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Use of hidden Markov models for QTL mapping

Karl W Broman
Department of Biostatistics, Johns Hopkins University

December 5, 2006

An important aspect of the QTL mapping problem is the treatment of missing genotype data.
If complete genotype data were available, QTL mapping wouldreduce to the problem of model
selection in linear regression. However, in the consideration of loci in the intervals between the
available genetic markers, genotype data is inherently missing. Even at the typed genetic markers,
genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of
economy (for example, in the case of selective genotyping, where only individuals with extreme
phenotypes are genotyped).

In standard interval mapping, one deals with the missing QTLgenotype data by performing
maximum likelihood under a mixture model, using a version ofthe EM algorithm. Central to
this approach is the calculation of the distribution of QTL genotypes conditional on the observed
multipoint marker data. In the pseudomarker algorithm, which uses a form of multiple imputation,
one must be able to simulate from the joint distribution of the genotypes at the pseudomarkers,
conditional on the observed marker data.

We discuss the use of algorithms developed for hidden Markovmodels (HMMs) to perform the
tasks mentioned above and thus deal with the missing genotype data problem. Simpler approaches
can and have been used. For example, in a backcross in the absence of genotyping errors, the QTL
genotype probabilities, conditional on the marker data, are a simple function of the genotypes at
the nearest flanking markers. The more refined algorithms described here have several advantages.
First, we may allow for the presence of genotyping errors. Second, we may more easily deal with
partially informative genotypes. (For example, in an intercross, at some markers the heterozygote
may not be distinguishable from one of the homozygotes.) Third, the bookkeeping tasks in imple-
menting these algorithms can be more simple. Fourth, the algorithms can be more easily extended
to more complex experimental crosses (such as the four-way cross).

In the next section, we define hidden Markov models in the context of the analysis of exper-
imental crosses. In the following sections, we describe thebasic algorithms for calculating QTL
genotype probabilities, simulating from the joint distribution of QTL genotypes, estimating genetic
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Figure 1: Illustration of a hidden Markov model.G’s indicate underlying genotypes;O’s indicate
observed marker phenotypes.

maps, and identifying genotyping errors. We conclude the chapter with a discussion of a practical
issue in the implementation of these algorithms in computerprograms.

1 Specification of the model

A Markov chain is a collection of random variables,{G1, G2, . . . , Gn}, satisfying the Markov
propertyPr(Gi+1|Gi, . . . , G1) = Pr(Gi+1|Gi) for all i. In a Markov chain, for anyi, the “past”,
{G1, . . . , Gi−1}, and the “future”,{Gi+1, . . . , Gn}, are conditionally independent, given the “present”,
Gi. We focus on Markov chains for which the random variables{Gi} take values in a common,
finite set,G.

A hidden Markov model (HMM) consists of an unobservable underlying Markov chain,{Gi},
and a set of observable random variables,{Oi}, where eachOi depends only onGi. In other words,
for eachi, Oi, givenGi, is conditionally independent of everything else,{O1, . . . ,Oi−1, Oi+1, . . . ,
On, G1, . . . ,Gi−1, Gi+1, . . . ,Gn}. It may be useful to keep in mind the illustration in Figure 1.

The hidden states,Gi, take values in a common, finite set,G; the observed states,Oi, take
values in another finite set,O. The joint distribution of theOi andGi in the HMM is parameterized
by three sets of probabilities, which we will call the initiation, transition and emission probabilities.
The initiation probabilities define the distribution of theinitial hidden state:π(g) = Pr(G1 = g)
for g ∈ G. The transition probabilities complete the specification for the joint distribution of the
underlying, hidden Markov chain:ti(g, g′) = Pr(Gi+1 = g′|Gi = g) for i = 1, . . . , n − 1 and
g, g′ ∈ G. The emission probabilities concern the conditional distribution of the observed states
given the hidden states:ei(g, o) = Pr(Oi = o|Gi = g) for i = 1, . . . , n, g ∈ G, ando ∈ O. We will
assume here that the emission probabilities are homogeneous, withei(g, o) ≡ e(g, o) for all i, g, o.

We now begin to consider the application of HMMs to experimental crosses. Below, we will
describe the backcross and intercross specifically, but first we define the relevant HMM in some
generality.

