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Abstract

A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis

(Mtb) with a 5–10% risk of developing tuberculosis (TB) disease. Variability in responses to

Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host

genetic variation in a Peruvian population and its associations with gene regulation in mono-

cyte-derived macrophages and dendritic cells (DCs). We recruited former household con-

tacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to

TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages

measured the impact of genetic variants on gene expression by identifying expression quan-

titative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages

(False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction

between eQTL variants and TB progression status. The top eQTL interaction for a protein-
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coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which medi-

ates the last step in mammalian tyrosine catabolism. FAH expression was associated with

genetic regulatory variation in cases but not controls. Using public transcriptomic and epige-

nomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection

results in FAH downregulation and DNA methylation changes in the locus. Overall, this

study demonstrates effects of genetic variation on gene expression levels that are depen-

dent on history of infectious disease and highlights a candidate pathogenic mechanism

through pathogen-response genes. Furthermore, our results point to tyrosine metabolism

and related candidate TB progression pathways for further investigation.

Author summary

Tuberculosis (TB), caused byMycobacterium tuberculosis (Mtb), is a leading cause of mor-

tality globally.Mtb-exposed individuals have heterogeneous outcomes following infection

withMtb, where some progress to TB, while many remain asymptomatic. We hypothe-

sized that genetic variation could partly explain risk of TB, by regulating the expression of

genes involved in the control ofMtb infection. In this study in Peru, we recruited former

TB patients andMtb-exposed household contacts of TB patients who remained asymp-

tomatic to define how genetic variation regulates expression of genes in the innate

immune system. We identified 4 genetic variants that have different effects on gene

expression based on the TB history of the participant. The lead variant regulated expres-

sion of a key enzyme (Fumarylacetoacetate Hydrolase; FAH) in tyrosine catabolism.

Knocking out the gene in myeloid cells increased susceptibility toMtb infection. The

results implicate FAH as a candidate host factor involved in TB progression.

Introduction

Tuberculosis disease (TB), caused by infection withMycobacterium tuberculosis (Mtb), is a

leading cause of death from infection globally [1]. Notably, only 5–10% ofMtb-infected indi-

viduals are estimated to develop active TB, and these individuals are at higher risk of recurrent

TB, suggesting the existence of durable host factors that influence disease outcome [2]. Unbi-

ased systems biology approaches have uncovered several host pathways associated with TB

progression, including interferon signaling [3,4], metabolic dysregulation [5], and depletion of

Th17 cells in the peripheral blood [6]. Genetic association studies from our group [7,8], and

others [9–13], identified host genetic variants associated with higher risk of active TB. How-

ever, these studies did not systematically integrate the association between genetic variation

and transcriptional profiles of myeloid cells, which are the first line of defense followingMtb
infection.

Growing evidence supports critical roles for myeloid cells in progression to TB disease in

human cohorts [3,4,14–17], where macrophages are the main target of infection [18], and den-

dritic cells present mycobacterial antigens to prime T cells [19]. Monocytes can be differenti-

ated in vitro to generate monocyte-derived dendritic cells (DCs) [20] and macrophages [21],

which have become useful tools to study innate responses to pathogens. For instance, mono-

cyte-derived DCs from TB susceptible individuals showed elevation of autophagy associated

genes, including Fasciculation And Elongation Protein Zeta 2 (FEZ2), a repressor of autopha-

gosome maturation [22], and group I CD1 genes, antigen presenting molecules that mark DC
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maturation [13,23]. Hence, these in vitromodels can be used to study the impact of genetic

variants associated with differential gene expression that may underlie TB susceptibility or dis-

ease-induced regulatory effects [24,25].

Multiple studies mapping genetic variation that influence gene expression levels as expres-

sion quantitative trait loci (eQTL) have highlighted the importance of genetic regulatory varia-

tion in disease [8,26]. These genetic regulatory effects are often context-dependent; that is, the

same genetic variant can affect gene regulation to varying degrees depending on the cell type

or cell state [27–31]. For example, eQTL can be present in some human tissues but not others

[26,27]. They can also vary between subsets of a cell type, such as between naïve and memory

B cells [32], or between cell states of a given cell type, such as resting and activated monocytes

[33]. It is becoming more evident that identifying these cell state-dependent genetic regulation

events are crucial for understanding disease mechanisms [34,35]. Multiple studies have shown

that in vitro pathogen exposure changes cell states and consequently changes the regulatory

landscape, revealing pathogen-dependent genetic regulatory effects [31,36–39]. Collectively,

pathogens, such asMtb, could exploit the cell type-specific impacts of host genetic variation on

gene expression to establish virulence or mediate long term pathogenic effects in diverse popu-

lations [40]. Hence, integration of genetic variation with transcriptional differences in myeloid

cells may provide insights into disease mechanisms, as supported by prior studies in mono-

cyte-derived DCs [22]. These genetically mediated transcriptional changes may control host

immune responses in ways that changeMtb infection outcomes, as well as susceptibility to

long term sequalae of infection [24].

