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Abstract
Understanding the interactions among anthropogenic stressors is critical for 
effective conservation and management of ecosystems. Freshwater scientists have 
invested considerable resources in conducting factorial experiments to disentangle 
stressor interactions by testing their individual and combined effects. However, the 
diversity of stressors and systems studied has hindered previous syntheses of this 
body of research. To overcome this challenge, we used a novel machine learning 
framework to identify relevant studies from over 235,000 publications. Our synthesis 
resulted in a new dataset of 2396 multiple- stressor experiments in freshwater 
systems. By summarizing the methods used in these studies, quantifying trends in 
the popularity of the investigated stressors, and performing co- occurrence analysis, 
we produce the most comprehensive overview of this diverse field of research to 
date. We provide both a taxonomy grouping the 909 investigated stressors into 31 
classes and an open- source and interactive version of the dataset (https:// james 
aorr. shiny apps. io/ fresh water -  multi ple-  stres sors/ ). Inspired by our results, we 
provide a framework to help clarify whether statistical interactions detected by 
factorial experiments align with stressor interactions of interest, and we outline 
general guidelines for the design of multiple- stressor experiments relevant to any 
system. We conclude by highlighting the research directions required to better 
understand freshwater ecosystems facing multiple stressors.
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INTRODUCTION

Despite being home to a disproportionately high di-
versity of life and providing essential ecosystem ser-
vices, freshwater ecosystems are being degraded by 
anthropogenic activities (Almond et  al.,  2020; Reid 
et  al.,  2019). Lakes, rivers, ponds and wetlands are 
directly impacted by stressors such as overharvest-
ing and hydrological modifications, can accumulate 
stressors like fine sediment and toxic chemicals arising 
from activities in the surrounding landscape, and are 
increasingly being impacted by climate change (Reid 
et  al.,  2019; Sala et  al.,  2000). These diverse physical, 
chemical and biological stressors co- occur and there-
fore have the potential to interact, which complicates 
ecosystem management and environmental risk assess-
ment (Côté et al., 2016; Folt et al., 1999). For instance, 
global warming can enhance the spread and impact 
of many non- native species (Rahel & Olden,  2008), 
environmental stressors can alter the sensitivity of an 
organism to chemical stressors through physiological 
trade- offs (Moe et al., 2013), and toxic pollutants can 
become attached to suspended sediment or plastic par-
ticles, allowing them to spread much further from their 
source (Naasz et al., 2018; Viers et al., 2009). A mech-
anistic understanding of such stressor interactions is 
crucial for accurate predictions of global change im-
pacts and for effective management of freshwater eco-
systems (Spears et al., 2021).

In response to increasing concerns over the cumu-
lative ecological impacts of multiple novel or extreme 
anthropogenic environmental changes, there has been 
a proliferation of research on the interactions among 
stressors (Orr et al., 2020). Indeed, studies that explore 
these antagonistic (reducing combined effects) and syn-
ergistic (increasing combined effects) interactions have 
become very common in the freshwater sciences (Jackson 
et al., 2016; Ormerod et al., 2010; Reid et al., 2019). While 
observational research (e.g., Birk et al., 2020; Outhwaite 
et  al.,  2022) and advances in ecological theory (e.g., 
Beauchesne et  al.,  2021; De Laender,  2018; Vinebrooke 
et  al.,  2004) have been critical for generating knowl-
edge on stressor interactions, the primary tool used by 
multiple- stressor researchers has, without doubt, been 
the factorial experiment. However, factorial experi-
ments, in which stressors are manipulated individually 
and in combination, involve trade- offs between ecologi-
cal realism, replication, temporal scale, and spatial scale 
(Schindler, 1998; Thomas & Ranjan, 2024), so they are 
conducted in very different ways, resulting in consid-
erable context- dependency of results (Orr et  al.,  2020; 
Simmons et  al.,  2021). The observed interactive effects 
of two stressors can be species-  or system- specific or can 
depend on factors including the exposure duration, the 
stressors' intensities, the response variable being mea-
sured, and even the value of other environmental factors 
that can vary across space and time (Dinh et al., 2023; 

Jackson et  al.,  2021; Kefford et  al.,  2023; Turschwell 
et  al.,  2022). The first general synthesis of multiple- 
stressor experiments in freshwater systems was based on 
88 publications and was conducted in 2014/15 (Jackson 
et al., 2016). The >700 citations accumulated by that orig-
inal review (as of December 2023) and the subsequent, 
more targeted syntheses of multiple- stressor studies on 
freshwater fish (Lange et al., 2018, n = 28) and on fresh-
water multispecies assemblages (He et al., 2023, n = 167) 
suggest that research efforts in the field are intensifying. 
Comprehensive reviews across all freshwater types are 
becoming increasingly difficult to perform due to the di-
versity of stressors, systems, and response combinations, 
but they are required to effectively guide future research 
and freshwater management.

Here we used a novel machine learning framework 
to perform the largest systematic review in freshwater 
multiple- stressor research, and one of the largest in 
global change biology in general, to provide a synthesis 
of how interactions between stressors are experimen-
tally studied (Figure 1a). We started with an extremely 
broad initial Web of Science search that returned 
over one quarter of a million publications. By using 
a machine learning framework that makes abstract 
screening far more efficient, we identified 4085 poten-
tially relevant publications, from which 2396 multiple- 
stressor experiments in freshwater ecosystems were 
found during manual full- text screening. There are 
three main practical outputs from this research that 
will be useful to ecologists and evolutionary biologists 
interested in the effects of anthropogenic stressors on 
freshwater biodiversity. Firstly, we provide an analysis 
of this new dataset to give an overview of how these ex-
periments were conducted and to describe trends in the 
popularity and co- occurrence of the investigated stress-
ors. Secondly, we outline a taxonomy of anthropogenic 
stressors in freshwater systems, where the 909 specific 
stressors tested across the experiments are grouped 
into 31 classes within six broader groups. Thirdly, we 
provide this new dataset as an open- source, interactive 
web application (https:// james aorr. shiny apps. io/ fresh 
water -  multi ple-  stres sors/ ) that can be used by students, 
scientists and stakeholders to rapidly find publications 
relevant to their work, to identify knowledge gaps, and 
even to contribute additional knowledge to the dataset. 
More broadly, however, we use the results of our syn-
thesis and recent discussions in the literature to address 
two general questions relevant to all researchers inter-
ested in multiple stressors (Figure 1b). We first propose 
a framework to better understand whether statistical 
interactions observed by experiments reflect stressor 
interactions of interest. Based on the confounding 
variables blurring the connection between stressor in-
teractions and statistical interactions, and by compar-
ing the diverse experimental designs employed by the 
studies in our systematic review, we then ask if there is 
an ‘ideal’ multiple- stressor experiment and we provide 
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practical guidelines for their design. Finally, we con-
clude by recommending directions for future research 
on the cumulative effects of anthropogenic stressors 
that are necessary to optimize the management and 
protection of freshwater ecosystems.

