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Abstract 

Background  With the global challenge of antimicrobial resistance intensified during the COVID-19 pandemic, evalu-
ating adverse events (AEs) post-antibiotic treatment for common infections is crucial. This study aims to examines 
the changes in incidence rates of AEs during the COVID-19 pandemic and predict AE risk following antibiotic prescrip-
tions for common infections, considering their previous antibiotic exposure and other long-term clinical conditions.

Methods  With the approval of NHS England, we used OpenSAFELY platform and analysed electronic health 
records from patients aged 18–110, prescribed antibiotics for urinary tract infection (UTI), lower respiratory tract 
infections (LRTI), upper respiratory tract infections (URTI), sinusitis, otitis externa, and otitis media between Janu-
ary 2019 and June 2023. We evaluated the temporal trends in the incidence rate of AEs for each infection, analysing 
monthly changes over time. The survival probability of emergency AE hospitalisation was estimated in each COVID-19 
period (period 1: 1 January 2019 to 25 March 2020, period 2: 26 March 2020 to 8 March 2021, period 3: 9 March 2021 
to 30 June 2023) using the Kaplan–Meier approach. Prognostic models, using Cox proportional hazards regression, 
were developed and validated to predict AE risk within 30 days post-prescription using the records in Period 1.

Results  Out of 9.4 million patients who received antibiotics, 0.6% of UTI, 0.3% of URTI, and 0.5% of LRTI patients 
experienced AEs. UTI and LRTI patients demonstrated a higher risk of AEs, with a noted increase in AE incidence 
during the COVID-19 pandemic. Higher comorbidity and recent antibiotic use emerged as significant AE predictors. 
The developed models exhibited good calibration and discrimination, especially for UTIs and LRTIs, with a C-statistic 
above 0.70.

Conclusions  The study reveals a variable incidence of AEs post-antibiotic treatment for common infections, with UTI 
and LRTI patients facing higher risks. AE risks varied between infections and COVID-19 periods. These findings 
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underscore the necessity for cautious antibiotic prescribing and call for further exploration into the intricate dynamics 
between antibiotic use, AEs, and the pandemic.

Keywords  Antibiotics, Adverse event, Common infection, COVID-19 pandemic

Background
Antimicrobial stewardship is a long-term campaign to 
address the inappropriate use of antibiotics [1, 2]. In the 
UK, more than 80% of antibiotics are prescribed in pri-
mary care [3]. However, the prescription strategies vary 
across different practices, which also leads to concerns 
about inappropriate usage [4].

The unwarranted consumption of antibiotics is espe-
cially alarming due to its potential association with 
various adverse events, such as allergic responses, end-
organ toxicity [5–8]. The identification of other harmful 
or adverse effects from antibiotics is becoming increas-
ingly common [8]. Adverse effects of antibiotics can 
vary widely in frequency and severity, and may depend 
on the dosage or length of treatment, or they could be 
completely unpredictable. Often, neither the patient 
nor the prescriber recognises these direct harms, as the 
symptoms of the underlying illness or infection (such as 
nausea and vomiting) can obscure common side effects, 
which may go unreported by patients [9]. Therefore, 
overcoming those challenges and evaluating the risk of 
adverse events after antibiotic treatment becomes more 
essential.

Additionally, repeated exposure to antibiotics has been 
associated with increased risks of infection-related com-
plications and more severe outcomes after a COVID-19 
infection [10]. This underscores the importance of fac-
toring in a patient’s previous antibiotic history when 
making clinical decisions [10, 11]. Studies highlight that 
implementing a more personalised evidence-based deci-
sion-making approach for antibiotic prescriptions could 
enhance patient care. The concept of prescribing based 
on a patient’s objective risk assessment and prognosis is 
gaining traction [12, 13].

The COVID-19 pandemic impacted primary care ser-
vices, a recent study showed 66% of all adult consulta-
tion were remote in primary care during COVID-19, 
with remote consultations seeing a 1.23-fold increase in 
antibiotic prescriptions compared to face-to-face vis-
its [14]. A recent study revealed that the alterations in 
antibiotic prescribing practices differed for various com-
mon infections and at distinct phases of the COVID-19 
pandemic, and consultation rates for all common infec-
tions decreased [15]. However, within these reduced 
consultations, antibiotic prescribing patterns varied: 
prescriptions for lower respiratory tract infection (LRTI) 
decreased, those for upper respiratory tract infection 

(URTI) increased, while urinary tract infection (UTI) 
prescriptions remained stable. Additionally, except for 
UTI, there was an increase in the percentage of broad-
spectrum antibiotics prescribed within these consulta-
tions [15–17]. Existing prognostic models in primary 
care predominantly concentrate on general adverse drug 
reactions and tend to prioritise elderly patients [18, 19]. 
There are no prediction tools specifically designed to 
assess the adverse effects of antibiotics for common 
infections at the primary care level, which also consider 
prior prescription history and individual patient comor-
bidities. This study addresses the gap in our current 
understanding of the impact of the COVID-19 pandemic 
on the incidence of adverse event (AEs) following anti-
biotic prescriptions for common infections and aims to 
predict the risk of developing AEs in this unique context.

