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Abstract
Digital Voice Assistants (DVAs) have become a ubiquitous technology in today’s home and childhood environments. Inspired 
by (Bernstein and Crowley, J Learn Sci 17:225–247, 2008) original study (n = 60, age 4–7 years) on how children’s ontologi-
cal conceptualizations of life and technology were systematically associated with their real-world exposure to robotic entities, 
the current study explored this association for children in their middle childhood (n = 143, age 7–11 years) and with different 
levels of DVA-exposure. We analyzed correlational survey data from 143 parent–child dyads who were recruited on ‘Amazon 
Mechanical Turk’ (MTurk). Children’s ontological conceptualization patterns of life and technology were measured by asking 
them to conceptualize nine prototypical organically living and technological entities (e.g., humans, cats, smartphones, DVAs) 
with respect to their biology, intelligence, and psychology. Their ontological conceptualization patterns were then associated 
with their DVA-exposure and additional control variables (e.g., children’s technological affinity, demographic/individual charac-
teristics). Compared to biology and psychology, intelligence was a less differentiating factor for children to differentiate between 
organically living and technological entities. This differentiation pattern became more pronounced with technological affinity. 
There was some evidence that children with higher DVA-exposure differentiated more rigorously between organically living 
and technological entities on the basis of psychology. To the best of our knowledge, this is the first study exploring children’s 
real-world exposure to DVAs and how it is associated with their conceptual understandings of life and technology. Findings 
suggest although psychological conceptualizations of technology may become more pronounced with DVA-exposure, it is far 
from clear such tendencies blur ontological boundaries between life and technology from children’s perspective.

Keywords Alexa · Child–technology interaction · Entity · Google assistant · Human–technology interaction · New 
ontological category hypothesis · Ontology · Voice assistants

1 Introduction

Within home and childhood environments, a global socio-
technical change has occurred over the last decade through 
the growing presence of commercially available Digital Voice 
Assistants (DVAs) like Amazon’s ‘Alexa’, Apple’s ‘Siri’, or 
Google’s ‘Google Assistant’ (Vlahos 2019). For educational 
and developmental research, DVAs are not only relevant in 

terms of their socio-technical omnipresence across the globe, 
but also in terms of their ontological nature as experienced by 
today’s children (e.g., due to DVAs’ conceptual parallels with 
organically living entities, such as their capacity to emulate 
peculiar qualities of human beings like the autonomous use of 
human language and speech; Festerling and Siraj 2020, 2021; 
Harwood and Eaves 2020; Nass and Brave 2005).

Therefore, and similar to robotic technologies (e.g., 
Gaudiello et al. 2015), it can be hypothesized that being 
exposed to DVAs significantly reshapes both the way today’s 
children construct their understandings of technology in and 
of itself, and the way they conceive technology in relation to 
other things in their environment. This study aims to contrib-
ute to the empirical investigation of this basic hypothesis.

The original hypothesis that the growing presence of 
digital technologies could change how humans have tradi-
tionally conceptualized the environment according to basic 
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ontological qualities dates back to Turkle's (1984/2005, 2017) 
and Papert's (1980) seminal work on the socio-technical role 
of technology in human development. In short, this work 
suggested technology impacts thought. More recently, Kahn 
et al. (2006, 2007, 2009, 2011, 2012) formalized this line of 
reasoning with the ‘new ontological category hypothesis’ 
(NOCH), stating increasingly sophisticated technologies may 
cut across traditional conceptualizations of mutually exclu-
sive ontological categories (e.g., organically living vs. tech-
nological entities). In other words, children growing up with 
such technologies may “see, conceptualize, and interact with 
them as a unified entity, and not merely a combinatorial set 
of its constituent properties” (Kahn et al. 2013, p.35). From 
an empirical perspective, the challenge about NOCH remains 
its wide argumentative scope how there is a general socio-
technical change at the macro-level of society which, in turn, 
is associated with developmental changes in affected cohorts. 
However, if NOCH was supported, the socio-technical change 
at the macro-level of society would become manifest not only 
across different cohorts but also within a single cohort and 
across different levels of individual exposure to the socio-
technical change of interest. In other words, if the growing 
socio-technical presence of DVAs was systematically related 
to the way today’s children conceptualize their environments 
according to basic ontological qualities, individual differences 
in children’s environments (i.e., how much an individual child 
is exposed to DVAs) should ceteris paribus be related to indi-
vidual differences in children’s ontological conceptualizations 
of their environments.

Recent research suggests children growing up with DVAs 
can indeed have very nuanced understandings of technol-
ogy’s ontological uniqueness (e.g., accuracy, speed, program-
mability, assistive purpose, lack of common sense) vis-à-vis 
humans’ ontological uniqueness (e.g., common sense, moral 
value, non-programmability; Festerling and Siraj 2020; Xu 
and Warschauer 2020). But, in the context of this study, the 
additional question would be whether such nuances are sys-
tematically associated with children’s exposure to technol-
ogy. A unique and, up to this point, unreplicated attempt to 
investigate this from a cross-sectional perspective was Bern-
stein and Crowley’s (2008) study (n = 60, age 4–7 years) on 
children’s ontological conceptualizations of prototypical 
organically living and technological entities (e.g., humans, 
cats, plants, computers, robots/rovers), and how these con-
ceptualization patterns differed with children’s individual 
‘real-world’ exposure to robotic technologies (i.e., expo-
sure in terms of children’s robot-related interest, knowledge, 
experience etc.).1 One of their main empirical findings was 

children with higher exposure to robotic technologies seemed 
to have different conceptual understandings of robots/rov-
ers compared to children with lower exposure (e.g., children 
with higher exposure to robotic technologies discriminated 
between organically living entities and robots/rovers more on 
the basis of psychology and less on the basis of intelligence).

This lead to the hypothesis that in future cohorts “children 
raised increasingly amid intelligent technologies will grow 
up thinking differently about some [ontological] concepts 
that developmental psychologists have previously consid-
ered universal and inevitable” (Bernstein and Crowley 2008, 
p.242). Most importantly (and as the following discussion 
will show in more detail), the ontological concepts referred 
to in this context draw on the most basic constituents of life, 
namely biology, intelligence and psychology.

As Bernstein and Crowley (2008) mentioned in their orig-
inal study, at least 2 million early generation robotic vacuum 
cleaners so-called ‘Roomba’ were sold to households in 
2008 (including homes of two children who participated in 
their study). Therefore, in light of hundreds of millions of 
DVAs populating childhood environments across the globe 
in the early 2020s, the overdue question is to what extent 
these state-of-the-art manifestations of intelligently behav-
ing technologies could have nurtured what Bernstein and 
Crowley (2008) originally found. This was our motivational 
starting point for the current study, and we addressed this 
question for a sample of children born a decade later than 
those in Bernstein and Crowley’s (2008) study—and who 
grew up in even further technologized home and childhood 
environments, as exemplified by DVAs’ socio-technical 
omnipresence across the globe.2

In the following, we begin with a review of research on 
children’s ontological understandings of life and technology 
and recent research on DVAs’ presence in today’s home and 
childhood environments.

2  Alexa, are you alive? Children’s 
ontological conceptualizations of life 
and technology

As Westall and Brack (2018) note, “there [are] as many 
definitions of life as there are people trying to define it” 
(p.3). Yet, even without scientists agreeing on what exactly 
life is, people have an intuitive understanding of what it 
means (Zimmer 2021), and for any given entity, one would 

1 By ‘real-world exposure’ we mean children’s exposure within their 
own home and childhood environments, which contrasts with labo-
ratory environments used in experimental studies (see Seaborn et al. 
2021).

2 This is not to say that DVAs are the only socio-technical phenom-
enon which have affected home and childhood environment over the 
last decades (e.g., smartphones, tablets, smart watches, robots etc.). 
However, as we have discussed elsewhere in depth (e.g., Festerling 
2020; Festerling and Siraj 2020, 2021), DVAs constitute a relevant 
research case in their own right and are therefore the focal point of 
this study.
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expect this intuitive judgement (living vs. non-living) to be 
consistent with other ontological qualities used to concep-
tualize the same entity (Gelman 1988). However, an array 
of research has shown how children systematically tend to 
use certain life-like qualities to conceptualize technologi-
cal entities while refraining from using other life-like qual-
ities (e.g., Beran et al. 2011; Bernstein and Crowley 2008; 
Hughes et al. 1987; Jipson and Gelman 2007; Kahn et al. 
2006, 2012; Melson et al. 2005; Okita and Schwartz 2006; 
Saylor et al. 2010; Scaife and Van Duuren 1995). This is 
in line with recent experimental research showing how 
children systematically place a robot somewhere between 
humans and computers, even after children are taught the 
ontological ‘truth’ about the robot’s lack of human psy-
chological capacities as part of the experimental condition 
(van Straten et al. 2020), or Xu and Warschauer’s (2020) 
exploratory research on children’s tendency to attribute 
both animate and inanimate properties to DVAs.

One interpretation of such findings is that children’s 
seemingly ‘contradictory’ understandings of technology 
should eventually converge to an a priori definable and 
metaphysically ‘true’ end-state as they grow older and learn 
the ‘truth’ about technology—an end-state, in which, for 
example, a programmable technological entity cannot share 
substantial psychological similarities with organically liv-
ing entities, such as humans (e.g., van Straten et al. 2020). 
An alternative interpretation of such findings—in line with 
NOCH—is that children’s ‘contradictory’ understandings of 
technology reflect unique and developmentally stable pat-
terns, therefore prefiguring future stances towards technol-
ogy (e.g., Severson and Carlson 2010; Turkle, 1984/2005, 
Turkle 2005). In other words, there may be no a priori defin-
able and metaphysically ‘true’ end-state for how one should 
conceptualize technology vis-à-vis organically living enti-
ties, and no developmentally inferior or superior way of 
doing so (Festerling and Siraj 2021).

But exposure to technology could prompt children to 
develop more nuanced understandings of prototypical enti-
ties in their environments, such as the ontological differences 
between technological entities, on the one hand, and organi-
cally living entities, on the other hand. Such nuances can 
already be found in in the empirical literature on children’s 
engagements with technology. For example, some children 
in Turkle’s (1984/2005, 2017) ethnographic studies provided 
well-argued reasons why the programmable nature of tech-
nological entities would make them more reliable, consistent 
and trustworthy than humans.