M ETHODS

The diversity of stressors and systems being studied in 
multiple- stressor research means that comprehensive 
reviews require very broad search queries that return a 
daunting number of records. To overcome this challenge, 
which has greatly limited previous syntheses of the field, 
we employed a novel machine learning framework that 
uses active learning to efficiently screen vast quantities 
of abstracts. We followed the PRISMA- EcoEvo guide-
lines (O'Dea et al., 2021) and provided extensive support-
ing information with detailed descriptions of each step 
from study identification to abstract screening to full- text 
screening and finally to data analysis (see Figure S1 for a 
decision tree and see Figure S2 for a PRISMA- style flow-
chart). Our goal was to collect a large and unbiased (based 
on the focus of the experiments) sample of published 
multiple- stressor experiments conducted in freshwater 
ecosystems. We considered an experiment relevant if it: (i) 
included multiple anthropogenic stressors; (ii) quantified 
biological responses in a freshwater system; and (iii) quan-
tified both individual and combined effects of stressors.

We first performed a very broad search on Web of 
Science on 9 January 2022, with three groups of terms 
informed by recent reviews of multiple- stressor re-
search (Orr et al., 2020) and of freshwater biology (Lodi 
et  al.,  2021) that aligned with our three core inclusion 
criteria (Figure  S1). This search returned 250,683 re-
cords, and after filtering out review articles, publications 

that were not written in English (a requirement of our 
screening approach, which unfortunately introduces a 
bias towards English- language publications (Amano 
et al., 2023)), and publications without abstracts in their 
Web of Science record (which were screened manu-
ally), 236,075 potentially relevant records progressed to 
abstract screening. We used an open- source machine 
learning tool called ASReview (version 0.19), which al-
lows for the rapid, transparent and reproducible screen-
ing of large amounts of bibliometric text (Van De Schoot 
et  al.,  2021). In practice, an abstract screener uploads 
their dataset of bibliometric records to the software and 
provides training data, with some records marked as rel-
evant and others as irrelevant based on prior knowledge. 
The active learning model then uses a machine learning 
classifier (e.g., Naïve Bayes) to give relevancy scores to 
different words (and combinations of words) based on 
the training data. The model then searches through the 
entire dataset and identifies the publication it considers 
to be most relevant. The abstract screener then reads the 
abstract of this paper and decides whether to mark it as 
relevant or irrelevant. The entire model is then updated 
based on the decision of the abstract screener, as this 
is an active learning process with interaction between 
model and human, and the model recommends the paper 
that it now considers most relevant. If the model works 
well, the abstract screener will quickly find most of the 
relevant papers while only having manually screened 
a fraction of the entire dataset; plotting the number of 
papers reviewed against the number of relevant papers 
found will return a saturating curve.

We split the abstract screening process among eight 
researchers who simultaneously worked with eight dif-
ferent active learning models over 6 months to screen ca. 
30,000 abstracts. These eight active learning models were 
initialized using the same training data and the same 

F I G U R E  1  Flow chart outlining the approach of our synthesis. (a) Initially, we performed a systematic review where a very broad literature 
search (1) was used in combination with AI- aided abstract screening (2) and traditional full- text screening (3) to compile a novel dataset of 2396 
freshwater multiple- stressor experiments. (b) This dataset was then used to perform a quantitative synthesis of experimental work on multiple 
stressors in freshwater systems (4). The results of this analysis, and group discussions during the screening process, led us to ask if multiple- 
stressor experiments are directly observing stressor interactions or if these stressor interactions of interest are being confounded by other 
factors (5). Based on the challenges of observing stressor interactions and the diversity of experimental designs within our compiled dataset, we 
then asked if there was an ‘ideal’ multiple- stressor experiment, and we produced practical guidelines for future experimental work on multiple 
stressors (6).
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Naïve Bayes machine learning classifier. The training data 
were 20 relevant records randomly chosen from Jackson 
et al. (2016) and 30 randomly chosen records from the Web 
of Science search, which we screened and labelled as either 
relevant or irrelevant. One of the randomly chosen Web of 
Science records was relevant, so the final training dataset 
had 21 relevant records and 29 irrelevant records. The rel-
evant records in the training dataset contained a diverse 
range of studies; all three types of experimental systems 
were represented (5 lab studies, 12 mesocosm studies and 4 
field studies), responses from all levels of biological organi-
zation were quantified, and 29 different stressor identities 
from 12 different stressor classes were tested. Given that 
we were using active learning models that were updated 
whenever a classification was made by a human, we did 
not expect the choice of training data to strongly influence 
the screening process. However, to test the intuitive idea 
that a biased training dataset would lead to less efficient 
screening, we performed a simulation study (described in 
detail in Section 3.6 in the supporting information) where 
we compared models initialized with (i) our ‘diverse’ train-
ing set, (ii) a ‘biased’ training set made up of lab studies 
focusing on insecticides, and (iii) effectively no training 
data (just one relevant record and one irrelevant record). 
This simulation study showed that the choice of training 
data had no effect on the screening process (Figure  S5) 
and demonstrates the robustness of the AI- aided screening 
framework.