The objective of this study was twofold: (1) to assess 
the impact of the COVID-19 pandemic on the incidence 
rates of AEs following antibiotic prescriptions for com-
mon infections and (2) to develop and validate predictive 
models for AEs in the context of the pandemic, consid-
ering patients’ long-term comorbidities and their history 
of short-term and long-term antibiotic use. The study 
predominantly focuses on six common infections: UTI, 
LRTI, URTI, sinusitis, otitis externa, and otitis media.

Methods
All data were linked, stored, and analysed securely using 
the OpenSAFELY platform, https://​www.​opens​afely.​
org/, as part of the NHS England OpenSAFELY COVID-
19 service. Data included pseudonymised data such as 
coded diagnoses, medications, and physiological param-
eters. No free text data are included. All code is shared 
openly for review and re-use under MIT open license 
(https://​github.​com/​opens​afely/​amr-​uom-​brit). Detailed 
pseudonymised patient data is potentially re-identifiable 
and therefore not shared.

Primary care records managed by the GP software 
provider TPP, which provides almost 24 million peoples 
electronic health records (EHRs), were linked to hospi-
tal admission data from the NHS Digital Secondary Use 
Service (SUS), through OpenSAFELY. Information about 
COVID-19 test results were linked to two sources: the 
Second Generation Surveillance System (SGSS) and the 
primary care records of COVID-19 diagnosis. SNOMED 
CT codes were employed to extract the records with 
common infections.

https://www.opensafely.org/
https://www.opensafely.org/
https://github.com/opensafely/amr-uom-brit
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Study population
The population for our study encompassed all adults 
aged 18 to 110  years with recorded sex and region and 
who were registered as active patients in a TPP prac-
tice from January 2019 to June 2023. The study duration 
was segmented based on the implementation of national 
lockdowns: (1) period 1 from 1 January 2019 to 25 March 
2020, (2) period 2 from 26 March 2020 to 8 March 2021, 
and (3) period 3 from 9 March 2021 to 30 June 2023. 
To guarantee that baseline characteristics were accu-
rately recorded, patients with less than 3 months of prior 
follow-up at the onset of each designated period were 
excluded.

We extracted the antibiotic user cohort, comprising 
patients with at least one antibiotic prescription dur-
ing the study period. The recorded date of the antibiotic 
prescription was designated as the index date. Since this 
study aimed to predict the risk of adverse events after 
taking antibiotics for common infections (UTI, LRTI, 
URTI including coughs, colds, and sore throats, sinusi-
tis, otitis externa, and otitis media), we excluded patients 
without any code in the records for a common infection 
at the date of the antibiotic prescription or in the 30 days 
before. Patients with chronic respiratory disease history 
were excluded due to their frequent use of antibiotic res-
cue packs, which muddles the association between the 
timing of use and the prescription date. To minimise any 
impact of a COVID-19 infection on hospitalisation, any 
patient with a positive SARS-CoV-2 test ± 6  weeks from 
the infection record date was excluded.

Outcomes
The outcome measured was an emergency hospitalisa-
tion with an admission code denoting the reason for 
admission [20] for AEs, which could potentially signal 
adverse drug reactions (ADRs) or side-effects to antibi-
otics. Patients were followed for 30 days after the index 
date. In case of a repeat antibiotic prescription within 
these 30  days, follow-up for the initial prescription 
ended at the date of repeat prescription and follow-up 
for the subsequent prescription was reset to 30 days. We 
employed a codelist derived from a systematic search 
and evaluation of lists in 41 publications that identified 
ADRs from administrative data [21]. This review catego-
rised codes based on the likely causality level as indicated 
by the ICD-10 code including (i) ICD-10 codes with the 
phrase ‘induced by medication/drug,’ (ii) ICD-10 codes 
with the phrase ‘induced by medication or other causes’ 
or ‘poisoning by medication,’ (iii) ADRs considered to be 
very likely, or (iv) likely, even though the ICD-10 code 
description does not reference a drug [21]. In our study, 
codes referring to a drug other than an antibiotic or with 

an evident non-antibiotic related reason were omitted 
(e.g. F11 mental and behavioural disorders due to opioid 
use). Our study focused on incident events; patients with 
the same outcome 1 year before were excluded.

