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Use of hidden Markov models for QTL mapping

Karl W Broman
Department of Biostatistics, Johns Hopkins University

December 5, 2006

An important aspect of the QTL mapping problem is the treatnoé missing genotype data.
If complete genotype data were available, QTL mapping woettlice to the problem of model
selection in linear regression. However, in the considamadf loci in the intervals between the
available genetic markers, genotype data is inherentlgings Even at the typed genetic markers,
genotype data is seldom complete, as a result of failurdgigénotyping assays or for the sake of
economy (for example, in the case of selective genotypirggreyonly individuals with extreme
phenotypes are genotyped).

In standard interval mapping, one deals with the missing @&hotype data by performing
maximum likelihood under a mixture model, using a versiorth@f EM algorithm. Central to
this approach is the calculation of the distribution of QTengtypes conditional on the observed
multipoint marker data. In the pseudomarker algorithm olthises a form of multiple imputation,
one must be able to simulate from the joint distribution & genotypes at the pseudomarkers,
conditional on the observed marker data.

We discuss the use of algorithms developed for hidden Mankogels (HMMSs) to perform the
tasks mentioned above and thus deal with the missing geaoigia problem. Simpler approaches
can and have been used. For example, in a backcross in thecalifegenotyping errors, the QTL
genotype probabilities, conditional on the marker data,aasimple function of the genotypes at
the nearest flanking markers. The more refined algorithmzithesl here have several advantages.
First, we may allow for the presence of genotyping error&o8d, we may more easily deal with
partially informative genotypes. (For example, in an iotess, at some markers the heterozygote
may not be distinguishable from one of the homozygotes.)dT ke bookkeeping tasks in imple-
menting these algorithms can be more simple. Fourth, theittigns can be more easily extended
to more complex experimental crosses (such as the four-vesgc

In the next section, we define hidden Markov models in theednif the analysis of exper-
imental crosses. In the following sections, we describebtimc algorithms for calculating QTL
genotype probabilities, simulating from the joint distriion of QTL genotypes, estimating genetic
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Figure 1: lllustration of a hidden Markov modé&l’'s indicate underlying genotype&’s indicate
observed marker phenotypes.

maps, and identifying genotyping errors. We conclude tragtdr with a discussion of a practical
issue in the implementation of these algorithms in compoitegrams.

1 Specification of the model

A Markov chain is a collection of random variabld€;,, Gs, . . ., G, }, satisfying the Markov
propertyPr(G,.1|G;, ..., G1) = Pr(G;11|G;) for all i. In a Markov chain, for any, the “past”,
{G1,...,G;_1},and the “future”{G..1, ..., G, }, are conditionally independent, given the “present”,
G,. We focus on Markov chains for which the random variallés} take values in a common,
finite set,S.

A hidden Markov model (HMM) consists of an unobservable ulyitey Markov chain {G.},
and a set of observable random variab{€s,}, where eacl®); depends only oty;. In other words,
for eachi, O, givenG;, is conditionally independent of everything el$é, ...,0;_1, O;11, ...,
On, G1, ...,Gi_1, Gy, - ..,Gy }. It may be useful to keep in mind the illustration in Figure 1.

The hidden states;;, take values in a common, finite sét, the observed states);, take
values in another finite sef,. The joint distribution of the&); andG; in the HMM is parameterized
by three sets of probabilities, which we will call the intt@n, transition and emission probabilities.
The initiation probabilities define the distribution of thmtial hidden statexr(g) = Pr(G; = g)
for g € G. The transition probabilities complete the specificationthe joint distribution of the
underlying, hidden Markov chairt;(g,¢') = Pr(G,41 = ¢'|G; = g) fori = 1,...,n — 1 and
g,9" € G. The emission probabilities concern the conditional dhstion of the observed states
given the hidden states;(g,0) = Pr(O; = o|G; = g)fori =1,...,n,g € G, ando € O. We will
assume here that the emission probabilities are homogsneidhe;(g, 0) = e(g, o) for all 4, g, o.