Each of the eight subsets of abstracts also contained 
the same set of ca. 1000 abstracts that were used as bench-
mark data to assess the consistency and accuracy of the 
active learning models and screeners (Figure  S4). Our 
predetermined stopping criterion, which was established 
following discussions with the authors of ASReview, 
was that we would screen at least 5% of the records (ca. 
1500 abstracts each) and then continue screening until 
ASReview suggested 50 irrelevant papers in a row. After 
screening 5% of records with ASReview, no screener had 
identified 50 irrelevant papers in a row, so we contin-
ued to screen an additional 1% of the records at a time 
until the stopping criterion had been met. Once 8% of 
the records had been manually screened (a total of 19,421 
abstracts: 2427.6 +/− 13 abstracts per screener), four of 
the eight screeners had identified at least 50 irrelevant 
papers in a row (a median of 50 with a range between 28 
and 65), so as per our pre- determined stopping criterion, 
we ended the abstract screening process. The curve of the 
total number of papers screened against the total number 
of relevant papers found was clearly saturating, and the 
rate of identifying relevant records had fallen below what 
would be expected by chance alone (Figure S3). Indeed, 
based on our simulation study that tested the effect of 
the training data, a very high percentage of relevant re-
cords (>95%) can be found after screening just 8% of the 
relevant records in such a large dataset (Figure S5). After 
combining all results and removing duplicates, 14,158 re-
cords had been manually excluded by the screeners based 

on the decision tree (Figure S1), 217,074 records had been 
excluded for not being suggested by the active learning 
models before the stopping criterion was met, and 4085 
records progressed to full- text screening (Figure S2).

The full- text screening, which was split among 25 re-
searchers, resulted in a total of 1768 publications being 
excluded, with 950 publications not meeting the first 
criterion (i.e., ‘not anthropogenic’), 342 publications not 
meeting the second criterion (i.e., ‘not freshwater’), 415 
publications not meeting the third criterion (i.e., ‘not 
interactive’), and 61 publications not meeting multiple 
criteria. The remaining 2302 publications were included 
in our systematic review. In the dataset, each row is a 
unique experiment; therefore, publications were split 
across multiple rows if they described multiple distinct 
experiments. Similarly, publications were merged into 
the same row if they described the same experiment. 
From the 2302 relevant publications, there were 2396 
distinct experiments. For each experiment, a wide range 
of data was collected from the text and figures in the 
publications that summarized bibliometric information, 
experimental design information, response information 
and stressor information (Table  S1). During the full- 
text screening, we collectively built a ‘stressor taxon-
omy’ (Table  S2) where we grouped the stressors tested 
in the experiments based on their intrinsic traits. The 
taxonomy was inspired by recent work from terrestrial 
systems (Rillig et  al.,  2021) and groups stressors based 
on whether they are physical, chemical or biological in 
nature. Within these broad groups, there are multiple 
‘classes’ of stressors, and within those classes, there are 
specific stressor ‘identities’ (which describe the specific 
treatments in the experiments). For example, a stressor 
treatment that increases temperature by a constant 
amount would be a ‘warming’ stressor identity, within 
the ‘temperature’ stressor class, within the ‘physical’ 
stressor nature. Overall, there were 31 classes of stress-
ors, comprising a total of 909 stressor identities. The tax-
onomy is by no means definitive and is only intended to 
help us record the information in these experiments and 
to illustrate general trends in the literature. Analyses of 
the final dataset, including the quantification of publi-
cation rates, the relative popularity of stressors, and the 
co- occurrence of stressors, were performed in R (version 
4.3.1) with the packages listed in Table S3. All data and 
code used for these analyses are available at https:// ze-
nodo. org/ doi/ 10. 5281/ zenodo. 11100467.

RESU LTS

Overview of experiments

Although the first freshwater multiple- stressor experi-
ment found by our systematic review was published al-
most 60 years ago (Yankow,  1965), it was not until the 
1990s that the number of these published experiments 

https://zenodo.org/doi/10.5281/zenodo.11100467
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began to increase exponentially (Figure  2a). In fact, 
the growth rate of publications on freshwater multiple- 
stressor experiments has outstripped the growth rate of 
academic publishing in general since the 1990s (Figure 2a 
inset). There were experiments from 73 countries across 
all seven continents in our dataset, but over 50% of the 
experiments were conducted in only four countries: 
China, the USA, Canada and Spain (Figure 2b). A total 
of 79% of the experiments (n = 1896) were conducted in 
laboratories, but 500 experiments were performed in 
more natural experimental settings, either in outdoor 
mesocosms (n = 387, ca. 16%) or in experimental field sys-
tems (n = 113, ca. 5%). Most of these mesocosm and field 
experiments were conducted in either lentic (n = 317) or 
lotic (n = 145) systems but there are also 36 wetland ex-
periments and two tank bromeliad experiments. Forty 
percent of the experiments were performed in less than 
1 week (acute 24- hour and 48- hour standardized tests 
on model organisms were very common), while 36 ex-
periments (only 1.5%), which were mostly mesocosm 
or field experiments, lasted for over 1 year (Figure S6). 
Experiments focusing on physiological (e.g., gene expres-
sion, tissue health), individual (e.g., behaviour, feeding 
rate), and population (e.g., reproduction, abundance) 
level responses were more common than experiments fo-
cusing on community (e.g., diversity, stability) or ecosys-
tem (e.g., total biomass, decomposition) level responses. 
Indeed, ca. 77% of experiments quantified responses 
only at the population level or below, while only ca. 12% 
of experiments focused exclusively on the community or 
ecosystem levels. Less than 2% of studies (n = 37) quanti-
fied responses at four or five levels of biological organi-
zation (Figure 2c). These results were mirrored by most 
studies (77%) having focused on a single species. Indeed, 
more single- species experiments using fish have been 
conducted than multi- species experiments (Figure  2f). 
Most experiments (73%) simulated only two stress-
ors, but 21 experiments studied ten or more stressors 
(Figure 2d). Half of the 424 experiments simulating three 
stressors were fully factorial, 20% of the 122 experiments 
simulating four stressors were fully factorial, and three 
out of the 52 experiments simulating five stressors were 
fully factorial. Half of stressor treatments were applied 
as presence/absence treatments, but many experiments, 
particularly lab studies on chemicals, followed gradient 
designs, with 22% of stressor treatments being applied 
at five or more levels (Figure 2e). Finally, in relation to 
the assessment of the temporal dynamics of stressors and 
their effects, 50% of experiments quantified responses at 
multiple timepoints, while only 11% of studies applied 
stressors sequentially rather than simultaneously, and 
even less (7%) quantified the recovery following the re-
moval of a stressor. Many of these results will be intui-
tive to researchers in the field, but this is the first time 
that these characterizations of multiple- stressor research 
(e.g., increasing popularity, dominance of presence- 
absence designs, focus on short- term experiments and 

responses from lower levels of biological organization) 
have been robustly quantified.