Predictor variables
The full list of potential predictors was compiled based 
on previous studies and consultations with clini-
cal experts; this list is detailed in Additional file  1: Tab. 
S1. We extracted patient-level characteristic variables, 
including age, sex, ethnicity (white, mixed, south Asian, 
black, other), smoking status (current, former, never), 
and the Index of Multiple Deprivation (IMD) quintile. 
BMI was categorised into six groups (plus one group 
for missing data) according to the NICE definition: not 
obese (< 30  kg/m2), obese I (30–34.9  kg/m2), obese II 
(35–39.9 kg/m2), and obese III (≥ 40 kg/m2) [22]. Health 
status variables were assessed in the most recent 5 years 
(prior to the index date) and categorised according to the 
Charlson Comorbidity Index (CCI): no comorbidities, 
low, medium, high, and very high [23]. The antibiotics 
included in this study were based on the British National 
Formulary (BNF) chapter  5.1 (Antibacterial Drugs). 
Antituberculosis drugs (BNF 5.1.9) and antileprotic drugs 
(BNF 5.1.10) were excluded from the study. The code list 
for antibiotics is available in Table S1. Antibiotic history 
was represented by two predictors: one was the number 
of antibiotic prescriptions in the last 3 years (3 years plus 
90 days to 90 days before the index date): 0, 1, 2–3, and 
4 + , and a binary variable indicating recent antibiotic 
prescription 30 days before the index date.

Statistical methods
The cohorts for common infections were divided by 
infection type. To evaluate the trends impact by COVID-
19 pandemic, the study calculated the incidence rate of 
AEs by each infection and monthly trends over time. 
Additionally, the survival probability group by different 
time period (before, during, and after the pandemic) of 
emergency AE hospitalisation was estimated in each split 
sub-dataset using the Kaplan–Meier approach. This esti-
mation process was conducted across various time peri-
ods. Cox proportional hazards regression models were 
applied to both the pre-pandemic and overall cohorts. 
Patients entered the study after receiving an antibiotic 
prescription from a GP for one of the common infec-
tions and were monitored for the subsequent 30  days. 
Censored patients were those who died or were lost to 
follow-up (whichever came first). In the case of patients 
with multiple antibiotic prescriptions, each prescription 
was included into the analysis. In the case of a repeat 
antibiotic prescription within 30  days, follow-up of the 
first prescription was stopped at the date of subsequent 
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prescription. Patients with missing values for ethnicity, 
smoking status, IMD, and BMI variables were assigned 
a missing indicator labelled ‘Unknown’. The models were 
adjusted with missing indicators to increase the accuracy 
and reduce bias [24]. Each sub-dataset for each common 
infection was randomly divided into development (75%) 
and validation (25%) cohorts and used to develop and 
validate a set of Cox models for common infections (in 
instances where a single patient has multiple prescrip-
tions, they will be allocated to either the development or 
the validation cohort, but not both). Age was modelled 
using a restricted cubic spline, and estimated log hazard 
ratios (HRs) against continuous age were plotted. Addi-
tionally, HRs for specified age brackets (40–49, 50–59, 
60–69, 70–79, and 80 + years, each compared with the 
18–39 years reference group) were computed from mod-
els where age was integrated as a categorical variable, 
rather than through a cubic spline. This modelling pro-
cess was reiterated for both the sub-cohort within period 
1 and the entirety of the cohort, separately. Notably, the 
patient profiles constituting the development dataset 
in period 1 mirrored those in the development dataset 
of the overall cohort. To investigate the impact of the 
COVID-19 pandemic, we included a categorical variable 
representing the different time period.

The performance of the models was evaluated in terms 
of discrimination and calibration, as recommended by 
the Practical Guidance for Cox Proportional Hazards 
Models and the TRIPOD (Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis, Additional file  2) statement [25, 26]. The 
ability to discriminate was assessed using the concord-
ance statistic (c-statistic) in both the development and 
validation datasets. Calibration was evaluated by plotting 
the observed risk of AE emergency admission against the 
predicted risk grouped by deciles of the predicted risks 
[27]. The resulting curve was compared to a model with 
ideal calibration, which is characterised by a calibration 
in-the-large (intercept) of 0 and a calibration slope of 1.