In this study, we re-enrolled patients in Peru that were rigorously defined as index TB

patients and theirMtb-infected household-contacts who either progressed or did not progress

to TB disease [6–8,41,42]. We profiled gene expression in monocyte-derived DCs and macro-

phages from these previously genotyped participants [7]. We identified genetic variants that

differentially regulated transcription in DCs and macrophages in progressors compared to

non-progressors. The top regulatory event was mediated by a variant on chromosome 15 that

specifically regulated expression of fumarylacetoacetate hydrolase (FAH) in DCs from progres-

sors, but not non-progressors. This cell type-specific regulation of FAH in recovered TB

patients provides a biologically plausible metabolic determinant of TB disease outcome.

Methods

Ethics statement

The Institutional Review Board of the Harvard Faculty of Medicine and Partners Healthcare

(protocol number IRB16-1173), and the Institutional Committee of Ethics in Research of the

Peruvian Institutes of Health approved this study protocol. Written informed consent was pro-

vided by study participants.

Human participants

Participants were nested and re-recruited from the original prospective cohort of index TB

patients and their household contacts [42] (Fig 1A). Briefly, household contacts in the original

study were screened for symptoms of TB disease. All household contacts received an intrader-

mal tuberculin skin test at enrollment, which was read 48–72 hours later. Cases in the current

study were defined to include both former HIV-negative index TB patients, with pulmonary

TB and microbiologically confirmedMtb culture (primary cases), as well as household con-

tacts of index TB patients who progressed to active tuberculosis disease within 12 months of

contact (secondary cases). All cases received antibiotic treatment according to the standard of

care per Peruvian national guidelines.
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Controls were defined as former household contacts of TB patients who had a positive

tuberculin skin test result during 12 months of follow up. Importantly, this group did not

develop active TB disease between the initial recruitment into the original longitudinal pro-

spective study [7,42] and re-recruitment into the current nested case-control study. Genotyp-

ing data from all individuals in this study have been previously generated for a genome-wide

association study [7] and integrated with transcriptomic data as outlined below.

Samples

Peripheral blood mononuclear cell (PBMC) samples were separated using standard Ficoll den-

sity gradient centrifugation from 50mL of venous blood and cryopreserved at 5X106 cells/vial.

Samples were shipped to the Brigham and Women’s Hospital for storage in liquid nitrogen

and subsequent experiments.

Differentiation of monocyte-derived dendritic cells and macrophages in
vitro
PBMC samples were thawed, and CD14-expressing monocytes were magnetically sorted using

the pan monocyte isolation kit, humans (Miltenyi) following the manufacturer’s instructions

in magnetic-associated cell sorting (MACS) buffer: 0.5% bovine serum albumin, 2 mM ethyl-

ene-diamine-tetra-acetic acid (EDTA) in 1X phosphate-buffered saline (PBS). To generate

either monocyte-derived dendritic cells or macrophages, monocytes were washed and

Fig 1. Myeloid cell transcriptomic study in a Peruvian cohort reveals genetic variants associated with FAH transcripts in dendritic cells

for subjects with history of TB disease but not for household contacts exposed to Mtb that did not progress to active disease. (A) Cohort

scheme: human participants included former household contacts of TB patients who either progressed (cases, progressors) or did not progress

to active TB disease but have converted their tuberculin skin test within 12 months of exposure (non-progressors, controls). Genotyping data

were previously obtained from all participants. (B) Transcriptomic study scheme: Monocytes were magnetically enriched from peripheral

blood mononuclear cells and differentiated for 6 days into either monocyte-derived dendritic cells (GM-CSF + IL4) or macrophages (M-CSF).

Samples were analyzed by low-input RNA-sequencing, and genotyping data were integrated with transcriptional profiles in an eQTL study.

Icons were generated in Biorender.

https://doi.org/10.1371/journal.pgen.1011313.g001
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resuspended in supplemented complete RPMI (5% fetal calf serum, 1 mM 2-mercaptoethanol,

penicillin-streptomycin, L-Glutamine, HEPES buffer, both essential and non-essential amino

acids, and sodium hydroxide). The media was either supplemented with 300 Units/mL of

granulocyte-macrophage colony stimulating factor (GM-CSF) and 200 Units/mL of interleu-

kin (IL)-4 to generate monocyte-derived dendritic cells (DCs), or 20 ng/mL of macrophage

colony-stimulating factor (M-CSF) to generate monocyte-derived macrophages. For both cell

types, monocytes were differentiated in 6-well tissue culture plates for 6 days, then split

between analytical flow cytometry to test viability and differentiation, and cell sorting to gener-

ate pure populations for RNA extraction.

Cell sorting and flow cytometry analysis

Magnetically isolated CD14 cells treated with cytokines for 6 days were sorted by gating on for-

ward and side scatter profiles after differentiation to remove subcellular debris. Cells were

sorted directly into the TCL RNA lysis buffer (Qiagen). Only samples with at least 1000 cells

were included in the final RNA-sequencing analysis. In parallel, to confirm viability and differ-

entiation, cultured cells were stained first with a fixable blue viability cell stain (ThermoFisher

Scientific) according to manufacturer’s instructions, followed by different cocktails of fluoro-

chrome-conjugated antibody cocktails for each cell type (S1 Table), and analyzed by analytical

flow cytometry on a 5-laser Fortessa (BD Biosciences) to confirm viability and differentiation.