One may focus on the genotypes for a single individual at a setof loci on a single chromosome.
(We will focus on an autosome.) We letGi, i = 1, . . . , n denote the true underlying genotypes for
the individual at a set ofn ordered loci, and let theOi denote the observed marker “phenotype” at
locusi.

These loci may be genetic markers, or they may be “pseudomarkers,” under consideration as
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putative QTL. The genotypes are often assumed to be phase-known genotypes, though for the in-
tercross they need not be, as we will see below. Under the assumption of no crossover interference
in meiosis, for many types of crosses, theGi form a Markov chain. The setG corresponds to
the possible values of these phase-known genotypes. The initiation probabilities correspond to a
segregation model at a single locus; the transition probabilities are a function of the recombination
fractions,ri, between adjacent markers.

The setO corresponds to the set of possible observed marker phenotypes, which will include
the possibility of missing values and partially informative phenotypes (such as in the case of a
dominant or recessive marker). The emission probabilitiesinvolve a model for errors in genotyp-
ing, which we will assume to be common across markers, thoughin reality, some markers are
considerably more error-prone than others. It is importantto point out, further, that one conditions
on the observed pattern of missing data. This will become more clear below.

1.1 The backcross

Consider a backcross individual derived from two inbred strains, A and B, where the F1 parent
was crossed back to the A strain. We letG = {AA, AB}, the possible genotypes at a locus. The set
of possible marker phenotypes isO = {A, H,−}, with the last symbol corresponding to a missing
value. Note our attempt to use different symbols for the underlying genotypes and the observed
marker phenotypes.

The initiation probabilities, assuming Mendel’s rules, are simplyπ(AA) = π(AB) = 1/2. The
transition probabilities areti(AA, AB) = ti(AB, AA) = ri, whereri denotes the recombination
fraction between locii andi + 1. Of course,ti(AA, AA) = ti(AB, AB) = 1 − ri.

In forming the emission probabilities, we assume a constanterror rate in genotyping,ǫ, so that
e(AA, A) = e(AB, H) = 1 − ǫ, ande(AA, H) = e(AB, A) = ǫ. We condition on the observed
pattern of missing data, and soe(AA,−) = e(AB,−) = 1. One may consider− = {A or H}, so
thate(AA,−) = e(AA, A) + e(AA, H) = 1.

One may consider, in forming the emission probabilities, more refined models for genotyping
errors. For example, one may consider a locus-specific errorrate, and one may allow the chance
of a heterozygote being erroneously observed as a homozygote to be somewhat different than the
converse. However, we have seen little benefit in such refinements.

1.2 The intercross

Consider a single individual in the F2 generation from an intercross between two inbred strains,
A and B. One may consider the hidden states,Gi, to be either phase-known genotypes (with four
possible states,{AA, AB, BA, BB}) or phase-unknown genotypes (with three possible states,
{AA, AB, BB}). It is an interesting and useful fact that in either case theGi form a Markov chain
(under the assumption of no crossover interference).

We will focus on the phase-unknown case, withG = {AA, AB, BB}. The initiation prob-
abilities are again those implied by Mendel’s rules:π(AA) = π(BB) = 1/4, π(AB) = 1/2.
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The transition probabilities are displayed in the Table 1, whereri denotes the recombination frac-
tion between markersi and i + 1. Note that we assume that there are no sex differences in the
recombination fractions.

Table 1: The transition probabilities,ti(g, g′) = Pr(Gi+1 = g′|Gi = g), for a phase-unknown
intercross.

g′

g AA AB BB

AA (1 − ri)
2 2ri(1 − ri) r2

i

AB ri(1 − ri) (1 − ri)
2 + r2

i ri(1 − ri)

BB r2
i 2ri(1 − ri) (1 − ri)

2

As possible observed marker phenotypes, we letO = {A, H, B, C, D,−}, with A, B, and
H corresponding to the two homozygotes and the heterozygote,respectively,− corresponding to
a completely missing value, and withC andD allowing the treatment of dominant marker loci:
we defineC andD as in the popular computer software, MapMaker (LANDER et al. 1989), with
C = {notA} = {B or H} andD = {notB} = {A or H}.