Results
Throughout the study period, a total of 9,415,898 eli-
gible patients received prescriptions (Fig.  1). Of these, 
46.4% had a recorded consultation for an infection in 
the 30  days preceding their prescription (including 
the same-day infection record). A breakdown of these 
prescriptions indicates that 3,436,838 patients had a 
UTI record, while 2,574,598 were noted for URTI, and 
2,226,059 for LRTI. When examining the incidence of 
adverse events post-antibiotic treatment, variations 
were observed across different infections. Specifically, 
0.6% (19,914 patients) with UTI, 0.3% (7187 patients) 
with URTI, and 0.5% (10,536 patients) with LRTI 

experienced such events (Table 1, see Additional file 1: 
Tab. S2 for otitis externa, otitis media, and sinusitis). 
It was found that 37.2% of UTI patients had another 
antibiotic prescription record within 30  days before 
this identified prescription, 22.8% for URTIs and 29.3% 
for LRTIs. In UTI patients, the most common adverse 
effects were kidney problems (21.3%), with 0.7% related 
to the liver. Another 0.9% were recorded as poisoning. 
In URTI and LRTI, these involved the circulatory sys-
tem (22.7% and 27.5%, respectively), with acute kid-
ney diseases accounting for 8.3% in URTI and 12.3% in 
LRTI. Acute liver issues comprised 0.4% in URTI and 
0.5% in LRTI (see Additional file 1: Tab. S3).

Figure  2 shows the incidence rate of AEs by each 
infection and monthly trends over time. UTI and LRTI 
patients showed higher risks in developing AE. Apart 
from UTIs, which remained relatively stable over time, 
the incidence rates of AEs in all other infections observed 
an increase between April and June 2020. Additionally, 
there was a higher incidence in period 1 and period 3 for 
UTI patients, but LRTI patients had the highest risk in 
period 2. Kaplan–Meier curves showed that the occur-
rence of AEs is more pronounced within the initial 
10 days following antibiotic administration compared to 
the subsequent 20 days (Fig. 3). Figure 3 also shows that 
there was an increased 30-day incidence during period 2, 
a trend consistently observed across most common infec-
tions, excluding UTIs and otitis externa (Additional file 1: 
Fig. S1).

Figure  4 reports the HRs of the predictors for each 
infection (models were trained and tested using the data 
from period 1, models for otitis externa, otitis media, 
sinusitis are reported in Additional file  1: Fig. S2). Due 
to varying incidence rates by COVID-19 (see Additional 
file 1: Fig. S3 and S4), we chose the models from period 
1 as the final risk prediction model (baseline hazard and 
model coefficients are reported in Additional file 1: Tab. 
S4). The HRs for UTI, URTI, and LRTI are provided in 
Fig.  4. The other infections are shown in Additional 
file 1: Fig. S3. Age was observed as a key predictor, with 
relatively higher HRs in older age groups. The HRs were 
5.91 (5.26–6.65) in UTI, 4.64 (4.06–5.31) in URTI, and 
3.89 (3.43–4.41) in LRTI when comparing ages 80 + to 
18–39. CCI and antibiotic usage in the past 30 days were 
also identified as important predictors. Specifically, the 
HRs were significant: for the ‘Very high’ CCI category 
compared to the ‘Zero’ category, the HRs were 5.30 
(2.84–9.88) in UTI, 4.07 (1.31–12.67) in URTI, and 2.93 
(1.22–7.07) in LRTI. Additionally, patients who received 
another antibiotic prescription within 30 days before the 
current prescription demonstrated higher HRs as well: 
1.19 (1.13–1.25) for UTI, 1.69 (1.57–1.83) for URTI, and 
1.43 (1.35–1.51) for LRTI, respectively.
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The predictor age modelled with restricted cubic 
splines was reported in Additional file 1: Fig. S5, and we 
observed that older patient had a higher HRs for devel-
oping AE. The calibration among all models were good 
(Fig.  5 and Additional file  1: Fig. S6), with near perfect 
agreement between the predicted and observed risks 
across the entire range of predicted risk. This is sup-
ported by the calibration slope of 1.011 in UTI model 
(validation dataset) and 1.022 in URTI model and 0.983 
in LRTI model, respectively (Table 2).

The model’s discrimination was evaluated using the 
C-statistic, as reported in Table  2. The performance of 
the model, which was trained and validated on the over-
all cohort, is detailed in Additional file 1: Tab. S5. In the 
validation cohort, 5 of 6 models exhibited good levels of 

C-statistics (> 0.70) in predicting AEs, except for sinusitis 
(0.69 (0.65–0.74), see Table  2). The UTI model had the 
highest C-statistic of 0.76 (0.75–0.77).