Flow cytometry panels were optimized by titrating individual antibodies to find optimal sig-

nal-to-noise ratios, and minimal spillover from spectral overlap of emissions using fluores-

cence minus-one. Flow cytometry (FCS3) files were analyzed using FlowJo v9.9.

RNA sequencing

RNA-seq library preparation was performed at the Broad Technology Labs (Broad Institute)

using a modified Smart-seq2 [43] protocol for low-input RNA-sequencing, which improves

detection of full-length transcripts using template switching and pre-amplification. There were

3 plates of 96 samples each (S2 Table) including blank samples. Samples from cases and con-

trols and the two cell-types were randomized across all three plates. Sequencing was performed

in an Illumina NextSeq500 as paired-end 2 x 25 bp reads with an additional 8 cycles for each

index.

Analysis of RNA-sequencing data

Read alignment was performed using STAR (v2.4.2) [44] with the following parameters:—two-

passMode Basic,—alignIntronMax 1000000,—alignMatesGapMax 1000000,—sjdbScore 2,—

quantMode TranscriptomeSAM,—sjdbOverhang 24. RSEM (v1.2.21) [45] was then used for

gene quantification with paired-end mode. We used the hg38 reference genome (University of

California Santa Cruz Genome Browser) and GENCODE annotation version 24 (Ensembl 83).

Quality summary statistics were gathered using Picard tools. Data quality was evaluated using

RNA-SeQC [46]. RNA-seq data analysis was performed with R (version 3.6.0) and R Biocon-

ductor. Samples with low (<80%) proportion of common genes detected (common genes

defined as those present in >75% of samples) or presenting as outliers in principal component

analysis (performed on top 1000 variable genes based on standard deviation) were filtered out.

Five samples that did not match their genotype information (based on proportion of both

alleles seen in RNA-seq data over heterozygous sites) were filtered out. Differential expression

of genes by TB status was determined using a multivariable linear regression model adjusting

for plate (batch), age, and gender, using the R limma package [47] and P-values were adjusted

using the Benjamini-Hochberg false discovery rate method.
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Genotyping data

We used genotyping data from the customized Affymetrix LIMAArray genome-wide genotyp-

ing chip as described [7], where QC and imputation was performed. Briefly, individuals were

filtered out if they presented higher than 5% missing genotyping data, or had excess of hetero-

zygous genotypes, or had>40 years at age of diagnosis. Variants were filtered out if they fell in

either of these criteria: call rate<95%, duplicated based on coordinates, presentation of batch

effect, deviation from Hardy-Weinberg equilibrium (HWE, P < 10−5), large missing rate dif-

ferences between cases and controls. After these filters, the 677,232 SNPs left were used for

imputation with SHAPEIT2 [48] and IMPUTE2 [49]. After requiring imputation score r2 > =

0.4 and re-filtering based on HWE and missing rate, there were 7,756,401 genetic variants. For

eQTL analyses, we removed SNPs with minor allele frequency (MAF) <0.09 to ensure pres-

ence of at least 10 minor alleles in tested genes, and avoid problems due to outliers, especially

for the interaction analyses. We reported all genomic positions using Grch37 coordinates.

Expression quantitative trait loci (eQTL) analysis

In total, 126 individuals (with 118 and 109 RNA-seq samples, corresponding to DCs and mac-

rophages respectively) had high data quality for both genotype and gene expression for cis-

eQTL mapping. We performed a separate analysis for each cell type. Genes expressed at low

levels where log2(transcripts per million (TPM)+1) <1 in more than 30 samples, were filtered

out in each cell subset. We restricted the analysis to SNPs that were within 1Mb of the gene

start coordinate. QTLtools [50] was run in the permutation pass mode (1000 permutations for

top SNP per gene) to identify associations between genetic variants and quantile normalized

gene expression levels expressed as log2(TPM+1) using linear regression. To control for covar-

iates, we included 5 genotyping principal components (PCs), 15 expression PCs, age, and sex.

To screen for potential interactions of genetic variants with TB status, we followed a two-

step nested approach that was recently shown to improve the discovery of gene-by-environ-

ment interactions [51]. First, we selected SNP-gene pairs with a suggestive eQTL (p<0.001),

where only top SNP per gene was selected. Next, we applied Levene’s test (LT) to prioritize

SNPs that were significantly associated with the variance in gene expression at 5% FDR using

the qvalue R package [52]. Finally, we used these variance quantitative trait loci (vQTLs) to test

for an interaction between the SNP and TB status on gene expression. Specifically, we tested

for the SNP-TB status interaction effects by performing a likelihood ratio test between two

nested models using the R anova function to conduct an analysis of variance (ANOVA) test.

The null model estimates the effects of the SNP, TB status, and covariates evaluated using 5

genotyping PCs, 15 expression PCs, age, and sex) on a gene’s log2(TPM+1) normalized expres-

sion. The alternative model has an additional SNP by TB status interaction term:

Ei;j ¼ yþ bgeno � gj þ btb � tj þ bx � tj � gj þ
X15

l¼1

φl � pci;l þ
X5

m¼1

gm � pcj;m þ bage � aj þ bsex � sj

where Ei,j is the normalized gene expression for the ith sample form the jth subject, θ is the

intercept, βgeno is the effect (eQTL) of the genotype for subject j (gj), βtb is the effect of the TB

status (cases vs. controls) for subject j (gj), and βx is the effect of the TB status by genotype

interaction (tj�gj).
As before, we used the qvalue package to calculate the FDR across tests and called all events

with q<0.1 (<10% FDR) as significant. Given our limited sample size, we sought to rigorously

determine if the significant events were driven by potential outlier events, so we performed
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permutations by shuffling the TB status for each individual 1000 times and re-computing the

SNP by TB status interaction.

