
Asymptotic analysis of

Deep Learning algorithms

Alain Rossier
St Hugh’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2023

To my best friend, Arnaud.

Acknowledgements

I am not a man of many words. This time however, I have to give credit
where credit is due. J’ai eu l’immense chance de grandir au côté d’un autre
passionné des mathématiques. Ensemble, nous avons entretenu une amitié
profonde et une compétition saine, nous emmenant aux quatre coins du
monde physique et mathématique. Sans toi Arnaud, je ne serai pas en
train d’écrire ces mots.

Je suis aussi éternellement reconnaissant envers mes parents Philippe et
Manuela, qui ont su me guider avec balance sur ce long chemin. Vous
m’avez constamment poussé à l’excellence, tout en veillant à ce que je
garde les pieds sur terre.

This thesis has forged many friendships, in particular with my fellow
DPhil students Jonathan and Felix. You have been a constant source of
happiness in Oxford with your banter, through our ups and downs. For all
the memories we have shared, with Regan as well, I would embark on this
journey all over again. Merci Camille pour avoir partagé un bout de la
route avec moi, pour tes multiples relectures, et surtout pour ton soutien
indéfectible dans les moments difficiles.

This work is the result of several collaborations over the years, and special
thoughts go to Renyuan. You have been a continuous source of inspiration
since the start of my DPhil, and you have been kind enough to invite me
to USC, where I could deeply focus (and enjoy the sun).

L’origine de ce project de doctorat vient de Alain-Sam, qui a été non
seulement un collaborateur exceptionnel, mais surtout un ami proche,
toujours prêt à déconner dans les meilleurs moments. As a result, I would
like to thank Instadeep and Karim for sponsoring my DPhil, and for giving
me valuable advice and feedback.

Finally, I am greatly indebted to my supervisor, Rama. You have taught
me how to ask the right questions, how to stay humble but ambitious, and
curious but inquisitive. Your willingness to challenge the status quo, your
rigorous standards and your god-like intuition have greatly contributed to
my growth as a researcher, and I shall never forget that.

Abstract

We investigate the asymptotic properties of deep residual networks as the
number of layers increases. We first show the existence of scaling regimes
for trained weights markedly different from those implicitly assumed in
the neural ODE literature. We study the convergence of the hidden state
dynamics in these scaling regimes, showing that one may obtain an ODE,
a stochastic differential equation (SDE) or neither. Furthermore, we derive
the corresponding scaling limits for the backpropagation dynamics. Finally,
we prove that in the case of a smooth activation function, the scaling regime
arises as a consequence of using gradient descent. In particular, we prove
linear convergence of gradient descent to a global minimum for the training
of deep residual networks. We also show that if the trained weights, as a
function of the layer index, admit a scaling limit as the depth increases,
then the limit has finite p−variation with p = 2.

This work also investigate the mean-field limit of path-homogeneous neural
architectures. We prove convergence of the Wasserstein gradient flow to
a global minimum, and we derive a generalization bound based on the
stability of the optimization algorithm for 2-layer neural networks with
ReLU activation.

Contents

1 Introduction 1
1.1 Learning theory framwework . 1

1.1.1 Approximation . 3
1.1.2 Optimization . 5
1.1.3 Generalization . 7

1.2 Asymptotics . 11
1.2.1 Width goes to infinity . 11
1.2.2 Depth goes to infinity . 15
1.2.3 Learning rate goes to zero . 17

2 Linear residual networks 20
2.1 Recent work . 20
2.2 Problem formulation . 21
2.3 Description of the solutions . 22
2.4 Global convergence and scaling . 24
2.5 Existence of a scaling limit as the depth increases and connection to

linear neural ODE . 29
2.6 Numerical examples . 30

3 Scaling properties of deep residual networks 33
3.1 Introduction . 33
3.2 Scaling regimes . 35

3.2.1 Scaling regimes for trained network weights 35
3.2.2 Smoothness of weights with respect to the layer 37

3.3 Scaling behavior of trained weights: numerical experiments 38
3.3.1 Methodology . 38
3.3.2 Results for fully-connected layers 39
3.3.3 Results for convolutional networks 44

i

3.3.4 Summary: three scaling regimes 47
3.4 Deep network limit . 47

3.4.1 Scaling regime 1: ODE limit 47
3.4.2 Scaling regime 2 . 49
3.4.3 Link with numerical experiments 53
3.4.4 Detailed proofs . 54

3.5 Asymptotic analysis of the backpropagation dynamics 69
3.5.1 Backpropagation in supervised learning 69
3.5.2 Backward equation for the Jacobian under Scaling regime 1 . 70
3.5.3 Backward equation for the Jacobian under Scaling regime 2 . 71
3.5.4 Proofs . 73

4 Convergence and implicit regularisation of gradient descent for deep
residual networks 83
4.1 Introduction . 83

4.1.1 Convergence and regularization properties of deep learning al-
gorithms . 84

4.1.2 Contributions . 85
4.2 Residual networks . 86
4.3 Dynamics of weights and hidden states under gradient descent 88

4.3.1 Bounds on the hidden states, their Jacobians, and the loss
gradients . 89

4.3.2 Behaviour of weight norms along the gradient descent path . . 93
4.3.3 Local convergence of gradient descent 93
4.3.4 Scaling limit of trained weights 98

4.4 Numerical experiments . 99
4.4.1 Identification of scaling behavior 99
4.4.2 Rate of convergence . 100
4.4.3 Emergence of regularity of weights as a function of the layer index100

4.5 Conclusion . 102

5 Mean-field limit and global convergence of gradient descent for path-
homogeneous models 103
5.1 Introduction . 103

5.1.1 Outlook and contributions . 104
5.1.2 Related work . 105
5.1.3 Notation . 107

ii

5.2 Path-homogeneity . 107
5.2.1 Definitions . 107
5.2.2 Path-homogeneous function 107
5.2.3 Multi-layer ReLU networks . 108

5.3 Global convergence of Wasserstein gradient flow for path-homogeneous
models . 109
5.3.1 Calculus on the space of measures 111
5.3.2 Particle and Wasserstein gradient flow 111
5.3.3 Convergence to the global minimum 116
5.3.4 Global convergence for continuous-depth residual networks . . 118

5.4 Generalization properties in the 2-homogeneous case 120
5.4.1 Assumptions and definitions 120
5.4.2 Preliminary analysis . 122
5.4.3 Generalization bound: main result 124

5.5 Numerical experiments . 127
5.5.1 Particle complexity for convergence of multi-layer ReLU networks127
5.5.2 Convergence of the particle gradient flow of deep convolutional

networks . 128

Bibliography 129

A Hyperparameters 146

B Technical results of Chapter 4 147
B.1 Gradient of the loss function with respect to parameters 147
B.2 Boundedness of hidden states and Jacobians 148
B.3 Upper bounds on the gradient and Hessian of the loss function 149
B.4 Lower bounds on loss gradients . 151
B.5 Weight norms and loss function under gradient descent 152
B.6 Supporting lemma for Theorem 4.6 156

C Technical results of Chapter 5 158
C.1 Properties of path-homogeneous functions 158
C.2 Auxiliary results and proofs of Section 5.3 161

C.2.1 Bound on the variation of the subgradient 161
C.2.2 Proof of Proposition 5.11 . 162
C.2.3 Bound on the evolution of gradient flow functionals 165

iii

C.3 Proofs of Section 5.4 . 166
C.3.1 Proof of Lemma 5.20 . 166
C.3.2 Proof of Lemma 5.21 . 167

D Auxiliary results 169

iv

List of Figures

2.1 Frobenius norm of the trained weights at different depths with the ZAS
initialization (2.5). In red: norm of the last layer. In blue: norms of all
the other layers. 31

2.2 Learning rate η(L) used in SGD to train the weights at different depths
with the ZAS initialization (2.5). The learning rate is updated according
to the schedule described in Section 2.6. 31

2.3 Frobenius norm of the trained weights at different depths with the
Xavier initialization. In red: norm of the last layer. In blue: norms of
all the other layers. 32

2.4 Learning rate η(L) used in SGD to train the weights at different depths
with the Xavier initialization. The learning rate is updated according
to the schedule described in Section 2.6. 32

3.1 Trained weights as a function of k/L for k = 0, . . . , L and L = 9100.
Left: rescaled weights LβA

(L)
k,(0,0) for a tanh network with β = 0.2.

Right: cumulative sum
∑k−1

j=0 A
(L)
j,(0,0)for a ReLU network. Note that

each A(L)
k,(0,0) ∈ R. 36

3.2 Scaling for tanh activation and δ(L) ∈ R. Left: Maximum norm of δ(L)

with respect to L. Right: Cumulative sum norm of A(L) with respect
to L. The dashed lines are for the synthetic data and the solid lines
are for MNIST. The plots are in log-log scale. 41

3.3 Identification of scaling behavior in the case of tanh activation and
δ(L) ∈ R. Left: log-log plot of root sum of squares of A(L) (pink) and the
β-scaled norm of increments of A(L) (orange). Dashed lines are for the
synthetic data and the solid lines are for MNIST. Right: Decomposition
of the trained weights A(L)

k,(9,7) with the trend part A and the noise part
WA for L = 10321, as defined in (3.6), for the synthetic dataset. . . . 41

v

3.4 Scaling for ReLU activation and δ(L)k ∈ R. Left: Cumulative sum norm
of |δ(L)|A(L) with respect to L, in log-log scale. Right: trained values
of δ(L)k as a function of k, for L = 9100 and for the synthetic dataset. 42

3.5 ReLU activation and scalar δ(L)k . Left: in pink we plot in log-log scale
the root sum of squares of |δ(L)|A(L), and in orange the β-scaled norm
of increments of |δ(L)|A(L). The dashed lines are for the synthetic data
and the solid lines for MNIST. Right: Decomposition of the trained
weights |δ(L)|A(L)

k,(7,7) with the trend part A and the noise part WA for
L = 10321, as defined in (3.6), for the synthetic dataset. 42

3.6 Scaling behavior for b(L) with tanh activation and scalar δ(L). Left:
cumulative sum norm of b(L) with respect to L, in log-log scale. Middle:
the root sum of squares of b(L) in pink and the β−scaled norm of
increments of b(L) in orange, in log-log scale. The dashed lines are for the
synthetic data and the solid lines are for MNIST. Right: Decomposition
of the trained weights b(L)k,5 with the trend part b and the noise part W b

for L = 10321, as defined in (3.6), for the synthetic dataset. 43
3.7 Scaling and hypothesis verification for b(L) with ReLU activation and

δ
(L)
k ∈ R. Left: cumulative sum norm of |δ(L)|b(L) with respect to L,

in log-log scale. Middle: the root sum of squares of |δ(L)|b(L) in pink
and the β−scaled norm of increments of |δ(L)|b(L) in orange, in log-log
scale. The dashed lines are for the synthetic data and the solid lines for
MNIST. Right: Decomposition of the trained weights |δ(L)| b(L)k,6 with the
trend part b and the noise part W b for L = 10321, as defined in (3.6),
for the synthetic dataset. 43

3.8 Loss value, as a function of L, in black for the trained weights A(L)
k

and in green for the denoised weights Ã(L)
k = L−βAk/L. Left: tanh

activation and δ(L) ∈ R. Right: ReLU activation and δ
(L)
k ∈ R. Note

that these curves are for the synthetic dataset and that we plot them in
log-log scale. Also, we show in off-white the loss value range in which
we consider our networks to have converged. 44

3.9 Residual architecture. There are 4 blocks that are respectively repeated
n1, n2, n3 and n4 times. The network depth is L = n1 + n2 + n3 + n4.
The Basic Block architecture is detailed in Figure 3.10. 45

3.10 Basic Block from Figure 3.9. See (3.9) for details. 45

vi

3.11 Scaling of ∆(L) (left) and A(L) (right) against the network depth L for
convolutional architectures on CIFAR-10. In blue: spectral norm of the
kernels ∆

(L)
k , resp. A(L)

k , for k = 0, . . . , L− 1. In red: maximum norm,
defined in Table 3.1. The plots are in log-log scale. 46

3.12 Scaling behavior of ∆(L) (left) and A(L) (right). We plot in pink the
root sum of squares and in orange the α-scaled norm of increments of
∆(L) (left) and the β-scaled norm of increments of A(L) (right). Plots
are in log-log scale. The root sum of squares and the scaled norm of
increments are defined in Table 3.1. We obtain α and β from Figure 3.11. 46

4.1 Left: scaling αt of δL against the initial scaling α0 for different training
times. Right: Average loss value across depths L ∈

{
2k : k ∈ [3, 12]

}
for different initializations α0, as a function of the number of gradient
steps t. 99

4.2 Both figures: horizontal axis is the initial scaling β0 of the weights A,
and the vertical axis is the fixed scaling α0 of δL. Left: Final total
scaling α0 + βT . Right: Average final loss after T = 200 epochs. The
depths at which we train our networks are L ∈

{
2k : k ∈ [3, 10]

}
. . . . 100

4.3 Both figures: horizontal axis is the inverse loss level 1/ϵ, in log-scale,
and the vertical axis is the number of gradient steps needed for the
average loss to drop below ϵ. The average is taken over the depths
L ∈

{
2k : k ∈ [3, 10]

}
. Left: constant learning rates ηL(t) = η0. Right:

decaying learning rates ηL(t) = η0(t+ 1)−1. 101
4.4 Evolution of weight norms along gradient descent path for different

depths L ∈ {24, 25, 26, 28, 210}. Left: L2-type norm f (L)(t) as a function
of gradient iterations. Right: Quadratic variation-type norm g (L)(t) as
a function of gradient iterations. 101

4.5 Scatter plot of the rescaled weights L1/2A
(L)
k,(7,18)(T) for different values

of L ∈ {4x : x ∈ [3, 6]} at the end of the training T = 500. Horizontal
axis is the scaled layer index k/L. 102

5.1 Neural network representation for the model x 7→ y = Φ(µm)(x) =∫
Θ
Φ(θ)(x)dµm(θ). Here, x is the input, Φ(θ) is a neural network

mapping with parameter θ, µm = 1
m

∑m
i=1 δθi is an atomic measure over

the parameter space with θ1, . . . , θm ∈ Θ, yi = Φ(θi)(x) is the output of
the neural network Φ(θi), and y = 1

m

∑m
i=1 yi is the output of the model.110

vii

5.2 Final training loss against the number of particles m, with m0 = 6.
The light blue points are 10 individual runs, the solid blue line is their
median and the red curve is only optimizing the last layer. Left: d0 = 64,
K = 2. Middle: d0 = 8, dh = 8, K = 3. Right: d0 = 4, dh = 4, K = 4. 127

5.3 Particle gradient flow on AlexNetSmall and VGG11 tested on CIFAR-10.
Left: AlexNetSmall on CIFAR-10. Right: VGG11 (11 layers) 128

C.1 Illustration of the case α = (1, 2). The ellipse is Eα = {x ∈ R2 : x21 + 2x22 = 1}.
The paths λ ∈ R>0 7→ pξi(λ) ∈ R2 are displayed in red for two distinct
points ξ1, ξ2 ∈ Eα on the ellipse. The outer normal unit vector of the
ellipse Eα at ξ1 is denoted by n⃗ξ1 . The tangential component of the
gradient at ξ1 of an (α, k)−homogeneous f is denoted ιξ1(∇tf(ξ1)) and
lies in the linear space spanned by the tangent line of the ellipse Eα at
ξ1. 160

viii

Chapter 1

Introduction

In recent years, deep neural networks have made significant advances in various
fields of artificial intelligence (AI), such as image recognition, image generation, text
generation, and reinforcement learning. These advances have revolutionized many
industries, including self-driving cars, creative design, natural language processing,
and game playing. Specifically, self-driving cars rely heavily on deep neural networks
for image recognition, while DALL-E generates images from text descriptions, GPT-4
generates coherent text, and AlphaGo Zero uses reinforcement learning to become
the strongest Go player in history. These breakthroughs demonstrate the power and
potential of deep neural networks to solve complex problems and drive innovation in
the field of AI.