Discussion
This study examined a substantial cohort of patients 
who were prescribed antibiotics following consulta-
tions for common infections. A varied incidence of 
AEs was observed across different types of infections, 
with particular prominence for more severe infections 
such as UTI and LRTI. Notably, temporal trends in AE 
incidence were found to differ depending on the infec-
tion type and specific periods defined by the COVID-
19 pandemic, suggesting a possible impact between the 
pandemic and AE risk. Our models, particularly those 

Fig. 1  The flowchart of participant selection
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Table 1  Patient characteristics. Summary statistics are number (percentage) except where indicated

Characteristic Levels UTI URTI LRTI

Total N 3436838 2574598 2226059

Event Yes 19914 (0.6) 7187 (0.3) 10536 (0.5)

No 3416924 (99.4) 2567411 (99.7) 2215523 (99.5)

Age Mean (SD) 58.5 (21.1) 47.4 (19.8) 57.8 (19.3)

18–39 818810 (23.8) 1081326 (42.0) 462981 (20.8)

40–49 367856 (10.7) 369393 (14.3) 298800 (13.4)

50–59 473793 (13.8) 376199 (14.6) 394408 (17.7)

60–69 498051 (14.5) 318445 (12.4) 387831 (17.4)

70–79 636205 (18.5) 249238 (9.7) 354507 (15.9)

80 +  642123 (18.7) 179997 (7.0) 327532 (14.7)

Sex Women 2842140 (82.7) 1713699 (66.6) 1383325 (62.1)

Men 594698 (17.3) 860899 (33.4) 842734 (37.9)

IMD1 5 (least deprived) 692209 (20.1) 426804 (16.6) 378476 (17.0)

4 724293 (21.1) 481774 (18.7) 433210 (19.5)

3 739066 (21.5) 535850 (20.8) 463903 (20.8)

2 645309 (18.8) 542790 (21.1) 448278 (20.1)

1 (most deprived) 629954 (18.3) 583028 (22.6) 499090 (22.4)

Unknown 6007 (0.2) 4352 (0.2) 3102 (0.1)

Ethnicity2 White 3077914 (89.6) 2137161 (83.0) 1962577 (88.2)

Mixed 27732 (0.8) 31230 (1.2) 16955 (0.8)

South Asian 176148 (5.1) 231926 (9.0) 140744 (6.3)

Black 41596 (1.2) 47869 (1.9) 27461 (1.2)

Other 37018 (1.1) 38777 (1.5) 22274 (1.0)

Unknown 76430 (2.2) 87635 (3.4) 56048 (2.5)

Region East of England 817835 (23.8) 657957 (25.6) 525098 (23.6)

North East 142631 (4.2) 116764 (4.5) 110589 (5.0)

North West 361768 (10.5) 245323 (9.5) 244854 (11.0)

Yorkshire and the Humber 527111 (15.3) 398315 (15.5) 383917 (17.2)

East Midlands 672547 (19.6) 457378 (17.8) 433304 (19.5)

West Midlands 143416 (4.2) 132497 (5.1) 101774 (4.6)

London 120411 (3.5) 157510 (6.1) 68005 (3.1)

South East 221040 (6.4) 150588 (5.8) 129481 (5.8)

South West 427004 (12.4) 256106 (9.9) 228059 (10.2)

Unknown 3075 (0.1) 2160 (0.1) 978 (0.0)

Smoking3 Never and unknown 1615490 (47.0) 1,203718 (46.8) 875143 (39.3)

Former 1429,954 (41.6) 906490 (35.2) 931720 (41.9)

Current 391394 (11.4) 464390 (18.0) 419196 (18.8)

BMI4 Not obese 2480753 (72.2) 1726133 (67.0) 1434774 (64.5)

Obese I (30–34.9 kg/m2) 541513 (15.8) 441434 (17.1) 417910 (18.8)

Obese II (35–39.9 kg/m2) 243425 (7.1) 228806 (8.8) 210241 (9.4)

Obese III (40 + kg/m2) 171147 (5.0) 180225 (7.0) 163134 (7.3)

CCI5 No 2073726 (60.3) 1697263 (65.9) 1198348 (53.8)

Low 1197540 (34.8) 804806 (31.3) 914397 (41.1)

Medium 151911 (4.4) 67468 (2.6) 104656 (4.7)

High 13103 (0.4) 4886 (0.2) 8308 (0.4)

Very high 558 (0.0) 175 (0.0) 350 (0.0)
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based on UTI and LRTI patient data, demonstrated 
good discriminative power as assessed by C-statistic 
values. Key predictors, such as the CCI and recent anti-
biotic usage, emerged as significant factors contribut-
ing to AE risk. Calibration of these predictive models 
was robust, providing reliable estimates across a range 
of predicted risks.