To identify cell-type specific eQTL interactions, we first identified the best SNP per gene

for expression using both cell types together with QTLtools. For the covariates’ matrix, we

removed the first expression PC because it separated the samples according to cell type. We

then followed the same two-step nested approach described above with the cell type as an

interaction term to identify significant SNP-cell type interactions at 10% FDR.

Concordance between eQTLs

To verify the agreement between the mapped eQTLs in our study and the previous data, we

selected the variant-gene pairs that were significant at FDR<0.05 in each cell type and com-

pared the effect size magnitude (beta from QTLtools results) with the effect size in the other

cell type. Additionally, we compared the beta of the most associated variant for each of the

genes with an eQTL (FDR<0.05) in macrophages with the corresponding effect size of that

variant-gene pair reported in the eQTL catalogue [53] from a previously published dataset

[39].

Analysis of public RNA-seq data

We obtained gene expression levels from public RNA-seq samples ofMtb-infected and non-

infected monocyte-derived DCs in 6 individuals [54]. We used a mixed-effects linear model to

test for differential expression between uninfected and or infected DCs, along with heat-inacti-

vatedMtb treated DCs, controlling for time as a fixed effect and donor as a random effect.

Analysis of public methylation data

We retrieved the CpG sites that showed significant differential methylation in dendritic cells

in response to either live or heat-killedMtb according to Pacis et al [54], following the methyl-

ation difference values at four time points post-infection (2, 18, 48, 72h) within a 250 kb win-

dow around the transcription start site of FAH.

Generating Fah knockout conditionally immortalized macrophage (CIM)

progenitors

Bone marrow-derived progenitor Cas9-transgenic CIMs were provided by Jeffery S. Cox.

Edited CIMs were generated as described by Roberts, et al [55]. In short: CRISPR guide RNA

(gRNA) sequences targeting genes of interest were selected from the murine Brie guide library:

Fah exon 2 anti-sense gRNA: CCGATGGCTACACCAATCCG, and non-targeting gRNA

sequence GAACTCGTTAGGCCGTGAAG, as control. Oligonucleotides encoding the chosen

gRNAs were cloned into lenti-gRNA hygro (Addgene plasmid #104991) and verified by Sanger

sequencing using the human U6 sequencing primer. Lenti-X 293T cells were co-transfected

with pLenti-Guide-Hygro containing gRNA, psPAX2, and pMD2.G using Lipofectamine and

Optimem according to manufacturer’s guidelines to generate lentiviral particles for transduc-

tion into Cas9-expressing CIM progenitors. For optimal transduction of Cas9-expressing CIM

progenitors, 5.0x105 cells/well in a 6-well plate were spinfected at 1000xg for 2hr at 32˚C in the

presence of 10 mg/ml protamine sulfate. Two days post- transduction, we added 250 micro-

gram/mL hygromycin B to CIMs and hygromycin resistant cells were maintained as polyclonal

populations. Genomic DNA and RNA was extracted using the AllPrep DNA/RNA extraction

kit (Qiagen, catalogue: 80204). We amplified genomic sites encompassing targeted regions by

PCR using Q5 high-fidelity DNA polymerase (NEB) and sequenced, using the following
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primers: Forward: TTCATGGGTCTGGGTCAAGC and Reverse: TCAGATCACAGGTGCT-

CAGG. The resulting PCR product was purified using the QIAquick PCR Purification Kit

(Qiagen) according to manufacturer’s protocol and sent for sequencing. Population-level

genome editing was estimated using the Inference of CRISPR Edits (ICE) from Sanger

sequencing trace data (Synthego) [56].

Differentiation of CIM progenitors into macrophages

We maintained suspension CIMs prior to differentiation in non-treated tissue culture flasks in

RPMI (Gibco) supplemented with 10% FBS, 2 mM L-glutamine (Gibco), 1 mM sodium pyru-

vate (Gibco), 10 mM HEPES (Gibco), 43 uM β-mercaptoethanol, 2 mM β-estradiol (Sigma

#E2758), and 2% GM-CSF supernatant produced by a B16 murine melanoma cell line or 20

ng/mL recombinant mouse GM-CSF (R&D Systems). For differentiation into macrophages,

CIMs were washed twice in PBS + 1% FBS to fully remove β-estradiol, resuspended in com-

plete macrophage media (DMEM, Gibco) supplemented with 10% FBS, 2 mM L-glutamine

(Gibco), 1 mM sodium pyruvate (Gibco), and 10% M-CSF supernatant produced by

3T3-MCSF cells or 20 ng/mL recombinant mouse M-CSF (R&D systems), and seeded onto

non-treated tissue culture plates or flasks. Fresh media was added on day 3 post-differentia-

tion, cells were re-seeded into plates on day 7 and used forMtb infection assays 8-days post-

differentiation.

