approximations
	Covariance Functions on non-Euclidean Spaces
	Kernel Learning

	Bayesian Quadrature
	Warped Bayesian Quadrature
	Acquisition Functions
	Recombination

	Neural Architecture Search
	Neural Ensemble Search

	Marginalising over Stationary Kernels for Gaussian Process Regression with Probabilistic Integration
	Abstract
	Introduction
	Background
	Gaussian Processes
	Bayesian Quadrature

	Related Work
	Kernel learning
	Bayesian Quadrature
	Gaussian Processes on Spaces of Measures

	Our Method: MASKERADE
	The generative model
	Posterior Inference
	Bayesian Quadrature
	Computational Complexity

	Results
	Experiment setup
	Qualitative Analysis
	Medium scale data sets
	Large scale data sets
	Ablation Study

	Discussion
	Supplement
	Summary of WSABI
	A Remark on Posterior Inference
	Full Algorithm Description

	Bayesian Quadrature for Neural Ensemble Search
	Abstract
	Introduction
	Background
	Neural Architecture Search
	Bayesian Optimisation for Neural Architecture Search
	Neural Ensemble Search
	Bayesian Quadrature
	Recombination

	Bayesian Quadrature for Neural Ensemble Search
	Building the Candidate Set
	Selecting the Ensemble

	Experiments
	Ablation Study

	Discussion and Future Work
	Supplement
	Verification of Surrogate Quality
	Additional Experiments

	Scalable Bayesian Quadrature with Gaussian Process Approximations
	Abstract
	Introduction
	Background
	Probabilistic Integration
	Variational Gaussian Processes and the VISH Model
	Bézier Gaussian Process

	Methods
	Using VISH for Active Learning of the Integrand
	Bayesian Quadrature with the Bézier Log-Normal Process

	Related Work
	Experiments
	Discussion
	Supplement
	Mixed Inducing Variables for VISH

	Conclusion
	Future Directions

	Bibliography