When it comes to DVAs, exploratory qualitative findings 
by Festerling and Siraj (2020) on children’s open engage-
ments with DVAs suggest children seem to appreciate the 
instant social gratification and excitement they experience 
with DVAs (see also Oranç and Ruggeri 2021), and they 
also associate DVAs with relative ontological strengths. For 

example, children systematically conceptualized DVAs to 
have higher accuracy levels and faster response times for 
knowledge-related domains of intelligence (e.g., provision 
of facts) and explained their conceptualization patterns by 
DVAs’ connectedness to the internet and their programma-
ble nature (Festerling and Siraj 2020). This is in line with 
other empirical findings in the literature on children’s differ-
entiated perceptions of computers as data-based knowledge 
sources (e.g., Rücker and Pinkwart 2016; Wang et al. 2019), 
or how first-hand experience in building and programming 
robots can yield more nuanced ontological conceptualization 
patterns (e.g., Gaudiello et al. 2015). Furthermore, Oranç 
and Küntay (2020) found even when children think a robot is 
intelligent enough to answer questions related to mechanical 
or electronic topics, for biological and psychological ques-
tions (e.g., ‘Why do humans sleep?’, ‘Why do people help 
each other?’), children still prefer humans as knowledge 
sources. Similarly, Festerling and Siraj (2020) found children 
associate other domains of intelligence with humans (e.g., 
conversational comprehension, common sense, creativity), 
which is further in line with Xu et al. (2021) experimental 
findings on how children seem to elevate the intelligibility 
of their speech according to DVAs’ perceived conversational 
weaknesses. Lastly, Yip et al. (2019) found although chil-
dren expect DVAs to make them laugh in response to certain 
commands (e.g., commands to make farting noises), DVAs 
which would have the psychological ability to laugh them-
selves were thought of as being utterly disturbing.

Taken together, these empirically observable nuances in 
children’s conceptualizations of technological entities sug-
gest children can have very nuanced understandings and 
expectations regarding the ontological nature of technology. 
But what kind of ontological qualities should be considered 
when studying children’s conceptualization patterns across 
a diverse range of prototypical entities? According to Stern-
berg et al. (1981), humans’ implicit understandings of ‘intel-
ligence’ are related to cognitive domains (e.g., task-oriented 
problem solving, possession of knowledge, using language 
and speech) as well as non-cognitive domains (e.g., being 
sensitive with others, behaving politely, taking responsibil-
ity). This is in line with Herrmann et al. (2007) evolutionary 
account of intelligence, suggesting that instead of assuming 
there is a model of ‘general intelligence’ in nature, species 
differ in their combined mastery of cognition (e.g., spatial 
memory, discrimination of quantities, understanding cau-
sality) and social cognition (e.g., recognition of intentions, 
possession of attentional states). Therefore, and in line with 
Bernstein and Crowley (2008), this study refers to ontologi-
cal qualities generally related to cognition as ‘intelligence’, 
and ontological qualities generally related to social cogni-
tion as ‘psychology’. These two ontological dimensions are 
complemented with a third ontological dimension referred 
to as ‘biology’, which stands for ontological qualities related 
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to entities’ organic aliveness (e.g., metabolism, mortality, 
growth).

In sum, for operational purposes in the context of this 
study, the above-mentioned ontological dimensions (biol-
ogy, intelligence, psychology) define the concept of ‘life’ as 
an open ‘ontological space’ in which entities can be placed 
anywhere alongside other entities depending on how differ-
ent ontological qualities within these dimensions are used to 
characterize them. Importantly, this is not meant to be a con-
clusive definition of the concept of ‘life’—only a practical 
way of capturing different understandings and applications 
of it in the context of this study.

3  Alexa, how have you changed our 
lives? An account of children’s exposure 
to DVAs in today’s home and childhood 
environments

The earliest sphere of human development, the family home, 
sets the first primary stage for children to develop conceptual 
understandings of their increasingly technologized environ-
ments (Papert 1980), before their horizons begin to widen 
during middle childhood when they enter other social envi-
ronments such as pre-schools, primary schools, neighbor-
hood environments or other family homes (Bronfenbrenner 
and Morris 2006; Huston and Ripke 2006). Over the last 
decade, commercial DVAs have become a ubiquitous tech-
nology in these broader home and childhood environments. 
As voice-enabled dual-purpose devices, DVAs motivate user 
engagements through the (1) usefulness of utilitarian func-
tionalities (e.g. access to streaming services, control of smart 
home applications, functionalities related to communication 
and productivity, online shopping, information search), and 
(2) the enjoyment of hedonic functionalities (e.g. interactive 
games, basic conversational capabilities, pre-programmed 
personalities Moussawi et al. 2020; Wu and Lu 2013). In 
the growing body of research investigating how families and 
their children engage with DVAs in everyday life, utilitarian 
functionalities often dominate empirical findings, such as 
streaming media content (e.g. music, audiobooks, podcasts, 
news), information search (e.g. general knowledge seeking, 
weather forecasts, cooking recipes), seeking daily practi-
cal assistance (e.g. setting alarms, setting ambient sounds 
before going to bed, setting routines), or controlling smart 
home devices (e.g. lights, thermostats; Ammari et al. 2019; 
Festerling 2019; Garg and Sengupta 2020; Lopatovska and 
Williams 2018; Lovato et al. 2019; Porcheron et al. 2018; 
Sciuto et al. 2018). Despite drops in average usage intensi-
ties often occurring after an initial period of excitement and 
experimentation, longitudinal insights also show how some 
families establish very stable usage habits with little varia-
tion in intensity over time (Garg and Sengupta 2020; Sciuto 

et al. 2018). This is not surprising, given DVAs are often 
placed in the middle of daily family life, both spatially and 
socially. For example, popular locations for DVAs within 
households include living rooms, kitchens or dining rooms 
(Ammari et al. 2019). Therefore, it is also not surprising 
that semi-naturalistic observations of daily family life have 
revealed how DVAs become “embedded in the life of the 
home” (Porcheron et al. 2018, p.9, emphasis in original), for 
example by serving as a means for new family rituals and 
bonding activities, or as a source of competition and rivalry 
in more stressed situations (Beirl et al. 2019). Hence, and 
in contrast to other modern technologies which are often 
blamed to isolate users (e.g., smartphones), DVAs’ commu-
nally accessible voice interfaces have been found to enhance 
social harmony in families, similar to the effect of a new pet 
(Lee et al. 2020). In addition, voice-only communication 
has previously been found to enhance psychological con-
nections (e.g., empathetic accuracy) between human engage-
ment partners (Kraus 2017), which may similarly apply to 
voice-only communication with technological entities (e.g., 
DVAs).

In summary, DVAs are a means to an end as well as an 
end in themselves, because they either serve as interfaces 
which allow families and their children to access function-
alities which would also be accessible on other devices, or 
they serve as independent social engagement partners in 
their own right, usually placed in the middle of daily family 
life, both spatially and socially. Compared to many other 
technologies which characterize today’s home and child-
hood environments, this is what makes DVAs in interesting 
empirical case for an extension of Bernstein and Crowley’s 
(2008) original study. Importantly, especially due to the 
different age ranges under investigation in both studies and 
age-related developmental differences, we understand our 
study as an extension rather than a replication of Bernstein 
and Crowley (2008). Therefore, we also did not expect our 
results to be identical to the original study. This issue is 
discussed in more detail in the context of limitations and 
directions for future research.

4  Research questions

From the above discussion, the following two main research 
questions were posed:

(1) What general patterns emerge for children’s ontological 
conceptualizations of contemporary prototypical enti-
ties?

(2) How are these ontological conceptualization patterns 
associated with children’s individual exposure to DVAs 
in their home and childhood environments?
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In our attempt to address these main research questions 
empirically, we also explored the role of additional control 
variables in the context of DVA-exposure and ontological 
conceptualization patterns, such as children’s technologi-
cal affinity and basic demographic characteristics (e.g., age, 
gender, parental education). These supplementary investiga-
tions are discussed alongside the main focus of our study.

5  Methodology and research design

The study applied a correlational research design based on a 
cross-sectional sampling procedure and naturally occurring 
variation in children’s environmental DVA-exposure and 
ontological conceptualization patterns.

This study focused on children in the midst of their mid-
dle childhood (7–11 years). The reason was twofold. First, 
at the upper limit of the age range, children in this study 
were supposed to be young enough—from today’s perspec-
tive (i.e., as of the year 2020/2021)—to be part of human-
kind’s first ‘DVA-cohort’ (referring to the first cohort who 
grew up in a world populated with DVAs). Given the first 
commercial DVAs were released between 2011 and 2013 
(Mutchler 2017), this corresponds to an upper limit of 
11 years, because 11-year-old children in 2020/2021 were 
born right before DVAs’ initial commercial breakthrough. 
Second, cohort effects are interesting insofar as they reflect 
potentially persistent and developmentally stable patterns 
of human development within a particular cohort. Or, in 
the words of Turkle (1984/2005), “instead of thinking in 
terms of adult ideas ‘filtering down’ to children, it makes 
more sense to think of children’s resolutions [of technol-
ogy] prefiguring new positions for the computer culture to 
come” (p.59). Therefore, the lower limit of the age range was 
7 years, which developmentally corresponds to the mature 
beginning of middle childhood and children’s emerging 
bridges to adolescence and adulthood (Huston and Ripke 
2006).