Mycobacterium tuberculosis growth assay

We seeded differentiated CIMs at 60,000 cells per well onto white, clear-bottom polystyrene

96-well plates (Corning) in the same macrophage media used for differentiation one day prior

to infection. Macrophages were infected withMtb-lux [57] as follows: H37Rv expressing the

luxCDABE operon (PMV306hsp-LuxG13, Addgene #26161) was used for all infections.Mtb
was cultured in 7H9 liquid media (BD) supplemented with 10% Middlebrook OADC (Sigma),

0.5% glycerol, 0.05% Tween-80 in roller bottles at 37˚C. Briefly, mid-logMtb cultures were

washed twice with PBS, gently sonicated to disperse clumps, and resuspended in phagocytosis

infection media (DMEM supplemented with 10% horse serum). Macrophages were infected at

a multiplicity of infection (MOI) of 1 by removing media from cells, followed by the addition

of the bacterial suspensions in phagocytosis media and then spinfected at 1000 rpm for 10

min, after which the infection media was removed, and fresh macrophage media was added.

Bacterial luminescence signal was measured at the time of infection (day 0) and every day

starting 24 hr post-infection after daily media changes. All growth measurements are normal-

ized to day 0 luminescence readings for each infected well and are presented as fold change in

luminescence compared to day 0.

Results

Participants for this study were nested from a larger cohort of index Peruvian TB patients and

their household contacts [42], from which we previously conducted a genome-wide associa-

tion study [7]. We re-recruited a subset of these former household contacts who had been

infected withMtb and either progressed to active TB disease (progressors, cases) or remained

TB-disease free until sampling (non-progressors, controls) after initial enrollment into the par-

ent cohort [6] (Table 1). Due to sample availability, we restricted the analysis to high quality

data for 63 progressors and 63 non-progressor controls, sampled a median of 6 years after

exposure to TB in the household (Fig 1A). We standardized the protocol to differentiate

monocyte-derived DCs and macrophages using magnetic enrichment of CD14+ monocytes,

and differentiation with a combination of interleukin-4 (IL4) and granulocyte macrophage-

PLOS GENETICS Post-tuberculosis expression quantitative trait loci in monocyte-derived dendritic cells and macrophages

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011313 June 13, 2024 8 / 23

https://doi.org/10.1371/journal.pgen.1011313


colony stimulating factor (GM-CSF) or macrophage-colony stimulating factor (M-CSF),

respectively (Fig 1B).

We profiled the transcriptome of cells using low-input mRNA sequencing. Macrophages

and DCs showed expression of expected genes that mark their cell type specificity (Fig 2). For

example, genes characteristic of the DC lineage that are absent in macrophages, including

group 1 CD1 genes (CD1a, CD1b, CD1c and CD1e) [20,21], were significantly up-regulated in

DCs. Similarly, genes characteristic of macrophage differentiation, including V-Set And

Immunoglobulin Domain Containing 1 (VSIG), CD14, Fc Gamma Receptor Ia (FCGR1A) and

IIIa (FCGR3A) [21], were significantly upregulated in macrophages compared to DCs.

First, we asked whether we could detect gene expression differences directly associated with

TB disease status of donors. Comparing cells from former progressors and controls, we did not

identify any statistically significant differentially expressed genes (FDR< 0.05) in either cell type

(Fig 3A and 3B). This outcome is in part expected given that RNA was extracted from in vitro
differentiated monocytes that were collected a median of 6 years after cases had active disease.

However, we hypothesized that prior TB progression could be associated with changes in

the regulatory landscape of differentiated myeloid cells, which could modulate the effects of

genetic variants on gene expression. Therefore, we first identified genes whose expression lev-

els were associated with genetic variants within 1Mb of the gene start (cis eQTLs), controlling

for age, biological sex, library preparation batch, 15 gene expression and 5 genotyping princi-

pal components (PCs). We identified significant eQTLs for 257 genes in macrophages, and

330 genes in DCs (FDR<0.05). The top eQTL in DCs showed that the minor allele C at

rs199659767 was associated with a significant change in the expression of Zinc Finger Protein

57 ZPF57 (p = 1.8 X 10−31) (S3 Table). The most significant eQTL (p = 3.4 X 10−30) in macro-

phages showed a positive association between Glutathione S-Transferase Mu 1 (GSTM1)

expression and the allele A at rs140584594 (S4 Table). Our results demonstrated a high level

of concordance between the mapped eQTLs within our study (macrophages and DCs) and

between our macrophage eQTLs and a previously published eQTL study in macrophages [39]

whose summary statistics were made available by the eQTL Catalogue [53]. In all comparisons

we observed that most of the significant variant-gene pairs (FDR<0.05) had a beta (eQTL

effect) in a consistent direction and comparable magnitude (Fig 4A–4C), further supporting

the strong agreement between our results and previous findings.

We then sought to identify genetic regulatory variants whose effects on gene expression

were differentially associated with TB disease history. Previously, it has been observed that

SNPs associated with the variance of a quantitative trait (vQTL) can increase the detection of

gene by environment (GxE) interactions with large effects [51]. We followed this statistical

framework to reduce the number of eQTLs tested for interaction. First, for genes with sugges-

tive eQTLs (p< 0.001), we identified 105 vQTL genes for DCs and 96 for macrophages

(FDR< 0.05). For each of these vQTLs, we then tested for TB status interaction (Methods). In

the DCs, we observed five vQTLs with significant TB status-eQTL interaction effects

Table 1. Cohort demographics of individuals included in the RNA-seq and eQTL analysis.

