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SUMMARY. The affected sib/relative pair (ASP/ARP) design is often used with covariates to

find genes that can cause a disease in pathways other than through those covariates. However,

such “covariates” can themselves have genetic determinants, and the validity of existing meth-

ods has so far only been argued under implicit assumptions. We propose an explicit causal

formulation of the problem using potential outcomes and principal stratification. The general

role of this formulation is to identify and separate the meaning of the different assumptions

that can provide valid causal inference in linkage analysis. This separation helps to (a) de-

velop better methods under explicit assumptions, and (b) show the different ways in which

these assumptions can fail, which is necessary for developing further specific designs to test

these assumptions and confirm or improve the inference. Using this formulation in the spe-

cific problem above, we show that, when the “covariate” (e.g., addiction to smoking) also has

genetic determinants, then existing methods, including those previously thought as valid, can

declare linkage between the disease and marker loci even when no such linkage exists. We also

introduce design strategies to address the problem.

KEY WORDS: Affected sib pairs; Causal effects; Genetic linkage; Partially controlled studies;

Potential outcomes; Principal stratification.
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1. Introduction

In order to identify genes that are responsible for a trait, researchers have long used the affected

sibling (or relative) pairs design (ASP; Penrose, 1935; Risch, 1990a, and references therein).

The main idea in these designs is that individuals with similar trait characteristics, as are af-

fected siblings, should also have similar genetic characteristics in marker loci close to trait

genes. A useful measure of genetic similarity at a marker is the number of alleles shared iden-

tically by descent (IBD), as its distribution is known under the null hypothesis of no linkage

between the marker and the trait gene. It is well known, however, that such an approach alone,

without using other information, can have low power to detect linkage (e.g., Risch, 1990b).

Moreover, in order to understand the pathways through which the candidate genes act on the

trait, methods need to use also other variables in the design and analyses (e.g., Olson, 1999).

Such methods have more recently been proposed for using information on covariates, that

is here, factors that have been shown to explain variation in the main trait (Olson, 1999; Devlin

et al., 2002). These methods essentially stratify on covariates and compare the IBD sharing

to the null IBD distribution with no stratification. Such methods are now implemented by

popular software (e.g. SAGE, 2003). However, there have been no clearly stated principles

for why the IBD sharing under no linkage to the trait should (or should not) have the same

distribution before and after stratification on the covariates. Such principles are important

since stratification can capture linkage to the covariate, as opposed to the trait. Although this

possible confounding has been noted as a possibility (e.g., Greenwood and Bull, 1999; Schaid,

2003), it is currently believed that a simple transformation of the covariates makes the analyses

immune to this problem (see Schaid et al. 2003, p. 90, for the sum, and our Sections 3-4). For

this or other reasons, little attention has been given to the validity of methods when covariates

can have genetic determinants.

We show the need and we propose an explicit causal framework for methods to estimate the

2

http://biostats.bepress.com/jhubiostat/paper95



locus and the degree to which a gene directly affects the main trait, when using covariates with

genetic determinants. We propose this causal framework in the context of a simple setting of

affected sib pairs using potential outcomes and principal stratification. The general advantage

of this framework is its ability to explicitly separate the different assumptions needed for in-

ference, and thereby point to the different research hypotheses by which such assumptions can

fail and be improved. In the specific ASP problem, we make explicit a set of assumptions that

are more general than those usually made implicitly, and we show that as the studied markers

are close to those determinants, the similarity created from the stratification on such covariates

induces increased IBD sharing even under no physical linkage of the studied marker to the trait.

We show that, as a consequence, standard methods for using covariates, even those currently

believed immune, can declare linkage between the disease and marker loci even when no such

linkage exists. We then indicate design methodology for addressing better the above goals.

2. Role of causal formulation in linkage with covariates

In order to make clear the meaning of different assumptions, our goal, and our methodological

arguments, we introduce here a structure at the level of potential outcome for the trait and

principal stratification of the covariate. We focus first on possible children of one mating pair

of parents. We call “unit i” the product of a possible mating of the parents that includes the

description (formation) of all the resulting DNA except the DNA at three particular loci, which

we denote by lG, lZ and lM . A zygote or offspring, can then be thought of as the result of

attaching in unit i a possible genotype g, z, m at each of those loci (see Fig. 1). It is important

to note that a “unit” is more basic than and can result in different zygotes, and hence offspring,

depending on the result of meiosis and fertilization at those remaining three loci.