Upon ethical approval by the institutional review board 
and small-scale piloting of the data collection methods, par-
ent–child dyads from the United States (US) were recruited 
using the crowdsourcing platform ‘Amazon Mechanical 
Turk’ (MTurk). Parent–child dyads completed a combined 
parent–child survey (i.e., survey part A completed by the 
parent and survey part B completed by the child).3 Although 
MTurk has become a popular data collection platform in 
social science research due to its effectiveness (e.g., data 
quality in terms of reliability and validity) and efficiency 

(e.g., resource expenditures per respondent; Buhrmester 
et al. 2011), use cases in developmental and educational 
research are still rare. A few studies have used MTurk to 
collect survey data from parents (e.g., Schneider et  al. 
2015; Sweeny et al. 2015), including surveys with families 
using DVAs (e.g., Ammari et al. 2019; Richards and Dig-
num 2019). But, to the best of our knowledge, there is only 
one study which has used MTurk to collect data from par-
ent–child dyads (Tran et al. 2017). Facing various COVID-
19 related restrictions and uncertainties for traditional means 
of data collection in developmental and educational research 
(e.g., school-based recruitment) at the time of the data col-
lection, the decision was made to further probe the feasibil-
ity of MTurk for parent–child surveys as part of this study. 
As a consequence of this decision, our study became lim-
ited in the sense that MTurk samples in the US cannot be 
assumed to be representative of the general US population 
(Difallah et al. 2018), although it has also been suggested 
that most demographic deviations become negligible once 
basic demographic control variables (e.g., age, gender, edu-
cation, ethnicity) are taken into account (e.g., Levay et al. 
2016).

To address recent criticisms regarding low remuneration 
levels on MTurk (e.g., Hara et al. 2018; Samuel 2018), the 
remuneration for this study corresponded to an hourly wage 
of $10/h. To also disincentivize the inclusion of children for 
financial reasons, the base of the remuneration was limited 
to the pre-calculated average time parents were expected 
to spend on their part of the survey (∼14 min), yielding 
a total remuneration of $2.3 per valid response. To iden-
tify valid responses, five authenticity screening measures 
were applied: (1) minimum overall survey response time of 
12 min (20th percentile cut-off value), (2) minimum average 
time of 8.5 s spent on each item of the ontological concep-
tualization task (20th percentile cut-off value), (3) response 
consistency of children’s age across part A and B of the 
survey, (4) response consistency of children’s gender across 
part A and B of the survey, and (5) a correctly solved atten-
tion measure (correctly solving a simple additive equation). 
To ensure high data quality, responses were only included 
in the subsequent analysis if none of these measures were 
violated. Arguably, the remaining uncertainty about the data 
quality (e.g., someone authentically pretending to be both a 
parent and a child by submitting a response which passes 
all five authenticity screening measures) is inherent to the 
nature and, therefore, the limitations of anonymous online 
data collection methods, in general.

In total, 280 responses were collected, which corresponds 
to the maximum sample size given the fixed resource con-
straints of this study. After the authenticity screening, 137 
responses were excluded. Although this may seem like a 
high exclusion rate, it is in line with the exclusion rates 
found in previous studies using MTurk to collect data from 

3 Parents were instructed that they may stay in the same room while 
their child completes part B of the survey, but that they must allow 
their child to respond freely to the questions without interfering or 
‘correcting’ him/her.
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parent–child dyads (see Tran et al. 2017). Of the remaining 
143 parent–child dyads included in the subsequent analysis 
(M = 8.36 years, SD = 1.22), 40 children were 7 years old, 
51 were 8 years old, 23 were 9 years old, 19 were 10 years 
old and 10 were 11 years old. In total, 55% of the children 
were boys (n = 78) and 46% girls (n = 65), while 54% of 
parental respondents were mothers (n = 77) and 46% were 
fathers (n = 66). Most parental respondents reported to have 
an undergraduate (n = 70) or postgraduate (n = 47) college 
degree. Furthermore, 90% of parents (n = 129) reported that 
English was the only language spoken at home, while 10% 
of parents (n = 14) reported there was at least one additional 
language spoken at home, including Spanish (n = 9), French 
(n = 6) and Mandarin (n = 4) (see online supplementary 
materials for further details).

5.1  Data collection methods and measures

There were two empirical constructs of main interest in this 
study: children’s ontological conceptualizations of proto-
typical entities (dependent variable) and children’s DVA 
exposure (independent variable). Both are discussed in the 
following.

5.1.1  DVA‑exposure

Similar to Bernstein and Crowley (2008), children’s DVA-
exposure was measured using a point-based system counting 
different technology-related experiences, including primary 
engagements with DVAs (1 point + 1 point if DVAs were 
used regularly by the child, e.g., several times per week), 
general presence of DVAs at home (1 point + 1 point if 
DVAs were used on more than 1 device + 1 point if a DVA 
was installed in child’s room), presence of DVAs within 
the child’s closer circle of family and friends (1 point), and 
familiarity with DVAs through media (1 point). Importantly, 
due to the diverse hardware across commercial DVA-ecosys-
tems (e.g., smart speakers, smart TVs, smartphones, smart 
home appliances, wearables, car entertainment systems), 
equating DVAs with smart speakers would mean to mis-
conceive the unique nature of how DVAs enter into today’s 
home and childhood environments (Festerling and Siraj 
2021). For this reason, our empirical investigation did not 
narrow ‘DVA-exposure’ to one kind of hardware (e.g., smart 
speakers).

The complete set of these DVA-exposure items was 
administered to parents (survey part A) and a shortened set 
of DVA-exposure items was administered to children (survey 
part B) as a control. With this point-based system, exposure 
scores were computed for each child ranging from 0 to 7 
(see Appendix Fig. 3). Since DVA-exposure scores based 
on parental responses were strongly correlated with DVA-
exposure scores based on children’s responses, r(138) = 0.73, 

p < 0.01, we only used parental DVA-exposure scores in the 
analysis.

5.1.2  Ontological conceptualization patterns

Children’s ontological conceptualization patterns were 
measured based on an adjusted version of Bernstein and 
Crowley’s (2008) original conceptualization task. For enti-
ties (see Fig. 1), the following adjustments were made: (1) 
all entities were visually presented in a plural rather than 
singular form (e.g., picture of several humans vs. picture of 
a single human) to probe more abstract conceptualizations of 
the entities presented; (2) two ‘old-fashioned’ technological 
entities (calculator and rover) from the original study were 
replaced by more modern entities (smartphones and drones); 
and (3) DVAs were included as a ninth entity.

Each ontological dimension (biology, intelligence, psy-
chology) was measured using five forced-choice items 
(0 = ontological quality not assigned to entity; 1 = ontologi-
cal quality assigned to entity).4 Compared to Bernstein and 
Crowley’s (2008) original conceptualization task, the fol-
lowing adjustments were made: (1) for biology, the original 

Humans Plants Dolls

Voice assistants* Smartphones* Humanoid Robots

Computers Cats Drones*

Fig. 1  Entities for extended forced-choice conceptualization task. 
Notes. Figure shows pictures of entities used in the conceptualiza-
tion task. The task uses nine different entities: three organically living 
entities (humans, cats, plants), five technological entities (humanoid 
robots, drones, DVAs, desktop computer, smartphones) and one other 
entity (dolls). Marked items (*) were either added (voice assistants) 
or adjusted (calculators → smartphones; rovers → drones) compared 
to Bernstein and Crowley’s (2008) original study

4 For the sake of completeness, our adjusted version of Bernstein and 
Crowley's (2008) original conceptualization task included one con-
trol item on entities’ ontological artificiality (‘Tick the ones that were 
made in factory’). However, the item was not used in the exploratory 
course of our data analysis and is therefore omitted from the discus-
sion.
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item on reproduction was replaced by an item on mortality; 
(2) for psychology, three items on empathy, moral value and 
moral consciousness were added to ensure equal item cover-
age for all three ontological dimensions; (3) for intelligence, 
the original item on situational awareness—already found 
to be problematic by Bernstein and Crowley (2008)—was 
replaced by a general item on ‘intelligence’, and the item 
on remembering was concretized by adding speech / lan-
guage comprehension to also consider this important aspect 
of intelligence as part of the ontological dimension (see 
Table 1).

For each item (e.g., ‘Tick the ones that are alive’), 
all entities were presented in a 3 × 3 matrix with cor-
responding tick boxes below each entity. The order of 
forced-choice items was randomized for each child, while 
the order of entities within each matrix remained constant 
throughout each questionnaire to facilitate response selec-
tion for children. Although a constant order of entities 
throughout an individual questionnaire could prompt chil-
dren to routinize their response behaviors (thereby poten-
tially becoming inattentive ‘fast-clickers’ selecting the 
same entities for all ontological conceptualization items), 
we considered this risk negligible due to the minimum 
average time we specified for ontological conceptualiza-
tion items as part of the authenticity screening process 
(see above).

5.1.3  Technological affinity and other control variables

In addition to children’s DVA-exposure, a child-adjusted ver-
sion of Karrer et al. (2009) ‘technological affinity question-
naire’ (TAQ) was used to measure children’s self-reported 
technological affinity, which is defined as a multi-dimen-
sional personality trait expressing one’s general attitude 
towards and familiarity with technology.