Demographics Progressors

(n = 63)

Controls

(n = 63)

Overall

(n = 126)

Age (Years)

Mean (SD)

Median [Min, Max]

29 (13.59)

24 [16, 69]

40 (16.86)

40 [3, 77]

35 (16.22)

32 [3, 77]

Sex

Female

Male

27

36

37

26

64

62

https://doi.org/10.1371/journal.pgen.1011313.t001
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(FDR< 0.1) (S5A Table). We conducted permutation analysis to rigorously confirm the valid-

ity of the eQTL interactions observed in DCs and macrophages by reassigning the TB status

1000 times across samples and retesting for TB status-eQTL interactions (S1A Fig). Four out

of the five TB status eQTL interactions passed the test (ppermute < 0.05), further suggesting that

genetic regulatory variation is associated with history of TB disease. These interactions found

in DCs included two protein-coding genes: fumarylacetoacetate hydrolase (FAH) and N-ethyl-

maleimide sensitive factor (NSF), and two long non-coding RNA genes: RP3-340B19.2 and

RP11-667K14.4. We identified a single strong interaction event for macrophages at this thresh-

old with Lysine Demethylase 6B (KDM6B), which did not pass the permutation p-value

threshold of 0.05 (S5B Table, S1B Fig).

In DCs, we found that an indel on chromosome 15 was the top genetic variant associated

with expression levels of FAH, a gene encoding Fumarylacetoacetate Hydrolase: the last

enzyme in mammalian tyrosine catabolism [58]. The minor allelic variant of rs142312981

(AAG insertion) was associated with lower expression of FAH in former TB progressors but

not in non-progressors (Fig 5A). The allele frequency in our cohort is 12%, compared to the

estimated Peruvian allele frequency in the 1000 Genomes Project at 7%. Interestingly, this vari-

ant’s effect on gene regulation was not observed in monocyte-derived macrophages from the

same donors (Fig 5B), suggesting a disease and cell type-specific regulatory axis.

To validate these results, we first reanalyzed public RNA-seq and methylation dataset ofMtb-

infected and non-infected monocyte-derived DCs in 6 individuals [54]. Stimulation with live

Fig 2. Volcano plot depicting differential gene expression between samples corresponding to monocyte-derived

DCs and M2 macrophages using a multivariate linear regression analysis on log2(transcripts per million +1)

adjusted for age, sex and batch (R limma package). Several genes were distinctly cell type-specific with more than

32-fold change and below an FDR-adjusted p-value threshold of 0.05.

https://doi.org/10.1371/journal.pgen.1011313.g002
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(p = 1.4X10-10) or heat inactivated (p = 5.2X10-10)Mtb downregulated FAH expression (Fig 5C).

In the same public dataset [54], we observed that CpG sites upstream of the FAH transcriptional

start site and near rs142312981 were differentially methylated afterMtb infection (Fig 5D), con-

sistently with an association betweenMtb infection and epigenetic remodeling of the FAH locus.

To experimentally validate these cohort-based transcriptional results, we hypothesized that

FAH deletion would increase susceptibility of myeloid cells toMtb infection. To address this

hypothesis, we leveraged conditionally immortalized macrophages (CIMs) from Cas9-trans-

genic mice to generate Fah-edited CIMs [55]. CIM progenitors ectopically express the estrogen

Fig 3. Differential gene expression in monocyte-derived DCs (A) or M2 macrophages (B) between former TB cases

and controls, using a multivariate linear regression analysis adjusted for age, sex and batch (R limma package). There

are no TB-associated differentially expressed genes in either cell type.

https://doi.org/10.1371/journal.pgen.1011313.g003
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regulated homeobox transcription factor Hoxb8 (ER-Hoxb8), which maintains their self-

renewal when cultured in the presence of β-estradiol [59]. We transduced Cas9-transgenic

CIM progenitors with a lentivirus expressing guide RNA (gRNA) targeting the antisense

strand of exon 2 of Fah (the mouse orthologue of human FAH) or a non-targeting scramble

gRNA. We determined the editing efficiency of the resulting mixed population by sequencing

PCR amplicons flanking the targeted region, followed by Inference of CRISPR Edits (ICE)

analysis [56], which showed 95% editing efficiency (Fig 6A). We then differentiated these pro-

genitors into macrophages by culturing them in β-estradiol-free media supplemented with

M-CSF [55]. We infected control and Fah-edited CIMs with a luciferase-expressingMtb strain

(H37Rv-lux) at a multiplicity of infection (MOI) of 1:1 and quantified fold change in lumines-

cence over 5 days as a reflection ofMtb growth. We detected significantly higherMtb lumines-

cence in Fah-edited CIMs compared to wildtype counterparts treated with scrambled gRNA at

5 days post-infection (p = 0.0044) (Fig 6B). These results are consistent with a protective role

for FAH againstMtb infection.