The emission probabilities, for a simple genotyping error model, are shown in Table 2, where
we letǫ denote the genotyping error rate. Note that we again condition on the pattern of missing
genotype data, and so, for example,Pr(Oi = C|Gi) = Pr(Oi = B|Gi) + Pr(Oi = H|Gi).

Table 2: The emission probabilities,e(g, o) = Pr(Oi = o|Gi = g), for a phase-unknown inter-
cross.

o

g A H B C D −

AA 1 − ǫ ǫ/2 ǫ/2 ǫ/2 1 − ǫ/2 1

AB ǫ/2 1 − ǫ ǫ/2 1 − ǫ/2 1 − ǫ/2 1

BB ǫ/2 ǫ/2 1 − ǫ 1 − ǫ/2 ǫ/2 1

2 QTL genotype probabilities

Having set up the hidden Markov model for experimental crosses, we now begin our discussion
of the basic algorithms used in order to deal with missing genotype data in QTL mapping. We
begin with the calculation of the conditional QTL genotype probabilities given multipoint marker
data, which are critical for standard interval mapping witha single QTL model. Using the notation
developed in the previous section, we seekPr(Gi = g|O), whereO = (O1, . . . , On).
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The brute-force approach for calculating this probabilityis to simply sum over all possible
genotypes at the other loci.

Pr(Gi = gi|O) =
∑

g1

. . .
∑

gi−1

∑

gi+1

. . .
∑

gn

Pr(G1 = g1, . . . , Gn = gn|O)

∝
∑

g1

. . .
∑

gi−1

∑

gi+1

. . .
∑

gn

π(g1)
n−1
∏

j=1

tj(gj, gj+1)
n

∏

j=1

e(gj, Oj)

For the phase-known intercross, with three possible genotypes, this is a sum with3n−1 terms;
clearly this is unwieldy and unnecessary. That there are simple algorithms for this calculation,
which make critical use of the conditional independence structure of the HMM, is the primary
motivation for the use of HMMs in experimental crosses.

The approach we follow makes use of the following two sets of probabilities.

αi(g) = Pr(O1, . . . , Oi, Gi = g)

βi(g) = Pr(Oi+1, . . . , On|Gi = g)

Note that, once theα’s andβ’s have been calculated, the probability that is the focus ofthis section
follows directly:

Pr(Gi = g|O) = Pr(Gi = g, O)/ Pr(O)

= αi(g)βi(g)/
∑

g′ αi(g
′)βi(g

′).

The α’s andβ’s are calculated inductively, using what are called the forward and backward
equations, respectively. We begin with the forward equations. First, note that

α1(g) = Pr(O1, G1 = g) = π(g) e(g, O1).

Now, assume that we have calculatedαi(g) for eachg ∈ G. Then we have

αi+1(g) = Pr(O1, . . . , Oi, Oi+1, Gi+1 = g)

=
∑

g′ Pr(O1, . . . , Oi, Oi+1, Gi = g′, Gi+1 = g)

=
∑

g′ Pr(O1, . . . , Oi, Gi = g′) Pr(Gi+1 = g|Gi = g′) Pr(Oi+1|Gi+1 = g)

= e(g, Oi+1)
∑

g′ αi(g
′) ti(g

′, g).

In the third line above, we made use of the conditional independence structure of the HMM, noting
that

Pr(Gi+1 = g|Gi = g′, O1, . . . , Oi) = Pr(Gi+1 = g|Gi = g′)

and
Pr(Oi+1|Gi+1 = g, Gi = g′, O1, . . . , Oi) = Pr(Oi+1|Gi+1 = g).

Calculation of theβ’s proceeds similarly, though starting at the other end of the chain. We
defineβn(g) = 1 for all g ∈ G. Assuming that we have calculatedβi(g) for all g, we have

βi−1(g) = Pr(Oi, . . . , On|Gi−1 = g)

=
∑

g′ Pr(Oi, . . . , On, Gi = g′|Gi−1 = g)

=
∑

g′ Pr(Oi+1, . . . On|Gi = g′) Pr(Gi = g′|Gi−1 = g) Pr(Oi|Gi = g′)

=
∑

g′ βi(g
′) ti−1(g, g′) e(g′, Oi).
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Again, in the third line above, we made use of the conditionalindependence structure of the HMM.