Since the introduction of personal computers in the 1970s 
and 1980s, personality-related constructs on people’s atti-
tudes towards technology (e.g., ‘computer attitudes’, ‘com-
puter anxiety’, ‘computer aversion’, ‘computer self-efficacy’, 
‘technology readiness’, see Attig et al. 2017 for an over-
view) have been found to be associated with various other 
characteristics in adults (e.g., Anthony et al. 2000; dos San-
tos and Santana 2018; Horstmann et al. 2018; Korukonda 
2005, 2007; Nitsch and Glassen 2015; Powell 2013; Saleem 
et al. 2011) as well as children (e.g., Baloğlu and Çevik 
2008; Chou 2001; Cooper 2006; King et al. 2002; Rees and 
Noyes 2007; Todman and Lawrenson 1992; Todman and 
Monaghan 1994). Therefore, the main reason for including 
the TAQ was to control for parallel associations between 
children’s technological affinity and their DVA-exposure 
(e.g., higher technological affinity associated with higher 
DVA-exposure), or between children’s technological affinity 
and their ontological perceptions of technology (e.g., more 

Table 1  Items for forced-choice conceptualization task

Table 1 shows the extension of Bernstein and Crowley’s (2008) original forced-choice conceptualization task according to three different attrib-
ute dimensions (i.e. [I] Biology, [II] Intelligence, [III] Psychology). In total, 15 different forced-choice items are used, each one referring to a 
separate ontological attribute within its dimension. Marked items (*) were either added (items 5, 11, 13, 14, 15) or adjusted in their wording 
(item 7: ‘[…] that can add numbers together’ → ‘[…] that can calculate something’). For the sake of completeness, a  16th item on artificiality 
(‘Tick the ones that were made in factory’) from Bernstein and Crowley’s (2008) original conceptualization task was included in the survey but 
not used in the exploratory course of our data analysis. Therefore, it is not included in the table

Attribute dimension Ontological attribute No Item

(I) Biology (animate) Aliveness 1 Tick the ones that are alive
Growth 2 Tick the ones that can grow (what we mean is, if we looked at these things a long time from 

now, they would be bigger)
Metabolism 3 Tick the ones that need food or water
Movement 4 Tick the ones that can move by themselves
Mortality 5 Tick the ones that die when they are old*

(II) Intelligence Calculation 6 Tick the ones that can calculate something*
Learning 7 Tick the ones that can learn how to do new things
Planning 8 Tick the ones that could figure out themselves how to do something if you told them what 

to do
Remembering 9 Tick the ones that can remember things (what we mean is, if you told them something 

today, they could remember it tomorrow)*
Intelligence/Smartness 10 Tick the ones that can be intelligent or smart*

(III) Psychology Emotionality 11 Tick the ones that can feel happy or sad
Empathy 12 Tick the ones that could sense how you feel*
Moral value 13 Tick the ones that could feel pain if you hit them*
Moral consciousness 14 Tick the ones that would feel bad if they knew they did something wrong*
Volition 15 Tick the ones that could make a decision if you gave them a choice
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positive attitudes towards technology associated with more 
socially salient perceptions of technology; see Beran et al. 
2011; Etzrodt and Engesser 2021). In line with Karrer et al. 
(2009) original TAQ, the child-adjusted version differenti-
ates four dimensions of technological affinity (each meas-
ured with a five-item sub-scale): positive attitude towards 
technology, negative attitude towards technology, excitement 
about technology and technological competency. Prior to 
the main analysis, we examined the structural validity of the 
child-adjusted TAQ using the exploratory structural equation 
modeling (ESEM) framework by Asparouhov and Muthén 
(2009). In total, seven items were meaningfully re-assigned 
before the main analysis, and, after the re-assignment, all 
revised sub-scales had acceptable reliability estimates of 
internal consistency (positive attitude α = 0.78; negative 
attitude α = 0.87; excitement α = 0.81; competency α = 0.73; 
total TAQ α = 0.78) as indicated by the ordinal coefficient 
alpha (Zumbo et al. 2007; Zumbo and Kroc 2019; see online 
supplementary materials for further details on structural 
validity and re-assignment of items).

Together with other survey items (e.g., children’s and 
parents’ demographic characteristics), the above-discussed 
variables formed the basis of the parent–child survey. The 
survey was programmed using the online platform Qual-
trics. Prior to the study, the survey was iteratively piloted 
and revised with a small number of individuals. Main revi-
sions included the improvement of item wordings in the age-
adjusted TAQ and the inclusion of text-to-speech audio files 
for longer descriptive text paragraphs in the survey.

6  Results

The main analysis was conducted using IBM SPSS Sta-
tistics 27.0. Prior to the main analysis, the child-adjusted 
TAQ was examined using Mplus, version 8.5 (Muthén and 
Muthén 2017). Reliability estimates of internal consistency, 
as indicated by the ordinal coefficient alpha (Zumbo et al. 
2007; Zumbo and Kroc 2019), were calculated using R (R 
Core Team 2022) and the ‘semTools’ package (Jorgensen 
et al. 2022). This section summarizes empirical results (see 
online supplementary materials for SPSS syntax and Mplus 
syntax).

6.1  Children’s general ontological 
conceptualization patterns

Children’s responses to forced-choice items were used to 
compute biology, intelligence and psychology scores for 
each entity by adding up how many times a child selected 
an entity across all five biology, intelligence and psychology 
items (e.g., if a child selected ‘humans’ on 4 out of 5 biology 
items, the ‘human biology score’ for this child was equal 

to 4). Therefore, all scores ranging from 0 to 5 and were 
treated as continuous variables in the subsequent analysis 
(see Table 2 for full overview).

Correlation patterns of ontological scores within entities 
suggest children’s conceptualizations of an entity’s biol-
ogy and psychology were more closely related compared to 
biology and intelligence, because correlations of the former 
score pair were consistently stronger across all entities com-
pared to the latter score pair (see right column in Table 2). 
Furthermore, children conceptualized organically living 
entities more similarly in terms of psychology and intel-
ligence compared to technological entities [see score corre-
lations (II) × (III) in Table 2], because score correlations of 
the former entities (score correlation range: 0.47 < r < 0.63) 
were consistently stronger compared to the latter ones (score 
correlation range: 0.17 < r < 0.47).

Repeated measure ANOVA models were used to exam-
ine whether children systematically differentiated between 
biology, intelligence and psychology (within-subjects fac-
tor) when conceptualizing entities. Supplementary mixed 
repeated measure ANOVA models (3 × 2) were used to 
explore potential age and gender differences.5 For all enti-
ties, there were significant within-subjects main effects for 
children’s average ontological conceptualization levels (see 
Table 2), and planned within-subjects contrasts confirmed 
there were significant differences between all three ontologi-
cal dimensions for all entities (with humans’ biology and 
psychology scores, and dolls’ biology and intelligence scores 
being the only exceptions due to non-significant differences). 
This suggests children systematically differentiated between 
biology, intelligence and psychology when conceptual-
izing technological entities. For drones, there was also a 
significant between-subjects main effect, F(1, 141) = 8.65, 
p < 0.01, and an interaction effect for children’s age, F(1.62, 
227.84) = 7.25, p < 0.01, as older children (9–11 years) 
conceptualized the entity to have more intelligence com-
pared to younger children (7–8 years).6 For DVAs, there 
was a significant interaction effect for children’s age, F(1.57, 
221.44) = 6.95, p < 0.01, with older children conceptualizing 
the entity to have more intelligence compared to younger 
children. For all entities, there were no significant between-
subjects or interaction effects with children’s gender. We 

5 For all entities, data failed to meet the sphericity assumption as 
indicated by Mauchly’s test of sphericity, so the Greenhouse–Geisser 
correction was applied for all models.
6 This was also reflected in correlation patterns, where children’s 
age was significantly but weakly correlated with drones’ intelligence 
scores, r(141) = .26, p < .01. Other significant but weak correla-
tions with children’s age were found for plants’ intelligence scores, 
r(141) = .22, p < .01, and dolls’ biology scores, r(141) = .27, p < .01. 
For all other 24 ontological scores across the 9 entities, there were no 
significant correlations with children’s age.
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Table 2  Children’s ontological conceptualization patterns per entity

Entity (I) Biology (II) Intelligence (III) Psychology Correlations and 
ANOVA

(I) × (II) = 0.68**

(I) × (III) = 0.70**
(II) × (III) = 0.60**

Humans M = 3.73 (1.58) α = 0.92 M = 2.91 (1.82) α = 0.91 M = 3.83 (1.44) α = 0.87 F(1.86, 264.21) = 39.51, 
p < 0.01

(I) × (II) = 0.43**

(I) × (III) = 0.61**
(II) × (III) = 0.63**

Cats M = 3.32 (1.84) α = 0.94 M = 1.07 (1.35) α = 0.85 M = 2.48 (1.59) α = 0.84 F(1.78, 
253.04) = 155.49, 
p < 0.01

(I) × (II) = 0.12*

(I) × (III) = 0.23**
(II) × (III): 

r(141) = 0.47**
Plants M = 2.55(1.23) α = 0.63 M = 0.31 (0.84) α = 0.93 M = 0.52 (0.85) α = 0.68 F(1.60, 

227.49) = 293.17, 
p < 0.01

(I) × (II) = 0.18*

(I) × (III) = 0.44**
(II) × (III) = 0.37**

DVAs M = 0.28 (0.65) α = 0.79 M = 1.87(1.62) α = 0.82 M = 0.78 (1.06) α = 0.80 F(1.55, 220.00) = 94.17, 
p < 0.01

(I) × (II) = 0.22**

(I) × (III) = 0.39**
(II) × (III) = 0.28**

Smartphones M = 0.32 (0.66) α = 0.73 M = 2.48 (1.47) α = 0.72 M = 0.62 (0.96) α = 0.79 F(1.58, 
224.01) = 219.01, 
p < 0.01

(I) × (II) = 0.25**

(I) × (III) = 0.44**
(II) × (III) = 0.47**

Robots M = 0.52 (0.80) α = 0.80 M = 2.01 (1.50) α = 0.75 M = 0.85 (1.15) α = 0.82 F(1.76, 249.61) = 97.60, 
p < 0.01

(I) × (II) = 0.02

(I) × (III) = 0.32**
(II) × (III) = 0.30**
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also explored potential relationships between ontological 
scores and parents’ education and age (each measured with 
six ordinal categories) using Spearman’s rank correlation 
coefficient ρ, and only three of the 54 correlations were sig-
nificant but also weak (ρ < 0.3) and without any meaningful 
pattern.

Lastly, children’s ontological conceptualizations of tech-
nological entities were not primarily driven by anthropomor-
phic appearances: for humanoid robots—the only visually 
anthropomorphized technology used in the study—chil-
dren’s average conceptualizations of intelligence (M = 2.01, 
SD = 1.50) and psychology (M = 0.85, SD = 1.15) did 
not significantly differ from the level of the closest non-
anthropomorphized technological entity in each ontological 
dimension (computers for intelligence, M = 2.11, SD = 1.45; 
DVAs for psychology, M = 0.78, SD = 1.06). For biology, 
there was a significant difference between humanoid robots 
(M = 0.52, SD = 0.80) and drones (M = 0.40, SD = 0.65), 
t(142) = 2.25, p < 0.05, but, at closer examination, this differ-
ence was only significant for younger children, t(90) = 2.61, 
p < 0.05, and not for older children t(51) = 0.39, p > 0.05. In 
addition, humanoid robots’ biology, intelligence and psy-
chology scores were moderately (0.40 < r < 0.50) correlated 
with respective scores of all other technological entities (see 
Appendix Table 6).