Diversity of stressors

There were a total of 6118 stressor treatments across the 
2396 experiments. These stressor treatments were classified 
in our dataset into 909 stressor identities within 31 stressor 
classes based on our taxonomy (Table S2). Previous taxon-
omies of anthropogenic stressors have either been specific 
to certain types of stressors (Eisenberg & McKone, 1998) 
or have not contained information about the popularity 
of stressors (Rillig et al., 2021). 423 stressor identities were 
manipulated only once, while 215 stressor identities were 
manipulated at least five times (Figure 3). The five most 
common stressor identities—warming (n = 441), copper 
(n = 260), cadmium (n = 248), nutrient enrichment (n = 218) 
and zinc (n = 152)—accounted for over 20% of all stressor 
treatments. Chemical stressors accounted for almost 75% 
of all stressor treatments (n = 4508), while only 17% and 3% 
of stressor treatments were purely physical or biological 
stressors, respectively. Moreover, chemical stressors ac-
counted for even more of the overall diversity of stressor 
identities in the taxonomy, with 82% of all stressor identities 
belonging to chemical classes. Although physical stressors 
made up a greater proportion of stressor treatments com-
pared to biological stressors, they had a lower diversity in 
the taxonomy (44 stressor identities are physical and 75 
stressor identities are biological). Up until and during the 
1990s, almost all stressor treatments were chemical stress-
ors, but during the 2000s, 20% of stressor treatments were 
physical, and around 5% were either biological or a mix-
ture of different stressor natures (Figure 4a). These pro-
portions remained quite consistent up until the 2020s with 
the notable exception that since 2010, the proportion of 
stressor treatments that were chemical gradually declined 
to about 60% and the proportion of stressor treatments 
that were a mixture of chemical and physical stressors (i.e., 
nanoparticles and microplastics) increased from 0% to 
ca. 10%. However, there was much more variability in the 
relative popularity of stressor treatments when examining 
trends at the level of stressor classes (Figure 4a, Figure S7). 
Some physical stressors like ultraviolet radiation, habitat 
alteration, and visible light have greatly decreased in rela-
tive popularity, while the proportion of temperature stress-
ors rose from ca. 5% to ca. 15%. Metals accounted for up to 
60% of stressor treatments in the 1990s but have gradually 
dropped to about 15% of stressor treatments. Aside from 
temperature, the only other stressor classes that have seen 
major increases in relative popularity are microplastics 
and nanoparticles, which have gone from 0% of stressor 
treatments before 2010 to ca. 5% each in the early 2020s. 
The interactive dataset (https:// james aorr. shiny apps. io/ 
fresh water -  multi ple-  stres sors/ ) can be used to explore how 
these relative frequencies of stressors also vary across ex-
perimental system types and across habitat types.

https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/
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F I G U R E  2  Overview of experiments in the dataset. (a) The number of experiments per year in this systematic review is shaded by whether 
they were lab, mesocosm or field experiments. The inset shows that the growth rate of published freshwater multiple- stressor experiments 
(pale grey, empty circles) has been far greater than the growth rate of publications in the ‘Biology’ category within the Web of Science database 
(dark grey, solid circles) since the 1990s. Growth rate values are compound annual growth rates for each decade (undefined when the number 
of publications in a given year was 0, as was the case in 1970 and 1980). Note the different y- axis scales for the two groups. (b) World map using 
the Winkel Tripel projection with countries shaded based on the number of experiments conducted there. (c) A five- way Venn diagram showing 
the number of experiments that quantified responses at each level of the biological hierarchy (physiological, individual, population, community 
and ecosystem). (d) The frequency of experiments that manipulated different numbers of stressors (with experiments that manipulated more 
than 10 stressors pooled). Fully factorial and partially factorial studies are in dark and light grey, respectively (e) The frequency of stressor 
treatments tested at different levels (with stressor treatments with more than 10 levels pooled). (f) The frequency of experiments that focused on 
single species within specific taxonomic groups (dark grey) or on multi- species communities (pale grey).
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Co- occurrence of investigated stressors

Co- occurrence analysis revealed modular patterns 
at the levels of stressor class and stressor identity. 
There were high frequencies of co- occurrence between 
stressors within the same class, particularly for chemi-
cal stressors (Figure  4b). Although there was wide-
spread and relatively strong co- occurrence within and 

between chemical stressor classes, and there was a par-
ticularly strong increase in the co- occurrences between 
temperature and all other classes in the past decade 
(Figure S8), there were many pairs of stressor classes 
whose interactive effects were not tested by the experi-
ments in our dataset. There were low co- occurrences 
between biological stressor classes, between physical 
(except temperature) and physical–chemical stressor 

F I G U R E  3  Taxonomy of stressors with only the stressor identities that were manipulated in at least five experiments (n = 215). The number 
in parentheses after each class and identity shows their occurrences across the entire dataset. The occurrence values for each class also include 
identities from that class that had less than five occurrences, which can be found in the full stressor taxonomy in Table S2. Microplastics 
and nanoparticles are considered a mixture of physical and chemical stressors, while cyanotoxins are considered a mixture of chemical and 
biological stressors. Stressors that are a combination of all three natures are classified as ‘composite’ stressors.
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classes, and between biological stressor classes and 
all the other stressor classes (except some of the pes-
ticide classes). Visualizing the co- occurrence patterns 
between actual stressor identities as a force- directed 
network produced clusters of stressor identities that 
revealed compartmentalization between the different 
research disciplines studying multiple- stressor inter-
actions in freshwaters (Figure 5). The stressor identi-
ties within the metal class formed one distinct cluster, 
while stressor identities in the physical classes and the 
nutrient, salinity, and oxygen classes formed another. 
Pesticide stressor identities (fungicides, insecticides, 
and herbicides) grouped together near the cluster 
with physical stressors while biological stressors had 
a broader distribution in the network. Microplastics, 
nanoparticles, and stressor identities in the acidity 
class were found between the two main clusters, while 
pharmaceuticals and other synthetic chemicals formed 
a loose collection of nodes away from the other clus-
ters. Stressor identities more associated with ecologi-
cal research (particularly mesocosm and field studies) 
were found in the top- left of the network, while the 
right and lower parts of the network contained chemi-
cal stressors more associated with ecotoxicological re-
search. The divisions between research disciplines are 

well documented, but it seems that these divisions also 
influence which combinations of stressors are tested.

ARE M U LTIPLE -  STRESSOR 
EXPERIM ENTS OBSERVING 
STRESSOR INTERACTIONS?