Deep learning has achieved great success due to the abundance of data, pow-
erful computing resources, and advanced optimization techniques. However, while
the practical advancements in deep learning have been remarkable, the theoretical
understanding of this field is still at its onset. We remain unable to fully explain
the effectiveness of the relatively simple tools used by deep learning practitioners.
The purpose of this thesis is to explore various important theoretical aspects of deep
learning by examining how the system behaves as one of its parameters approaches
its limit – an approach known as asymptotic analysis.

1.1 Learning theory framwework

A good starting point to analyse deep learning is through the lens of a supervised
learning problem. Suppose that the data lives in the space Z, and let D ∈ P(Z) be
the data distribution. We seek to understand D via the means of a class of predictors

1

F and a loss function ℓ : F × Z→ R+. 1 Our goal is to minimize the population risk
R(f) := Ez∼D [ℓ(f, z)].
In practice, we only have access to a set of samples S drawn from D, which we assume
to be independent and identically distributed (i.i.d.). It is not a realistic assumption,
since D is usually an abstract concept, such as a uniform distribution of the set of
"natural" images, and there is usually no good definition of independence between
samples. Nevertheless, the i.i.d. assumption is convenient from a theoretical point of
view. Define the empirical risk RS(f) :=

1
|S|
∑

z∈S ℓ(f, z).
Suppose that there exists an optimal solution that minimizes the (intractable) popula-
tion risk: fopt ∈ argminf∈FR(f). Suppose as well that we have an algorithm A that
takes a sample set S and outputs a predictor AS ∈ F based only on the sample set S.
The population risk can be decomposed into the following error terms [23]:

R(AS) = R(AS)−RS(AS)︸ ︷︷ ︸
generalization

+RS(AS)−RS(fopt)︸ ︷︷ ︸
optimization

+RS(fopt)−R(fopt)︸ ︷︷ ︸
concentration

+ R(fopt)︸ ︷︷ ︸
approximation

(1.1)
Note that while the concentration and the generalization terms look similar, they

are handled in different ways. For the concentration term, as fopt is independent of
the sample set S, the random variables {ℓ(fopt, zi) : i = 1, . . . |S|} are independent and
identically distributed. Therefore, for δ > 0, if we assume that maxf,z ℓ(f, z) ≤M , we
have by Hoeffding’s inequality that with probability 1− δ,

RS(fopt) ≤ R(fopt) +M

√
log(1/δ)

2 |S| (1.2)

and the bound is sharp. However, the generalization term has to be estimated
differently, as ℓ(AS, zi) are no longer independent of each other.
We should choose the class of models F with the following trade-off in mind.

(i) F must be large enough to contain functions f that can reach low population
risk R(f). This can be achieved by using a priori knowledge about the data.

(ii) F must be chosen such that the algorithm A is efficient to compute AS ≈
argminf∈FRS(f). We must also ensure that AS is converging to fopt as |S| → ∞.

(iii) F must be small enough to ensure that the generalization error R(AS)−RS(AS)

is small. Generally, this gap decreases to zero as |S| → ∞, but can remain very
large if F is big.

1For example, Z = X× Y, where X is the input space, Y is the output space, and ℓ(f, (x, y)) =
d(f(x), y), where d is a distance function on Y.

2

In the light of the above trade-off, we expand in more details on the three main sources
of error: approximation, optimization, and generalization.

1.1.1 Approximation

The class of predictors F = {fθ : θ ∈ Θ} is determined by two components: the
parametric specification fθ of elements of F, called the neural network architecture,
and the space of values Θ that the parameters live in.

Feedforward neural networks. In the seminal paper [132], the author introduced
the original and most well-known architecture: the feedforward neural network 2. Fix
L ∈ N∗ the depth of the neural network, and let X = Rd0 be the input space and
Y = RdL be the output space. Let (d1, . . . , dL−1) ∈ (N∗)L−1 be the dimensions of the
hidden states, also called widths. A feedforward neural network is a parametric map
fθ(L) : X→ Y such that fθ(L)(x) = h

(x)
L , where we define recursively

hxk+1 = φk

(
hxk, θ

(L)
k

)
for k = 0, . . . , L− 1, hx0 = x. (1.3)

Here, hxk is called the kth hidden state, and φk : Rdk × Θk → Rdk+1 the kth layer
mapping. The mapping φk can take various forms, the most common building block
being the composition of an affine map and an activation function ρ : R→ R, i.e.

φk

(
h, (Wk, bk)

)
= ρdk+1

(
Wkh+ bk

)
, (1.4)

where ρd : Rd → Rd is defined component-wise by ρd(x)i = ρ(xi). The parameter
Wk ∈ Rdk+1×dk is called the weight matrix of layer k, the parameter bk ∈ Rdk+1

is called the bias vector, and the layer mapping (1.4) is called fully-connected, as
each coordinate of hk contributes to each coordinate of hk+1. Popular choices for
the activation functions are the rectified linear unit (ReLU): ρ(x) = max(x, 0), the
hyperbolic tangent ρ = tanh, or the leaky ReLU ρ(x) = max(x, 0) + αmin(x, 0).

Weight space. There are three main lines of work to define the space in which the
parameters can take values in, each focusing on making one of the terms in (1.1) as
small as possible.

(i) Minimize approximation term. If our goal is to solely minimize the approxi-
mation term, we should consider the full Euclidean space in which parameters
take values in. In particular, we can apply Stone-Weierstrass [53] to F and prove

2also called multilayer perceptron

3

universal approximation of continuous functions on a compact set. Similar ideas
lie behind the original universal approximation theorem for neural networks
with 1 hidden layer3, see [38]. However, the worse case error rate for these
shallow networks is unattractive [115]: for instance, we need a neural network
of width Ω(ε−d/r) to approximate d–dimensional Cr functions with accuracy ε.
This adversarial phenomenon is known as the curse of dimensionality.

(ii) Minimize optimization term. If we restrict the weights to only take values
that can be reached by the optimization algorithm, we could control the op-
timization error closely. This strategy is also appealing from a generalization
perspective, since we have tools such as stability [24] or implicit regularization
[119] to understand how the optimization algorithm affects the error on unseen
data, see Section 1.1.3 for more details. We use the former method in Section
5.4 and the latter in Section 4.3. Unfortunately, both methods rely on a precise
understanding of how the optimization algorithm works, which is only known in
restricted settings.

(iii) Minimize generalization term. To obtain good generalization properties, one
can enforce explicit regularization on the parameter values. A popular technique
is to consider Θ = {θ : ∥θ − θ0∥ < R}, where θ0 is the initial parameter value
and R > 0. As we will see in Section 1.2.1, networks with small R and large
width4 are almost linear, and they satisfy a universal approximation theorem via
RKHS theory. These results were established in the seminal paper on the neural
tangent kernel (NTK) regime [82]. However, the width necessary to enter into
the NTK regime is prohibitively large, and, empirically, networks that generalize
well are usually far away from their initialization [10, 122].

Representational benefits of depth. The advantages of increasing the depth
in lieu of the width has been well-documented for fully connected networks with
ReLU activation. In [147], the author constructs a classification problem for which a
network with depth L and width O(1) can perfectly fit the training set, but where
every network of depth O(1) and width O(exp(L)) yields a training error greater
than 1/6. Other constructions and worse case error bounds are given in [159, 100],
supporting the evidence that shallow networks require exponentially more width than
deep networks to reach the same error level. The intuition behind this counter-example

3i.e. depth L = 2
4Models with large width are also called overparametrized by width

4

is that depth performs function compositions, which multiplies the number of linear
pieces, whereas width perform function additions, which adds up the number of linear
pieces. However, the examples built are highly pathological and unlikely to appear in
a useful supervised learning problem.

Architecture modifications Modifications to the above architecture have been
suggested mostly for two reasons: to decrease the generalization error or to speed
up and/or stabilize the training. For example, if we incorporate local connectivity
and weight sharing in Ak, we obtain a convolutional layer, widely successful in image
and speech recognition [94]. Further, batch/layer normalization [79] were introduced
to normalize the distribution of hidden states, allowing to train deeper networks.
Also, the activation function can also be multivariate, such as a softmax layer for
the last block of a neural network used for classification, or an attention layer [149]
to emphasize one part of the hidden state over another. We can also introduce skip
connections to design a residual network architecture, which we will introduce more
precisely in Section 1.2.

1.1.2 Optimization

Recall from (1.1) that the optimization problem focuses on finding an algorithm A

that minimizes the empirical risk RS(AS). However, the true objective that we are
concerned about is the population risk R(AS), and by the central limit theorem,
|R(AS)−RS(AS)| ≳ |S|−1/2. Therefore, there is no apparent benefit to optimize the
empirical risk at a scale smaller than |S|−1/2, which sets apart the task of learning
from pure optimization problems [60].

Stochastic gradient descent. A key ingredient in the success of deep learning
is the ability to perform automatic differentiation to compute exact gradients of the
loss function RS(fθ) with respect to θ. The process is called backpropagation, and
there exist efficient implementations of backpropagation that require constant time
and linear extra memory. As a result, first order methods such as stochastic gradient
descent (SGD) have been the backbone of successful applications of deep learning.
For an initial parameter value θ0, the update rule of SGD reads, for t ≥ 0:

θt+1 = θt − ηt∇θℓ(fθt , zt), zt
iid∼ S (1.5)

where ηt > 0 is called the learning rate at iteration time t. Even though the update
rule (1.5) might not be a descent direction for RS, θt converges (linearly) almost surely

5

to a minimizer of RS when θ 7→ ℓ(fθ, z) is strongly convex [23, 22]. Furthermore, there
are theoretical and practical reasons to prefer SGD to (full batch) gradient descent:

(i) Typically, SGD achieves ε–optimality in O(1/ε) iterations, so O(1/ε) gradient
evaluations, independently of the number of samples, whereas full-batch gradient
descent achieves ε–optimality in O(log(1/ε)) iterations, hence O(|S| log(1/ε))
gradient evaluations [23]. Therefore, in the large data regime |S| ≫ 1, one
should always favor a stochastic gradient approach.

(ii) In practice, one observes a fast decrease in the error in the first few iterations of
(1.5), hinting that at least for small t, the "signal" part ∇θRS(θt) of the update
dominates the "noise" part ∇θℓ(fθt , zt)−∇θRS(θt). We will introduce in Section
1.2.3 a precise framework to understand both parts.

(iii) There exists methods to reduce the variance of the noise part. A widespread
idea is to reuse previous gradient computations to get faster convergence rates,
known as gradient aggregation [86, 40]. Another idea, not yet widely used in
practice but theoretically sound, is dynamic sample size methods: instead of
using one sample per iteration, one can utilize a dynamic number of samples at
each iteration [23, Theorem 4.6]. We get the same complexity as the one-sample
update (1.5), but with better bounds on the variance of the iterates.

Initialization. From an optimization perspective, the main challenge for initializing
deep feedforward networks is avoiding vanishing or exploding gradients [76]. Via a
heuristic argument aiming to preserve the variance of the forward and the backward
states, [59] derived that the weights of a m× n linear layer with a sigmoid activation
should be initialized with mean 0 and variance 2/(m + n), known as the Xavier
initialization. [71] adapted the above derivation in the case of a ReLU activation to
get a mean 0 and variance 2/m recommendation, known as the He initialization. In
practice, both He and Xavier initializations are widely used, either with Gaussian or
uniform weights, with no clear practical difference between the two distributions.
For deeper models, [129] performed a rigorous derivation of the average norm of the
hidden states at initialization, when the weights, resp. biases, are centered Gaussian
with variance σ2

W , resp. σ2
b . They obtained a phase transition in the (σW , σb) plane,

separating it between two phases:

• Chaotic: Exploding gradients, expressivity of the network is retained, nearby
input points can be separated.

6

• Ordered: Vanishing gradients, expressivity of the network is lost, nearby input
points can not be separated anymore.

The trainable phase is therefore at the transition, called the edge of chaos. [125] com-
puted the edge of chaos for all practical activation functions. Our work investigate the
initialization strategies for residual networks, see Section 3.3 for numerical experiments
and Section 4.3 for a theoretical investigation.

Loss landscape. Recall that the loss function we seek to minimize is L(θ) :=

RS(fθ) = |S|−1∑
z∈S ℓ(fθ, z). If the predictor fθ is linear in θ, and the loss function ℓ

is convex in its first variable, the empirical risk L is convex. As a result, there are no
saddle points, and every local minimum is global. These properties ensure that first
order methods are converging almost surely to a global minimum of L. However, if
fθ is a neural network, then L is non-convex, and the sublevel set {θ : L(θ) ≤ λ} has
more than one single connected component, for some λ > 0 [55]. But with enough
overparametrization by width, all sublevel sets are connected [55], and all local minima
are global [120]. Note that in the linear case, the latter is true for any width [87].
Regarding saddle points, early empirical studies have shown that the loss landscape
of neural network contained many saddle points [40], but they are almost surely not
visited by gradient descent [96].
The above behaviour is reminiscent of many classes of random functions: the probability
of a particular eigenvalue of the Hessian at a critical point being negative is around
1/2 in high-cost region of the loss function, and decreases as the cost decreases [26].
This means, when the number of parameters is high, there are exponentially more
saddle points than local minima, and local minima are more likely to be found in
low-cost regions.