6.2  Exploring associations between children’s 
DVA‑exposure and ontological 
conceptualization patterns

For each child, a continuous DVA-exposure score was com-
puted (i.e., sum of all exposure points, ranging from 0 to 
7) based on parental responses from part A of the survey. 
Following Bernstein and Crowley (2008), a median split of 
exposure scores was used to create two sub-groups: chil-
dren with DVA-exposure scores below the median value of 
5 (i.e., score range 0–5) were assigned to the lower exposure 
group (n = 87), and children above the median value (i.e., 
score range 6–7) were assigned to the higher exposure group 
(n = 56).Since a total number of 39 children had a DVA-
exposure score of 5, which is equal to the median value, 
the median split did not result in identical group sizes. To 
make the analysis as exhaustive as possible, we used both 
median split group comparisons as well as DVA-exposure 
scores if possible.

6.2.1  Exploring DVA‑exposure sub‑groups and associations 
with technological affinity

In the higher DVA-exposure group (M = 8.38  years, 
SD = 1.14 years), 55% of the children were boys (n = 31) and 

Table 2  (continued)

Entity (I) Biology (II) Intelligence (III) Psychology Correlations and 
ANOVA

Computers M = 0.20 (0.51) α = 0.73 M = 2.11 (1.45) α = 0.74 M = 0.46 (0.79) α = 0.75 F(1.42, 
203.10) = 183.59, 
p < 0.01

(I) × (II) = 0.11

(I) × (III) = 0.47**
(II) × (III) = 0.17*

Drones M = 0.40 (0.65) α = 0.69 M = 0.64 (0.97) α = 0.77 M = 0.28 (0.69) α = 0.83 F(1.58, 225.38) = 9.81, 
p < 0.01

(I) × (II) = 0.37**

(I) × (III) = 0.29**
(II) × (III) = 0.43**

Dolls M = 0.25 (0.67) α = 0.87 M = 0.22 (0.54) α = 0.75 M = 0.45 (0.81) α = 0.74 F(1.82, 257.90) = 6.99, 
p < 0.01

For each of the 9 entities and respective ontological scores (S), Table 2 shows the frequencies, mean values (M), standard deviations (in paren-
theses) and reliability estimates of internal consistency (α) as indicated by the ordinal coefficient alpha (Zumbo et al. 2007; Zumbo and Kroc 
2019). All scores range from S = 0 to S = 5. Right column shows Pearson correlations between (I) biology scores and (II) intelligence scores (first 
row), (I) biology scores and (III) psychology scores (second row), and (II) intelligence scores and (III) psychology scores (third row). *Indicates 
significant correlation coefficients at the 0.05 level (2-tailed). **Indicates significant correlation coefficients at the 0.01 level (2-tailed). ANOVA 
results refer to the within-subjects main effect of a repeated measure model with the three ontological scores as a within-subjects factor. For all 
entities, data failed to meet the sphericity assumption as indicated by Maulchy’s test of sphericity, so the Greenhouse–Geisser correction was 
applied for all models. Full sample (n = 143) was used for all statistics. No missing values in the sample
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45% girls (n = 25), and in the lower DVA-exposure group 
(M = 8.31 years, SD = 1.37), 54% of the children were boys 
(n = 47) and 46% girls (n = 40). A chi-square test revealed no 
significant relationship between gender and DVA-exposure 
group, χ2(1,143) = 0.02, p > 0.05, indicating that boys were 
not more likely than girls to be in the higher exposure group. 
According to 2 (DVA-exposure group) × 2 (gender) two-
way ANOVA results (equal variances assumed according 
to Levene’s test of equality of variances, F(3, 139) = 2.52, 
p > 0.05), children’s age did not significantly differ with 
respect to DVA-exposure groups, F(1, 139) = 0.27, p > 0.05, 
with respect to gender, F(1, 139) = 0.06, p > 0.05, and with 
respect to the interaction between DVA-exposure groups and 
gender, F(1, 139) = 3.71, p > 0.05 (see also Table 3 for mean 
level patterns). Furthermore, and in contrast to Bernstein and 
Crowley’s (2008) original study, exposure scores were also 
not correlated with age in the total sample, r(141) =  − 0.12, 
p > 0.05 (a moderate negative correlation with age was only 
found for boys, r(76) =  − 0.32, p < 0.01).

In the higher DVA-exposure group, most parents (71%) 
had either undergraduate (n = 24) or postgraduate (n = 16) 
college degrees, which was similar to the lower DVA-expo-
sure group in which 89% had either undergraduate (n = 46) 
or postgraduate (n = 31) college degrees. However, Spear-
man’s rank correlation coefficient ρ did show a significant 
but weak rank correlation between girls’ DVA-exposure and 
parental education levels, ρ(63) = 0.26, p < 0.05, suggesting 
that higher levels of parental education were positively asso-
ciated with the presence of DVAs in girls’ home and child-
hood environments. Furthermore, 54% of parental respond-
ents in the higher DVA-exposure group reported to be the 
child’s mother (n = 30), which is similar to the relative share 
of mothers in the lower exposure group (54%, n = 47) (see 
online supplementary materials for full overview of parental 
characteristics).

Based on the child-adjusted TAQ, an overall technologi-
cal affinity score was computed for each child (M = 2.45, 
SD = 0.49), as well as sub-scores for children’s positive atti-
tude (M = 3.05, SD = 0.66) towards technology, children’s 
reversely coded negative attitude (M = 1.63, SD = 0.94) 
towards technology, children’s excitement (M = 2.95, 

SD = 0.70) about technology, and their technological com-
petency (M = 2.87, SD = 0.77). In the total sample, chil-
dren’s overall technological affinity, r(141) = 0.21, p < 0.05, 
positive attitude, r(141) = 0.26, p < 0.01, and excitement, 
r(141) = 0.17, p < 0.05, were weakly correlated with DVA-
exposure scores, but, at closer examination, all three cor-
relations were only significant for boys (technological affin-
ity: r(76) = 0.29, p < 0.05; positive attitude: r(76) = 0.33, 
p < 0.01; excitement: r(76) = 0.25, p < 0.05). This is in 
line with t test results suggesting boys in the higher DVA-
exposure sub-group had significantly higher mean levels of 
overall technological affinity, t(76) = 3.25, p < 0.01, positive 
attitude, t(76) = 2.80, p < 0.01, and excitement, t(76) = 2.11, 
p < 0.05, while there were no significant differences between 
DVA-exposure sub-groups for girls.

In summary, children with lower and higher DVA-expo-
sure were mostly comparable regarding their technologi-
cal affinity and basic demographic characteristics, the only 
exception being a slight association between boys’ DVA-
exposure and technological affinity. Therefore, comparing 
children with different levels of DVA-exposure in their home 
and childhood environments can be considered an empirical 
comparison in its own right, rather than a spurious compari-
son of other underlying characteristics between respective 
families and their children. Based on this comparability, the 
remaining analysis focused on associations between chil-
dren’s DVA-exposure and ontological conceptualization 
patterns (while still controlling for technological affinity, 
demographic characteristics and further interactions among 
these variables).

6.2.2  DVA‑exposure, technological affinity, and ontological 
conceptualizations patterns

For the remaining analysis, biology, intelligence, and psy-
chology scores were averaged across organically living enti-
ties (humans, cats, plants) and technological entities (DVAs, 
smartphones, drones, computers, robots). In line with this 
study’s above-discussed theoretical framing, this allowed 
us to conduct a high-level comparison of children’s general 
ontological conceptualization patterns for two meaningfully 

Table 3  Children’s age 
(grouped by gender and DVA-
exposure)

Table 3 shows the mean values (M) of children’s age for different categories, respective standard deviations 
(SD) and the number of observations in each category (n). According to t tests, mean differences between 
higher and lower DVA-exposure were not significant for boys, girls and in the total sample. No missing 
values in the sample

Controls Total sample
(n = 143)

Higher DVA-exposure
(n = 56)

Lower DVA-exposure
(n = 87)

M n (SD) M n (SD) M n (SD)

Boys 8.37 78 (1.25) 8.06 31 (1.00) 8.57 47 (1.36)
Girls 8.34 65 (1.19) 8.52 25 (1.16) 8.23 40 (1.21)
Total 8.36 143 (1.22) 8.27 56 (1.09) 8.41 87 (1.30)
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different forms of being, namely life and technology. In other 
words, the reason for averaging ontological scores across 
organically living and technological entities was not of 
methodological but of theoretical nature.

For organically living entities, children’s ontological con-
ceptualization patterns were systematically associated with 
their technological affinity (see left half of Table 4): children 
with higher technological affinity tended to use more onto-
logical qualities when conceptualizing organically living 
entities, and this general tendency was strongly driven by 

the reversely coded negative attitude sub-scale, less by the 
positive attitude and excitement sub-scales, and not at all by 
children’s technological competency. The pattern was partly 
similar for technological entities, but only with respect to 
children’s use of intelligence-related ontological qualities 
(see right half of Table 4). In other words, especially chil-
dren who were less averse towards technology conceptual-
ized organically living entities to have significantly more 
biology, intelligence and psychology, and they also concep-
tualized technological entities to have more intelligence. 