The 2396 experiments in our dataset were all designed to 
test if some combination of anthropogenic stressors inter-
act. Understanding if one stressor influences the intensity 
or the effect of another stressor (i.e., a stressor interaction) 
improves predictions of combined effects and can guide en-
vironmental risk assessments and management strategies. 
However, stressor interactions were not directly observed 
by these experiments; rather, interactive effects from sta-
tistical models (traditionally ANOVA) that were fitted to 
the response data were used to infer if stressors interacted. 
Whether the statistical interactions observed in a multiple- 
stressor experiment reflect the stressor interactions the re-
searchers were originally interested in depends on many 
factors that are often overlooked. This is particularly true 
for presence- absence designs, which were the most com-
mon experiments in our systematic review; at least one of 
the stressors was manipulated at only two levels in ca. 64% 

F I G U R E  4  (a) Trends in the proportions of stressor nature categories (physical, physical–chemical, chemical, chemical- biological, 
biological, and composite stressors) as a timeseries proportion plot and trends in the proportions of six stressor classes (habitat alteration, 
temperature, UV light, nanoparticles, acidity and metals) as timeseries scatter plots with Loess curves that have an α smoothing parameter set 
to 1. (b) Co- occurrence matrix of stressor classes ordered by stressor nature (and then ordered alphabetically within a nature category) as in the 
stressor taxonomy. Only one half of the matrix is required because co- occurrences are undirected. The cells along the diagonal represent the 
number of times stressors from the same class co- occurred.
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of experiments. Indeed, our systematic review revealed 
common challenges and emerging trends in experimental 
multiple- stressor research that can be summarized to in-
form future research. Here, we outline these recent method-
ological developments from multiple- stressor research and 

from the study of interactions (or ‘context- dependency’) in 
ecology and evolution more generally, to provide a frame-
work clarifying the blurry connection between stressor 
interactions and statistical interactions (Figure  6). Our 
key message is that detecting the stressor interactions of 

F I G U R E  5  Co- occurrence network of stressor identities that occurred at least five times as a force- directed graph. Each node is an 
individual stressor identity that is coloured by its stressor nature category and has a size proportional to the number of experiments where it 
was manipulated. The width of the links represents the number of co- occurrences between two stressor identities. The Distributed Recursive 
Graph Layout algorithm used to generate the network groups frequently co- occurring stressors and aims to maximize interpretability by 
reducing the amount of overlap between nodes and links. The clustering of stressor identities shows compartmentalization of the different 
research disciplines studying multiple stressors, with stressors more associated with ecological studies found in the top left part of the network 
and stressors more associated with ecotoxicology studies in the lower and right- hand sides of the network.
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interest (Section 4.1) requires knowledge of non- linear bio-
logical responses (Section 4.2) and of the methodological 
decisions that influence the statistical interactions that are 
ultimately detected and interpreted (Section 4.3).

Stressor interactions

Our definition of stressor interactions—when stressors 
influence the intensity or effect of other stressors—fo-
cuses on the intrinsic interactions between stressors and 
the biological systems they are impacting (sensu Didham 
et al., 2007; Schäfer et al., 2023) rather than on statistically 

significant deviations from null models. These intrinsic 
stressor interactions have a mechanistic underpinning, 
whereas deviations from null models (i.e., statistical inter-
actions) can be highly context- dependent. It is useful to 
conceptualize three broad types of intrinsic stressor inter-
actions (Figure  6a). (1) Intensity interactions occur when 
one stressor changes the intensity of another stressor. How 
temperature influences the amount of oxygen that can be 
dissolved in water, how urbanization increases the warm-
ing caused by climate change (Grey et al., 2023), or how 
drought and floods can change the concentration of chem-
ical pollutants in a water body are all examples of intensity 
interactions. (2) Effect interactions occur when one stressor 

F I G U R E  6  Framework for understanding the blurry connection between the intrinsic stressor interactions of interest and the statistical 
interactions that are ultimately tested by an experiment. (a) Stressors, which are represented by the circles, can influence the intensity or the 
effect of other stressors (red arrows show intrinsic stressor interactions). (b) The cumulative effects of stressors may be non- additive due to 
non- linear biological responses. Non- linear biological responses to increasing levels of stress are caused by a variety of effects that can occur at 
different levels of biological organization. (c) The detected statistical interactions depend on methodological decisions made by the researchers 
during data collection, analysis and interpretation. The cartoon below the boxes illustrates the three stages at which these effects occur: (a) 
when stressors interact with each other, (b) when ecological systems respond to the cumulative effects, and (c) when these cumulative effects are 
studied.
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changes the effect of a given intensity of another stressor. 
For instance, organisms' responses to temperature are 
influenced by other stressors (and vice versa), which typi-
cally lower both the optimum and maximum performance 
temperatures (Litchman & Thomas, 2023). Furthermore, 
pyrethroid insecticides (that inactivate nerve cell sodium 
channels) but not organophosphate insecticides (whose 
mode of action is not related to sodium channels) can 
interact through physiological mechanisms with road 
salts in zooplankton communities (Lewis et al., 2021). (3) 
Higher- order interactions occur when multiple intensity 
interactions and/or effect interactions combine. In other 
words, the interactions between two stressors can be influ-
enced by a third (Diamant et al., 2023). Examples of these 
high- order interactions are rare in the literature—e.g., 
temperature- dependent interactions between pesticides 
(Delnat et al., 2019) and complex suppressive interactions 
in three- drug combinations (Beppler et  al.,  2017)—but 
they could be more prevalent in natural systems.