1.1.3 Generalization

Recall that the generalization error in (1.1) is given by

εopt(S) := R(AS)−RS(AS) ≤ sup
f∈F
|R(f)−RS(f)| =: εopt. (1.6)

Note first that using (1.2) together with a union bound yields a vacuous upper bound,
as |F| is at least super-exponential in the number of parameters. One needs to resort
to the Vapnik-Chervonenkis (VC) dimension of F to get a first non-trivial result:

εopt ≲ C

√
VCdim(F) + log(1/δ)

2 |S|

7

VCdim(F) = O(L), where LF is the maximum depth of networks in F, and PF is the
maximum number of parameters of networks in F. However, as argued in multiple
empirical studies [119, 162, 54], the number of parameters is not a good measure for
the model capacity of neural networks. Also, studying the uniform bound εopt instead
of εopt(S) removes the dependence on the optimization algorithm, which seems to
explain some of the out-of-sample success of neural networks [119, 162]. Therefore,
through three puzzling empirical observations, we present modern approaches to
understand the generalization ability of neural networks.

1. Explicit regularization is not the full story. The goal of regularization is to
reduce the complexity5 of the hypothesis space F in order to improve generalization.
Several techniques have been applied successfully in the context of neural networks.6

(i) Data augmentation: Constructing new data points by perturbing the existing
ones adversarially [62], via domain-specific transformation, or by using generative
methods like variational autoencoders [90], generative adversarial networks, [61]
or diffusion models [144].

(ii) Sparsity/parameter sharing: Altering the structure of the neural network to fit
domain-specific applications. For example, convolutional layers share parameters
across dimensions and the convolutional operator is sparse, which makes it robust
to study local structures of the input such as images.

(iii) Dropout: Masking neural connections randomly with a given probability during
training, and using the full network structure for the inference [145].

(iv) Weight decay: Scaling down the contribution of the parameters of the previous
iteration in the update rule (1.5) of SGD. Weight decay is equivalent to adding
a ℓ2-penalty on the weights to the loss function.

(v) Gradient penalty: Adding a ℓ2-penalty on the gradients of the loss function
with respect to the weights. We will see in Section 1.2.3 following an analysis in
[14] that this penalty arises naturally in the limit of the training step-size going
to zero.

The relative success of explicit regularization inspired norm-based approaches to derive
theoretical bounds, for example using Rademacher complexity and spectral norms

5also called effective capacity
6The list is not exhaustive, we present the most common ones.

8

[17], PAC-Bayes and noise robustness [11], or in a more direct way using path norms
[88]. However, even with all explicit regularizations turned off, the models can still
memorize the training set and show no sign of overfitting [92, 162].

2. The optimization algorithm affects generalization. The effect of the opti-
mization algorithm on the generalization properties of the neural network at conver-
gence is often called implicit regularization. To understand what it entails, we consider
a simple linear regression problem [64]: we have the dataset S = {(xi, yi) : i = 1, . . . , n},
where xi are d-dimensional feature vectors, and yi is their corresponding 1-dimensional
target. Let X ∈ Rn×d such that the ith row of X is xi, and assume that d > n, X has
full rank, and ℓ is convex in its first argument. The empirical risk of a weight vector
β ∈ Rd is thus given by

RS(β) =
1

n

n∑
i=1

ℓ(β⊤xi, yi)

Observe that RS is convex, so SGD will converge to a global minimum. As d > n and
X has rank n, there exist infinitely many global minima, that is, weights β such that
RS(β) = 0. Which solution(s) will be reached by SGD? Assume β0 = 0 and the SGD
update rule (1.5) is given by

βt+1 = βt − ηt
∂ℓ

∂y1

(
β⊤
t xit , yit

)
xit

for some it ∈ {1, . . . , n} chosen at random. Therefore, after a (possibly infinite)
training time T , βT ∈ span {x1, . . . , xn}, i.e. there exists α ∈ Rn such that βT = X⊤α.
Furthermore, as βT is a global minimum, XβT = y. Therefore, XX⊤α = y, and as
X has rank n, XX⊤ is invertible and βT = X⊤ (XX⊤)−1

y. One can verify that β
solves the following minimization problem

min ∥β∥2 such that Xβ = y (1.7)

In practice, βT generalizes well, and one can construct other global minima (with
higher norm) that generalize poorly. However, the minimum norm solution 1.7 is not
a perfect predictor of generalization performance [162]. Similarly to linear regression,
gradient descent for linear neural networks converges to the maximum margin solution
[83], as well as for homogeneous 2-layer wide neural networks [32]. We extend this
theory for deep neural networks with a smooth activation function in Section 4.3,
and show that gradient descent converges to a global minimum that is regular as a
function of the layer.

9

Another type of implicit regularization is the use of early stopping in the opti-
mization algorithm. It is based on the observation that the risk on a validation set
usually follows a U-shape curve as a function of the training time [60]. In this regime,
training the network to global convergence hurts the population risk, and the number
of training iterations T can be viewed as a hyperparameter to tune. In the context of
linear models, [60] showed that early stopping is equivalent to ℓ2-regularization with
coefficient inversely proportional to

∑T
t=0 ηt.

A vast literature explores how to derive generalization bounds for optimization
algorithms, for example algorithmic robustness [155], uniform stability [24, 69] or
information-theoretic stability [2, 136, 154], among others. We derive uniform stability
bounds for a class of homogeneous models in the mean-field limit optimized with
gradient flow in Section 5.4. The assumptions required to verify those bounds are
usually weak, at the expense of ignoring the underlying data distribution or the neural
network architecture. This can lead to vacuous bounds under input or label noise [162],
and uniform convergence is not able to fully explain generalization [116].

3. Overparametrization helps generalization Traditional statistics rely on the
bias-variance trade-off to choose the optimal complexity of a model: the out-of-sample
error is usually a U-shape curve as a function of the model complexity - usually related
to the number of free parameters in parametric statistics. As the complexity increases,
the model is able to fit the training samples and reduce the bias, at the expense of a
higher variance until the interpolation threshold is reached, above which there is no
bias and an exploding variance.

Empirically, neural networks operate optimally well beyond the interpolation
threshold, when the number of parameters d far exceeds the number of samples n.
The data can be perfectly interpolated, even when the targets are corrupted with
noise [162], and the out-of-sample error is lower than in the underparametrized regime.
This phenomenon is called double descent in the literature.

Even though double descent was discovered in the context of deep learning, it is not
idiosyncratic to neural networks and can be observed in linear regression with random
Fourier feature and tree-based algorithm [19]. Rigorous proofs of this phenomenon
exist for linear regression with random covariates [18], and random features regression
(related to kernel methods) [113]. To give an intuition on the former, consider the case
n = 1 and X = {−1, 1}d. After normalization, the population risk of the minimum
norm interpolator7 β∗ in (1.7) is R(β∗) = d−2

∥∥EX∼D

[
XX⊤]∥∥2

F
, see [18]. Therefore,

7Equivalently, the large-time limit of the gradient flow with zero initialization.

10

in the overparametrized regime d > 1, increasing the feature dimension from d to d+1

can increase or decrease the population risk depending on the correlation of the new
feature Xd+1 with respect to the other features X1:d.

It is worth mentioning that double descent is closely related to the implicit
regularization of gradient descent methods, as it is easy to engineer overparametrized
neural networks that interpolate the training data, but have a poor out-of-sample
performance.

1.2 Asymptotics

Asymptotic analysis plays a fundamental role in science by providing a powerful tool
to understand the behavior of systems as certain parameters tend to infinity. This
analysis is particularly useful in the study of complex systems, where direct analytical
solutions are not available, to gain insight into their long-term/large scale properties
and identify their dominant behaviors. For example, asymptotic analysis is central
in the complexity analysis as a function of the input size in computer science, the
performance of high-pass and low-pass filters as a function of the frequency in electrical
engineering, and the behavior of a viscous fluid flow as a function of the Reynolds
numbers.

We look at three different limits of the deep learning framework: the width and
the depth of the neural network going to infinity, and the learning rate of SGD going
to zero. Other limits can be investigated, such as when the number of data points or
the computational budget tend to infinity, but they lie beyond the score of this thesis.

1.2.1 Width goes to infinity

We revisit the original feedforward architecture described in (1.3) and incorporate a
scaling factor in front of the weight matrix that depends on the width:

hxk+1 = d
−1/2
k Wk ρdk

(
hxk
)
+ bk for k = 1, . . . , L− 1 and hx1 = d

−1/2
0 W0 x+ b0,

where Wk ∈ Rdk+1×dk and bk ∈ Rdk+1 are the weight matrix and the bias vector of the
kth layer, and θ = {(Wk, bk) : k = 0, . . . , L− 1} is the full parameter set. Assume that
the output is 1–dimensional, i.e. dL = 1, and define fθ(x) = hxL the output of the last
layer. The scaling is consistent with the popular initialization schemes introduced in
Section 1.1.2, and the d−1/2

k factor is crucial to get a consistent limiting behaviour as
the widths d1, . . . , dL−1 tend to infinity.

11

We now informally derive the exact dynamics of the neural network f along the
gradient flow of the parameters in the limit d1, . . . , dL−1 →∞ using kernel regression.
This was first observed in [35] for L = 2, and rigorously proven in a general setting in
[82], which called the underlying object the neural tangent kernel.

Neural tangent kernel Assume that θ0 is initialized with independent centred
Gaussian entries, with variance σ2

W for the weights and σ2
b for the biases. To simplify

the analysis, assume that the parameters are following the gradient flow of the empirical
risk on the dataset S = {(xi, yi) : i = 1, . . . , n}.

dθt
dt

= −∇θRS (fθ)
∣∣
θ=θt

= − 1

n

n∑
i=1

∇θfθt(xi)et(xi, yi), et(x, y) =
∂ℓ

∂y1
(fθt(x), y).

(1.8)
We deduce the following dynamics for the neural network realization and the empirical
risk.

∂fθt
∂t

= − 1

n

n∑
i=1

Kθt(· , xi)et(xi, yi) (1.9)

∂

∂t
RS (fθt) = −

1

n2

n∑
i,j=1

et(xi, yi)Kθt(xi, xj)et(xj, yj) (1.10)

where the neural tangent kernel (NTK) Kθ : X× X→ R is given by

Kθ(x, x
′) = ∇θfθ(x)

⊤∇θfθ(x
′). (1.11)

Under weak assumptions on the activation function ρ, the hidden states hxk converge
as d1, . . . , dL−1 →∞ to i.i.d. centered Gaussian process with variance defined by a
recurrence equation [111]. Also, Kθ0 converges to a deterministic kernel K∞ which is
constant in t and only depends on ρ, the depth L, and the initial variance σW and σb
[82, 122]. Further, in this limit, as long as the kernel matrix K∞ := (K∞(xi, xj))

m
i,j=1

is positive definite, RS (fθt) converges to zero. When ℓ is the quadratic loss ℓ(y1, y2) =
|y1 − y2|2, the solution of (1.9) can be found explicitly:

fθt = Dt(·)Y +
[
fθ0 −Dt(·)fθ0(X)

]
(1.12)

where Y = (y1, . . . , yn)
⊤ ∈ Rn, fθ0(X) = (fθ0(x1), . . . , fθ0(xn))

⊤ ∈ Rn, and

Dt : X→ Rn, Dt(x) =
(
K∞(x, xi)

m
i=1

)⊤ (
K∞)−1

(
In − exp

(
−2t

m
K∞

))
.

12

We directly see from kernel regression theory that the first term in (1.12) converges as
t→∞ to the minimum RKHS-norm interpolator:

min
f∈HK∞

∥f∥K∞ s.t. f(xi) = yi.

The second term in 1.12 is a Gaussian process with zero mean and variance vanishing
on the data points xi, i = 1, . . . , n, because Dt(xi)→ ei as t→∞. Finally, we have
formally in the limit d1, . . . , dL−1 →∞ that

fθt ≈ f lin
θt

:= fθ0 + (θt − θ0)⊤∇θfθ0 .

The approximation and convergence rates can be made precise [95]. Essentially, in the
infinite-width limit, the neural network behaves like a linear model on the (non-linear)
features ∇θfθ0(x). This is called lazy training, and it can already be observed in a
non-asymptotic regime.

Lazy training The lazy regime arises naturally as a consequence of overparametriza-
tion, or at the beginning of the optimization. Indeed, for the 2–layer case, if the
activation function ρ is β-smooth, then Taylor’s theorem directly gives∣∣fθt(x)− f lin

θt (x)
∣∣ ≤ β

2
√
d1
∥θt − θ0∥2F .

Several papers have utilized this observation to establish the global convergence of
(stochastic) gradient descent for neural networks overparametrized by width. For
example, [45] proves that for the 2-layer ReLU case with d1 = Ω(n6δ−3), we have
linear convergence of the empirical risk to zero with probability 1− δ over the random
initialization. [33] considers a more general setting, where a simple final layer scaling
can put any model into the lazy regime, and also provides linear convergence rates.
However, [10] reports that empirically, networks trained in the lazy regime lag behind
their finite-width counterparts in terms of out-of-sample accuracy. Therefore, despite
encouraging theoretical bounds on the generalization gap in the lazy regime [27],
overparametrization alone cannot explain the ability of neural networks to generalize
well.

In Section 4.3, we study global convergence of the empirical risk for deep residual
networks with smooth activation. Our analysis goes beyond the lazy regime, and even
if the parameters found by gradient descent are far from their initialization, we can
still guarantee convergence thanks to the implicit regularization displayed by gradient
descent.

13

Mean-field limit A crucial assumption in the NTK regime is the d−1/2
k scaling of the

weights, leading to a linear evolution of the realization function fθt under the gradient
flow of the empirical risk and the parameters staying close to their initialization during
training: supt ∥(Wk)t − (Wk)0∥2 = O(d

−1/2
k). However, in practice, we already have for

small t: ∥θt − θ0∥2 = O(1). This observation motivated the study of another scaling:
for the two-layer neural network:

fθ(x) =
1

d

d∑
i=1

ciρ(w
⊤
i x), where θ = (w, c) ∈ Rd×d0 × Rd. (1.13)

Let µd ∈ M(Rd0) be the (signed) measure of the parameters: µd = d−1
∑d

i=1 ciδwi
.