In summary, in order to calculate the QTL genotype probabilities, conditional on multipoint
marker data,Pr(Gi = g|O), we make use of the forward and backward equations to first calculate,
for eachi andg, αi(g) = Pr(O1, . . . , Oi, Gi = g) andβi(g) = Pr(Oi+1, . . . , On|Gi = g). These
algorithms are extremely efficient and can accommodate partially missing genotypes (such as are
observed at dominant markers in an intercross) and a model for errors in genotyping.

3 Simulation of QTL genotypes

Central to the multiple imputation approach to QTL mapping is the simulation of QTL geno-
types via their joint distribution conditional on the observed multipoint marker data. In this sec-
tion, we describe how this is done. One considers a single chromosome and a single individual
at a time. As will be seen, the simulation algorithm makes useof theβ’s defined in the previous
section. Thus, one must first perform the backward equationsdescribed above.

The algorithm is quite simple. One first drawsg⋆
1 from the distribution

Pr(G1 = g|O) =
α1(g)β1(g)

∑

g′ α1(g′)β1(g′)
.

Genotypes for further loci are drawn iteratively: having drawng⋆
1, . . . , g

⋆
i , one drawsg⋆

i+1 from the
distribution

Pr(Gi+1 = g|O, Gi = g⋆
i ) =

Pr(Gi+1 = g, Gi = g⋆
i |O)

Pr(Gi = g⋆
i |O)

=
αi(g

⋆
i ) ti(g

⋆
i , g) e(g, Oi+1) βi+1(g)

αi(g
⋆
i )βi(g

⋆
i )

=
ti(g

⋆
i , g) e(g, Oi+1) βi+1(g)

βi(g⋆
i )

.

We are again making critical use of the conditional independence structure of the HMM.

Note that theα’s are not needed, except forα1(g) = π(g) e(g, O1). Thus the forward equations
need not be performed. For each individual, one first uses thebackward equations to calculate the
β’s and then simulates the chain from left to right, using the equations above. It should be no
surprise that one may instead use the forward equations to calculate theα’s, and then simulate the
chain from right to left, using formulas analogous to those above.

4 Joint QTL genotype probabilities

In multiple interval mapping (MIM) with multiple linked QTL, it is important to calculate joint
QTL genotype probabilities, conditional on the observed multipoint marker data.
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We begin by describing the calculation ofPr(Gi = g, Gj = g′|O) for all i, j with i < j. As
will be seen, one must first calculate theα’s andβ’s defined above. One may start by calculating
the casej = i + 1 for eachi = 1, . . . , n − 1, as follows.

Pr(Gi = g, Gi+1 = g′|O) ∝ Pr(Gi = g, Gi+1 = g′, O)

= Pr(O1, . . . , Oi, Gi = g) Pr(Gi+1 = g′|Gi = g)

×Pr(Oi+1|Gi+1 = g′) Pr(Oi+2, . . . , On|Gi+1 = g′)

= αi(g) ti(g, g′) e(g′, Oi+1) βi+1(g
′)

One uses the final line above and rescales the results so that they sum to 1.

The rest of the pairwise probabilities follow with the standard technique, using induction.

Pr(Gi = g, Gj = g′′|O) =
∑

g′′

Pr(Gi = g, Gj−1 = g′′, Gj = g′|O)

=
∑

g′′

Pr(Gi = g, Gj−1 = g′′|O) Pr(Gj = g′|Gj−1 = g′′, O)

Finally, one may wish to calculate the joint probabilities for multiple linked loci, conditional on
the observed multipoint marker data. Again, the conditional independence structure of the HMM
makes this a simple task: the joint distribution may be calculated based on pairwise probabilities
whose calculation was described above. Consideri1 < i2 < . . . < ik, with eachij ∈ {1, . . . , n};
we have

Pr(Gi1 = g1, . . . , Gik = gk|O) =

Pr(Gi1 = g1, Gi2 = g2|O)

k−1
∏

j=2

Pr(Gij+1
= gj+1|Gij = gj, O).

The equations in this section do get a little bit complicated, but they are all formed of quite simple
pieces. The central calculation is the use of the forward andbackward equations to obtain theα’s
andβ’s.

5 The Viterbi algorithm

In some cases, it is useful to impute the underlying genotypedata, calculatinĝG = arg maxG Pr(G|O).
The Viterbi algorithm solves this problem via dynamic programming.