Fig 4. Concordance between effect sizes of significant DC-eQTL events (FDR<0.05) with the macrophage dataset (A), or

significant macrophage (MP)-eQTL events (FDR<0.05) with the DC dataset (B). (C) Validation of significant macrophage

eQTL using effect sizes of significant eQTL events from monocyte-derived macrophages from Nedelec et al [39] (PMID:

27768889) publicly available on the eQTL catalogue. Pearson correlation analysis results are displayed for A-C.

https://doi.org/10.1371/journal.pgen.1011313.g004
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Finally, several studies have demonstrated that gene expression can be regulated by genetic

variants in a cell type-dependent manner [27]. Hence, we hypothesized that some genetic vari-

ants would regulate gene expression at varying degrees in the two cell types in an expression

quantitative trait loci analysis. We identified 30 cell-type eQTL interactions at 10% FDR (S6

Table). For example, CD1A expression was influenced by the rs366316 SNP in DCs but not in

macrophages (Fig 7A). In contrast, rs3907022 was strongly associated with GSDMA expres-

sion in macrophages, but not DCs (Fig 7B). We validated this association between rs366316

and CD1A levels in DCs at the protein level with flow cytometry (p< 2X10-16, Fig 7C). These

two cell type-dependent eQTL events were driven by high expression in one cell type and low

expression in the other. However, we also observed other eQTL events in which a gene has

similar levels of expression in both cell types but is regulated by a genetic variant in only one

(e.g. CTSH, DFNA5, Fig 7D and 7E). Hence, our analysis captured different types of cell type-

dependent genetic regulatory effects in two related myeloid cell types (macrophages and DCs).

Discussion

It remains unclear how host genetic heterogeneity impacts susceptibility to differentMtb infec-

tion outcomes [7,9,10,12,25,41,60]. In this study, we re-recruited Peruvians with a history of

TB disease or asymptomatic infection withMtb. We analyzed transcriptomes of monocyte-

Fig 5. (A-B) FAH expression levels are stratified by genotype of indel rs142312981. P-value shown is for the TB status interaction with the

genetic variant on their effects on gene expression (case = TB progressor, control = non-progressor) in DCs (A) and macrophages (B), details

of the linear regression and likelihood ratio test are described in Methods. (C-D) Figure shows re-analysis of public data from Pacis et al [54]

(PMID: 30886108, GSE116405). (D) FAH expression levels are shown from RNA-seq data from uninfected (blue),Mtb-infected (red), heat-

killedMtb treated (green) monocyte derived DCs using a mixed-effects linear model. (D) Figure shows average mean change in DNA

methylation levels betweenMtb-infected and non-infected monocyte-derived DCs from 6 donors is shown. Data for CpG sites within 250kb

(upstream and downstream) of FAH transcriptional start site (TSS) are shown.

https://doi.org/10.1371/journal.pgen.1011313.g005
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derived DCs and macrophages, which showed the expected cell type-specific transcriptional

programs [21]. Genetic variants in differentiated myeloid cells are known to influence gene

expression levels in a cell type and state-dependent manner [22,24,61]. Identification of cell-

specific eQTLs has been described in several studies, even when these cell lineages are derived

from a common progenitor, as reported for distinct lineages derived from common induced

pluripotent stem cells (iPSCs) [30]. Here, we identified 30 cell type-dependent eQTLs, in an

admixed Peruvian cohort, specifically comparing DCs with macrophages, which can serve as a

resource for gene regulation in non-European populations. For instance, the regulatory effect

of the rs366316 on CD1a, a protein that presents lipid antigens, was previously described in a

European-ancestry cohort [62], and points to shared gene and protein expression QTL

between Europeans and Peruvians. Interestingly, an independent study reported an intronic

variant rs411089 in the CD1a locus in a Vietnamese cohort, which was associated with higher

TB susceptibility [13]. However, the DC-specific rs366316-mediated regulation of CD1a

expression was not associated with TB history, despite reported roles of CD1a in presenting

mycobacterial antigens [63,64].

Noticeably, some of the genetic regulatory events in DCs were associated with history of TB

disease. We discovered a clear interaction between TB status and a non-coding variant in their

effects on expression of FAH, which encodes the Fumarylacetoacetate Hydrolase enzyme. The

genetic regulatory effect was surprisingly restricted to monocyte-derived DC samples in indi-

viduals with TB disease history, but not the household contacts who remained healthy. We

propose two possible explanations for this genetic regulatory effect associated with TB

Fig 6. (A) Frequency of indels in fah-edited CIMs, consistent with editing efficiency as determined by ICE analysis on amplified region around target site. (B)

Mtb bacterial growth assay of scramble control and fah-edited macrophage CIMs infected with the H37Rv-luxMtb strain. Fold-change in luminescence is

reported asMtb growth relative to the average of day 0 for each condition. Data are representative of four independent experiments each performed in

quadruplicates; error bar depicts mean ± standard deviation. P-value reflects student t-test of 4 replicates in each condition.

https://doi.org/10.1371/journal.pgen.1011313.g006
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progression: (1) individuals with susceptibility to TB progression had pre-existing differences

in their immune cell state which uncovered their FAH eQTL activity, which may have contrib-

uted to TB progression, or (2) the FAH eQTL appeared in progressors after active TB. The TB

status interaction eQTL variant was not significantly associated with susceptibility to primary