If a unit i is attached to genotypes g, z, m (by meiosis and fertilization), then for the result-

ing offspring we let: Yi(g, m, z) be the potential outcome (Rubin, 1978) that will be observed
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for the main trait of interest (1 for diseased, 0 otherwise), for example, an indicator for glau-

coma by a certain age. We also let Xi(g, z, m) be a potential covariate value, for example an

indicator of alcohol consumption at that (or earlier) age.

In what follows, the framework of potential outcomes is, with respect to our goals, new in

linkage analysis, and so it is important to briefly outline its purpose. Potential outcomes allow

consideration of two possibly related but different processes: (I) the causal effect of a genotype

on the potential outcome of a particular unit; and (II) the possible dependence between units’

potential outcomes and the genotypes the units receive (the “assignment mechanism”, Rubin,

1974, 1978). This separation is important because the main scientific interest here is in (I),

whereas the observed data are a result of mixing (I) with (II). Therefore below, we first discuss

a set of explicit assumptions in this framework, and state our goal and the induced assumptions

on the observed data. Under those assumptions we show that the standard methods generally

fail, and that better methods exist to address the goal. In future work we will subject those

assumptions to scrutiny, examining when they can fail, and for this, the above framework more

clearly shows the aspects in terms of (I) and (II) that can make these assumptions invalid. This

in turn can indicate designing new studies and methods that will put those aspects to the test,

to validate or revise the previous results.

Example of explicit assumptions on potential outcomes and principal stratification.

We give meaning to the above loci by the following conditions (see also Fig. 3). The locus

for m stands for a marker we measure, which, although can be close to g or z, is itself non-

causal for either the trait or the covariate. That is, Yi(g, z, m) = Yi(g, z, m′) = Yi(g, z) and

Xi(g, z, m) = Xi(g, z, m′) = Xi(g, z) (so m is omitted from the argument of the trait and

covariate). The locus z (but not g) stands for a genetic determinant of the covariate X , in the

sense that Xi(g
′, z) = Xi(g, z) = Xi(z) and that Xi() is different for at least two genotypes z

and z′. For example, alcohol consumption, and smoking, which are often used as covariates in
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linkage of other traits, have been found themselves to have genetic determinants that predispose

to addiction (Wang et al., 2004; Pianezza et al. 1998). We allow that the main trait Y can be

affected by the gene g that does not affect the covariate X (thus allowing for a direct genetic

effect on Y , in pathways other than through X); and we also allow that Y can be affected by the

gene z that affects the covariate X (which allows that Y can depend on X). These conditions

also allow for other environmental factors to affect the trait or the covariate and to interact with

g, z, because we allow the functions Y and X to depend also on the unit i.

General goals in this problem then can be to learn about the locus of the gene g that affects the

main trait in pathways other than through X , and the degree of this effect.

For the set of possible g, z, the variability created by the events of parental meiosis and

fertilization induces a joint distribution for the set of potential outcomes {X i(z), Yi(g, z)}, de-

noted by pr(Xi(z), Yi(g, z)). At a particular event of parental meioses and fertilization, a unit

i is actually attached to one genotype at each of the three loci, which we denote by Gi, Zi, Mi

respectively. The induced distribution of the functions {Xi(z), Yi(g, z)} and the actual geno-

types will be denoted by pr({Xi(z), Yi(g, z)}, Gi, Zi, Mi). The observed covariate status Xi

and observed main trait status Yi of a unit, then, are the result from the coupling of the potential

outcomes for that unit and the observed genotypes, that is, Xi = Xi(Zi) and Yi = Yi(Gi, Zi).

For this part, the marker Mi is known but the genotypes Gi, Zi are not directly observed because

the loci are unknown. We consider the following assumptions (conditionally on the parental

genotypes).

(A.1). The potential outcomes {Xi(z), Yi(g, z)} are independent of the actual genotypes

(Gi, Zi, Mi). This assumption still allows that the genetic material of a unit at distances

close to the loci for g, m, z be correlated to (Gi, Zi, Mi).