Table 4  Correlation between DVA-exposure, technological affinity, and ontological scores

Left half of the table shows Pearson correlations between average ontological scores of organically living entities (humans, cats, plants) and 
children’s DVA-exposure scores, overall technological affinity, as well as the three sub-scales of technological affinity (positive attitude, nega-
tive attitude, excitement, competency). The right half of the table shows the same Pearson correlations for technological entities (DVAs, smart-
phones, drones, computers, robots). *Indicates significant correlation coefficients at the 0.05 level (2-tailed). **Indicates significant correlation 
coefficients at the 0.01 level (2-tailed). Full sample (n = 143) was used for all statistics. No missing values in the sample

Correlates Average organically living entities Average technological entities

Biology Intelligence Psychology Biology Intelligence Psychology

M = 3.20 (1.30) M = 1.43 (0.94) M = 2.28 (0.87) M = 0.34 (0.48) M = 1.82 (1.05) M = 0.60 (0.73)

DVA-exposure 0.10 0.06 0.07 0.04 0.08 0.17*
Technological affinity (overall) 0.45** 0.54** 0.44** 0.01 0.38** 0.06
Technological affinity (positive attitude) 0.21** 0.31** 0.23**  − 0.01 0.13 0.01
Technological affinity (negative atti-

tude)
0.50** 0.50** 0.48** 0.07 0.42** 0.08

Technological affinity (excitement) 0.13 0.26** 0.13  − 0.07 0.14 0.02
Technological affinity (competency)  − 0.07  − 0.03  − 0.07  − 0.10  − 0.04  − 0.01

Table 5  Summary of 
hierarchical regression models 
(average ontological scores)

Upper part of the table summarizes regression results for variables influencing children’s average attribu-
tions of biology, intelligence and psychology to organically living entities (humans, cats, plants). Lower 
part of the table summarizes results for technological entities (DVAs, smartphones, drones, computers, 
robots). Variable (I) refers to children’s DVA-exposure score, and variable (II) refers to children’s overall 
technological affinity. For all regression models, children’s gender and age were included as controls in 
the baseline model (results of baseline models not reported in the table; none of the baseline models were 
significant). R2 and ΔR2 refer to adjusted R2 values. Full sample (n = 143) was used for all regressions. No 
missing values in the sample. See Appendix Tables 7 and 8 for further details on regression results

Dependent variable Model R2 ΔR2 ΔF p

Average organically living entities
 Biology (I) DVA-exposure 0.00 0.00 1.62 0.21

(II)  + Technological affinity 0.19 0.19 33.20  < 0.01
 Intelligence (I) DVA-exposure 0.00 0.00 0.91 0.34

(II)  + Technological affinity 0.28 0.28 56.30  < 0.01
 Psychology (I) DVA-exposure 0.00 0.00 1.05 0.31

(II)  + Technological affinity 0.19 0.19 32.77  < 0.01
Average technological entities
 Biology (I) DVA-exposure 0.00 0.00 0.29 0.59

(II)  + Technological affinity 0.00 0.00 0.01 0.92
 Intelligence (I) DVA-exposure 0.01 0.01 1.60 0.21

(II)  + Technological affinity 0.15 0.14 21.96  < 0.01
 Psychology (I) DVA-exposure 0.03 0.03 4.92  < 0.05

(II)  + Technological affinity 0.03 0.00 0.05 0.87
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DVA-exposure shared a significant but weak correlation 
only with children’s psychology-related conceptualizations 
of technological entities, r(141) = 0.17, p < 0.05.

To examine these associations in more detail, we con-
ducted six hierarchical regression analyses. The first three 
models focused on average ontological scores of organically 
living entities as the dependent variables (see upper part of 
Table 5), while the last three models focused on average 
ontological scores of technological entities (see lower part of 
Table 5). Within each hierarchical regression, children’s (I) 
DVA-exposure, (II) technological affinity and an (III) inter-
action term between (I) and (II) were added stepwise into 
the model (none of the interaction terms were significant). 
For all regressions, children’s gender and age were included 
as controls in the baseline model, but none of the baseline 
models were significant (see Appendix Tables 7 and 8 for 
further details).

The regression results generally confirmed the previous 
pattern: for organically living entities, children’s technolog-
ical affinity explained significant proportions of the vari-
ance in biology (19%), intelligence (28%) and psychology 
(19%) scores, with neither DVA-exposure nor the interaction 
between both factors playing a significant role in any of the 
models. For technological entities, children’s technological 
affinity explained a significant proportion of the variance in 
intelligence scores (14%), while DVA-exposure explained a 
significant but small proportion of the variance in psychol-
ogy scores (3%).

In a supplementary series of hierarchical regression anal-
yses (results not reported here), we could confirm that, for 
organically living entities, the predictive effects of techno-
logical affinity were mostly driven by the positive attitude 
and negative attitude sub-scales, while for technological 
entities, the predictive effect was driven by the negative 
attitude sub-scale only. We also explored potential interac-
tion effects between children’s gender and age, on the one 
hand, and DVA-exposure and technological affinity, on the 
other hand, as well as interaction effects between parental 
education levels, on the one hand, and DVA-exposure and 
technological affinity, on the other hand. There were no sig-
nificant and meaningful patterns in any of the models.

6.2.3  Children’s ontological discriminations 
between technological and living entities

The above analysis focused on children’s average use of biol-
ogy, intelligence and psychology to conceptualize organi-
cally living entities, on the one hand, and technological 
entities, on the other hand. To compare how a child concep-
tually discriminated between these two groups of entities, 
we examined relative within-child differences in ontologi-
cal conceptualisation patterns—relative in comparison to 
average ontological conceptualisation patterns of children 

in the sample—and to what extent these were associated 
with DVA-exposure and technological affinity. In other 
words, in this last part of the analysis, the main focus was to 
examine whether some children (e.g. children with higher 
DVA-exposure) placed technological entities and organi-
cally living entities further away from each other (in terms of 
respective deviances from ‘the average child’s’ ontological 
conceptualisations) compared to other children (e.g. children 
with lower DVA-exposure).

To examine this, the following approach was taken: first, 
ontological average scores of organically living and tech-
nological entities were z-score standardised at the entity 
group level (e.g. z-score standardisation of the average 
biology score of organically living entities, z-score stand-
ardisation of the average biology score of technological 
entities etc.), therefore yielding six standardised scores 
with a common mean of zero, a common standard devia-
tion of one, but different underlying distributions.7 Sec-
ond, to measure how a child conceptually discriminated 
between organically living and technological entities based 
on his/her relative deviance from average ontological con-
ceptualisation patterns in the sample, absolute values of 
ontological score differences were computed for biology, 
intelligence and psychology (e.g. absolute value of the 
difference between the standardised average intelligence 
score of organically living entities and the standardised 
average intelligence score of technological entities).8 In 
other words, based on a child’s relative deviance from aver-
age ontological conceptualisation patterns in the sample, 
these difference scores reflected ‘how far apart’ a child 
placed technological entities and organically living entities 
in the common ontological space of biology, intelligence 
and psychology. In this sense, a child with a relatively 
higher difference score has placed technological entities 
and organically living entities further away from each other 
(in terms of respective deviances from ‘the average child’s’ 
ontological conceptualisations) compared to a child with a 
lower ontological difference score (see Appendix Table 9 
for an exemplary visualization).

7 We also repeated the entire analysis in this section with z-score 
standardisations at the entity level (e.g. z-score standardisation of the 
human intelligence score, DVA-intelligence score etc.) before calcu-
lating average scores and relative differences. However, the overall 
patterns of the results were not meaningfully different.
8 We used absolute values of relative ontological score differences 
rather than real numbers (with positive and negative values), because 
with this analysis, we wanted to examine the magnitude of children’s 
relative ontological discriminations, and not whether children con-
ceptualised technological entities to be more intelligent / biological 
/ psychological than organically living entities, or vice versa (as it 
would have been indicated by positive and negative values). Address-
ing the latter question would imply a direct ranking of entities which 
goes beyond our data.
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To analyze these difference scores, three types of repeated 
measures ANOVA/ANCOVA models were conducted. 
Repeated measures ANOVA/ANCOVA models were pre-
ferred over simple one-, two- or three-way models, because 
ontological scores were assumed to be nested in individuals 
(i.e., individuals’ overall ontological understanding of ‘life’). 
In other words, when it came to the question how children 
conceptually discriminated between both groups of entities 
(i.e., organically living and technological entities), repeated 
measures ANOVA/ANCOVA models applied to ontological 
difference scores allowed us to do both, analyze children’s 
ontological discrimination and consider the nested structure 
of the data.

First, a single repeated measures ANOVA was conducted, 
with the three difference scores as a within-subjects factor 
[see (I) in Fig. 2]. There was a significant within-subjects 
main effect, F(2, 284) = 8.86, p < 0.01, and planned within-
subjects contrasts showed significant differences between 

intelligence and psychology (with the intelligence difference 
score having the lowest mean value), but no significant dif-
ferences between psychology and biology. In other words, 
children’s relative deviances from the sample mean between 
organically living and technological entities were less strong 
with respect to intelligence (as indicated by lower mean 
value of the difference score) and stronger with respect to 
psychology as well as biology (as indicated by higher mean 
values of the difference scores).

Second, a mixed repeated measures ANOVA (3 × 2) was 
conducted, with the three difference scores as a within-
subjects factor, and children’s DVA-exposure as a binary 
between-subjects factor [see (II) in Fig. 2]. In line with pre-
vious results, the analysis revealed a significant within-sub-
jects main effect, F(2, 282) = 8.40, p < 0.01, but no signifi-
cant within-subjects effect for the interaction term between 
difference scores and DVA-exposure, F(2, 282) = 2.01, 
p > 0.05, and also no significant between-subjects effect for 

Fig. 2  Repeated measures 
ANOVA/ANCOVA for 
ontological score differences. 
Notes. Figures show estimated 
marginal means from a repeated 
measures ANOVA/ANCOVA 
with ontological score dif-
ferences between organically 
living entities (humans, cats, 
plants) and technological 
entities (DVAs, smartphones, 
drones, computers, robots) as 
within-subjects factors, and, for 
figure (II) and (III), DVA-expo-
sure as between-subjects factors 
(lower vs. higher DVA-expo-
sure). Each figure stands for a 
separate ANOVA/ANCOVA 
model. The error bars show 
95% confidence intervals of 
estimated marginal means. 
Average ontological scores of 
organically living and techno-
logical entities were z-score 
standardized at the group level 
before the analysis. In figure 
(III), the covariate (technologi-
cal affinity) is evaluated at the 
following value: M=2.45. Full 
sample (n=143) was used for all 
models. No missing values in 
the sample

(I) Single repeated 
measures ANOVA

(II) Mixed repeated 
measures ANOVA 
(3x2)

(III) Mixed repeated 
measures ANCOVA 
(3x2) with tech-
nological affinity
(covariate)
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DVA-exposure itself, F(1, 141) = 1.22, p > 0.05. At the main 
effect level, planned within-subjects contrasts showed signif-
icant differences between intelligence and psychology (with 
intelligence difference scores having the lowest mean value), 
but no significant differences between psychology and biol-
ogy. Since mean value differences between higher and lower 
DVA-exposure appeared to be particularly strong for psy-
chology, additional t tests were conducted. The results con-
firmed there were no significant differences in differences 
between DVA-exposure groups with respect to intelligence, 
t(141) =  − 0.33, p > 0.05, or biology, t(141) = 0.38, p > 0.05, 
but with respect to psychology, t(141) =  − 2.14, p < 0.05. 
In other words, for children with higher and lower DVA-
exposure, relative deviances from the sample mean between 
organically living and technological entities were not signifi-
cantly different with respect to intelligence and biology. But, 
compared to children with lower DVA-exposure, children 
with higher DVA-exposure discriminated relatively more 
between organically living and technological entities with 
respect to psychology (as indicated by higher mean values 
of psychology difference scores, therefore reflecting stronger 
relative deviances from the sample mean between organi-
cally living and technological entities).