Biological non- linearities

Without knowledge of stressor–response relationships—
how the biological response changes with increasing lev-
els of stress—we do not know if statistical interactions 
from a factorial experiment will accurately reflect the 
intrinsic stressor interactions outlined above. Expecting 
that the combined effects of stressors will be additive—
the default of most multiple- stressor experiments—
assumes that the biological response of interest will 
change linearly with increasing levels of stress (Pirotta 
et  al.,  2022; Schäfer & Piggott,  2018). If a stressor–re-
sponse relationship is non- linear, however, even adding 
the same stressor twice would result in a non- additive 
combined effect (see Figure  2 in Schäfer et  al.,  2023). 
Combining stressors will typically increase overall stress 
intensity (the x- axis of a stressor–response relationship), 
so if biological responses to increasing stress are non- 
linear, additive models can detect statistical interac-
tions that do not reflect the actual interactions between 
stressors. Non- linear stress responses are widespread 
in nature due to a range of effects that play out across 
all levels of biological organization (Figure 6b). For in-
stance, many response variables, like the expression of 
genes or population abundances, have limits beyond 
which increasing stress levels will have no further effects 
(i.e., saturating stressor–response relationships). Some 
stressors, like nutrients, can have positive effects at some 
stressor levels but negative effects at others (i.e., bipha-
sic stressor–response relationships, Odum et  al.,  1979). 
Finally, stressor–response relationships can themselves 
vary over time, with processes like evolutionary adap-
tation or phenotypic plasticity leading to reductions in 
the effects of stressors over time (Bell,  2017). A robust 
understanding of individual stressor–response relation-
ships and multiple stressor–response surfaces is not only 

essential for accurate prediction of individual and com-
bined effects of stressors (Pirotta et al., 2022; Rosenfeld 
et al., 2022; Van Moorsel et al., 2023), but it can also guide 
the selection of statistical models that preserve the link 
between stressor interactions and statistical interactions.

Statistical interactions

The statistical interactions ultimately detected by a 
multiple- stressor experiment do not only depend on the 
intrinsic interactions between stressors and the non- 
linearity of biological responses, but also on methodo-
logical decisions made throughout the scientific process 
(Figure  6c). Firstly, during data collection, researchers 
should be aware that the choice of biological response 
variable used to quantify stressor effects, the range of 
stressor intensities observed or tested, and the measure-
ment of potentially confounding variables can all affect 
the magnitude and direction of detected statistical in-
teractions (Duncan & Kefford, 2021; Mack et al., 2022; 
Turschwell et al., 2022). Secondly, during data analysis, 
researchers must ensure that they use appropriate null 
models that are mechanistically informed by stressor–
response relationships (Schäfer & Piggott,  2018; Tekin 
et al., 2020). They must also be aware of how common 
data transformations change the detectability and mean-
ing of statistical interactions (Duncan & Kefford, 2021; 
Spake et al., 2023) and even how statistical artefacts as-
sociated with more complex modelling approaches can 
introduce non- additivity unrelated to the study system 
(Orr et al., 2021; Thompson et al., 2018). Finally, when re-
searchers are interpreting model outputs, they must con-
sider if they have enough statistical power, based on the 
sample sizes in their experiment, to be able to statistically 
detect meaningful interactions (Burgess et al., 2022). If 
relevant, it is also important for researchers to consider 
the symmetry of the interactions (i.e., is stressor A in-
fluencing the effect of stressor B, is stressor B influenc-
ing the effect of stressor A, or do they both influence 
each other's effects?) by examining marginal effects plots 
for the different relationships (Spake et al., 2023). When 
researchers studying the same systems make different 
methodological decisions in their studies, there can be 
‘apparent context- dependency’ in the types of statisti-
cal interactions that are observed (Catford et al., 2022), 
which limits our ability to gain mechanistic insights into 
stressor interactions.

IS TH ERE A N ‘IDEA L’ 
M U LTIPLE -  STRESSOR 
EXPERIM ENT?

Given these challenges of linking the statistical interac-
tions detected by an experiment to the actual stressor 
interactions of interest, it is natural to ask if there is an 
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‘ideal’ multiple- stressor experiment. Indeed, which of 
the great diversity of experimental designs employed by 
the studies in our systematic review is best suited for dis-
entangling the effects of multiple stressors? In this sec-
tion, we argue that the answer to this question depends 
on the specific research topic and on the feasibility of 
an experimental design, which depends not only on the 
number and required control of treatments but also on 
the complexity of the experimental system and on the re-
sources available to the researchers.

Design options by research topic

Perhaps the simplest setting for a multiple- stressor study 
is when stressors can be considered categorical factors, 
so researchers are interested in whether the presence or 
absence of one stressor influences the intensity or the 
effect of another (Figure 7a). For instance, if a stressor 
only occurs at a specific intensity in natural systems or 
if a stressor's intensity varies due to ecological dynamics 
(e.g., non- native species), then simple factorial experi-
mental designs are appropriate options (Box et al., 2005). 
Almost one- quarter of the experiments in our dataset 
(24.2%, n = 580) were 2- by- 2 factorial designs that ma-
nipulated two stressors at two levels (e.g., presence and 
absence). However, based on the diversity of investigated 
stressors, most of these experiments did not use 2- by- 2 
factorial designs because their stressors were categori-
cal factors, as described above, but because of feasibil-
ity challenges. Indeed, compared to the full dataset, a 

higher proportion of field and mesocosm studies were 
2- by- 2 factorial experiments (194 of 500, 38.8%), suggest-
ing that this simple experimental design is more com-
monly used in more complex systems. If one stressor is 
categorical but the other is continuous (i.e., variations in 
its intensity are of interest), then 2- by- n factorial designs 
are more informative. 2- by- n experiments make up an-
other large portion of the dataset (21.3%, n = 511) but are 
more challenging to perform as they require more treat-
ments and greater control over the intensity of a stressor. 
Increasing the number of levels of the continuous stressor 
reduces the feasibility of the design; 277 experiments 
in the dataset used 2- by- 3 designs, but just eight stud-
ies manipulated 10 or more levels of the second stressor. 
Designs that include different treatments for various 
exposure timings and sequences of the presence or ab-
sence of stressors (e.g., MacLennan & Vinebrooke, 2021) 
allow for the detection of temporal- context dependency 
of stressor interactions (Jackson et al.,  2021), but these 
experiments require more treatments and even more 
control over stressor intensities.

Other types of designs are more suitable in the applied 
research setting of scenario testing (Figure 7b). Here, re-
searchers are interested in forecasting the biological ef-
fects of specific intensities and combinations of stressors 
that are representative of specific scenarios (e.g., testing 
temperature and carbon dioxide levels predicted by a 
climate model, or decreasing the intensity of an agri-
cultural stressor to meet a policy target). The simplest 
scenario testing designs (e.g., present vs. future) do not 
manipulate stressors factorially, so interactions cannot 

F I G U R E  7  Design options for multiple- stressor experiments organized by research topic (a–d). Experimental designs are sorted vertically 
based on how feasible they are to conduct, which is a function of the experimental system (e.g., laboratory, mesocosm or field). How informative 
a design is, in the context of a given research topic, is typically negatively correlated with how feasible it is. Grey circles are treatments; X, Y 
and Z are three stressors; subscripts represent different levels of a stressor; C is for control; and numbers correspond to the number of stressors 
for the ‘richness design’. The design options in the boxes with dashed outlines do not necessarily allow for the quantification of stressor 
interactions, so they are not found in our dataset.
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always be quantified. It is very likely that some of the 415 
studies that were excluded from our systematic review for 
not testing the interactive effects of stressors (Figure S2) 
were designed to test specific scenarios. More complex 
designs, such as custom response surface designs, can 
be used to make forecasts that are robust to some level 
of uncertainty of stressor intensity predictions (Thomas 
& Ranjan, 2024) and can also characterize the interac-
tions between stressors, but these designs require a high 
degree of control over the intensities of stressors, which 
may be difficult to achieve in field or even some meso-
cosm experiments.