The assumption means that the potential of units to develop the covariate and the trait, as

function of the possible genotypes in the three loci is independent of the actual genotypes at
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those loci. This assumption is expected to be correct if any genes other than g, z that affect Y

and X are far from g, z and m. This assumption, though not usually explicit, is implicit and

necessary for the interpretation of results in most linkage analyses.

(A.2). To distinguish between the two pathways g, z for Y , we assume that Y is a function

of z only through the covariate: if gene z does not affect the covariate of a unit, then it

does not affect the main trait, that is, if Xi(z) = Xi(z
′) then Yi(g, z) = Yi(g, z′).

(A.3). The potential Yi(g, z) for getting the trait for fixed genotypes g, z has the same

distribution among people with {i : Xi(z) = x} as it has among people in the stratum

{i : Xi(z) = Xi(z
′) = x, for all z′}, also known as a principal stratum (Frangakis and

Rubin, 2002).

(A.4). The loci for z and g are not close to each other from a perspective of probability of

recombination given marker data, in the sense that Zi and Gi are independent given Mi.

In relation to the above two goals, we focus here on the locus of the gene g that affects

the main trait in pathways other than through X . To examine if the gene g is close to the

studied marker, we examine testable implications of assuming instead the null hypothesis that

this distance is large, namely, that the genotypes Gi and Mi are transmitted independently:

H0 : pr(Gi, Mi) = pr(Gi)pr(Mi). (1)

We are also interested in the joint distribution of the trait and covariate status, the genotype

of interest, and the marker, which under assumptions A.1-A.4 is obtained as

pr(Yi, Xi, Gi, Mi) = pr(Yi | Gi, Xi) pr(Xi | Mi) pr(Gi, Mi) (2)

(proof omitted, available on request). The above arguments bring up two important issues.
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First, in the next section we show that even under these relatively simplified conditions,

the regression methods that are routinely used to test the null hypothesis H0 of expr. (1) of

no linkage of the trait are generally inappropriate when, as above, the covariate has a genetic

determinant. Under those conditions we also propose methods to address the goals.

Second, note that, although the assumption in (2) is frequently and implicitly assumed in the

observed data, it requires generally all of assumptions A.1-A.4 on the underlying mechanisms.

For example, even if we assume there is no direct causal effect of the oovariates’ gene (z) on

the disease except through the covariate, assumption (2) will be false unless assumption A.3

holds. The latter assumption excluded a type of selection bias, and needs to be expressed in

terms of strata defined by the joint potential values of the covariate. Such strata are known

as principal strata and play a key role in more general studies with multiple causal factors

(Frangakis and Rubin, 2002); other applications of principal stratification include studies with

noncompliance to treatment, direct and indirect effects, intermediate and surrogate endpoints

(e.g., Imbens and Rubin, 1997; Rubin, 2004; Frangakis et al. 2004; Gilbert et al. 2003).

Of course, assumptions A.1-A.4 are not necessarily correct. However, failure of the standard

methods under these simplifying assumptions implies failure under more general assumptions,

so possible violations of A.1-A.4 are not an argument against the comparative advantage of the

new methods we will discuss. Moreover, if there is concern on the validity of (2), the above

framework allows us to see that the source of that violation can be violation of any one (or

combinations) of A.1-A.4, and this can suggest more specific designs and methods to examine

them.

3. Problems with standard methods.

We focus on one parental mating type whose genotypes at the marker locus we assume are

known and fully polymorphic, so that for every offspring we can measure genetic similarity by

7

Hosted by The Berkeley Electronic Press



the number of alleles identical by descent (IBD) at the marker locus.