We now begin to consider the application of HMMs to experitaéarosses. Below, we will
describe the backcross and intercross specifically, butwesdefine the relevant HMM in some
generality.

One may focus on the genotypes for a single individual at afdeti on a single chromosome.
(We will focus on an autosome.) We lét, i = 1, ..., n denote the true underlying genotypes for
the individual at a set af ordered loci, and let the,; denote the observed marker “phenotype” at
locusi.

These loci may be genetic markers, or they may be “pseud@rsgtikunder consideration as
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putative QTL. The genotypes are often assumed to be phasedkgenotypes, though for the in-
tercross they need not be, as we will see below. Under thergggn of no crossover interference
in meiosis, for many types of crosses, thie form a Markov chain. The sej corresponds to
the possible values of these phase-known genotypes. Tieion probabilities correspond to a
segregation model at a single locus; the transition prditiabiare a function of the recombination
fractions,r;, between adjacent markers.

The setO corresponds to the set of possible observed marker pheesytwiich will include
the possibility of missing values and partially informatighenotypes (such as in the case of a
dominant or recessive marker). The emission probabilitiesive a model for errors in genotyp-
ing, which we will assume to be common across markers, thaugbality, some markers are
considerably more error-prone than others. It is import@apbint out, further, that one conditions
on the observed pattern of missing data. This will becomeenatarar below.

1.1 The backcross

Consider a backcross individual derived from two inbredias, A and B, where the;fparent
was crossed back to the A strain. Wedet { AA, AB}, the possible genotypes at a locus. The set
of possible marker phenotypesis= { A, H, —}, with the last symbol corresponding to a missing
value. Note our attempt to use different symbols for the dgiey genotypes and the observed
marker phenotypes.

The initiation probabilities, assuming Mendel’s ruleg simplyr(AA) = 7(AB) = 1/2. The
transition probabilities arg(AA, AB) = t;,(AB, AA) = r;, wherer; denotes the recombination
fraction between loci andi + 1. Of coursef;(AA, AA) =t,(AB,AB) =1 —r;.

In forming the emission probabilities, we assume a constant rate in genotyping, so that
e(AA,A) = e(AB,H) =1 —¢,ande(AA, H) = e(AB, A) = e. We condition on the observed
pattern of missing data, and s8QAA, —) = ¢(AB,—) = 1. One may consider = {A or H}, SO
thate(AA, —) = e(AA, A) +e(AA H) = 1.

One may consider, in forming the emission probabilitiesremmefined models for genotyping
errors. For example, one may consider a locus-specific eatey and one may allow the chance
of a heterozygote being erroneously observed as a homaygbe somewhat different than the
converse. However, we have seen little benefit in such reénésn

1.2 The intercross

Consider a single individual in the lgeneration from an intercross between two inbred strains,
A and B. One may consider the hidden statés,to be either phase-known genotypes (with four
possible states{ AA, AB, BA, BB}) or phase-unknown genotypes (with three possible states,
{AA, AB, BB}). Itis an interesting and useful fact that in either caseth#rm a Markov chain
(under the assumption of no crossover interference).

We will focus on the phase-unknown case, with= {AA, AB, BB}. The initiation prob-
abilities are again those implied by Mendel's rulegtAA) = n(BB) = 1/4, n(AB) = 1/2.

3
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The transition probabilities are displayed in the Table hewer; denotes the recombination frac-
tion between markersand: + 1. Note that we assume that there are no sex differences in the
recombination fractions.

Table 1: The transition probabilities;(g,¢') = Pr(G,41 = ¢'|G; = g), for a phase-unknown
intercross.

/

g
g AA AB BB
AA (1 —1y)? 2r;(1 — ;) r2
AB ri(1—r) (A —r)?*+7r? ri(l—r)
BB r? 2ri(1 — 1) (1 —r;)?

As possible observed marker phenotypes, welet {A H, B,C, D, -}, with A, B, and
H corresponding to the two homozygotes and the heterozyggstpectively— corresponding to
a completely missing value, and with and D allowing the treatment of dominant marker loci:
we defineC' and D as in the popular computer software, MapMakeaIDER et al. 1989), with
C ={notA} ={BorH}andD = {notB} = {AorH}.