TB progression in the GWAS conducted on this same population (p = 0.49) [7], and we found

evidence that the FAH locus changed epigenetically and transcriptionally afterMtb infection

of DCs. Therefore, we believe the second scenario is more likely. Durable remodeling of host

Fig 7. Cell type-dependent effects of genetic variation on gene expression: Top cell type-dependent eQTL in DCs (A) and macrophages

(B) were seen when transcript was expressed at higher levels in one cell type compared to the other. (C) Validation of CD1a transcript

eQTL at the protein level is shown by flow cytometry. P-value is derived from a univariate linear regression model testing the association

between rs366316 genotype and CD1a protein expression by flow cytometry. (D and E) Figure shows examples of cell type-dependent

eQTL events for genes expressed in both DCs (D) and macrophages (E).

https://doi.org/10.1371/journal.pgen.1011313.g007
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immunity has classically been associated with acquired immunity in lymphocytes, mouse [65]

and human [66]. However, studies provide precedent for durable regulation of myeloid cells

through epigenetic mechanisms, a phenomenon known as trained immunity. Even though in

our study, both progressors and non-progressors have been infected withMtb, a high bacterial

burden or strong stimulus occurring during disease could modify the cell state of the host’s

immune cells, for example through chromatin architecture, with a lasting effect years after dis-

ease and treatment. To our knowledge, pathogen-associated eQTLs have been described using

in vitro infection models, but not after natural infectious disease in humans [24,38]. However,

‘epigenetic scars’ have been reported as long-term sequalae of TB and thought to be associated

with a higher long-term risk of mortality and morbidity [67]. Therefore, our data raises the

question of whether eQTLs activated following an infectious disease could contribute to risk of

post-infection sequelae such as recurrent TB, akin to reported hypermethylation in the pro-

moter region of interferon induced protein 44 Like (IFI44L) gene post-COVID-19 [68].

Several loss-of-function mutations in FAH are associated with hereditary tyrosinemia type I

in humans, characterized by elevated blood tyrosine levels [69]. In contrast to a system-wide

missense or antisense loss-of-function mutation, the variant we describe here is a regulatory

variant that alters FAH expression in a cell type and state-dependent manner. In this metabolic

pathway, tyrosine is converted into homogentisate, then into fumarylacetoacetate, which the

FAH enzyme converts into fumarate and acetoacetate. Since infection of DCs with liveMtb
results in down-regulation of FAH expression and infection of Fah-edited macrophages results

in increasedMtb growth, the data raise the hypothesis that interference with tyrosine metabo-

lism is associated with TB progression. Consistent with this hypothesis, a prior study of Afri-

can household contacts of index TB patients reported that serum tyrosine and phenylalanine,

a precursor to tyrosine, were higher in individuals who progressed to active TB than non-pro-

gressor counterparts, consistent with impaired tyrosine metabolism during TB progression

[5]. The role of FAH and tyrosine metabolism in TB warrants detailed investigation in future

studies.

Population level differences in TB prevalence highlight the importance of including under-

represented groups in genetic studies [70,71]. Despite successes in defining variants associated

with TB disease susceptibility, many susceptibility loci have been reported to be population-

specific [7,9,10,12,60]. Differences in genetic ancestry and population history effects have been

shown to affect susceptibility to TB, especially in admixed populations [41,72–74]. The minor

allele frequency (AAG insertion) of rs142312981 allele is 7% in Peruvian (12% in our cohort)

compared to 22% for the European reference genomes (NCI, LDproxy tool [75]). Therefore,

this regulatory allele, and others, may have higher impacts in populations where the allele fre-

quencies are higher.

Limitations of this study include profiling the transcriptomes of monocyte-derived DCs

and macrophages years after TB disease, where some of the regulatory changes may have

reverted to baseline. Furthermore, the in vitro differentiation of DCs and macrophages may

alter the epigenetic landscape in ways that are different from unmanipulated ex vivo cells. We

also could not fully rule out whetherMtb-mediated downregulation of FAH was caused by

stimulation of receptors for pattern-associated molecular patterns (PAMPs). However, one

publication showed that stimulation of THP-1 cells with severalMtb-derived PAMPs did not

change FAH expression [76]. Finally, the limited sample size may have reduced the power to

detect additional significant eQTL genes and eQTL interactions. Hence, future replication

studies with larger sample sizes and additional populations will be needed to validate the find-

ings and discover new post-TB regulatory changes, as currently there are no studies with a sim-

ilar experimental design with a sufficiently large sample size for QTL analysis with TB

interaction.
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In conclusion, our study identifies previously unknown genetic regulatory variation associ-

ated with history of active TB and with cell type of origin. Especially notable is the DC-specific

downregulation of FAH because it is a biologically plausible metabolic gene that produces

metabolites, fumarate, and acetoacetate, which have been previously proposed to have immune

modulatory roles [77,78]. The data raise the question of whether these changes could then

compromise subsequent immune responses toMtb infection and contribute to the known

higher risk of recurrence among individuals with prior TB disease. Subsequent studies should

aim at defining mechanistic links to TB susceptibility and mapping these regulatory changes in

different cell types and states, to better understand the long-term regulatory sequelae of TB

disease.
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