Consider first the conditional-logistic regression approach to incorporate covariates into

affected sib pairs, proposed by Olson (1999). This approach finds the conditional probability

f̂p,k, given the data of sib pair p, that the pair shares k alleles IBD, and compares it to the

unconditional probability fk = (1
4
, 1

2
, 1

4
), for k = 0, 1, 2, respectively. Here and below the

added subscripts 1, 2 for Mp, Xp, Yp represent the two member of a sib pair p, and an underline

represents both. Since the marker is fully informative, f̂p,k is known precisely for any pair,

and is either 0 or 1. Letting X∗
p be a pair-specific function of the two individual covariates

(Xp,1, Xp,2) in a pair (e.g., sum, absolute difference, or both values), Olson (1999) considered

the likelihood ratio (LR) of observing marker data M p from a pair p given covariate X∗
p and that

both members are affected, versus that likelihood given X ∗ but unconditionally on affection

status, as

LR =
pr(M |Y1 = Y2 = 1,X∗)

pr(M |X∗)

=

∑
k=0,1,2{pr(Y2 = 1|IBD = k, Y1 = 1,X∗)/pr(Y2 = 1|X∗)}pr(IBD = k|M,X∗)∑

k=0,1,2{pr(Y2 = 1|IBD = k, Y1 = 1,X∗)/pr(Y2 = 1|X∗)}pr(IBD = k|X∗)
(3)

(we have omitted subscript p for brevity). The work by Olson (1999; see also Goddard et.

al, 2001; SAGE, 2003) essentially (though implicitly) proposed to parameterize the recurrence

risk ratio for one individual who shares IBD=k with an affected sibling and with pair specific

covariate X∗ as

pr(Y2 = 1|IBD = k, Y1 = 1, X∗)
pr(Y2 = 1|X∗)

= exp(β ′
k + δ′kX

∗), (4)

In this model, the null hypothesis H0 of the previous section – that the marker locus is not

linked to the gene g that affects Y and not X – was implicitly assumed to be represented by

8

http://biostats.bepress.com/jhubiostat/paper95



the hypothesis H∗
0 that (4) does not depend on the marker’s IBD, namely that H ∗

0 : β ′
0 = β ′

1 =

β ′
2; δ

′
0 = δ′1 = δ′2. Based on expression (4), they considered the likelihood ratio (3) for a pair to

be

LR(β, δ) =

∑
k=0,1,2 eβk+δkX∗

f̂k∑
k=0,1,2 eβk+δkX∗fk

, (5)

where β0 = 0, βk = β ′
k − β ′

0 and δ0 = 0, δk = δ′k − δ′0. This reparametrization, which was also

implicit, was considered because not all parameters are identifiable from (5), and implies that:

H∗
0 : βk = 0 and δk = 0, for all k. (6)

Then, the existing methods (e.g., SAGE, 2003, and references therein) for testing H ∗
0 estimate

the parameters in (4) by the maximum likelihood estimate (MLE) of βk and δk(k = 1, 2) of the

product of LR in (5) over the available ASPs subject to the usual triangle constraints (Holmans,

1993).

In order for the likelihood ratio (5) in Olson (1999) and Goddard (2001) to be derived from

the likelihood ratio of the general case (3), we observe that the conditional distribution of al-

leles shared IBD given covariates X∗, pr(IBD = k|X∗), is implicitly assumed to equal the

unconditional distribution pr(IBD = k) which is fk = (1/4, 1/2, 1/4), k = 0, 1, 2. However,

when the studied marker (among many) comes close to the genetic determinant z of the covari-

ate, this assumption is not necessarily true. The possibility the assumption is violated has been

expressed earlier in the literature (e.g., Greenwood and Bull, 1999; Schaid et al., 2003), but its

consequences have not been appreciated. For example, Schaid et al. (2003, p. 90) express that

such violation has no consequences in analyses if, as is commonly the case, the analyses use the

sum X∗ := (X1 +X2) as the pair-specific covariate. For this reason, the possible consequences

of this assumption are ignored. The above approach is now implemented and used as standard

9
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by commercial software (SAGE, 2003) and forms a routine tool in research for trait genes.

To our knowledge, however, neither the original nor later research has stated explicit con-

ditions in terms of functional relations (such as those of the previous section) that can make the

resulting methods valid for testing the hypotheses H0 or H∗
0 , even for proposals such as using

the sum as the pair-specific summary.

4. Proposed design strategy to address the problem.

Closer examination of the role of the above implicit assumption in estimation, when consid-

ering specific models such as assumptions A.1-A.4, shows that the above methods are not

appropriate. Specifically, under assumptions A.1-A.4, we have the following result.

RESULT. Suppose model (4) holds and the null hypotheses of no linkage H0 and H∗
0 are true.