Then
fθ(x) =

∫
Rd0

ρ(w⊤x)dµd(w) =

(∫
Rd0

Φ(w)dµd(w)

)
(x),

where Φ: Rd0 → F is defined by Φ(w) = ρ(⟨w, · ⟩). The evolution of µd under the
gradient flow of the empirical risk RS is thus given by

∂t µd,t = −div
(〈

R′
S

(∫
Φdµd,t

)
, ∇Φ

〉
F∗
µd,t

)
, (1.14)

where R′
S is the Frechet derivative of RS. The infinite-width limit in (1.14) is obtained

by letting d→∞, which yields a non-linear PDE in the space of measures. Concurrent
papers have established the link between the two-layer neural network (1.13) and its
infinite-width limit during training: [133] from the interactive particles and fluctua-
tions perspective and [141] from a mean-field probabilistic approach. Under strong
assumptions on the data distribution, [114] established convergence as t→∞ of noisy
SGD to a global minimum for d big enough. Under a homogeneity condition on the
model, [31] studied the training dynamics in the limit d → ∞ in the Wasserstein
space of probability measures. They also derived convergence to a global minimum as
t→∞.

Contrary to the NTK regime, the mean-field dynamics of the neural network
realization are non-linear, so the network can potentially represent a larger class of
functions. However, the mean-field theory does not extend naturally for more than one
hidden layer. Potential solutions have been proposed, such as taking the successive
limits dL−1 →∞, and so on until d1 →∞ [142], or considering the connected paths
from an input neuron to an output neuron as the building block for the mean-field
construction [6]. Furthermore, little is known about the convergence rate to global
minima and generalization error bounds in the mean-field regime.

14

Contributions In Chapter 5, we study the mean-field limit of a particular class
of models called path-homogeneous, which encompasses deep neural networks with
special local connectivity. We show convergence to a global minimum, and we prove a
generalization bound based on the algorithmic stability of the optimization method
used: the Wasserstein gradient flow.

1.2.2 Depth goes to infinity

As mentioned above, the problem of vanishing/exploding gradient [20] in the training
and in the performance of deep feedforward neural networks has restricted the use
of very large depth. Ad hoc solutions have been introduced to fix this issue, such as
careful initialization [59, 71] with batch normalization layers [79] to allow the gradients
to stay within the same magnitude throughout the network. Yet, the existing literature
rarely reports successful training and good generalization results for networks with
more than 100 layers. In contrast, adding a skip connection at every layer, resulting
in a residual network, allows the successful training of networks with thousands of
layers, together with a better generalization performance than the best feedforward
networks [73]. For example, ResNet-1001 [72], which consists of 1000 layers, achieves
a 4.92% out-of-sample error on the CIFAR-10 dataset.

Residual networks There are multiple different residual architectures used in
practice, each of them fine-tuned to a particular problem. Instead of listing them
exhaustively, we give a general form of the ResNet as described in [72]. Let X = Rd0 be
the input space and Y = RdL be the output space. Fix L ∈ N∗, and (d1, . . . , dL) ∈ (N∗)L

the dimensions of the hidden states. Let x ∈ X be an input vector, and ψd,d′ : Rd → Rd′

be either the projection onto the first d′ components if d ≥ d′, or the padding with
zeros on the last d′ − d components if d < d′. Define a residual network as the
parametric input-output map x ∈ X 7→ fθ(L)(x) ∈ Y given by

h
x, (L)
0 = gin

(
x, θ

(L)
0

)
,

h
x, (L)
k = ψdk−1, dk

(
h
x, (L)
k−1

)
+ Fk

(
h
x, (L)
k−1 , θ

(L)
k

)
for k = 1, . . . , L,

fθ(L)(x) = gout

(
h
x, (L)
L , θ

(L)
L+1

)
.

(1.15)

Here, we let Fk : Rdk−1 × Θ
(L)
k → Rdk be a residual block, composed usually of a

composition of linear layers and non-linear activations. The term ψdk−1, dk

(
h
x, (L)
k−1

)
is

called a skip connection. The input downsampling is given by the parametric function

15

gin : X × Θ
(L)
0 → Rd0 and the prediction layer is given by the parametric function

gout : RdL ×Θ
(L)
L+1 → Y. The set of parameters of the residual network is thus

θ(L) :=
{
θ
(L)
k : k = 0, . . . , L+ 1

}
.

The general form (1.15) is difficult to analyse systematically, so we assume in the
following that d0 = · · · = dL = d and gin and gout are identity functions in the first
argument. The update rule now reads

h
x, (L)
k = h

x, (L)
k−1 + Fk

(
h
x, (L)
k−1 , θ

(L)
k

)
for k = 1, . . . , L and h

x, (L)
0 = x. (1.16)

Neural ODEs A series of papers have observed and utilized empirically the perceived
link between the forward dynamics of residual networks (1.16) and the discretization
of ordinary differential equations. For example, [67] develop new architectures inspired
by the stability condition of the Euler scheme. In the same vein, [107] build on
the so-called linear multi-step scheme in numerical ODE to construct a novel deep
architecture. These insights culminated with the neural ODE architecture [28], which
uses adaptive step-size schemes to adjust the depth needed to the function it is trying
to fit. The network parameters are shared across all layers, making this approach
appealing in terms of memory.

However, the link with ordinary differential equations is only formal. A first issue,
often overlooked, is that there is no explicit scaling factor in front of the activation
in (1.16). Indeed, explicitly scaling the residual network with 1/L empirically hurts
performance [13]. Also, there is no guarantee that the parameters learnt by the
optimization algorithm will have a scaling limit when L→∞, as you would expect
from discretization schemes of ODEs.

Contributions In Chapter 2, we study linear residual networks as a toy model
for non-linear networks, and describe explicitly all the minima of the empirical risk.
We then show global convergence of the gradient flow to a minimum which admits a
scaling limit. This property demonstrates the implicit regularization of the gradient
flow for deep linear residual network.

In Chapter 3, we investigate the asymptotic properties of deep residual networks
as the number of layers increases. We first show the existence of scaling regimes for
trained weights markedly different from those implicitly assumed in the neural ODE
literature. We study the convergence of the hidden state dynamics in these scaling
regimes, showing that one may obtain an ODE, a stochastic differential equation (SDE),

16

or neither. In particular, our findings point to the existence of a diffusive regime in
which the deep network limit is described by a class of stochastic differential equations
(SDEs). Finally, we derive the corresponding scaling limits for the backpropagation
dynamics.

In Chapter 4, we prove local linear convergence of gradient descent to a global
minimum for the training of deep residual networks with constant layer width and
smooth activation function. We show that if the trained weights, as a function of
the layer index, admit a scaling limit as the depth increases, then the limit has finite
quadratic variation.

1.2.3 Learning rate goes to zero

Recall the stochastic gradient descent update rule (1.5) with constant learning rate
η > 0:

θt+1 = θt − η∇θℓ(fθt , zt), zt
iid∼ Unif(S)

for optimizing the loss function L(θ) = RS(fθ) =
1
|S|
∑

z∈S ℓ(fθ, z). First, we show
that the discrete SGD trajectory is close (in expectation) to the gradient flow of a
regularized objective when η is small [14, 143].

Implicit regularization of the discretization Consider first the (full-batch)
gradient descent update θt+1 = θt − η∇θL(θ). Suppose that θ evolves according to
the regularized gradient flow: ∂tθ t = −∇θ

(
L(θ t) + ηN(θ t)

)
, for some N : Θ → R+.

Then, a second-order expansion in η leads to

θ t+η = θ t + η∂tθ t +
1

2
η2∂2t θ t + O(η3)

= θ t − η∇θL(θ t) + η2
(
−∇θN(θ t) +

1

2
∇2

θL(θ t)∇θL(θ t)

)
+ O(η3).

Therefore, if we let N(θ) := 1
4
∥∇θL(θ)∥2, Gronwall’s lemma ensures that if L is

β-smooth, then
∥∥θk − θkη∥∥ = β−1 (exp(βkη)− 1)O(η2), as opposed to O(η) without

the regularization term N(·). [143] extended the analysis for the (average) SGD
update rule, which approximates the gradient flow of

LSGD(θ) = L(θ) +
η

4
∥∇θL(θ)∥2 +

η

4 |S|
∑
z∈S

∥∇θℓ(fθ, z)−∇θL(θ)∥2 .

The third term penalizes the covariance of the stochastic updates, which motivates
the below SDE (1.18) in the limit η → 0.

17

SGD is the discretization of a SDE An important component of SGD that we
omitted so far is the use of a (random) mini-batch of training data to perform the
SGD update step. Namely, let B ∈ N be the batch size, and let Γ ∈ XB be a uniform
random variable on the subsets of S of size B. The SGD update rule is then

θt+1 = θt − η∇θLΓt(θt), (1.17)

where Γt
iid∼ Γ and LΓ(θ) := 1

B

∑
z∈Γ ℓ(fθ, z). We split in (1.17) the signal and the

noise part of the gradient:

θt+1 = θt − η∇θL(θt) +

(
η

(
1

B
− 1

|S|

)
Σ(θt)

)1/2√
ηZt,

where Eγ∼Γ [Zt] = 0 and Covγ∼Γ [Zt] = Id, and where we assume that the covariance
of the gradient noise is finite:

Σ(θ) :=
1

|S| − 1

∑
z∈S

(∇θℓ(fθ, z)−∇θL(θ)) (∇θℓ(fθ, z)−∇θL(θ))
⊤ <∞.

Under strong smoothness assumptions on the growth of L and its derivatives [97,
Theorem 1], we can prove that for each T ≥ 0, the SDE

dΘt = −∇θL(Θt) +

(
η

(
1

B
− 1

|S|

)
Σ(Θt)

)1/2

dWt, (Wt)t∈[0,T] is a BM, (1.18)

is an order-1 weak approximation of (1.17), that means, the difference of expectations
of test functions applied to (1.17) and (1.18) is O(η). The approximation is appealing
as [30] showed empirically that the third (and higher) moments of the gradient noise
do not influence the convergence or the generalization ability of SGD. However, as
η → 0, the noise vanishes and the SGD path becomes closer to the gradient flow of L,
whose solution is known to generalize poorly compared to its stochastic counterpart
with small but non-vanishing learning rate [21, 89]. Furthermore, applied researchers
observed that the linear scaling rule, which consists of keeping the scale of the noise
η/B constant during training, leads to optimal out-of-sample performance [63, 108].
Since then, the scale of the noise appeared in a generalization bound [70] derived
using algorithmic stability, and in an optimality criterion for SGD in the basin of
attraction of a local minimum [110]. Therefore, it is not clear whether the continuous-
time SDE (1.18) is a useful tool to understand the convergence and generalization
properties of SGD. In response, [99] introduced practical conditions to check whether
the approximation holds in practice.

18

Contributions In Section 2.4 and Chapter 5, we look directly at the gradient flow
for linear residual networks and path homogeneous models. The connection between
gradient flow and gradient descent is well understood, and we expect similar results
for discrete updates. In Section 4.3, we prove a local convergence result for gradient
descent for residual networks with a smooth activation. A crucial assumption is that
the learning rates must be small, but their cumulative sum should still diverge to
guarantee convergence.

19

Chapter 2

Linear residual networks

A good first stepping stone in the quest to understand general neural networks architec-
tures is to first consider the case of a linear activation. For example, define the following
parametric model: g(W1,W2)(x) = W2W1x. It can only represent linear maps, but the
landscape of the mean-square training loss function f(W1,W2) = E [(y −W2W1x)

2] is
not convex in (W1,W2). Hence, this landscape possibly contains suboptimal critical
points and local optima, which would hinder the power of first-order optimization
methods like (stochastic) gradient descent. However, we know exactly what the
product W2W1 should be, as f is convex in W2W1. There are efficient algorithms to
solve convex problems, such as interior point methods or subgradient methods, with
theoretical guarantees [25]. Hence, we can use this knowledge to characterize the set
of minima, and to analyse which solution is picked by first-order methods such as
gradient descent with a generic initialization.

In analogy with a residual neural network [73], we call the following parametric
model a linear residual network with L layers

gA(L)(x) =
L∏

k=1

(
Id + A

(L)
k

)
· x,

where A(L) =
(
A

(L)
k

)
k=1,...,L

∈ RL×d×d are the parameters of the model, also called

weight matrices.

2.1 Recent work

The problem of supervised training of residual linear networks has been well-studied
over the last few years.

20

For the regression problem, [68] prove that around the origin, all critical points of
the mean-squared loss function are global minima, and there exists a solution where
each matrix A(L)

k is of the order 1/L. More generally, [87, 93, 104] all establish that
the mean-squared loss admits no suboptimal local minima, each time under slightly
different assumptions.
Furthermore, [7] study the gradient descent dynamics starting from a balanced ini-
tialization, and show that the mean-squared error drops below ε in O (L3 log(1/ε))

iterations. Similarly, [152] argue that an asymmetric initialization of the weight
matrices yields a convergence of gradient descent in O (L3 log(1/ε)) iterations as well,
but with better constants. They also show that learning the linear map x 7→ −x
with gradient descent initialized using the popular Xavier initialization [59] fails to
converge to the global minimum in less than Ω(exp(L)) iterations.
Also, several works study the problem of training linear networks when the response Y
does not necessarily come from noisy observations of an underlying linear model. For
example, [58] study the properties of the solution found by gradient descent starting
from a Xavier initialization in the case of L = 1 and L = 2 layers.

For the classification problem, [84] establish that training deep linear networks
on linearly separable data with gradient descent on the logistic loss converges to a
global minimum that aligns the weight matrices along the depth. In other words, the
trained matrices are asymptotically of rank 1, and can be seen as a form of implicit
regularization. [65] study the case of linear convolutional networks of depth L trained
on linearly separable data with gradient descent on the exponential loss. They show
that the rescaled input-output map converges to the hard-margin support vector
machine classifier with minimal ℓ2/L norm. Hence, gradient descent without explicit
regularization is biased towards sparse solutions for L = 2.

2.2 Problem formulation

We take the setup from [68] and assume that the input distribution D lies in Rd,
and R : Rd → Rd is a linear mapping. Let X be a square-integrable random variable
defined on a probability space (Ω,F,P) such that X is distributed according to D, and
let Z ∼ N(0, ξId) be independent of X. Denote Σ := E

[
XXT

]
∈ Rd×d the covariance

matrix of X.

21

We seek to learn the mapping R from noisy measurements Y = RX +Z. To do so,
we use a linear residual network of depth L ∈ N∗, that is, we parametrize our model
with weights matrices A(L) =

(
A

(L)
1 , A

(L)
L

)
∈ RL×d×d so that for an input x ∈ Rd,

the output of the model is ŷ x defined as follows.
h
x, (L)
0 = x,

h
x, (L)
k = h

x, (L)
k−1 + A

(L)
k h

x, (L)
k−1 , k = 1, . . . , L,

ŷ x
L = hxL.

(2.1)

Our objective is to minimize the following unregularized mean-squared loss.

f (L) : A(L) ∈ RL×d×d 7→ E
[∥∥Y − ŷX

L

∥∥2
2

]
We can rewrite the output as a linear function of the input:

ŷ x
L = h

x, (L)
L =

(
Id + A

(L)
L

)
h
x, (L)
L−1

=
(
Id + A

(L)
L

)
· · ·
(
Id + A

(L)
1

)
h
x, (L)
0

=
L∏

k=1

(
Id + A

(L)
k

)
x.