Third, a mixed repeated measures ANCOVA (3 × 2) was 
conducted, with the three difference scores as a within-sub-
jects factor, children’s DVA-exposure as a binary between-
subjects factor, and children’s overall technological affin-
ity as an additional covariate [see (III) in Fig. 2]. Although 
the pattern was similar compared to the previous model, 
there was no significant within-subjects main effect, F(2, 
280) = 1.10, p > 0.05, no significant within-subjects effect 
for the interaction term between difference scores and DVA-
exposure, F(2, 280) = 1.47, p > 0.05, and also no signifi-
cant between-subjects effect for DVA-exposure itself, F(1, 
140) = 0.74, p > 0.05. In this model, planned within-subjects 
contrasts showed no significant differences between any of 
the difference scores.

To confirm these results, we applied the previous hier-
archical regression models (see Table 5) to the three differ-
ence scores. The results were partly consistent in the sense 
that children’s DVA-exposure (higher vs. lower) was only 
significantly associated with psychology difference scores, 
but the association became insignificant after controlling for 
children’s technological affinity (see Appendix Tables 10, 
11, 12). In addition, all regression models showed signifi-
cant associations between children’s gender and intelligence 
difference scores, even after controlling for children’s DVA-
exposure and technological affinity. According to these 
results, boys discriminated relatively more (compared to 
girls) between organically living and technological entities 
with respect to intelligence (as indicated by higher mean 
values of intelligence difference scores, therefore reflecting 
stronger relative deviances from the sample mean between 

organically living and technological entities). Lastly, we also 
explored potential interaction effects between children’s gen-
der, children’s age and parental education levels, on the one 
hand, and DVA-exposure and technological affinity, on the 
other hand, but there were no significant and meaningful 
patterns.

Taken together, these results suggest children, on aver-
age, discriminated relatively less between organically living 
and technological entities with respect to intelligence, and 
more with respect to psychology as well as biology (as indi-
cated by comparisons of relative deviances from the sample 
mean between organically living and technological entities). 
However, this pattern changes when taking children’s DVA-
exposure and technological affinity into account. In particu-
lar, there was some evidence that, compared to children with 
lower DVA-exposure, children with higher DVA-exposure 
discriminated relatively more between organically living and 
technological entities on the basis of psychology (as indi-
cated by comparisons of relative deviances from the sample 
mean between organically living and technological entities), 
but the effect was not strong enough to be significant when 
children’s technological affinity was taken into account as 
well.

7  Discussion

Our study makes several contributions to the literature, 
which are discussed in the following.

7.1  Children’s general ontological 
conceptualization patterns

Even without scientists agreeing on what exactly life is 
(Westall and Brack 2018), people have an intuitive under-
standing of what it means (Zimmer 2021), and for any given 
entity, one would expect this intuitive judgement (living vs. 
non-living) to be consistent with other ontological quali-
ties used to conceptualize the same entity (Gelman 1988). 
This is confirmed by the current study, showing how chil-
dren’s ontological conceptualizations of organically living 
entities closely draw on intelligence-related and psycho-
logical qualities, further suggesting children associate the 
ontological quality of being intelligent with the ontological 
necessity of being psychological for prototypical forms of 
life (e.g., humans, animals, plants). In contrast, and in line 
with previous research showing how children selectively 
use ontological qualities when conceptualizing technologi-
cal entities (e.g., Beran et al. 2011; Bernstein and Crowley 
2008; Hughes et al. 1987; Jipson and Gelman 2007; Kahn 
et al. 2006, 2012; Melson et al. 2005; Okita and Schwartz 
2006; Saylor et al. 2010; Scaife and Van Duuren 1995), 



1290 AI & SOCIETY (2024) 39:1275–1302

1 3

children’s conceptualizations of technological entities were 
less uniform with respect to all ontological dimensions in the 
current study. For example, children’s use of psychological 
qualities to conceptualize technology is closely associated 
with their use of biological qualities, while children’s use of 
intelligence-related qualities seems to be much less reliant 
on biology. In that sense, and partly in line with Bernstein 
and Crowley’s (2008) study with a younger sample, chil-
dren may generally perceive intelligence to be a more com-
mon ontological ground of life and technology, while the 
common ground of psychology is only established for those 
children who also perceive a biological overlap between life 
and technology. This is also reflected in children’s relative 
ontological discriminations (in terms of relative deviation 
patterns from the sample mean), which suggest children per-
ceive the ontological quality of being intelligent as a less 
differentiating factor between life and technology compared 
to the quality of being biological or psychological.

One straight-forward interpretation of this finding would 
be that children in middle childhood still confuse ‘true’ onto-
logical boundaries between life, such as humans, and tech-
nology, such as robots (e.g., van Straten et al. 2020). Follow-
ing Bernstein & Crowley’s (2008) discussion, an alternative 
interpretation would be the following: children’s understand-
ing of their increasingly technologized home and childhood 
environments accommodate both, (1) how today’s technol-
ogy is programmed to perform cognitive tasks which would 
demonstrate the possession of intelligence when performed 
by organically living entities, such as humans (e.g., answer-
ing knowledge-based questions with higher levels of accu-
racy and speed; Festerling and Siraj 2020), and (2) how this 
same technology still differs in many respects to more psy-
chological and biological forms of life—especially humans 
with their advanced conversational comprehension (e.g., 
Xu et al. 2021), their common sense and creativity (e.g., 
Festerling and Siraj 2020), their disposition to laugh (e.g., 
Yip et al. 2019), or their ability to answer psychological or 
biological questions (e.g., Oranç and Küntay 2020). This 
interpretation of our findings draws on Kahn et al. (2006, 
2007, 2009, 2011, 2012) NOCH and its implicit assump-
tion that there is no a priori definable and metaphysically 
‘true’ end-state for how one should conceptualize technol-
ogy vis-à-vis organically living entities. Therefore, our study 
contributes to the literature by showing how today’s children 
systematically disentangle the ontological dimensions of 
psychology and intelligence when conceptualizing entities 
of distinct kinds in their home and childhood environments. 
But, as previous research has also shown, this does not mean 
children entirely refrain from using psychological qualities 
when conceptualizing technological entities, such as DVAs 
(e.g., Garg and Sengupta 2020; Girouard‐Hallam et  al. 

2021; Hoffman et al. 2021), smart toys (e.g., Turkle 2017), 
or robots (e.g., van Straten et al. 2020). However, this study 
was able to show that, across a broad range of technological 
and organically living entities, children’s relative ontologi-
cal conceptualisation patterns (in terms of relative deviation 
patterns from the sample mean) still tend to discriminate 
more rigorously on the basis of psychology and biology, 
and less on the basis of intelligence. But the second question 
which yet remains to be answered is whether exposure to 
certain kinds of technology could prompt children to develop 
more nuanced understandings of prototypical entities in their 
environments.

7.2  Associations between children’s DVA‑exposure 
and ontological conceptualization patterns

Children’s exposure to technology within their home and 
childhood environments is a matter of degree, not a yes/no 
phenomenon (Gaudiello et al. 2015). This applies to DVAs 
as well: families and their children may use DVAs across the 
entire household for various different purposes and establish 
very stable usage routines over time (Ammari et al. 2019; 
Garg and Sengupta 2020; Lopatovska and Williams 2018; 
Porcheron et al. 2018; Sciuto et al. 2018), which can even 
culminate in DVAs having a social harmonization effect 
similar to pets (Lee et al. 2020). To consider such degrees, 
the current study applied a point-based system accounting 
for different kinds of basic DVA-exposure which children 
may experience in their home and childhood environments, 
and, as the findings show, through this empirical lens chil-
dren’s DVA-exposure continuously spreads from lower to 
higher levels.

Although, to the best of our knowledge, there is no empir-
ical research (yet) suggesting DVA-exposure is unequally 
spread across or even within family households depending 
on children’s or parents’ demographic characteristics, the 
current study does show some positive associations medi-
ated through parental education levels and favoring girls’ 
overall DVA-exposure. Therefore, DVAs may be spread dif-
ferently among today’s children compared to, for example, 
robotic technologies, which have previously been found to 
be biased against girls in younger samples (e.g., Bernstein 
and Crowley 2008). Another noteworthy finding in this con-
text is that children’s DVA-exposure is only weakly asso-
ciated with their general attitudes towards, or competency 
with, technology. This is in line with previous arguments in 
the literature suggesting voice-enabled technologies may be 
able to reduce common interaction barriers for children to 
engage with technology (e.g., Lovato et al. 2019; Yuan et al. 
2019), therefore making DVAs appealing to various levels 
of technological affinity. Taken together, comparing children 
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with different levels of naturally occurring DVA-exposure 
is not a spurious comparison of underlying child- or family 
characteristics, or, in other words, a comparison which only 
reflects more general differences between respective families 
and their children. However, we also acknowledge that the 
socio-technical spread of DVAs in today’s home and child-
hood environments may indeed be a more complex than the 
account given of it in the current study.