Then:

(a) the MLEs β̂k and δ̂k (for k = 1, 2) from the product of independent terms (5) will, with

increasing number of ASPs, generally converge to non-zero values. This problem also holds if

the sum X∗ := (X1 + X2) is used as the pair specific summary of the covariate.

(b) the null hypothesis H0 has implications testable from family data.

This result means that loci identified by the standard approach as linked to the main disease

trait conditionally on the covariate, can, in reality, be linked only to the covariate and can have

absolutely no linkage to the trait. We prove the above result by giving an example where the

trait is not even related to the covariate.

Proof by example. Consider the following conditions. The gene z for a binary covariate X

has four alleles, ζ1, ..., ζ4, and the gene g for the separate pathway to trait Y has two alleles,

(T, t); for the covariate, pr(Xi(z) = 1) = 10% if none of the two alleles of z is ζ1, but
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pr(Xi(z) = 1) = 30% if any of the alleles in z is ζ1; the trait is not affected by z at all;

pr(Yi(g) = 1) = (20%, 10%, 5%), respectively, for g = TT, T t and tt; and Yi(g) and Xi(z)

are independent. To make the marker close to the genetic determinant of X , suppose that the

marker is at z. Siblings are to be studied at the marker from families, say, with a type of parents

being ζ1T/ζ2t × ζ3T/ζ4t. We record the families with two affected children, and focus on

the pairs where the sum variable X∗ = X1 + X2 is either =0 or 2. Finally, assume the null

hypothesis H0 is true for all families.

With these conditions, the model (4) is correct for all families (as was intended to be), with

all β ′
k = δ′k = 0 and so all βk = δk = 0, because in (2) the trait now is independent of both the

marker data and the covariate. However, the MLEs of the parameters using (5) can be shown to

converge to plimβ̂1 = 0.33, plimβ̂2 = 0.49, plimδ̂1 = −0.38, plimδ̂2 = −0.59, which happens

because stratification on X increases sharing at the marker. From the interpretation of methods

as currently used, these results would suggest that at the covariate level X ∗ = 0, i.e., when

both members of the pair have covariate 0, the marker is close to a genetic determinant of the

trait, since the recurrence risk ratio (4) would be estimated as 1.39 and 1.63 for IBD=1 and 2

vs. 0. These results and interpretations, as we see now, would be misleading since, in reality,

the marker is completely unlinked to the trait’s determinant.

This problem is not limited to the above conditional logistic model approach. For example,

we can show that the mixture model approach proposed by Devlin et. al (2002) suffers from

the same problem (proof available on request).

Better methods to address this problem need to explicitly allow for a model where the co-

variate(s) can have genetic determinants. When such a model is posited, we can then investigate

testable implications of the null hypothesis H0.

An example of such an explicit model is the one under assumptions A.1-A.4. Under that

model, we can show that if the null hypothesis H0 is true, then given covariate values X of a
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general sib-pair (i.e., not necessarily affected), the distribution of alleles shared IBD: (i) is not

necessarily the unconditional null distribution ( 1
4
, 1

2
, 1

4
); but (ii) is, nevertheless, independent of

the pair’s disease status Y :

pr(Y |M, X) =
∑

g

pr(Y |G = g, M, X)pr(G = g|M, X)

=
∑

g

pr(Y |G = g, X)pr(G = g|X) = pr(Y |X). (7)

Relation (7), therefore, provides a testable implication of the hypothesis H0, proving part (b)

of the above Result, and it also indicates that more than affected-sib-pairs are needed for such

methods. Specifically, for a stratum of pair-wise covariates X , consider the following table,

where entry pk,Y represents the probability that a pair with disease status Y shares k alleles

IBD.

X Y IBD=0 IBD=1 IBD=2

(0, 0) p0,00 p1,00 p2,00

(X1, X2) (0, 1) p0,01 p1,01 p2,01

(1, 0) p0,10 p1,10 p2,10

(1, 1) p0,11 p1,11 p2,11

In the above table, then, expression (7) implies that if H0 is true, the row probabilities must

all be the same. If, on the other hand, the marker is linked to g, both ASPs and unaffected

sib pairs (USPs) are expected to have increased sharing since both are similar in their trait

status. So, the distributions of IBD should differ to the largest degree for ASPs (and USPs)

versus discordant sib pairs (DPSs), that is, between the first (and fourth) versus the second and

third rows of the above table. Therefore, substantial discrepancy in distributions of IBD alleles

between ASPs and DSPs (and not between ASPs and (1
4
, 1

2
, 1

4
)) with the same covariates X is
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evidence for linkage between the marker and the trait.