Thus, we can rewrite the objective function as

f (L)
(
A(L)

)
= E

∥∥∥∥∥
(
R−

L∏
k=1

(
Id + A

(L)
k

))
X + Z

∥∥∥∥∥
2

2


=

∥∥∥∥∥
(
R−

L∏
k=1

(
Id + A

(L)
k

))
Σ1/2

∥∥∥∥∥
2

F

+ E
[
∥Z∥22

]
, (2.2)

where we use the independence of X and Z and standard matrix calculus in the second
equality.

2.3 Description of the solutions

The global minimum of (2.2) is fmin = E
[
∥Z∥22

]
= ξ2d and is attained for multiple

possible A(L). To compare the different minima, we introduce a tensor norm.

Definition 2.1. Let A(L) ∈ RL×d×d. The spectral norm of A(L) is defined as∣∣∣∣∣∣A(L)
∣∣∣∣∣∣ := max

k=1,...,L

∥∥∥A(L)
k

∥∥∥
2
.

The minimizers of (2.2) belong to one of the following three categories.

22

• Atomic solutions A(L) = (0d, . . . , 0d, R− Id).

• The symmetric solution, defined as follows when R is positive semi-definite.
We first orthogonally diagonalize R so that there exists an orthonormal matrix
U ∈ Rd×d and a diagonal matrix Λ = diag(λ1, . . . , λd), where λi > 0, such that
R = UΛU⊤. Then, we define

A
∗, (L)
k = Udiag

(
λ
1/L
1 , . . . , λ

1/L
L

)
U⊤ − Id.

We clearly have f (L)
(
A∗, (L)) = fmin, and as U is orthonormal, the spectral norm

of A∗, (L) is given by∣∣∣∣∣∣A∗, (L)∣∣∣∣∣∣ = ∥∥∥A∗, (L)
1

∥∥∥
2
=
∥∥∥Id − Udiag (λ1/Li

)
U⊤
∥∥∥
2
= max

i=1,...,L

∣∣∣λ1/Li − 1
∣∣∣ .

We see that if L is big enough, e.g.

L ≥ γ(R) := max {|log(λmax(R))| , |log(λmin(R))|} ,

then ∣∣∣∣∣∣A∗, (L)∣∣∣∣∣∣ = max
i=1,...,L

∣∣elog(λi)/L − 1
∣∣ ≤ 3γ(R)

L
.

The symmetric solution is also called the minimum norm solution as it minimizes
the spectral norm of A(L) among all global minimizers of (2.2). Indeed, if A(L)

is any global minima of (2.2), then

(
1 +

∣∣∣∣∣∣A∗, (L)∣∣∣∣∣∣)L = ∥R∥2 =
∥∥∥∥∥

L∏
k=1

(
Id + A

(L)
k

)∥∥∥∥∥
2

≤
(
1 +

∣∣∣∣∣∣A(L)
∣∣∣∣∣∣)L .

A similar construction applies when R is an arbitrary d× d matrix [68].

• Hybrid solutions spreading the total weight among a few A
(L)
k ’s and setting the

rest of them to zero.

We conclude that on RL×d×d, the landscape of f (L) has a lot of global minima,
so points of vanishing gradient. However, if we restrict ourselves to a small ball
B

(L)
τ =

{
A(L) :

∣∣∣∣∣∣A(L)
∣∣∣∣∣∣ ≤ τ

}
around the origin, the squared norm of the gradient of

f (L) is lower bounded by f (L) − fmin, called the sub-optimality gap of f (L). We say
that such an f (L) satisfies a (local) Polyak-Łojasiewicz inequality [128]. It is not hard
to see then that every critical point of f (L) in B(L)

τ is a global optimum.1

More precisely, the lower bound on the norm of the gradient reads as follows.
1It was shown in [128] that the gradient descent dynamics of a loss function f satisfying a global

Polyak-Łojasiewicz inequality converge linearly to a global optimum. This fact will be revisited more
precisely in Section 2.4

23

Lemma 2.2 (Theorem 2.2 in [68]). For any A(L) ∈ RL×d×d with
∣∣∣∣∣∣A(L)

∣∣∣∣∣∣ ≤ τ , we
have ∥∥∇f (L)

(
A(L)

)∥∥2
F
≥ 4L(1− τ)2L−2λmin(Σ)

(
f (L)

(
A(L)

)
− fmin

)
, (2.3)

where ∥G∥F :=
(∑L

k=1 ∥Gk∥2F
)1/2

for G ∈ RL×d×d and λmin(Σ) > 0 is the minimum
singular value of Σ.

The proof follows after a straightforward gradient computation and can be found
in [68].

Remark 2.3. Note that the gradient lower bound (2.3) can be extended to a non-linear
setting. It is shown in [16, Theorem 4] that if the input-output map h : Rd → Rd

can be represented as a composition h = hL ◦ · · · ◦ h1 of near-identity functions,
i.e. where ∥hi − idRd∥∞ is small, then the loss function satisfies a local Polyak-
Łojasiewicz inequality near the origin.2 However, if we parametrize the function hi via
hi(x) = x + δ(L) tanh

(
A

(L)
i x

)
, then [16, Theorem 6] shows that

(
δ(L), A(L)

)
= (0, 0)

is a critical point that is not always a global minimum of the loss function in the
parameter space.

2.4 Global convergence and scaling

In Section 2.3, we observed that the objective function (2.2) admits multiple different
global minima. However, not all of them are equally likely to be reached by an opti-
mization algorithm. Indeed, the solution such an algorithm finds is heavily dependent
on its initialization scheme, its internal dynamics and the explicit regularization of
the loss function, if any. Thus, given all the hyperparameters, it is important to have
a principled way to study the convergence properties of the algorithm.
Remember that we are studying linear residual networks as a proxy for non-linear
ones. Thus, in this section, we will focus on studying some variants of gradient descent
algorithms, as they are the method of choice to optimize neural networks in practice.

Fix the depth L ∈ N∗. We study the continuous-time gradient descent algorithm
on the objective function (2.2). Namely, given an initialization scheme A(L)(0) =(
A

(L)
k (0)

)
k=1,··· ,L

∈ RL×d×d, we let the parameter A(L) ≡ A(L)(t) evolve according to a

2The gradients are computed in the function space, where we use the notion of Frechet derivative.

24

velocity vector field equal to minus the gradient of the loss function f (L), where t ≥ 0

represent the training time.

dA
(L)
k

dt
(t) = −∇Ak

f (L)
(
A(L)(t)

)
for k = 1, . . . , L and t ≥ 0. (2.4)

We are interested in the following questions.

• Do we have asymptotic global minimization f (L)
(
A(L)(t)

)
→ fmin as t→∞ ?

• What is the convergence speed of f (L)
(
A(L)(t)

)
to fmin ?

• Does the limit A∗, (L) := limt→∞

(
A

(L)
k (t)

)
k=1,··· ,L

exist?

• What is the convergence speed of the parameters A(L)(t) to A∗, (L) in the spectral
norm?

• What is the scaling of the trained weights A∗, (L) with respect to the depth L ?

To answer each of these questions, we follow the set-up of [152], where the so-called
ZAS initialization is considered, i.e.

A
(L)
k (0) = 0d for k = 1, . . . , L− 1 and A

(L)
L (0) = −Id. (2.5)

The reason to initialize the last layer to Id + A
(L)
L (0) = 0d is to ease the learn-

ing of negatively oriented matrices. Indeed, we have det
(∏L

k=1

(
Id + A

(L)
k

))
=∏L

k=1 det
(
Id + A

(L)
k

)
> 0 if

∣∣∣∣∣∣A(L)
∣∣∣∣∣∣ is small. To flip the sign of the determinant,

one of the weight matrices has to move a distance Ω(1), which can take Ω(exp(L))

gradient descent iterations [152]. We will see in our Proposition 2.5 that with a ZAS
initialization, the maximum distance traveled by a matrix A(L)

k is Θ(log(L)1/2 · L−1/2).
To prove it, we first recall the results from [152] and prove the linear convergence of
the loss function to fmin.

Lemma 2.4 (Theorem 4.1 in [152]). Fix L ∈ N∗. Under the continuous-time gradient
descent dynamics (2.4) with the ZAS initialization (2.5), we have

f (L)
(
A(L)(t)

)
≤ fmin + e−2λmin(Σ)t

(
f (L)

(
A(L)(0)

)
− fmin

)
,

for all t ≥ 0 and R ∈ Rd×d.

25

Proof. We present here the main ideas, the full proof is available in [152]. We omit
the explicit dependence in L. For the sake of simplicity, we assume that the data is
whitened, i.e. Σ = Id. Define now Wk := Id + Ak, and for k1 ≤ k2,

Wk2:k1 :=

k2∏
k=k1

Wk = Wk2Wk2−1 · · ·Wk1+1Wk1 . (2.6)

Then, Wk(0) = Id for k = 1, . . . , L− 1 and WL(0) = 0d. The dynamics of the weights
are kept unchanged as we are only adding a constant to the weights, so (2.4) reads

dWk

dt
= −∇Wk

f̃(W), where f̃(W) := f
(
(Wk − Id)Lk=1

)
. (2.7)

The gradient can be written as follows.

∇Wk
f̃(W) = (WL:k+1)

⊤ (WL:1 −R) (Wk−1:1)
⊤ (2.8)

Claim: For every k = 1, . . . , L − 1, Dk(t) := W⊤
k+1(t)Wk+1(t)−Wk(t)W

⊤
k (t) is

constant through time.
The claim can easily be shown by differentiating Dk(t) with respect to t and by using
(2.7). We thus deduce the relations

WkW
⊤
k = W⊤

k+1Wk+1 for k = 0, . . . , L− 2, (2.9)

WL−1W
⊤
L−1 = Id +W⊤

L WL. (2.10)

By direct computations, we also have

WL−1:1W
⊤
L−1:1 =

(
Id +W⊤

L WL

)L−1
. (2.11)

Therefore,∥∥∥∇WL
f̃(W)

∥∥∥2
F
=
∥∥(WL:1 −R)W⊤

L−1:1

∥∥2
F

≥ λmin

(
WL−1:1W

⊤
L−1:1

)
∥WL:1 −R∥2F ≥ 2

(
f̃(W)− fmin

)
.

Using this, we deduce that

d

dt
f̃(W (t)) ≤ −

∥∥∥∇WL
f̃(W (t))

∥∥∥2
F
≤ −2

(
f̃(W (t))− fmin

)
,

and the statement follows by Grönwall’s lemma.

We now address the following questions: do the individual weights A(L)
k (t) converge

as t→∞ and if so, what is the scaling of limt→∞A
(L)
k (t) with respect to L.

26

Proposition 2.5. Under the continuous-time gradient descent dynamics (2.4) with
the ZAS initialization (2.5), the following holds.

(i) A(L)(t) converges linearly to some optimal weights A∗, (L) ∈ RL×d×d as t→∞ in
the tensor norm |||·|||.

(ii) Ω(L−1/2) =
∥∥∥Id + A

∗, (L)
L

∥∥∥
2
= O

(
L−1/2 (logL)1/2

)
.

(iii) Ω (L−1) =
∥∥∥A∗, (L)

k

∥∥∥
2
= O

(
L−1/2 (logL)1/2

)
for k = 1, . . . , L− 1.

Note that the following quantities∥∥∥Id + A
∗, (L)
L

∥∥∥
2
=
∥∥∥A∗, (L)

L − A(L)
L (0)

∥∥∥
2

and
∥∥∥A∗, (L)

k

∥∥∥
2
=
∥∥∥A∗, (L)

k − A(L)
L (0)

∥∥∥
2

are the total distances travelled by the parameters during the optimization.

Proof. We start by proving (ii). Define as in the proof of Lemma 2.4 the matrices
Wk := Id + Ak for k = 1, . . . , L. The input-output map of the linear residual network
then reads x 7→ WL:1 x, where the notation WL:1 is defined in (2.6). We use (2.11) to
compute

WL:1W
⊤
L:1 = WLWL−1:1W

⊤
L−1:1W

⊤
L

= WL

(
Id +W⊤

L WL

)L−1
W⊤

L

=
L−1∑
k=0

(
L− 1

k

)(
WLW

⊤
L

)k+1
.

Hence, if we let (νi)i=1,...,d be the (positive) eigenvalues ofWLW
⊤
L , we have tr

(
(WLW

⊤
L)k
)
=∑d

i=1 ν
k
i and

∥WL:1∥2F = tr
(
WL:1W

⊤
L:1

)
=

L−1∑
k=0

(
L− 1

k

)
tr
(
(WLW

⊤
L)k+1

)
=

L−1∑
k=0

(
L− 1

k

) d∑
i=1

νk+1
i =

d∑
i=1

νi (1 + νi)
L−1 . (2.12)

Now, choose t0 > 0 big enough so that f(A(t))− fmin <
∥R∥2F

4
for all t > t0. Using

(2.12), for t > t0, we get the following bound.

9

4
∥R∥2F ≥ (∥R−WL:1(t)∥F + ∥R∥F)

2 ≥ ∥WL:1(t)∥2F ≥ νmax(t) (1 + νmax(t))
L−1 ,

(2.13)

27

where νmax := maxi=1,...,d νi = ∥WL∥22 is the squared spectral norm of WL. Similarly,
we have

1

4
∥R∥2F ≤ (∥R∥F − ∥R−WL:1(t)∥F)

2 ≤ ∥WL:1(t)∥2F ≤ d νmax(t) (1 + νmax(t))
L−1 .

Thus, we deduce the following lower bound:

νmax(t) ≥ log(1 + νmax(t)) ≥ log
(
(1 + νmax(t))

L
)
L−1 ≥ log

(
∥R∥2F
4d

)
L−1 =: c0L

−1

Similarly, we have that for L ≥ c0, using (2.13),

(1 + νmax(t))
L ≤ 2c−1

0 Lνmax(t)(1 + νmax(t))
L ≤ 9

2c0
∥R∥2F L (2.14)

This means, for each t ≥ 0,

νmax(t) = Ω(L−1) and νmax(t) = O(L−1 logL). (2.15)

We conclude (ii) by noting that ∥W ∗
L∥22 = limt→∞ νmax(t).