Our study provides valuable insights into the incidence 
of AEs following antibiotic prescriptions for common 

infections. As a key predictor, elderly patients had higher 
risks of experiencing emergency admissions for adverse 
events. Along with other existing evidence that infections 
in elderly patients are more likely to progress and develop 
infection-related complications, better monitoring and 
more personalised strategies are recommended [11]. CCI 
and recent antibiotic usage emerged as significant predic-
tors for AE risk, corroborating earlier studies that iden-
tified comorbidities and prior antibiotic exposure as risk 

Table 1  (continued)

Characteristic Levels UTI URTI LRTI

Antibiotic history (3 years)6 0 586477 (17.1) 670900 (26.1) 527497 (23.7)

1 457313 (13.3) 463755 (18.0) 372012 (16.7)

2–3 695916 (20.2) 590510 (22.9) 496792 (22.3)

4 +  1697132 (49.4) 849433 (33.0) 829758 (37.3)

Antibiotic use (30 days)7 Yes 1279252 (37.2) 586501 (22.8) 652392 (29.3)

No 2157586 (62.8) 1988097 (77.2) 1573667 (70.7)
1 IMD (Index of Multiple Deprivation) quintile measured from patient-level address
2 Ethnicity in line with 2001 Census categories
3 Smoking status identified from the most recent clinical records
4 BMI, body mass index groups based on the NICE definitions
5 The Charlson Comorbidities Index (CCI) is a method of categorising comorbidities of patients based on the International Classification of Diseases (ICD) diagnosis 
codes found in administrative data. It includes 17 weighted conditions such as myocardial infarction, congestive heart failure, peripheral vascular disease, 
cerebrovascular disease, dementia, chronic pulmonary disease, connective tissue disease, ulcer disease, mild liver disease, diabetes, hemiplegia, moderate or severe 
renal disease, diabetes with complications, any malignancy (including leukaemia and lymphoma), moderate or severe liver disease, metastatic solid tumour, and AIDS
6 The patient’s antibiotic prescription history spans from three years plus 90 days, up until 90 days prior to the outcome date
7 The binary variable indicating if there were any antibiotic treatments administered in the 30 days preceding the index date

Fig. 2  Incidence rates of AE over time calculated every month based on the number of new cases per 1000 patients at risk (antibiotic users 
with certain infection consultation). Numerator is the number of adverse event cases (times 1000), and the denominator is the number of patients 
at risk, grouped by infection type. Boxplots represent the historical average (median and IQR) percentage of incidence rates of new AE’s cases 
from January 2019 to June 2023. The shadow area indicating the periods of national lockdown
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factors [28]. A study by Aldeyab et al. demonstrated that 
there is a significant positive relationship between antibi-
otic use and the sum of age-adjusted comorbidity scores. 
This suggests that individuals with higher comorbidity 
scores, which often include various chronic conditions, 
are more likely to use antibiotics and subsequently may 
experience AEs [29]. Moreover, recent studies noticed 
that inappropriate antibiotic use has been associated 
with an increased risk of adverse reaction [30, 31]. The 
robustness of our predictive models, especially for UTI 

and LRTI patients, adds to the growing body of evidence 
supporting the use of predictive analytics in healthcare.

Interestingly, our study found that the COVID-19 
pandemic had a variable impact on AE incidence rates 
depending on the type of infection. This suggests a 
complex interplay between the pandemic and antibi-
otic-related AEs, warranting further investigation. Expla-
nations may be that during the pandemic the capacity 
in microbiological diagnosis reduced and that clinicians 
were more likely to prescribe broad-spectrum antibiotics. 
In April 2020, 40% of COVID-19 positive patients were 

Fig. 3  Kaplan–Meier plots for AE in 30 days after antibiotics. Plots show cumulative survival probability of AE by period and infection. The study 
duration was segmented based on the implementation of national lockdowns: (1) period 1 from 1 January 2019 to 25 March 2020, (2) period 2 
from 26 March 2020 to 8 March 2021, and (3) period 3 from 9 March 2021 to 30 June 2023
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given antibiotics, and about 20% of those antibiotics were 
broad-spectrum. However, this number reduced to 20% 
in June 2020 after the rapid guideline was published sug-
gesting not to prescribe antibiotics to COVID-19 positive 
patients [32]. Existing studies found that the percentage 
of broad-spectrum antibiotics increased at the beginning 
of the pandemic and returned to pre-pandemic levels by 
the end of 2021 [33].

In this study, we predicted the risk of developing AEs 
by using data from both the pre-pandemic period and 
the overall cohort. This approach provides us with a bet-
ter understanding of the specific risks associated with 
taking antibiotics for various common infections across 
different time periods. However, changes in healthcare 
delivery in primary care practices, such as the adoption 
of virtual consultations, increased prescribing rates, and 
prioritisation of certain patient groups, may have signifi-
cantly altered the landscape [14–17]. Additionally, post-
pandemic observations indicate that healthcare delivery 
has recovered to pre-pandemic levels in various aspects 
[16, 31, 34]. The models developed using pre-pandemic 
data are suggested for future use in predicting the risk of 
AE.