There has been a widespread call for the use of 
regression- based approaches in multiple- stressor re-
search to improve predictive power and to gain deeper 
mechanistic insights (Figure 7c) on the potentially non- 
linear responses of biological systems to anthropo-
genic impacts (Boyd et  al.,  2018; Collins et  al.,  2022; 
Cottingham et  al.,  2005; Kreyling et  al.,  2018; Orr 
et al.,  2020; Thomas & Ranjan, 2024). For two contin-
uous stressors, response surface designs can be used to 
compare biological responses across different points of 
the state space defined by the intensity of the stressors. 
Response surface designs come in many different forms, 
reviewed by Thomas and Ranjan  (2024), that vary in 
their efficacy and feasibility. However, if stressor inten-
sities can be well controlled, these designs can still be 
feasible for the average research group. If experimental 
units were limited, for instance, a full factorial response 
surface design with just one replicate per treatment 
could be used (e.g., 5- by- 5 factorial would require 25 ex-
perimental units), and regression models would still be 
able to provide insights on the mechanisms of the po-
tentially non- linear individual and interactive effects of 
stressors (but greater replication would be required to 
detect smaller effect sizes). If experimental units are not 
limited and a research group has considerable resources 
(far more likely for laboratory systems), then high res-
olution response surface designs with replication (e.g., 
10- by- 10 factorial with three replicates per treatment 
would require 300 experimental units) could be used in 
combination with sophisticated modelling techniques 
such as GAMs to gain deep insights into biological re-
sponses to multiple stressors. Here, the uncertainty of 
predicted non- linear relationships is generally decreased 
by increasing the sample size or the resolution of tested 
stressor intensities (Wood,  2017). Response surface ex-
periments were rare in our dataset, with only 194 stud-
ies (8%) measuring at least five levels of two stressors. 
Reflecting feasibility challenges, 181 of these studies were 
lab experiments, 11 were mesocosm experiments and just 
two were field experiments. Furthermore, 361 of the 388 
stressors studied in these response surface experiments 
were chemical or chemical–physical in nature, and 91.8% 
of studies were on single species, suggesting that these 
designs are more common in ecotoxicological, rather 
than ecological, research on multiple stressors. There 

are many alternatives to full- factorial response surfaces, 
such as central composite designs or space- filling designs 
that are uncommon in ecology and evolution, which can 
use prior knowledge of biological responses (e.g., known 
boundaries) to optimize resources (see simulation stud-
ies in Thomas & Ranjan, 2024).

Researchers are becoming increasingly interested in 
testing the combined and interactive effects of more than 
two stressors (Figure  7d). All the experimental designs 
discussed above can be extended to three or more stress-
ors, but the number of treatments will increase exponen-
tially with the number of stressors in factorial designs 
(i.e., the combinatorial explosion problem). Even for 
three stressors, each tested at just two levels (i.e., pres-
ence vs. absence), the number of treatments increases 
from four to eight. Partial factorial designs (i.e., not test-
ing all possible combinations) can be used to increase the 
feasibility of a study, but then only the net higher- order 
interactions (encompassing unmeasured lower- order 
interactions) can be quantified (Diamant et  al.,  2023). 
Indeed, 432 of the 672 experiments in our dataset that 
tested more than two stressors were partially factorial. 
Fully factorial experiments with three stressors each at 
two levels were relatively common (n = 122) with a slight 
majority of these being field (n = 16) or mesocosm (n = 42) 
studies. There were even some experiments that built 
higher- dimensional response surfaces. Although these 
experiments are very challenging to perform—they re-
quire many treatments and a high level of control of 
stressor intensities—there were 26 studies in our data-
set that factorially manipulated at least three stressors 
each across at least five levels (a minimum of 125 treat-
ments). Unsurprisingly, all these studies were single- 
species laboratory studies that tested multiple chemical 
stressors. Finally, it is worth highlighting an interesting 
form of partially factorial design where treatments are 
the number (not identity) of stressors (Rillig et al., 2019). 
Although these studies are not best suited for quantify-
ing pairwise and higher order stressor interactions, they 
are relatively feasible options for studying the combined 
effects of many co- occurring stressors.

Recommendations for future experiments

Statistical interactions observed by experiments should 
ideally reflect the underlying stressor interactions 
that are important for conservation and ecosystem 
management. Based on the potential pitfalls outlined 
in Sections  4.2 and 4.3 and on the trade- off between 
feasibility and how informative the different experi-
mental designs outlined in Section 5.1 are, we propose 
several best practices that future multiple- stressor ex-
periments can employ. (1) Measure the abiotic effects 
of stressors. Collecting data on relevant abiotic vari-
ables (e.g., temperature, oxygen, pH) and on the con-
centrations and degradation of chemicals during an 
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experiment can help to identify context- dependency of 
stressor effects (Kefford et al., 2023). It may be useful 
to have additional ‘abiotic controls’ in an experimen-
tal design that do not contain biological components 
so that the physical and chemical interactions between 
stressors can be independently assessed. (2) Construct 
response surfaces. Response surface designs, where 
the responses of key biological variables (e.g., growth, 
mortality and productivity) are quantified across dif-
ferent intensities of stressors, are the best experimen-
tal designs for disentangling non- linear biological 
responses and intrinsic stressor interactions (Collins 
et al., 2022; Van Moorsel et al., 2023). If stressors are 
not categorical variables, if stressor intensities can be 
controlled, and if researchers are not testing a specific 
scenario, future multiple- stressor experiments should 
use regression- based approaches that provide far more 
mechanistic insights than simple presence- absence 
designs (Boyd et  al.,  2018; Cottingham et  al.,  2005; 
Kreyling et  al.,  2018; Thomas & Ranjan,  2024). (3) 
Focus on mechanisms of interactions rather than devia-
tions from additivity. Analyses of potential stressor in-
teractions should be theoretically driven and informed 
by our best mechanistic understanding of the system, 
rather than being focused on detecting a deviation 
from an uninformed (e.g., additive) statistical model. 
Although exploratory analyses with multiple different 
null models can sometimes be useful, in general, estab-
lishing clear- cut predictions followed by transparent 
and reproducible data analyses will clarify the blurry 
connection between stressor interactions and statisti-
cal interactions. Even for a mechanistically informed 
null model, experimental designs (e.g., sample sizes) 
should ideally be informed by power analyses so that 
biologically meaningful interactions can be detected 
(Johnson et  al.,  2015; Lakens & Caldwell,  2021). This 
approach will help multiple- stressor researchers not to 
lose sight of a central goal of their experiments: to un-
derstand if stressors influence each other's intensities 
and effects.