For children’s general ontological conceptualizations of 
organically living as well as technological entities, the cur-
rent study suggests children’s technological affinity plays 
a far more important role than their DVA-exposure. Given 
personality-related constructs on people’s attitudes towards 
technology have generally been found to be broadly asso-
ciated with various other characteristics in adults (e.g., 
Anthony et al. 2000; dos Santos and Santana 2018; Hor-
stmann et al. 2018; Korukonda 2005, 2007; Nitsch and 
Glassen 2015; Powell 2013; Saleem et al. 2011) as well as 
children (e.g., Baloğlu and Çevik 2008; Chou 2001; Cooper 
2006; King et al. 2002; Rees and Noyes 2007; Todman and 
Lawrenson 1992; Todman and Monaghan 1994), this may 
not be surprising at first sight. However, within the construct 
of technological affinity, it is especially the aversion towards 
technology which predicts children’s conceptualization pat-
terns—not their technological positivity or competency. In 
other words, children who are less averse towards technol-
ogy conceptualize organically living entities to have more 
biological, intelligence-related, and psychological qualities, 
and they also conceptualize technological entities to have 
more intelligence-related qualities. This finding is robust 
to various controls (e.g., children’s age and gender, paren-
tal education) and thereby constitutes an important contri-
bution to existing research, because it suggests children’s 
stance towards technology is not only associated with their 
perceptions of technology in and of itself (e.g., Beran et al. 
2011) but also with their perceptions of organically living 
entities (e.g., Gaudiello et al. 2015). In conjunction with 
the previous discussion, and in complementation to recent 
discussions in the literature arguing that positive attitudes 
towards state-of-the-art technology become more prevalent 
in empirical research (Naneva et al. 2020), one interpreta-
tion of this finding would be that being less averse towards 
technology still constitutes a threshold for children to dis-
criminate more rigorously between life and technology on 
the basis of psychology and biology, and less on the basis 
of intelligence.

Yet, when it comes to children’s relative ontological dis-
criminations (in terms of relative deviation patterns from the 
sample mean), there is some evidence that, compared to chil-
dren with lower DVA-exposure, children with higher DVA-
exposure discriminate relatively more between life and tech-
nology on the basis of psychology. Therefore, and despite 
the positive association between children’s DVA-exposure 

and their pronounced use of psychology to conceptualize 
technological entities, it is far from clear that such tenden-
cies blur ontological boundaries between life and technol-
ogy from children’s perspective. With this finding, our study 
substantiates Bernstein and Crowley (2008) in the sense that 
with more exposure to technology, psychology becomes the 
fulcrum of children’s ontological differentiations between 
technological and organically living entities. But our study 
also suggests that with more exposure to technology, chil-
dren’s perceptions of psychology may become more pro-
nounced. Although this is generally in line with previous 
research showing how children may perceive technologi-
cal entities as particularly reliable and trustworthy social 
engagement partners (e.g., Turkle, 1984/2005, 2017) offer-
ing instant social gratification (Festerling and Siraj 2020; 
Oranç and Ruggeri 2021) and even allowing for feelings of 
closeness (e.g., van Straten et al. 2020), the question remains 
why psychology interacted so differently with technologi-
cal exposure in both studies. We cannot answer this con-
clusively, but—apart from age-related developmental dif-
ferences between children in both studies—we hypothesize 
the reason could lie in the different natures of technological 
exposure under investigation. Research on children’s expo-
sure to robotic technologies (e.g. Bernstein and Crowley 
2008; Gaudiello et al. 2015; van Straten et al. 2020) tends 
to focus on ‘educationalized’ ways of engaging with tech-
nology (e.g., acquiring functional knowledge about robots’ 
inner working mechanisms, learning how to build and pro-
gram robots). Arguably, such exposure implicitly lends itself 
to less psychological ways of conceptualizing technology by 
emphasizing the ‘true’ ontological chasm between ‘us and 
them’ (MacDorman et al. 2009). In contrast, children’s real-
world DVA-exposure, as investigated in the current study, 
focuses on children’s overall engagement opportunities to 
experience DVAs within their real-world home and child-
hood environments—and not necessarily how much they 
are formally educated about DVAs. This may leave more 
scope for psychological ways of conceptualizing technology, 
not only because voice-only communication has previously 
been found to enhance psychological connections between 
social engagement partners (Kraus 2017), but also because 
children with higher DVA-exposure may have a more intense 
and direct social experience of how today’s technology can 
emulate certain qualities of human psychology (Festerling 
and Siraj 2020).

However, in this context, a major methodological limita-
tion which our study inherits from Bernstein and Crowley 
(2008) is that we do not know whether children used certain 
ontological qualities—especially psychological qualities—
according to what they thought of as metaphysically ‘true’ 
(e.g., ‘Even though it pretends, I know Alexa cannot really 
sense how I feel!’), or, in contrast, in terms of what they 
believe or want to be true (e.g., ‘I hope Alexa can sense how 
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I feel!’). This is something future research could address 
by considering children’s own psychological motives (e.g., 
sociality motivation, Epley et al. 2007) and how these relate 
to their individual DVA-exposure and ontological concep-
tualization patterns. To do so from a methodological per-
spective, future research should consider going beyond the 
simple analysis of observed variables and model children’s 
ontological conceptualization patterns together with their 
socio-emotional motives as latent item-based variables 
within a structural equation modeling framework. This 
would also allow to address differences within ontological 
dimensions by analyzing children’s conceptualization pat-
terns at the item-level.

Furthermore, according to our study children’s techno-
logical competency is not associated with their ontological 
conceptualization patterns in any way. However, this absence 
of evidence should not be interpreted as evidence of absence. 
Although we examined the structural validity and reliability 
of the TAQ before the main analysis (see online supplemen-
tary materials), its granularity to capture nuances in how 
competent children are with the functionalities of today’s 
technology can certainly be called into question. As previous 
research has shown (e.g., Gaudiello et al. 2015), children’s 
technological competency (e.g., building and programming 
technology) does influence how they conceptualize techno-
logical entities, and future research could address this issue 
in more detail for children’s exposure to DVAs.

Lastly, another obvious limitation of our study is 
related to its external validity: apart from general issues 
related to the limited representativeness of MTurk samples 

(Difallah et al. 2018), the narrow age range under investiga-
tion (7–11 years) weakens the developmental comparabil-
ity of our findings to studies which investigated ontologi-
cal conceptualization patterns for different age ranges. For 
example, one would not necessarily expect an 11-year-old 
child in our study to conceptualize a technological entity 
to be alive due to self-propelled movement only, while this 
pattern may seem quite plausible in the context of a 4-year-
old child in Bernstein and Crowley’s (2008) original study. 
Following Brink et al. (2019) recent developmental study on 
the origins of the so-called ‘uncanny valley’ phenomenon, 
future studies could widen the age ranges under investiga-
tion (e.g., 3–18 years) to examine how children’s ontological 
conceptualization patterns develop with age and depending 
on their DVA-exposure. But one should also keep in mind 
that investigating the development of children’s conceptual 
understandings of life and technology may be heavily con-
founded by cohort effects and environmental trends, espe-
cially due to accelerating changes in the socio-technical 
environment as exemplified by DVAs (e.g., Harwood and 
Eaves 2020). Ideally, future research could implement more 
complex sequential designs (e.g., Schaie 1994) to disentan-
gle these different effects in the context of DVAs and to 
identify their overall impact on human development.

Appendix

See Fig. 3, Tables 6, 7, 8, 9, 10, 11, 12.

Fig. 3  Distribution of DVA-
exposure scores
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Table 9  Exemplary visualization of ontological discrimination patterns

Appendix visualizes the underlying rationale of how to calculate ontological discrimination patterns. Figure (i) visualizes the fictitious exam-
ple of a child with strong discrimination patterns (∆ILiv-Tech > 1). In this example, the average intelligence level of technology for this child is 
ITech =  − 1.50 (i.e. 1.50 standard deviations below the standardized sample mean of technological entities, MTech), and the average intelligence 
level of organically living entities for this child is ILiv = 0.20 (i.e. 0.20 standard deviations above the standardized sample mean of organically liv-
ing entities, MLiv). How much this child conceptually discriminates between technological entities and organically living entities on the basis of 
intelligence (and relative to the ‘average child’ in the sample) is indicated by the absolute value of the difference, ∆ILiv-Tech = 1.70. The interpre-
tation for psychology (P) and biology (B) are analogous. According to the same rationale, figure (ii) visualizes the fictitious example of a child 
with weak discrimination patterns (∆ILiv-Tech < 1). The threshold of ∆ILiv-Tech = 1 was randomly chosen for exemplary purposes only and does not 
have any implications for the analysis

(i) Exemplary visualization for a child with 
relatively stronger discrimination pat-
terns (compared to child in [ii])

Average intelligence

z-scores of organically
living entities (ILiv)

MLiv=MTech=0

ILiv = .20

∆ILiv-Tech=1.70
Average intelligence

z-scores of technological
entities (ITech) ITech= -1.50

Average psychology

z-scores of organically
living entities (PLiv)

Average psychology

z-scores of technological
entities (PTech)

Average biology

z-scores of organically
living entities (BLiv)

Average biology

z-scores of technological
entities (BTech)

PLiv= -.30

PTech = 1.00

∆PLiv-Tech = 1.30

MLiv=MTech=0

BLiv= -.60

BTech = .60

∆BLiv-Tech = 1.20

‘Average child’ in
the sample

(ii) Exemplary visualization for a child with 
relatively weaker discrimination pat-
terns (compared to child in [i])

Average intelligence

z-scores of organically
living entities (ILiv)

MLiv=MTech=0

Average intelligence

z-scores of technological
entities (ITech)

Average psychology

z-scores of organically
living entities (PLiv)

Average psychology

z-scores of technological
entities (PTech)

Average biology

z-scores of organically
living entities (BLiv)

Average biology

z-scores of technological
entities (BTech)

MLiv=MTech=0

ITech= -.50

ILiv = -.20

∆ILiv-Tech=.30

PTech= -.10

PLiv = .20

∆PLiv-Tech=.30

BTech= .60

BLiv = 1.10

∆BLiv-Tech=.50

‘Average child’ in
the sample
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