The findings may have several implications for clinical 
practice. First, healthcare providers should exercise cau-
tion when prescribing antibiotics, particularly for UTI 
and LRTI, and consider patient-specific factors like CCI 
and recent antibiotic usage [35]. Second, the variable 
impact of the COVID-19 pandemic on AE rates suggests 

Fig. 4  Period 1 cohort (pre-COVID): adjusted hazard ratios 
for selected predictors (including health behavioural and clinical 
variables). The Index of Multiple Deprivation (IMD) quintile 
was derived from the patient’s residential address. Body mass 
index (BMI) refers to a calculation of body fat based on height 
and weight. obese I (30–34.9 kg/m2), obese II (35–39.9 kg/m2), 
and obese III (≥ 40 kg/m2). The Charlson Comorbidities Index 
(CCI) is a method of categorising comorbidities of patients based 
on the International Classification of Diseases (ICD) diagnosis codes 
found in administrative data. It includes 17 weighted conditions 
such as myocardial infarction, congestive heart failure, peripheral 
vascular disease, cerebrovascular disease, dementia, chronic 
pulmonary disease, connective tissue disease, ulcer disease, mild 
liver disease, diabetes, hemiplegia, moderate or severe renal disease, 
diabetes with complications, any malignancy (including leukaemia 
and lymphoma), moderate or severe liver disease, metastatic solid 
tumour, and AIDS. Used in the past 30 days: the binary variable 
indicating if there was any antibiotic treatments administered 
in the 30 days preceding the index date. Used in the past 3 years: 
the patient’s antibiotic prescription history spans from three years 
plus 90 days, up until 90 days prior to the outcome date. Reference 
groups: Sex: Female, Age: 18–39, Region: East of England, IMD 
quintile: the least deprived quintile (IMD 5), Ethnicity: white, BMI: 
Not obese (< 30 kg/m2) Smoking: None (smoking status identified 
from the most recent clinical records), CCI: Zero, Antibiotic use: used 
in the past 30 days: No, used in the past 3 years: zero
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that healthcare systems should be prepared for fluctuat-
ing AE incidence during public health crises [36]. Pre-
vious studies have identified an association between 
increased frequencies of past antibiotic exposure and 
a heightened risk of complications arising from infec-
tions and autoimmune diseases [37, 38]. One prevailing 
hypothesis suggests that routine antibiotic use may ele-
vate the likelihood of patients becoming colonised and 
subsequently infected by antibiotic-resistant pathogens. 
This scenario may lead to the failure of antibiotic treat-
ments and increased vulnerability to the harmful effects 
of infections [10, 39]. However, our study found that, in 
cases of otitis externa, otitis media, and sinusitis, long-
term antibiotic exposure played a more substantial role 
in predicting AEs than in other infections. As headaches 
were commonly reported as a disease-related event 
among the three infections above, this might suggest that 
headaches may be more related to infection-related com-
plications in patients with decreased antibiotic efficacy 
due to prior extensive use, rather than being a direct side 
effect of the antibiotics themselves. The study also found 
that in less severe infections like URTI, the harm-benefit 
ratio may not be as favourable. Although there are only 
slight reductions in the risk of severe infection-related 
complications, there is an increased risk of acute renal 
failure. Our study revealed that AEs might occur in vari-
ous organs including the liver, kidneys, and other parts of 
the genitourinary system. About 10.2% to 11.0% of AEs 
were observed in the digestive system. These could not be 
clearly distinguished as direct harms or symptoms of the 
underlying illness or infection. However, another study 
we conducted showed that patients prescribed antibiotics 
other than first-line treatments, particularly broad-spec-
trum antibiotics, have a higher odds of developing AEs 
[40]. This provides evidence of the need to select antibi-
otics with a more favourable harm-benefit ratio. Frequent 
use of antibiotics can alter the microbiome, leading to 
increased resistance. This shift may necessitate the use 
of more potent and potentially more toxic antibiotics in 
subsequent infections, further increasing the risk of AEs 
[41].