This approach also opens the way for considering a number of practical issues. First, be-

cause existing studies usually do not collect good quality DNA data for unaffected sib-pairs,

they have insufficient information to apply the above methods. Therefore, the above arguments

and methods emphasize the importance of collecting such data. Second, in practice each family

will be able to provide data on some but not all of the cells in the above table. Therefore, the

above approach needs to be modified to be able to use collectively data with continuous co-

variates and few individuals in each family, for example, with generalized linear models with

conditional inference.

In addition, it will be important to modify the above approach to enable it, more generally

than testing the null H0, to estimate physical location of the genes that affect the disease in

ways other than through the covariate. This can be achieved by using, as for other questions,

multipoint marker information. It will also be important to make fuller use of data than the

pair-wise structure usually used.

5. Conclusion.

The proposed causal framework explicitly shows the different types of assumptions, as with as-

sumptions A.1-A.4, that are needed for inference when studying genes that can affect a disease

through covariates, together with genes that can affect a disease in ways other than through

the covariates. The framework shows that even under relatively simple assumptions, standard

methods do not address the goals, yet information about these goals still exist. Therefore,

this framework, more generally, allows the development of designs and analyses with validity

under explicitly postulated assumptions, and also the testing of implications of such assump-

tions, thus helping to confirm them, or, alternatively, to point to alternative mechanisms for

understanding and ultimately dealing with disease.
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APPENDIX

To show that under assumptions A.1-A.4 the MLE of the conditional logistic model is gener-

ally inconsistent for the null values of the parameters, we need only show this for a model that

saturates a discrete covariate, say a binary X∗. To represent such a setting, focus on indepen-

dent sib pairs p whose members have either both their covariate value 0, in which case we now

label X∗
p = 0, or both their covariate value 1, in which case we now label X ∗

p = 1.

The maximum likelihood estimators maximize the average, say Qn(β, δ), of the log of the

product of terms in (5), that is,

Qn(β, δ) =
1

n

n∑
p=1

log

∑
k=0,1,2 eβk+δkX∗

p f̂p,k∑
k=0,1,2 eβk+δkX∗

p fk

where f̂p,k = I(IBDp = k). By the weak law of large numbers, and since the numerator

involves in fact only one term, we have that

Qn(β, δ) →p E

{
log

∑
k=0,1,2 eβk+δkX∗

p f̂p,k∑
k=0,1,2 eβk+δkX∗

p fk

}

=
∑
k,x∗

(βk + δkx
∗)pr(IBD = k,X∗ = x∗) −

∑
x∗

log{
∑

k

eβk+δkx∗
fk}pr(X∗ = x∗).

Let q(β, δ) denote the last expression. Under general conditions, the probability limits, say

β̃ and δ̃, of the MLE of β and δ are the maximizers of q(β, δ), that is, they solve

∂q(β, δ)

∂βk

= 0,
∂q(β, δ)

∂δk

= 0, k = 1, 2.

Let gkx∗ denote the conditional probabilities of IBD sharing, pr(IBD = k|X ∗ = x∗). It is
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easy then to show that

β̃k = log(gk0f0/gk0fi); δ̃k = log(gk1f0/gk1fk) − log(gk0f0/g00fk)

for k = 1, 2. Now, if the marker where IBD is measured is close to genes related to X∗, then

pr(IBD = k|X∗ = x∗) will differ from the unconditional IBD frequencies fk, so gkx∗/fk will

not equal 1. Therefore, the limit parameter values in the last expression will differ from 0.
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Genotypes:
controllable by
meiosis+fertilization

i

unit  (i):
  maternal, paternal
  gametes
  except z,m,g

gene  z marker m gene g

Partially
controlled factors: X ( z )

i
Y ( g, z )(in the sense of assumption 2)

Figure 1. Linkage of a trait to genetic locus and covariate with genetic determinant.
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