Next, we prove (iii). Observe first that ∥Wk(u)∥22 = 1 + ∥WL(u)∥22 for each k < L

by (2.9) and (2.10). Therefore, there exist some constants c1, c2 > 0 such that

1 + c1L
−1 ≤ ∥Id + Ak(t)∥22 ≤ 1 + c2L

−1 logL

for t > t0 and L > c0. Hence

∥Ak(t)∥2 ≥ ∥Id + Ak(t)∥2 − 1 =
(
1 + c1L

−1
)1/2 − 1 ≥ c1

3
L−1,

where the last inequality holds for L > c1/3. Hence, in the limit t → ∞, we get
∥A∗

k∥2 = Ω(L−1) by (2.15). Similar calculations give the corresponding upper bound.
Finally, we prove (i). For t0 < s < t and k = 1, . . . , L− 1, we get by (2.4)

∥Ak(t)− Ak(s)∥2F =

∥∥∥∥∫ t

s

d

du
Ak(u)du

∥∥∥∥2
F

≤
∫ t

s

∥∥∇Ak
f (L)

(
A(L)(t)

)∥∥2
F
du

≤ 4

∫ t

s

∥WL(u)∥22 (f(A(u))− fmin)
∏
j ̸=k,L

∥Wj(u)∥22 du,

where the second inequality holds by the gradient derivation in [68] and Lemma D.1.
Next, we use the fact that ∥Wj(u)∥22 = 1 + ∥WL(u)∥22 for j < L by (2.9) and (2.10).

28

From the upper bound above, we thus get

∥Ak(t)− Ak(s)∥2F ≤ 4

∫ t

s

(1 + νmax(u))
L−2 νmax(u) (f(A(u))− fmin) du

≤ 9 ∥R∥2F
∫ t

s

(f(A(u))− fmin) du

≤ 9

2
∥R∥2F (f(A(0))− fmin)

(
e−2s − e−2t

)
.

The second inequality is due to the upper bound (2.13) and the third to Lemma 2.4.
A similar bound holds for AL:

∥AL(t)− AL(s)∥2F ≤ 4

∫ t

s

(1 + νmax(u))
L−1 (f(A(u))− fmin) du

≤ 9 ∥R∥2F
∫ t

s

νmax(u)
−1 (f(A(u))− fmin) du

≤ 9

2c0
∥R∥2F (f(A(0))− fmin)

(
e−2s − e−2t

)
L.

Thus, for a fixed L, we have linear convergence of A(t) to the global minima A∗ when
t→∞ in the Frobenius norm, so in the tensor norm as well.

Remark 2.6. If to optimize the loss function f (L) we use discrete-time gradient
descent instead, i.e. A

(L)
k (t + 1) = A

(L)
k (t) − η(L)(t)∇Ak

f (L)
(
A(L)(t)

)
, observe that

the parameters A(L)
k , k ̸= L, are Ω (L−1) by Proposition 2.5 whereas the gradients

∇Ak
f (L)

(
A(L)

)
are Θ(1). Thus, the sum of learning rates

∑∞
t=0 η

(L)(t) has to scale
like Ω (L−1) for an optimal learning process. This observation is supported by the
experiments in Section 2.6.

2.5 Existence of a scaling limit as the depth increases
and connection to linear neural ODE

In Proposition 2.5, we study the scaling of the optimal weights with respect to the
depth under the ZAS initialization (2.5). We observe that the optimal weights A∗ (L)

k ,
k < L, scale differently than A

∗ (L)
L , making it unlikely that a scaling limit exist. In

general, the following design choices influence the scaling of the weights and whether
a scaling limit exist.

• The explicit scaling

• The initialization scheme

29

• The learning rate scaling

For example, Theorem 1 in [138] proves that with an explicit 1/L in front of the
matrices A(L)

k , a learning rate ηL(t) scaling linearly with L, and initial weights A(L)
k (0)

such that L
(
A

(L)
⌊Ls⌋(0)− ψs(0)

)
→ 0 for each s ∈ [0, 1] as L → ∞, then the weights

trained by gradient descent also admit a scaling limit: A(L)
⌊Ls⌋(t) → ψs(t) as L → ∞.

Furthermore, the hidden states hx, (L)⌊Ls⌋ (t) converge uniformly to Hx
s (t) as L → ∞,

which solves the following linear neural ODE:

d

ds
Xx

s (t) = ψs(t)X
x
s (t) for s ∈ [0, 1] , Xx

0 (t) = x.

The key difference with our framework is that the weights A(L)
k and the rescaled

gradients η(L)∇Ak
f (L)

(
A(L)

)
are of the same order O(1) with respect to L, in contrast

to our framework.

2.6 Numerical examples

We illustrate the above results with some numerical experiments. We fix d = 10 and
a matrix R ∈ Rd×d whose eigenvalues are taken uniformly in [0.1, 10] so that the
condition number of R is large. We generate N = 1024 i.i.d samples {xi}Ni=1 from
the distribution D = N (0, Id), and we compute the targets yi = Rxi + zi, where
zi ∼ N(0, ξId) and ξ = 0.1. We train a linear residual network (2.1) using stochastic
gradient descent with a learning rate η(L) and batch size B = 32, meaning that
we choose the samples Bk ⊂ {1, . . . , N} uniformly at random at iteration k, with
|Bk| = B. The parameter updates thus read, for t ≥ 1,

A(L)(t) = A(L)(t− 1)− η(L) · ∇A

 1

B

∑
i∈Bk

∥∥∥∥∥yi −
L∏

k=1

(
Id + A

(L)
k

)
· xi
∥∥∥∥∥
2

2

 .

We choose the learning rate in an adaptive way. First, we train the network at the
lowest depth L0 = 2 with an initial learning rate η(L0) = 0.05. We perform SGD
iterations until either the training loss f (L0)

N

(
A(L0)(t)

)
drops below fmin + ε, where

ε = 10−2, or the maximum number of iterations tmax = 3200 is reached. In the
former case, we increase the depth and the network is reinitialized. In the latter case,
we decrease the learning rate by 30%, meaning that the new learning rate will be
η(L0) ← 0.7 · η(L0), and we train the network with the same depth, but with the new
learning rate. We continue until the network with the largest depth Lmax = 945 is

30

trained.

We first present the results when we initialize the network weights using ZAS
initialization (2.5). In Figure 2.1, we observe that the last layer is staying at a constant
order while increasing the depth, whereas the other layers’ norms decrease a bit faster
than 1/L. In Figure 2.2, we observe that the learning rate has to decrease linearly
with the depth to achieve convergence of the training loss, in accordance to Remark 2.6

Figure 2.1: Frobenius norm of the trained
weights at different depths with the ZAS ini-
tialization (2.5). In red: norm of the last layer.
In blue: norms of all the other layers.

Figure 2.2: Learning rate η(L) used in SGD
to train the weights at different depths with
the ZAS initialization (2.5). The learning rate
is updated according to the schedule described
in Section 2.6.

However, with a different initialization scheme, we observe a different behaviour.
Indeed, with the Xavier3 initialization [59], the norms of the trained weights A∗, (L)

k are
all of the order of 1/L, see Figure 2.3. Observe as well in Figure 2.4 that the learning
rate has to decrease linearly with the depth as well to achieve convergence, after a
small initial plateau.

3A
(L)
k (0)mn are independent samples taken from a centered Gaussian distribution with standard

deviation L−1.

31

Figure 2.3: Frobenius norm of the trained
weights at different depths with the Xavier
initialization. In red: norm of the last layer.
In blue: norms of all the other layers.

Figure 2.4: Learning rate η(L) used in SGD
to train the weights at different depths with
the Xavier initialization. The learning rate is
updated according to the schedule described
in Section 2.6.

Both examples show that gradient descent finds a solution close to its initialization.
This observation is one of the main ideas driving convergence proofs in the non-linear
case, as will be seen in Chapter 4.

32

Chapter 3

Scaling properties of deep residual
networks

3.1 Introduction

Residual networks, or ResNets, are multilayer neural network architectures in which a
skip connection is introduced at every layer ([73]). This allows very deep networks
to be trained by circumventing vanishing and exploding gradients, mentioned in [20].
The increased depth in ResNets has lead to commensurate performance gains in
applications ranging from speech recognition [74, 161] to computer vision [73, 78].

A residual network with L layers may be represented as

h
(L)
k+1 = h

(L)
k + δ

(L)
k σd

(
A

(L)
k h

(L)
k + b

(L)
k

)
, (3.1)

where h(L)k is the hidden state at layer k = 0, . . . , L, h(L)0 = x ∈ Rd the input, h(L)L ∈ Rd

the output, σ : R → R a nonlinear activation function, σd(x) = (σ(x1), . . . , σ(xd))
⊤

its component-wise extension to x ∈ Rd, and A
(L)
k , b(L)k , and δ

(L)
k trainable network

weights for k = 0, . . . , L− 1.
ResNets have been the focus of several theoretical studies due to a perceived link

with a class of differential equations. The idea, put forth in [67] and [28], is to view
(3.1) as a discretization of a system of ordinary differential equations

dHt

dt
= σd

(
AtHt + bt

)
, (3.2)

where A : [0, 1] → Rd×d and b : [0, 1] → Rd are appropriate smooth functions and
H(0) = x. This may be justified ([148]) by assuming that

δ(L) ∼ 1/L, A
(L)
k ∼ Ak/L, b

(L)
k ∼ bk/L (3.3)

33

as L increases. Such models, named neural ordinary differential equations or neural
ODEs [28, 46], have motivated the use of optimal control methods to train ResNets [47].

However, the precise link between deep ResNets and the neural ODE (3.2) is
unclear: in practice, the weights A(L) and b(L) result from training, yet the validity of
the scaling assumptions (3.3) for trained weights is far from obvious. As a matter of
fact, there is empirical evidence showing that using a scaling factor δ(L) ∼ 1/L can
deteriorate the network accuracy [13]. Also, there is no guarantee that weights obtained
through training have a non-zero limit which depends smoothly on the layer, as (3.3)
would require. In fact, for ResNet architectures used in practice, empirical evidence
points to the contrary [37]. These observations motivate an in-depth examination
of the actual scaling behavior of weights with network depth in ResNets and of its
impact on the asymptotic behavior of those networks.

Contributions. We systematically investigate the scaling behavior of trained net-
works weights and examine in detail the consequence of this scaling for the asymptotic
properties of ResNets as the number of layers increases. We first show, through detailed
numerical experiments, the existence of scaling regimes for trained weights markedly
different from those implicitly assumed in the neural ODE literature. We study the
convergence of the hidden state dynamics in these scaling regimes, showing that one
may obtain an ODE, a stochastic differential equation (SDE) or neither of these. More
precisely, we show strong convergence of the hidden state dynamics to a limiting ODE
or SDE, by viewing the discrete hidden state dynamics as a “nonlinear Euler scheme” of
the limiting equation. At a mathematical level, we extend the convergence analysis of
Higham et al. [75] for discretization schemes of time-homogeneous (Markov) diffusions
to a class of nonlinear approximations for Itô processes with bounded coefficients.

In particular, our findings point to the existence of a “diffusive regime” in which the
deep network limit is described by a class of stochastic differential equations (SDEs).
These novel findings on the relation between ResNets and neural ODEs complement
previous work [148, 48, 56, 123, 138]. Finally, we derive the corresponding scaling
limit for the backpropagation dynamics. The results we obtain are different from
previous ones on asymptotics of ResNets [28, 67, 106], and correspond to a different
scaling regime which is relevant for trained weights in practical settings.

In particular, in the diffusive regime we find a limit different from the “Neural
SDE” literature [98]. Indeed, we observe that the Jacobian of the output with respect
to the hidden states depends on hidden states across all levels, so may not be directly
expressed as the solution of a forward or backward stochastic differential equation,

34

as proposed in [98]. However, in Section 3.5 we obtain a representation for the
asymptotics of the backpropagation dynamics in terms of an auxiliary forward SDE.

Outline. Section 3.2 describes the various scaling regimes for trained weights
evidenced in [37] and the methodology for studying this scaling behaviour in the deep
network limit. In Section 3.3, we report detailed numerical experiments on the scaling
of trained network weights across a range of ResNet architectures and datasets, showing
the existence of at least three different scaling regimes, none of which correspond
to (3.3). In Section 3.4, we show that under these scaling regimes, the dynamics of
the the hidden state may be described in terms of a class of ordinary or stochastic
differential equations, different from the neural ODEs studied in [28, 67, 106]. In
Section 3.5, we derive the large depth limit of the backpropagation dynamics under
each scaling regime.

Notations. Let ∥v∥ denote the Euclidean norm of a vector v. For a matrix M ,
denote M⊤ its transpose, diag(M) its diagonal vector, tr(M) its trace and ∥M∥F =√
tr(M⊤M) its Frobenius norm. Denote ⌊x⌋ the integer part of a real number x. Let

N(m,Σ) denote the Gaussian distribution with mean m and (co)variance Σ, ⊗ denote
the tensor product, and Rd,⊗n = Rd × · · · × Rd (n times). Define the vectorisation
operator by vec : Rd1×···×dn → Rd1···dn , and let 1S be the indicator function of a set
S. C0 is the space of continuous functions, for ν ≥ 0, Cν is the space of ν-Hölder
continuous functions, and H1 is the Sobolev space of order 1.

3.2 Scaling regimes

We start by providing a framework for describing the scaling regimes for trained
network weights, as identified in numerical experiments on deep ResNets [37].

3.2.1 Scaling regimes for trained network weights

As described in Section 3.1, the neural ODE limit assumes

δ(L) ∼ 1

L
and A

(L)
⌊Lt⌋

L→∞−→ At, b
(L)
⌊Lt⌋

L→∞−→ bt (3.4)

for t ∈ [0, 1], where A : [0, 1] → Rd×d and b : [0, 1] → Rd are smooth functions [148].
Our numerical experiments, detailed in Section 3.3, show that the norm of the weights
generally shrinks as L increases (see for example Figures 3.2 and 3.4), so one cannot
expect the above assumption to hold, unless weights are renormalized in some way. We
consider here a more general assumption which includes (3.4) but allows for shrinking
weights.

35

Figure 3.1: Trained weights as a function of k/L for k = 0, . . . , L and L = 9100. Left: rescaled
weights LβA

(L)
k,(0,0) for a tanh network with β = 0.2. Right: cumulative sum

∑k−1
j=0 A

(L)
j,(0,0)for a ReLU

network. Note that each A
(L)
k,(0,0) ∈ R.

Hypothesis 1. There exist A ∈ C0
(
[0, 1],Rd×d

)
and β ∈ [0, 1] such that

∀s ∈ [0, 1], As = lim
L→∞

Lβ A
(L)
⌊Ls⌋. (3.5)

These renormalized weights do converge to a continuous function of the layer in
some cases, as shown in Figure 3.1 (top) which displays a ResNet (3.1) with fully
connected layers and tanh activation function, without explicit regularization (see
Section 3.3.2).