FUTU RE DIRECTIONS 
A N D CONCLUSIONS

Our systematic review provides resources that will 
help to inform future work on the impacts of multi-
ple stressors in freshwater ecosystems. More generally, 
however, our framework for connecting stressor inter-
actions and statistical interactions (Figure 6) and our 
practical guidelines for the design of multiple- stressor 
experiments (Figure  7) are relevant to any system 
and can even be generalized to study other forms of 
interaction in ecology and evolutionary biology (i.e., 
Spake et  al.,  2023). Although performing a formal 
meta- analysis of the entire dataset of 2396 experiments 
would be a prohibitively large task—the median and 

maximum number of studies per meta- analysis were 24 
and 369, respectively, in a review of 466 meta- analyses 
in ecology (Costello & Fox,  2022)—an important 
next step will be conducting targeted meta- analyses 
on meaningful subsets of the dataset, such as the 781 
stressor combinations that involved temperature or 
the 1092 stressor combinations that were tested at the 
community or ecosystem levels. Furthermore, our 
stressor taxonomy could be coupled to mechanistic hy-
potheses of stressor interactions and stressor–response 
relationships for data- rich studies (i.e., studies with 
many stressor levels) to make predictions and inform 
ecosystem management. The interactive web applica-
tion (https:// james aorr. shiny apps. io/ fresh water -  multi 
ple-  stres sors/ ) can be used by researchers, students and 
stakeholders to identify combinations of stressors that 
have not yet been studied, to access studies relevant to 
their work, and to contribute additional knowledge to 
the dataset. This freshwater dataset should also eventu-
ally be combined with multiple- stressor datasets from 
other disciplines in ecology and global change biology 
(e.g., Song et al., 2019; Van Sundert et al., 2023) to en-
hance cross- fertilization of ideas and perspectives.

The number and diversity of multiple- stressor experi-
ments found through our systematic review were remark-
able and exceeded our expectations. The shared goal of 
gaining information on all relevant stressor combina-
tions, as well as the pressures surrounding productivity 
and novelty in research outputs, encourages researchers 
to design experiments with previously unstudied combi-
nations of stressors and systems. Although this diversity 
of experiments is undoubtedly a strength of the field, the 
pursuit of novelty may lead to research efforts becom-
ing spread thin. As an alternative approach, coordinated 
and distributed experiments (e.g., Harpole et  al.,  2016; 
Romero et al., 2020) offer a powerful approach for study-
ing environmental context- dependencies while over-
coming experimenter- induced context- dependencies. 
Although it is vital to fill the many gaps in our knowl-
edge (white cells in Figure  4b), it is important for re-
search efforts to focus on combinations of stressors, 
and intensities, that typically co- occur in natural sys-
tems (Bowler et al., 2020) to most effectively address the 
urgent threats facing freshwaters. Comparing the co- 
occurrence of investigated stressors to the current and 
predicted co- occurrence of stressors in natural systems 
will be a critical next step. Similarly, focusing on how the 
effects of dominant stressors in specific systems, such 
as pesticides in lowland streams (Liess et al., 2021) and 
nutrient enrichment in lakes (Birk et al., 2020), are mod-
ified by other stressors will be particularly informative 
for conservation and management.

To better understand, predict and manage multi-
ple stressors in natural systems, some experimental 
designs will be more useful than others. Studies, par-
ticularly with communities of species, that report mul-
tiple biological responses across levels of organization 

https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/
https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/
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can help to identify if stressor interactions at one 
level are causing non- additive responses at another 
(Rillig, Lehmann, et  al.,  2023; Simmons et  al.,  2021). 
Furthermore, more long- term experiments that study 
adaptation to stressors or the trajectory of communi-
ties following the removal of stressors (only ca. 7% in 
our dataset) will be essential for determining effective 
stressor removal strategies (Vos et al., 2023). There is 
also a risk that too much emphasis is being placed on 
the identification and classification of stressor interac-
tions rather than on the prediction of their combined 
effects, which may hinder mitigation or manage-
ment efforts. Indeed, the diversity of stressors, with-
out knowledge of their interactions, can still provide 
valuable information about their ecological impacts 
(Rillig et al., 2019; Rillig, van der Heijden, et al., 2023). 
Nevertheless, multiple- stressor experiments, partic-
ularly response surface designs (Kreyling et al., 2018; 
Thomas & Ranjan, 2024), are still critical for advanc-
ing our fundamental knowledge of the combined ef-
fects of multiple stressors in freshwaters.

Of course, not all stressors that impact freshwater 
ecosystems can be simulated experimentally. There can 
be ethical issues associated with testing the effects of 
non- native species and anthropogenically spread dis-
eases. Furthermore, stressors that have direct impacts 
at the landscape scale, such as habitat fragmentation 
through damming, are difficult to meaningfully rep-
licate. As such, using empirical evidence to construct 
process- based models linking physical, chemical, and 
biological mechanisms (e.g., López Moreira Mazacotte 
et  al.,  2023) or to parameterise numerical models of 
ecosystems (Simmons et  al.,  2021) will be essential for 
advancing our understanding of all the threats facing 
freshwater ecosystems. With this systematic review, we 
now know the current standing of experimental work on 
multiple stressors in freshwaters, and the resources pro-
vided here will increase clarity and efficiency in the field. 
The extensive research efforts that have been building 
over the past decades must continue if we are to gain the 
knowledge required to effectively conserve and manage 
freshwater ecosystems in the 21st century.
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