The emission probabilities, for a simple genotyping erraded, are shown in Table 2, where
we lete denote the genotyping error rate. Note that we again camddn the pattern of missing
genotype data, and so, for examgte(O, = C|G;) = Pr(O; = B|G;) + Pr(O; = H|G;).

Table 2: The emission probabilities;g, o) = Pr(O; = o|G; = g), for a phase-unknown inter-
Cross.

g A H B C D -
AA 1—€ €/2  €/2 €/2 1—¢/2
AB €/2 1—¢€¢ €/2 1—¢/2 1—¢/2
BB €/2 €/2 1—€¢ 1—¢/2 €/2

e

2 QTL genotype probabilities

Having set up the hidden Markov model for experimental @ss&e now begin our discussion
of the basic algorithms used in order to deal with missingotygre data in QTL mapping. We
begin with the calculation of the conditional QTL genotypelgabilities given multipoint marker
data, which are critical for standard interval mapping vaittingle QTL model. Using the notation
developed in the previous section, we s€ekG; = ¢|O), whereO = (O, ...,0,).

4
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The brute-force approach for calculating this probabilstyto simply sum over all possible
genotypes at the other loci.

Pr(G; = ¢;|O) Z ZZ ZPI(Gl =g1,...,G, = gs|O)

-1 9i+1

X Zl: ZZ Z (g1 Ht ggaQJHIj 95,0

-1 9i+1

For the phase-known intercross, with three pOSSIble g@lestythls is a sum with"~! terms;
clearly this is unwieldy and unnecessary. That there ar@lsiralgorithms for this calculation,
which make critical use of the conditional independencacstire of the HMM, is the primary
motivation for the use of HMMs in experimental crosses.

The approach we follow makes use of the following two setsrobgpbilities.
ai(g) = Pr(Oy,...,0;G; = g)
Bi(g) = Pr(Oiy1,...,04|Gi = g)

Note that, once the’s and’s have been calculated, the probability that is the focukisfsection
follows directly:

Pr(G; = g|0) = Pr(G; =g,0)/Pr(0O)
= ai(9)Bi(9)/ >y ci(9))Bi(9).

The o’s and 5’s are calculated inductively, using what are called theveod and backward
equations, respectively. We begin with the forward equtid-irst, note that

a1(g) = Pr(01, Gy = g) = 7(g) e(g, O1).
Now, assume that we have calculatedy) for eachg € G. Then we have
ait1(9) = Pr(01,...,0:0i41,Gip1 = g)
= > . Pr(01,...,0;,0i11,Gi = ¢, Giy1 = g)
= Eg, Pr(Oy,...,0;,G; = ¢)Pr(Gir1 = g|G; = ¢') Pr(O;41|Giz1 = 9)
= €(9,0i11) >, ai(g') ti(g', 9)-

In the third line above, we made use of the conditional indéepace structure of the HMM, noting
that
Pr(Gip1 = glGi=9¢',01,...,05) = Pr(Giy1 = g|Gi = ¢')
and
Pr(Oi+I|Gi+1 =g,G; = 9/> Oy,..., Oz’) = Pl"(Oz'+1\Gz'+1 = g).

Calculation of thes’s proceeds similarly, though starting at the other end efdhain. We
defines,(¢g) = 1 for all g € §. Assuming that we have calculatggd g) for all g, we have

Bi—1(g) = Pr(0;,...,0,|Gi—1 = 9)
= 2.0 Pr(0i...,0,,Gi = ¢'|Gi-1 = g)
= 2y Pr(Oity, ... On|Gi = ¢') Pr(Gi = ¢'|Gio1 = ) Pr(0i|Gi = ¢)
= >, 0i(¢) tica(g,9") e(g’, Oy).
S
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Again, in the third line above, we made use of the conditiam#pendence structure of the HMM.