First, define

γk(g) = max
g1,...,gk−1

Pr(G1 = g1, . . . Gk−1 = gk−1, Gk = gk, O1, . . . , Ok).

These are calculated inductively, by an approach similar tothat used in the forward equations
(Sec. 2). Letγ1(g) = Pr(G1 = g, O1) = π(g)e(g, O1). Givenγk(g) for all k andg, we have

γk+1(g) = e(g, Ok+1) max
g′

tk(g
′, g)γk(g

′).
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At the same time, we keep track of the values at which the maxima occurred: defineδk+1(g) =
arg maxg′ tk(g

′, g)γk(g
′). If the maximum is not unique, we can keep track of each of themor pick

a random one. (We do the latter in R/qtl.)

To obtain the most probable sequence of underlying genotypes, we then takêGn = arg maxg γn(g)

and, working backwards,̂Gk−1 = δk(Ĝk).

The inferred genotypes obtained by the Viterbi algorithm should be used with great caution. If
one treated the inferred genotypes as if they were the true values, an important source of uncertainty
would be ignored.

Moreover, if inter-marker positions are included and genotyping error is allowed, the results
of the Viterbi algorithm can vary according to the density ofinter-marker positions that are used.
The Viterbi algorithm identifies the most likely sequence ofgenotypes, but this sequence may have
quite low probability and may exhibit features which are themselves unlikely.

For example, consider three markers at a 10 cM spacing and a single backcross individual with
observed marker genotypesAA–AB–AB at the three markers. If the Viterbi algorithm is applied
with a genotyping error rate of 1%, and using just the three marker positions, the most likely
sequence of underlying genotypes matches those observed. If, however, one considers positions
at 1 cM steps across the region, the most likely sequence of underlying genotypes is such that
the individual is heterozygous across the entire region. While it is probable that the individual is
recombinant across the first interval and that the observed genotype at the first marker is not in
error, if many inter-marker positions are considered, thisevent is split across multiple sequences
of genotypes (each corresponding to a different position for the recombination event), and so the
sequence in which the initial genotype is in error and there is no recombination event ends up being
most likely.

This issue leads us to recommend the use of simulation to impute genotypes (as described
in Sec. 3), rather than using the Viterbi algorithm to calculate the most probable sequence of
underlying genotypes.

6 Estimation of inter-marker distances

The calculations described above depend crucially on the order of the genetic markers and the
recombination fractions between adjacent markers (i.e., the inter-marker distances). In this section,
we describe the derivation of joint maximum likelihood estimates (MLEs) of the recombination
fractions between genetic markers, assuming that the orderof the genetic markers is known. We
omit from consideration the more difficult problem of determining marker order.

Taking the order of the genetic markers as fixed and known, theprobability of the observed
marker data for an individual,Pr(O), still depends on the recombination fractions between ad-
jacent markers. For the sake of simplicity, this dependencehas been neglected in our notation
heretofore. Moreover, we have been considering a single individual at a time. In our discussion
of the estimation of inter-marker distances, however, it will be important to make this dependence
clear. Letr = (r1, . . . , rn−1 denote the set of recombination fractions, and letOk denote the
observed marker data for individualk, for k = 1, . . . , N .

8
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We seek the MLE ofr, defined to be the value ofr for which the likelihood is maximized,
r̂ = arg maxL(r), whereL(r) =

∏N

k=1 Pr(Ok|r). These estimates are obtained using a version
of the EM algorithm (DEMPSTERet al. 1977).

We begin with initial estimates of the recombination fractions,r̂(0). The EM algorithm is an it-
erative algorithm: the estimated recombination fractionsare successively improved, increasing the
likelihood at each stage, until convergence. In each iteration, the updated estimates of the recom-
bination fractions are the expected proportions of recombination events, across theN individuals,
in each marker interval, given the current estimates of the recombination fractions.

At each iteration, we first perform the forward and backward equations for each individual,
using the current estimates of the recombination fractions, r̂(s). We then calculate, for each interval
i, γki(g, g′|r̂(s)) = Pr(Gk,i = g, Gk,i+1 = g′|O, r̂(s)). This is the probability that individualk has
genotypesg andg′ at markersi andi + 1, given its multipoint marker data, and given the current
estimates of the recombination fractions. The calculationof theγ’s, based on theα’s andβ’s for
the corresponding individual, appears in Sec. 4.