Yet, it is not the case that network weights always converge to a smooth function
of the layer, even after rescaling. Indeed, network weights A(L)

k are usually initialized
to random, independent and identically distributed (i.i.d.) values, whose scaling limit
would then correspond to a white noise, which cannot be represented as a function
of the layer. In this case, the cumulative sum

∑k−1
j=0 A

(L)
j of the weights behaves like

a random walk, which does have a well-defined scaling limit W ∈ C0
(
[0, 1] ,Rd×d

)
.

Figure 3.1 (bottom) shows that, for a ReLU ResNet with fully-connected layers, this
cumulative sum of trained weights converges to an irregular, that is, non-smooth
function of the layer.

This observation motivates the consideration of a different scaling regime where the
weights A(L)

k are represented as the increments of a continuous function WA, i.e. the
cumulative sum of the weights may converges to a limit but not the weight themselves.
We also allow for a trend term as in Scaling regime 1.

Hypothesis 2. There exist β ∈ [0, 1), A ∈ C0
(
[0, 1],Rd×d

)
, and WA ∈ C0([0, 1],Rd×d)

non-zero such that WA
0 = 0 and

A
(L)
k = L−βAk/L +WA

(k+1)/L −WA
k/L. (3.6)

36

The above decomposition is unique. Indeed, for s ∈ [0, 1],

Lβ−1

⌊Ls⌋−1∑
k=0

A
(L)
k = L−1

⌊Ls⌋−1∑
k=0

Ak/L + Lβ−1WA
⌊Ls⌋/L

L→∞→
∫ s

0

Ardr. (3.7)

The integral of A is thus uniquely determined by the weights A(L)
k , so A can be

obtained by discretization and WA by fitting the residual error in (3.7). In addition,
Scaling Regimes 1 and 2 are mutually exclusive since Scaling regime 2 requires WA to
be non-zero.

Remark 3.1. In the case of independent Gaussian weights

A
(L)
k,mn

iid∼ N
(
0, L−1d−2

)
and b

(L)
k,n

iid∼ N
(
0, L−1d−1

)
,

where A(L)
k,mn is the (m,n)-th entry of A(L)

k ∈ Rd×d and b(L)k,n is the n-th entry of b(L)k ∈ Rd,
we can represent the weights {A(L), b(L)} as the increments of a matrix-valued Brownian
motion

A
(L)
k = d−1

(
WA

(k+1)/L −WA
k/L

)
,

which is a special case of Scaling regime 2.

This remark shows that Scaling regime 2 corresponds to a ’diffusive’ regime.

3.2.2 Smoothness of weights with respect to the layer

A question related to the existence of a scaling limit is the degree of smoothness of the
limits A or WA, if they exist. To quantify the smoothness of the function mapping
the layer number to the corresponding network weight, we define in Table 3.1 several
quantities which may be viewed as discrete versions of various (semi-)norms used to
measure the smoothness of functions.

Table 3.1: Quantities associated to a tensor A(L) ∈ RL×d×d.

Quantity Definition

Maximum norm maxk

∥∥∥A(L)
k

∥∥∥
F

Cumulative sum norm
∥∥∥∑L

k=1A
(L)
k

∥∥∥
F

β-scaled norm of increments Lβ maxk

∥∥∥A(L)
k+1 − A

(L)
k

∥∥∥
F

Root sum of squares
(∑

k

∥∥∥A(L)
k

∥∥∥2
F

)1/2

37

3.3 Scaling behavior of trained weights: numerical
experiments

We now report on detailed numerical experiments to investigate the scaling properties
and asymptotic behavior of trained weights for residual networks as the number
of layers increases. We focus on two types of architectures: fully-connected and
convolutional networks.

3.3.1 Methodology

We underline that Scaling Regimes 1 and 2 are mutually exclusive since Scaling
regime 2 requires WA to be non-zero. In order to examine whether one of these scaling
regimes, or neither, holds for the trained weights A(L) and b(L), we proceed as follows.
Step 1: First, to obtain the scaling exponent β ∈ [0, 1), note that under Scaling
regime 2,

Lβ−1

L∑
k=1

A
(L)
k =

1

L

L∑
k=1

Ak/L + Lβ−1WA
1

L→∞→
∫ 1

0

Asds.

Hence, we perform a logarithmic regression of the cumulative sum norm of A(L) with
respect to L, and the rate of increase of

∑L
k=1A

(L)
k as L→∞ is 1− β.

Step 2: After identifying the correct scale L−β for the weights, we compute the
β-scaled norm of increments of A(L) to check whether they satisfy Scaling regime 1
and measure the smoothness of the trained weights. On one hand, if the β-scaled
norm of increments of A(L) does not vanish as L → ∞, it means that the rescaled
weights cannot be represented as a continuous function of the layer, as in Scaling
regime 1. On the other hand, if the β-scaled norm of increments of A(L) vanishes (say,
as L−ν) when L increases, it supports Scaling regime 1 with a Hölder-continuous limit
function A ∈ Cν([0, 1],Rd×d).
Step 3: To discriminate between Scaling regimes 1 and 2, we decompose the
cumulative sum

∑k−1
j=0 A

(L)
j of the trained weights into a trend component A and a

noise component WA, as shown in (3.7). The presence of non-negligible noise term
WA favors Scaling regime 2.
Step 4: Finally, we estimate the regularity of the term WA under Scaling regime 2.
If WA has diffusive behavior, as in the example of i.i.d. random weights, then its
quadratic variation tensor defined by

[
WA

]
s
= lim

L→∞

⌊Ls⌋−1∑
k=0

(
WA

k+1
L

−WA
k
L

)
⊗
(
WA

k+1
L

−WA
k
L

)⊤

38

has a finite limit as L→∞. Hence, using (3.6) and Cauchy-Schwarz, we obtain

∣∣∣∣∣∣[WA
]
s

∣∣∣∣∣∣ ≤ 2 · lim
L→∞

⌊Ls⌋−1∑
k=0

∥∥∥A(L)
k

∥∥∥2
F
+ L1−2β

∥∥A∥∥2
L2 (3.8)

where |||·||| is the Hilbert-Schmidt norm. As A is continuous on a compact domain,
its L2 norm is finite. Hence, if we have β ≥ 1

2
, the fact that the root sum of squares

of A(L) is upper bounded as L→∞ implies that the quadratic variation of WA is finite.

We follow all of the above steps for b(L) as well. Note that the scaling exponent β
may not be the same for A(L) and b(L).

Remark 3.2. Note that σ = ReLU is homogeneous of degree 1, so we can write

δ · σd (Ah+ b) = sign(δ) · σd (|δ|Ah+ |δ| b) .

Hence, when analyzing the scaling of trained weights in the case of a ReLU activation
with fully-connected layers, we look at the quantities

∣∣δ(L)∣∣A(L) and
∣∣δ(L)∣∣ b(L), as they

represent the total scaling of the residual connection.

3.3.2 Results for fully-connected layers

We first consider the case where the network layers are fully-connected. We consider
the network architecture (3.1) for two different setups:

(i) σ = tanh, δ(L)k = δ(L) ∈ R+ trainable,

(ii) σ = ReLU, δ(L)k ∈ R trainable.

We choose to present these two cases for the following reasons. First, both tanh and
ReLU are widely used in practice. Further, having δ(L) scalar makes the derivation of
the limiting behavior simpler. Also, since tanh is an odd function, the sign of δ(L) can
be absorbed into the activation. Therefore, we can assume that δ(L) is non-negative
for tanh. Regarding ReLU, having a shared δ(L) would hinder the expressiveness of
the network. Indeed, if for instance δ(L) > 0, we would get h(L)k+1 ≥ h

(L)
k element-wise

since ReLU is non-negative. This would imply that h(L)L ≥ x, which is not desirable.
The same argument applies to the case δ(L) < 0. Thus, we let δ(L)k ∈ R depend on the
layer number for ReLU networks.

39

We consider two data sets. The first one is synthetic: fix d = 10 and generate N
i.i.d samples xi coming from the d−dimensional uniform distribution in [−1, 1]d. Let
K = 100 and simulate the following dynamical system:{

zxi
0 = xi

zxi
k = zxi

k−1 +K−1/2 tanhd

(
gd
(
zxi
k−1, k,K

))
, k = 1, . . . , K,

where gd(z, k,K) := sin(5kπ/K)z + cos(5kπ/K)1d. The targets yi are defined as
yi = zxi

K / ∥zxi
K ∥. The motivation behind this low-dimensional dataset is to be able to

train very deep residual networks and to be sure that there exists at least a (sparse)
optimal solution.

The second dataset is a low-dimensional embedding of the MNIST handwritten
digits dataset [94]. Let (x̃, c) ∈ R28×28 × {0, . . . , 9} be an input image and its corre-
sponding class. We transform x̃ into a lower dimensional embedding x ∈ Rd using
an untrained convolutional projection, where d = 25. More precisely, we stack two
convolutional layers initialized randomly, we apply them to the input and we flatten the
downsized image into a d−dimensional vector. Doing so reduces the dimensionality of
the problem while allowing very deep networks to reach at least 99% training accuracy.
The target y ∈ Rd is the one-hot encoding of the corresponding class.

The weights are updated by stochastic gradient descent (SGD) using batches of
size B on the mean-square loss and a constant learning rate η, until the loss falls
below ϵ, or when the maximum number of updates Tmax is reached. We repeat the
experiments for depths L varying from Lmin to Lmax. Details are given in Appendix A.

Results. For the case of a tanh activation (i), we observe in Figure 3.2 that for
both datasets, δ(L) ∼ L−0.7 clearly decreases as L increases, and A(L) decreases slightly
when L increases. We deduce that β = 0.3 for the MNIST dataset and β = 0.2 for
the synthetic dataset.

We use these results to identify the scaling behavior of A(L). We observe in
Figure 3.3 (left) that the β-scaled norm of increments of A(L) decreases like L−1/2,
suggesting that Scaling regime 1 holds, with A being 1/2−Hölder continuous. This is
confirmed in Figure 3.3 (right), as the trend part A is visibly continuous and even
of class C1. The noise part WA is negligible. This observation is even more striking
given that the weights are trained without explicit regularization.

Regarding the case of a ReLU activation function (ii), we observe in Figure 3.4
(left) that the trend part of the residual connection

∣∣δ(L)∣∣A(L) scales like L−0.8 for
the synthetic dataset and like L−0.9 for the MNIST dataset. We see in Figure 3.4

40

Figure 3.2: Scaling for tanh activation and δ(L) ∈ R. Left: Maximum norm of δ(L) with respect to
L. Right: Cumulative sum norm of A(L) with respect to L. The dashed lines are for the synthetic
data and the solid lines are for MNIST. The plots are in log-log scale.

Figure 3.3: Identification of scaling behavior in the case of tanh activation and δ(L) ∈ R. Left:
log-log plot of root sum of squares of A(L) (pink) and the β-scaled norm of increments of A(L) (orange).
Dashed lines are for the synthetic data and the solid lines are for MNIST. Right: Decomposition of
the trained weights A

(L)
k,(9,7) with the trend part A and the noise part WA for L = 10321, as defined

in (3.6), for the synthetic dataset.

(right) that keeping the sign of δ(L)k is important, as the sign oscillates considerably
throughout the network depth k = 0, . . . , L− 1.

Figure 3.5 (left) shows that the β-scaled norm of increments diverges as the depth
increases. This suggests that there exists a noise part WA. Following (3.8), the fact
that the root sum of squares of

∣∣δ(L)∣∣A(L) is upper bounded as L→∞ and β ≥ 1/2

implies that WA has finite quadratic variation. These claims are also supported by
Figure 3.5 (right): there is a non-zero trend part A, and a non-negligible noise part
WA.

Given the scaling behavior of the trained weights, we conclude that Scaling regime 1
seems to be a plausible description for the tanh case (i), but Scaling regime 2 provides
a better description for the ReLU case (ii).

41

Figure 3.4: Scaling for ReLU activation and δ
(L)
k ∈ R. Left: Cumulative sum norm of |δ(L)|A(L)

with respect to L, in log-log scale. Right: trained values of δ(L)
k as a function of k, for L = 9100 and

for the synthetic dataset.

Figure 3.5: ReLU activation and scalar δ
(L)
k . Left: in pink we plot in log-log scale the root sum

of squares of |δ(L)|A(L), and in orange the β-scaled norm of increments of |δ(L)|A(L). The dashed
lines are for the synthetic data and the solid lines for MNIST. Right: Decomposition of the trained
weights |δ(L)|A(L)

k,(7,7) with the trend part A and the noise part WA for L = 10321, as defined in (3.6),
for the synthetic dataset.

Scaling behavior of b(L) are shown for the tanh case in Figure 3.6 and for the ReLU

case in Figure 3.7. We observe that the cumulative sum norm, the scaled norm of the
increments and the root sum of squares of b(L) scales in the same way as A(L) as the
depth L increases. In particular, the scaling exponent β for b(L) is equal to the scaling
exponent of A(L), justifying the setup considered in Section 3.2.

Importance of the stochastic term WA. It is legitimate to ask whether the
noise term WA plays a significant role in the output accuracy of the network. To test
this, we create a residual network with denoised weights Ã(L)

k := L−βAk/L, compute
its training error and we compare it to the original training error. We observe in
Figure 3.8 (left) that for tanh, the noise part WA is negligible and does not influence
the loss. However, for ReLU, the loss with denoised weights is one order of magnitude

42

Figure 3.6: Scaling behavior for b(L) with tanh activation and scalar δ(L). Left: cumulative sum
norm of b(L) with respect to L, in log-log scale. Middle: the root sum of squares of b(L) in pink and
the β−scaled norm of increments of b(L) in orange, in log-log scale. The dashed lines are for the
synthetic data and the solid lines are for MNIST. Right: Decomposition of the trained weights b

(L)
k,5

with the trend part b and the noise part W b for L = 10321, as defined in (3.6), for the synthetic
dataset.

Figure 3.7: Scaling and hypothesis verification for b(L) with ReLU activation and δ
(L)
k ∈ R. Left:

cumulative sum norm of |δ(L)|b(L) with respect to L, in log-log scale. Middle: the root sum of squares
of |δ(L)|b(L) in pink and the β−scaled norm of increments of |δ(L)|b(L) in orange, in log-log scale.
The dashed lines are for the synthetic data and the solid lines for MNIST. Right: Decomposition of
the trained weights |δ(L)| b(L)

k,6 with the trend part b and the noise part W b for L = 10321, as defined
in (3.6), for the synthetic dataset.

above the original training loss, meaning that the noise part WA plays a significant
role in the accuracy of the trained network.