In summary, in order to calculate the QTL genotype probidsj conditional on multipoint
marker dataPr(G; = ¢g|O), we make use of the forward and backward equations to firstizaeg,
for eachi andg, «;(g) = Pr(Oy,...,0;,G; = g) andS;(g) = Pr(O;41,...,0,|G; = g). These
algorithms are extremely efficient and can accommodatéfignnissing genotypes (such as are
observed at dominant markers in an intercross) and a modefrars in genotyping.

3 Simulation of QTL genotypes

Central to the multiple imputation approach to QTL mappmghie simulation of QTL geno-
types via their joint distribution conditional on the ob&sal multipoint marker data. In this sec-
tion, we describe how this is done. One considers a singlenoebsome and a single individual
at a time. As will be seen, the simulation algorithm makesafgbe 3’s defined in the previous
section. Thus, one must first perform the backward equatiessribed above.

The algorithm is quite simple. One first dragsfrom the distribution

a1(g)b1(g)
Pr(G, = ¢|0) = .
=0 = @15
Genotypes for further loci are drawn iteratively: havingwngr, .. ., g7, one drawsgy;, , from the

distribution

Pr(Gip = g,Gi = g;|0O)
Pr(G; = ¢710)
ai(g;) ti(g;, 9) e(g, Oir) Bit1(g)
ai(g7)Bi(g7)
tz’(gi*7g) e<g7 Oi—i—l) 5i+1(9)
Bi(gr) .

We are again making critical use of the conditional indegerwe structure of the HMM.

PI"(Gi+1 = 9|07 G = 92*)

Note that they's are not needed, except far(g) = 7(g) e(g, O1). Thus the forward equations
need not be performed. For each individual, one first usebahkward equations to calculate the
(4's and then simulates the chain from left to right, using thaations above. It should be no
surprise that one may instead use the forward equationddolate then’s, and then simulate the
chain from right to left, using formulas analogous to thdsee.

4 Joint QTL genotype probabilities

In multiple interval mapping (MIM) with multiple linked QTLit is important to calculate joint
QTL genotype probabilities, conditional on the observedtimoint marker data.
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We begin by describing the calculation Bf (G; = ¢, G; = ¢'|O) for all ¢, j with i < j. As
will be seen, one must first calculate this and5’s defined above. One may start by calculating
thecasg =i+ 1 foreachi =1,...,n — 1, as follows.

PT(Gi =9,Giy1 = 9/|O) X PI"(Gi =9,Giy1 = 9/, 0)

= PI‘(Ol, ey OZ', Gl = g) PI"(GZ‘_H = g'\Gl = g)
X PI‘(OH_1|GH_1 = g/) PI‘(OH_Q, ceey On|Gi+1 = g/)
= ai(g) ti(g, ') e(d', Oit1) Bira(g')
One uses the final line above and rescales the results stvéyagum to 1.

The rest of the pairwise probabilities follow with the stamtitechnique, using induction.

Pr (G ga = g//‘O) = ZPI(GZ =9, Gj—l = g//7Gj = g/|0)

= ZPI i=9,Gjo1=9"|0)Pr(G; = ¢'|Gj—1 = ¢",0)

Finally, one may wish to calculate the joint probabilities fnultiple linked loci, conditional on
the observed multipoint marker data. Again, the conditiam@dependence structure of the HMM
makes this a simple task: the joint distribution may be daled based on pairwise probabilities
whose calculation was described above. Consider i, < ... < i, with eachi; € {1,...,n};
we have

Pr(Gh =01, - - '7Gik = gk|0) =

k—1

Pr<Gi1 =01, Giz = g2|0> H Pr<Gij+1 = gj+1|Gij = Gy, O)

Jj=2

The equations in this section do get a little bit complicated they are all formed of quite simple
pieces. The central calculation is the use of the forwardmwkward equations to obtain thés
andg’s.

5 The Viterbi algorithm

In some cases, itis useful to impute the underlying genadte, calculatings = arg maxg Pr(G|0O).
The Viterbi algorithm solves this problem via dynamic pragming.