Prior epidemiological studies have shown that a history 
of frequent antibiotic prescriptions is linked to elevated 
risks of complications related to infections [42]. Although 
confounding factors could account for these results, 
growing evidence suggests that antibiotics negatively 
impact microbiota, including those in the respiratory 

Fig. 5  Calibration plot for UTI/URTI/LRTI models. Calibration plot 
showing observed survival probabilities (Y-axis) versus predicted 
survival probabilities (X-axis). The plot was generated 
from the validation cohort
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tract, thereby weakening the host microbiota’s defence 
against harmful microorganisms [43, 44]. Krockow et al. 
emphasised the need for effective strategies, such as 
behavioural interventions, to minimise repetitive antibi-
otic prescribing [45]. This underscores the significance 
of incorporating well-informed support tools in clinical 
decision-making [12]. In this study, developed prediction 
models will be incorporated into a Knowledge Support 
System (KSS) intervention, utilising a Learning Health-
care System (LHS) approach for antibiotic prescriptions 
related to common infections in primary care [12, 46, 
47]. We conducted mixed-method co-design workshops 
with clinicians to assess the model’s acceptability among 
prescribing healthcare professionals and to identify key 
factors that could enhance uptake [48]. The feedback 
highlighted various important elements, such as extract-
ing key information from care records (including the 
history of antibiotic prescriptions), suggested actions, 
personalised treatment plans, and risk indicators. These 
indicators include risks of patient emergency admission 
due to adverse events or infection-related complications, 
the risk of repeat prescriptions (potentially due to antibi-
otic failure), and the content suitable for patient informa-
tion sheets [11, 31, 49].

While our study offers important contributions, it is 
not without limitations. The data are observational and 
thus cannot establish causality. Additionally, the study 
did not account for other potential confounding vari-
ables such as patient adherence to medication, which 
could influence AE incidence [50]. In spite of our efforts 
to account for existing illnesses by adjusting for comor-
bid conditions, assessing the severity of specific diseases 
using the EHRs at hand proves difficult. However, it is 
impractical to anticipate that randomised studies will be 

carried out to explore the broad range of adverse events 
examined in this research. As a result, the observational 
findings of this study should be viewed alongside evi-
dence from broader sources and the likelihood of possible 
causal links. In this study, we aimed to enhance decision-
making for clinicians presented with common infections 
by examining antibiotic prescriptions on the date of 
infection diagnosis. However, it is important to consider 
that this approach may not capture those patients whose 
infection diagnoses were recorded a few days post-antibi-
otic prescriptions, as noted in studies by Palms et al. and 
Olesen et  al. [51, 52]. Nevertheless, our prior research 
involving the same population revealed no differences in 
the patterns between same-day prescriptions and those 
within a ± 7-day window around the infection diagnosis 
[53]. These findings underscore our decision to adhere 
to the same-day time frame in the current study. Addi-
tionally, our study excluded patients with any chronic 
respiratory disease as they require long-term antibiotic 
treatment [54]. The EHR can only record the dates when 
prescriptions are made, but it cannot determine how 
closely patients adhere to their antibiotic regimen or the 
timing of repeated use. Similarly, there was no record 
of consultation type to indicate whether it was remote 
or face-to-face, so we could not determine whether the 
antibiotic prescription was evidence-based. Another 
constraint was that our study relied on AE categorised 
by hospital coding department [55]. In our analysis of 
AE, we only included diagnoses made upon admission, 
potentially leading to an underestimation of such events. 
This approach was taken to omit adverse events that 
might have occurred during a hospital stay due to medi-
cal interventions or treatments. An additional limitation 
was that our study only incorporated prescription data 
from primary care, excluding, for instance, hospitals or 
walk-in clinics. Nevertheless, as of 2021, 80.5% of antibi-
otic prescriptions in England are issued in primary care 
settings [3].

Conclusions
In summary, our study provides a comprehensive analysis 
of the incidence of AEs following antibiotic prescriptions 
for common infections. We observed that the incidence 
rate of AEs fluctuated during the period from March 
2020 to April 2021 and returned to pre-pandemic levels 
afterwards. Additionally, this study developed separate 
models for each type of infection, aiming to improve the 
accuracy in predicting calibration and discrimination. 
We found that most risk prediction models exhibited 
good calibration and discrimination levels. These find-
ings highlight the necessity of cautious antibiotic pre-
scribing and emphasise the need for further research to 
understand the complex factors influencing AE risk.

Table 2  Model performance at day 30: calibration and 
discrimination (pre-pandemic cohort, with confidence intervals 
calculated by bootstrap)

Infection C-statistic Calibration slope

UTI Development 0.76 (0.76–0.77) 0.999

Validation 0.76 (0.75–0.77) 1.011

URTI Development 0.73 (0.72–0.74) 1.000

Validation 0.73 (0.72–0.75) 1.022

LRTI Development 0.70 (0.69–0.71) 1.000

Validation 0.70 (0.68–0.71) 0.983

Otitis externa Development 0.75 (0.72–0.78) 1.000

Validation 0.72 (0.66–0.78) 0.920

Otitis media Development 0.72 (0.68–0.76) 1.000

Validation 0.70 (0.62–0.77) 0.864

Sinusitis Development 0.65 (0.62–0.67) 1.000

Validation 0.69 (0.65–0.74) 1.169
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