The updated estimate of the recombination fraction for interval i is then
r̂
(s+1)
i =

∑

k

∑

g,g′ γki(g, g′|r̂(s)) p(g, g′)/N , wherep(g, g′) is the proportion of recombination
events across the interval (i.e., 0, 1/2, or 1) if the individual has genotypesg andg′ at the markers
defining the interval. Note that, in estimating the inter-marker distances for an intercross, we use
the phase-known (4-state) version of the HMM, so that the functionp(g, g′) is well defined.

7 Detection of genotyping errors

Successful QTL mapping requires high quality phenotype andgenotype data. In this section,
we describe an approach for identifying errors in the genotype data. For each marker and each
individual, we calculate a LOD score, with large LOD scores indicating likely errors.

The presence of partially informative genotypes (e.g., at dominant markers in an intercross)
makes this slightly tricky. Let us assume that the observed marker phenotypes,o ∈ O are subsets
of the possible underlying marker genotypes,G. For example, in the case of an intercross, where
G = {AA, AB, BB}, the set of possible marker phenotypes isO = {A, H, B, C, D,−}, with, for
example,A = {AA} andC = {AB, BB}.

Let Gki denote the true underlying genotype for individualk at markeri, and letOki denote
the corresponding marker phenotype. We assume the simple model for genotyping errors that was
described in Sec. 1, and we assume the genotyping error rate,ǫ, is known. We seek to calculate

LODki = log10

{

Pr(O|Gki 6∈ Oki, ǫ)

Pr(O|Gki ∈ Oki, ǫ)

}

= log10

{

Pr(Gki 6∈ Oki|O, ǫ)

Pr(Gki ∈ Oki|O, ǫ)
×

1 − ǫ

ǫ

}

Note that the calculation of the probabilities in the above formula was described in Sec. 2.

These LOD scores depend on the specified genotyping error rate, ǫ, but typical values, in the
range 0.001 – 0.02, do give similar results. Genotyping error LOD scores below 3 or 4 are generally

9
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benign. Only when the LOD scores exceed 4 should they be givenmuch consideration. It should
be noted genotyping errors can only be detected in the case ofquite dense markers. At the same
time, however, genotyping errors have little effect on the result of QTL mapping if the markers
are not dense. Finally, if a particular marker gives many large error LOD scores, it may be that a
problem with marker order is the cause (though, of course, the marker may also have a greater than
typical frequency of errors.)

8 A practical issue

In the case of many genetic markers (or pseudomarkers), the direct calculation ofα andβ, as
described above, will result in underflow:αn(v) = Pr(O1, . . . , On, Gn = v) can be extremely
small. One method to deal with this is to calculateα′ = log α andβ ′ = log β. In the forward
equations, we must obtainα′

i+1(g) = log e(g, Oi+1) + log{
∑

g′ αi(g
′)ti(g

′, g)}. This leads to the
problem of calculatinglog(f1 + f2) on the basis ofgi = log fi, which may be facilitated by the
following trick:

log(f1 + f2) = log(eg1 + eg2)

= log{eg1(1 + eg2−g1)}

= g1 + log(1 + eg2−g1)

A problem occurs wheng2 ≫ g1: the above formula will result in an overflow. In such a case one
simply notes thatlog(f1 + f2) ≈ g2.

9 Further reading

BAUM et al. (1970) were the first to describe estimation for hidden Markov models, and derived
the forward and backward equations. For other expositions of the use of HMMs, see RABINER

(1989) or LANGE (1999).

CHURCHILL (1989) was the first to use HMMs explicitly in biology. HMMs have been used
for a variety of biological applications, including the analysis of patch-clamp recordings for the
study of ion channels, multiple sequence alignment, and protein structure prediction.

LANDER and GREEN (1987) described the multipoint estimation of genetic maps; their method
was implemented for experimental crosses in the software MapMaker (LANDER et al. 1987).
JIANG and ZENG (1997) described an alternative approach for dealing with missing and partially
missing genotype data. LINCOLN and LANDER (1992) developed the LOD scores, defined above,
for identifying genotyping errors in experimental crosses.
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