First, define

Y(9) = max Pr(Gi=g¢1,...Gi-1 = gi—1,Gr = gk, O1, ..., Oy).

g1s---s 9k—1

These are calculated inductively, by an approach similah#&b used in the forward equations
(Sec. 2). Lety,(g) = Pr(Gy = g,01) = w(g)e(g, O;). Giveny(g) for all k£ andg, we have

Vit1(g) = e(g; Opsr) max tr(g', 9)m(9")-

7
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At the same time, we keep track of the values at which the maxiccurred: defing;(g) =
arg maxy t(g’, 9)vk(¢’). If the maximum is not unique, we can keep track of each of thepick
a random one. (We do the latter in R/qtl.)

To obtain the most probable sequence of underlying genstypethen také!,, = arg max, v, (9)
and, working backwards;,_; = 6,(G}).

The inferred genotypes obtained by the Viterbi algorithroudtl be used with great caution. If
one treated the inferred genotypes as if they were the tluesgan important source of uncertainty
would be ignored.

Moreover, if inter-marker positions are included and ggpitg error is allowed, the results
of the Viterbi algorithm can vary according to the densityraér-marker positions that are used.
The Viterbi algorithm identifies the most likely sequencgehotypes, but this sequence may have
quite low probability and may exhibit features which arentiselves unlikely.

For example, consider three markers at a 10 cM spacing amgjle $iackcross individual with
observed marker genotyp@8#®\-AB—-AB at the three markers. If the Viterbi algorithm is applied
with a genotyping error rate of 1%, and using just the threekerapositions, the most likely
sequence of underlying genotypes matches those obseffyduhwlever, one considers positions
at 1 cM steps across the region, the most likely sequence dérlying genotypes is such that
the individual is heterozygous across the entire regionil&\this probable that the individual is
recombinant across the first interval and that the obsereadtgpe at the first marker is not in
error, if many inter-marker positions are considered, évisnt is split across multiple sequences
of genotypes (each corresponding to a different positiortifie recombination event), and so the
sequence in which the initial genotype is in error and theremirecombination event ends up being
most likely.

This issue leads us to recommend the use of simulation totangenotypes (as described
in Sec. 3), rather than using the Viterbi algorithm to cadtellthe most probable sequence of
underlying genotypes.

6 Estimation of inter-marker distances

The calculations described above depend crucially on ttheraf the genetic markers and the
recombination fractions between adjacent markers (ne isiter-marker distances). In this section,
we describe the derivation of joint maximum likelihood esies (MLES) of the recombination
fractions between genetic markers, assuming that the ofdbe genetic markers is known. We
omit from consideration the more difficult problem of detarmg marker order.

Taking the order of the genetic markers as fixed and knownptbleability of the observed
marker data for an individuabr(O), still depends on the recombination fractions between ad-
jacent markers. For the sake of simplicity, this dependdrasebeen neglected in our notation
heretofore. Moreover, we have been considering a singlgithaal at a time. In our discussion
of the estimation of inter-marker distances, however, lit @ important to make this dependence
clear. Letr = (ry,...,r,_; denote the set of recombination fractions, and(&gtdenote the
observed marker data for individualfor k =1, ..., N.

8
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We seek the MLE of-, defined to be the value af for which the likelihood is maximized,
7 = argmax L(r), whereL(r) = Hff:l Pr(Og|r). These estimates are obtained using a version
of the EM algorithm (EMPSTERet al. 1977).

We begin with initial estimates of the recombination frans,# . The EM algorithm is an it-
erative algorithm: the estimated recombination fractiamssuccessively improved, increasing the
likelihood at each stage, until convergence. In each itarathe updated estimates of the recom-
bination fractions are the expected proportions of recomatimn events, across thé individuals,
in each marker interval, given the current estimates oféleembination fractions.

At each iteration, we first perform the forward and backwagdagions for each individual,
using the current estimates of the recombination fractiptis We then calculate, for each interval
iy Yi(g, 9|7 = Pr(Gri = g, Griz1r = ¢'|0, #)). This is the probability that individual has
genotypeg andg’ at markers and: + 1, given its multipoint marker data, and given the current
estimates of the recombination fractions. The calculabibtiney’s, based on the’s andj3’s for
the corresponding individual, appears in Sec. 4.

The updated estimate of the recombination fraction forrvatie is then
P = S S wilg, 9'1#) plg, ') /N, wherep(g, ¢') is the proportion of recombination
events across the interval (i.e., 0, 1/2, or 1) if the indinaibhas genotypegandg’ at the markers
defining the interval. Note that, in estimating the interrkea distances for an intercross, we use
the phase-known (4-state) version of the HMM, so that thetfan p(g, ¢’) is well defined.

7 Detection of genotyping errors

Successful QTL mapping requires high quality phenotypegerbtype data. In this section,
we describe an approach for identifying errors in the ggmetyata. For each marker and each
individual, we calculate a LOD score, with large LOD scoredicating likely errors.

The presence of partially informative genotypes (e.g.,caidant markers in an intercross)
makes this slightly tricky. Let us assume that the observarker phenotypes, € O are subsets
of the possible underlying marker genotypgs,For example, in the case of an intercross, where
G = {AA, AB, BB}, the set of possible marker phenotype®is- {A, H, B,C, D, —}, with, for
example A = {AA} andC = {AB, BB}.

Let Gy; denote the true underlying genotype for individiéadt markeri, and letO,; denote
the corresponding marker phenotype. We assume the simglelrfow genotyping errors that was
described in Sec. 1, and we assume the genotyping erroey&dnown. We seek to calculate

o PI‘(O‘GM € Oki, 6)
L0 = log {Pr(O\Gki € O €)
PI‘(GM g O]ﬂ|0, 6) 1-— €
r 1
%810 {Pr(G;ﬂ- c0nl0,e) © e
Note that the calculation of the probabilities in the abawerfula was described in Sec. 2.

These LOD scores depend on the specified genotyping ermrerddut typical values, in the
range 0.001 —0.02, do give similar results. Genotyping&@D scores below 3 or 4 are generally

9
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benign. Only when the LOD scores exceed 4 should they be giverh consideration. It should
be noted genotyping errors can only be detected in the cageitef dense markers. At the same
time, however, genotyping errors have little effect on tasuit of QTL mapping if the markers
are not dense. Finally, if a particular marker gives mangdagrror LOD scores, it may be that a
problem with marker order is the cause (though, of courgertarker may also have a greater than
typical frequency of errors.)

8 A practical issue

In the case of many genetic markers (or pseudomarkers) et dalculation ot and 3, as
described above, will result in underflowt, (v) = Pr(Oq,...,0,,G, = v) can be extremely
small. One method to deal with this is to calculate= loga and3’ = log 5. In the forward
equations, we must obtaif; (¢) = loge(g, Oi11) + log{>_, ai(g')ti(¢", g)}. This leads to the
problem of calculatindog(f; + f») on the basis of; = log f;, which may be facilitated by the
following trick:

log(fi + f2) = log(e”* +¢e%)
log{e? (14 %79}
= g1+ log(1l + %279

A problem occurs when, > ¢;: the above formula will result in an overflow. In such a case on
simply notes thalog(f1 + f2) ~ go.

9 Further reading

BAuUM et al. (1970) were the first to describe estimation for hidden Markodels, and derived
the forward and backward equations. For other expositibriseouse of HMMs, see RBINER
(1989) or LANGE (1999).

CHURCHILL (1989) was the first to use HMMs explicitly in biology. HMMs\eabeen used
for a variety of biological applications, including the &mss of patch-clamp recordings for the
study of ion channels, multiple sequence alignment, antépragtructure prediction.

LANDER and GREEN (1987) described the multipoint estimation of genetic m#psr method
was implemented for experimental crosses in the softwarpMé&er (LANDER et al. 1987).
JANG and ZENG (1997) described an alternative approach for dealing wisimg and partially
missing genotype data.lblcOLN and LANDER (1992) developed the LOD scores, defined above,
for identifying genotyping errors in experimental crosses

10
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