Sensitivity of α and β with respect to the hyperparameters. The values
of α and β stem from the trained weights, which are themselves a function of the
initialization and the training algorithm. We are using stochastic gradient descent,
and the most significant hyperparameters of SGD are the learning rate η and the
batch size B.
Hence, we report the value α and β found for the tanh and trainable δ architecture
on the synthetic data with different batch sizes B ∈ {8, 32, 128} and learning rates
η ∈ {0.01, 0.003, 0.001}, with 5 different realizations for the initialization. We report
the average values of α and β for 5 different seeds in Table 3.2 below.

Table 3.2: Average value of α (left) and β (centre) for the trained weights, over 5 random initialization.
η is the learning rate, B the batch size.

43

Figure 3.8: Loss value, as a function of L, in black for the trained weights A(L)
k and in green for the

denoised weights Ã
(L)
k = L−βAk/L. Left: tanh activation and δ(L) ∈ R. Right: ReLU activation and

δ
(L)
k ∈ R. Note that these curves are for the synthetic dataset and that we plot them in log-log scale.

Also, we show in off-white the loss value range in which we consider our networks to have converged.

α B = 8 B = 32 B = 128

η = .01 .69± .02 .73± .02 .67± .02
η = .003 .59± .05 .60± .01 .58± .01
η = .001 .58± .01 .55± .01 .53± .01

β B = 8 B = 32 B = 128

η = .01 .24± .02 .29± .05 .22± .02
η = .003 .33± .01 .41± .06 .40± .02
η = .001 .39± .02 .43± .02 .41± .01

We observe that the learning rate does affect α and β while keeping α+β around 1, and
the batch size does not affect α or β. A plausible explanation for these observations is
that a higher batch size means a more precise descent direction at the cost of efficiency,
but the shape of the solution is not supposed to change.

3.3.3 Results for convolutional networks

We now consider the original ResNet with convolutional layers introduced in [73].
This architecture is close to the state-of-the-art methods used for image recognition
tasks. We do not include batch normalization [80] since it only slightly improves the
performance of the network while making the analysis significantly more complicated.
The architecture is displayed in Figures 3.9 and 3.10.
Our network still possesses the skip connections from (3.1): the dynamics of the
hidden state reads

hk+1 = σ (hk +∆k ∗ σ (Ak ∗ hk) + Fk ∗ hk) (3.9)

for k = 0, . . . , L−1, where σ = ReLU. Here, ∆k, Ak, and Fk are kernels and ∗ denotes
convolution. Note that ∆k plays the same role as δ(L)k from (3.1). To lighten the
notation, we omit the superscripts x (the input) and L (the number of layers).

44

Figure 3.9: Residual architecture. There are 4 blocks that are respectively repeated n1, n2, n3 and
n4 times. The network depth is L = n1 + n2 + n3 + n4. The Basic Block architecture is detailed in
Figure 3.10.

Figure 3.10: Basic Block from Figure 3.9. See (3.9) for details.

We train our residual networks at depths ranging from Lmin = 8 to Lmax = 121 on
the CIFAR-10 [91] dataset with the unregularized relative entropy loss. Here, ’depth’
is the number of residual connections. We note that a network with Lmax = 121 is
already very deep. As a comparison, a standard ResNet-152 [73] has depth L = 50 in
our framework.

Results. Table 3.3 shows the accuracy of our convolutional residual networks trained
on an NVIDIA GeForce RTX 2080 GPU on the CIFAR-10 dataset. The results are in
line with those of traditional ResNet architectures [73], even though our networks do
not have batch normalization layers [80]. It is also noteworthy to add that our concept
of depth is not that of traditional ResNets. We define the number of layers L as the
number of skip connections in the network, that is the number of ∆k kernels in (3.9).

45

Figure 3.11: Scaling of ∆(L) (left) and A(L) (right) against the network depth L for convolutional
architectures on CIFAR-10. In blue: spectral norm of the kernels ∆(L)

k , resp. A(L)
k , for k = 0, . . . , L−1.

In red: maximum norm, defined in Table 3.1. The plots are in log-log scale.

Figure 3.12: Scaling behavior of ∆(L) (left) and A(L) (right). We plot in pink the root sum of
squares and in orange the α-scaled norm of increments of ∆(L) (left) and the β-scaled norm of
increments of A(L) (right). Plots are in log-log scale. The root sum of squares and the scaled norm
of increments are defined in Table 3.1. We obtain α and β from Figure 3.11.

Table 3.3: Learning error in % on CIFAR-10 for each network depth L.

L 8 11 12 14 16 20 24 28
Test error 6.64 6.37 6.32 5.98 6.25 5.98 6.24 7.03

L 33 42 50 65 80 100 121
Test error 6.13 6.21 6.32 6.19 6.30 6.20 6.37

As in Section 3.3.2, we investigate how the weights scale with depth and whether
Scaling regime 1 or Scaling regime 2 holds true for convolutional layers. To that end,
we follow the steps of [139] to get the singular values, and therefore the spectral norms,
of the linear operators defined by the convolutional kernels ∆(L)

k and A(L)
k . Figure 3.11

shows the maximum norm, and hence the scaling of ∆(L) and A(L) against the network
depth L. We observe that ∆(L) ∼ L−α and A(L) ∼ L−β with α = 0.1 and β = 0.

46

We then use the values obtained for α and β to verify which Scaling regime holds.
Figure 3.12 shows that both the α-scaled norm of increments of ∆(L) and the β-scaled
norm of increments of A(L) seem to have lower bounds as the depth grows. This
suggests that Scaling regime 1 does not hold for convolutional layers.
We also observe that the root sum of squares stays in the same order as the depth
increases. Coupled with the fact that the maximum norms of ∆(L) and A(L) are close
to constant order as the depth increases, this suggests that the scaling limit is sparse
with a finite number of weights being of constant order in L.

3.3.4 Summary: three scaling regimes

Our experiments show different scaling regimes for trained weights based on the
network architecture.F or fully-connected layers with tanh activation and a shared
δ(L) ∈ R, we observe a behavior consistent with Scaling regime 1 for both the synthetic
dataset and MNIST. For fully-connected layers with ReLU activation and δ

(L)
k ∈ R,

we observe that Scaling regime 2 holds for the synthetic dataset and MNIST. We
deduce that the results for fully-connected layers are consistent with our findings in
Figure 3.1.
In the case of convolutional architectures trained on CIFAR-10 and presented in
Section 3.3.3, we observe that the maximum norm of the trained weights does not
decrease with the network depth and the trained weights display a sparse structure,
indicating a third scaling regime corresponding to sparse scaling limits for both ∆(L)

and A(L). These results are consistent with previous evidence on the existence of
sparse CNN representations for image recognition [109]. We stress that the setup for
our CIFAR-10 experiments has been chosen to approach state-of-the-art performance
with our generic architecture, as shown in Figures 3.9 and 3.10.

3.4 Deep network limit

In this section, we study the scaling limit of the hiddent state dynamics (3.1) under
scaling regimes 1 and 2.

3.4.1 Scaling regime 1: ODE limit

First, we show that the scaling regime 1 together with a smooth and Lipschitz-
continuous activation function lead to two ODE limits under different parameter
regimes, including the neural ODE described in [28, 148, 67] as a special case.

47

We consider a setup which is consistent with Scaling regime 1 and δ(L) = L−α for
some α ≥ 0:

h
(L)
0 = x,

h
(L)
k+1 = h

(L)
k + L−α σd

(
A

(L)
k h

(L)
k + b

(L)
k

)
,

(3.10)

with

A
(L)
k = L−βAk/L, b

(L)
k = L−βbk/L.

We focus our analysis on smooth activation functions.

Assumption 3.3 (Activation function). The activation function σ satisfies σ ∈
C3(R,R), σ(0) = 0, σ′(0) = 1, and has a bounded third derivative σ′′′.

Most smooth activation functions, including tanh, satisfy this condition. The bound-
edness of the third derivative σ′′′ may be relaxed to an exponential growth condition
[124].
As observed in the numerical experiments, non-smooth activation functions such as
ReLU lead to a different scaling regime to that of smooth functions.
We now describe ODE limits under Scaling regime 1. Let H(L) : [0, 1] → Rd be a
continuous-time extension of the hidden states hx,(L)k :

H
(L)
t := h

x,(L)
k 1 k

L
≤t< k+1

L
, k = 0, 1, . . . , L. (3.11)

Theorem 3.4 (ODE limits under Scaling regime 1). Under Assumption 3.3 and σ
Lipschitz,

• Neural ODE limit [148, Lemma 4.6]: If α = 1 and β = 0 and we further assume
that A ∈ H1

(
[0, 1],Rd×d

)
and b ∈ H1

(
[0, 1],Rd

)
, then the interpolated hidden

state dynamics (3.11) converge to the solution of the neural ODE

dHt

dt
= σ(AtHt + bt), H0 = x, (3.12)

in the sense that limL→∞ sup0≤t≤1 ∥Ht −Ht∥ = 0.

• A different ODE limit: If α+β = 1 and β > 0, and there exist M > 0 and κ > 0

such that ∀s, t ∈ [0, 1],
∥∥At −As

∥∥+∥∥bt − bs∥∥ ≤M |t−s|κ/2, then the interpolated
hidden state dynamics (3.11) converge to the solution of the following ODE

dHt

dt
= AtHt + bt, H0 = x, (3.13)

in the sense that limL→∞ sup0≤t≤1 ∥Ht −Ht∥ = 0.

48

3.4.2 Scaling regime 2

Let (Ω,F,F,P) be a probability space with a P-complete filtration F = (Ft)t≥0.
Let (BA

t)t≥0, resp. (Bb
t)t≥0, be d × d-dimensional, resp. d-dimensional, F-standard

uncorrelated Brownian motions. We consider a setup which is consistent with Section
3.3 where the noise part comes from the increment of some stochastic process and
δ(L) = L−α for some α ≥ 0:

h
(L)
0 = x,

h
(L)
k+1 = h

(L)
k + L−α σd

(
A

(L)
k h

(L)
k + b

(L)
k

)
,

(3.14)

with

A
(L)
k = L−βAk/L +

(
WA

(k+1)/L −WA
k/L

)
,

b
(L)
k = L−βbk/L +

(
W b

(k+1)/L −W b
k/L

)
,

where (WA
t)t∈[0,1] and (W b

t)t∈[0,1] are Itô processes [131] adapted to F and can be
written in the form:

(
dWA

t

)
ij
=
(
UA
t

)
ij
dt+

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl

for i, j = 1, . . . , d,

dW b
t = U b

t dt+ qbt dB
b
t ,

(3.15)

with WA
0 = 0, W b

0 = 0, qAt ∈ Rd,⊗4 and qbt ∈ Rd×d for t ∈ [0, 1]. We use the following
notation for the quadratic variation of WA and W b:

[
WA

]
t
=

∫ t

0

ΣA
u du,

[
W b
]
t
=

∫ t

0

Σb
u du, (3.16)

where ΣA and Σb are bounded processes with values respectively in Rd,⊗4 and Rd×d.
From (3.15) and (3.16), we have the quadratic variation process as follows:

(
ΣA

t

)
i1j1i2j2

:=
d∑

k,l=1

(
qAt
)
i1j1kl

(
qAt
)
i2j2kl

, for i1, j1, i2, j2 = 1, . . . , d, Σb
t := qbt

(
qbt
)⊤
.

(3.17)
Here (UA

t)t≥0, (U b
t)t≥0, (ΣA

t)t≥0 and (Σb
t)t≥0 are progressively measurable processes

that satisfy the following conditions.

Assumption 3.5 (Regularity of the Ito processes (WA,W b) and continuous functions
(A, b)). We assume:

49

(i) There exists a constant C1 > 0 such that almost surely

sup
0≤t≤1

∥∥UA
t

∥∥+ sup
0≤t≤1

∥∥U b
t

∥∥+ sup
0≤t≤1

∥∥ΣA
t

∥∥+ sup
0≤t≤1

∥∥Σb
t

∥∥ ≤ C1. (3.18)

(ii) There exist M > 0 and κ > 0 such that ∀s, t ∈ [0, 1] almost surely∥∥UA
t − UA

s

∥∥2 + ∥∥U b
t − U b

s

∥∥2 + ∥∥ΣA
t − ΣA

s

∥∥2 + ∥∥Σb
t − Σb

s

∥∥2 ≤M |t− s|κ, (3.19)

and ∥∥At −As

∥∥2 + ∥∥bt − bs∥∥2 ≤M |t− s|κ. (3.20)

Note that (3.18) implies that (UA, UB,ΣA,ΣB) are almost surely uniformly bounded
and (3.19) implies that (UA, UB,ΣA,ΣB) are almost surely Hölder continuous with
exponent κ/2.

Lemma 3.6 (Uniform integrability). Under Assumption 3.5 (i), we have

E
[
sup
0≤s≤1

∥∥WA
s

∥∥p0] ∨ E
[
sup
0≤s≤1

∥∥W b
s

∥∥p0] <∞, (3.21)

for any p0 > 1.

Proof. By Minkowski’s inequality and Assumption 3.5-(i),

E
[
sup
0≤s≤1

∥∥WA
s

∥∥p0] ≤ 2p0−1E
[
sup
0≤s≤1

∥∥∥∥∫ s

0

UA
t dt

∥∥∥∥p0]

+ 2p0−1E

 sup
0≤s≤1

∥∥∥∥∥∥
(∫ s

0

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl

)
i,j

∥∥∥∥∥∥
p0

≤ 2p0−1Cp0
1 + 2p0−1E

 sup
0≤s≤1

∥∥∥∥∥∥
(∫ s

0

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl

)
i,j

∥∥∥∥∥∥
p0

By the Burkholder-Davis-Gundy inequality and Assumption 3.5 (i),

E

 sup
0≤s≤1

∥∥∥∥∥∥
(∫ s

0

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl

)
i,j

∥∥∥∥∥∥
p0 ≤ Cp0E

[(∫ 1

0

ΣA
udu

)p0/2
]
≤ Cp0 C

p0/2
1 .

Combining the two inequalities above, we get E
[
sup0≤s≤1

∥∥WA
s

∥∥p0] <∞. Similarly
E
[
sup0≤s≤1

∥∥W b
s

∥∥p0] <∞ holds.

50

Write Q : [0, 1]× Rd → Rd, where each component Qi is defined, for i = 1, . . . , d, as

Qi(t, x) :=
d∑

j,k=1

xjxk
(
ΣA

t

)
ijik

+ Σb
t,ii. (3.22)

Let H(L) : [0, 1]→ Rd be a continuous-time extension of the hidden states h(L)k :

H
(L)
t := h

x,(L)
k 1 k

L
≤t< k+1

L
, k = 0, 1, . . . , L. (3.23)

Assumption 3.7 (Uniform integrability). There exist p1 > 4 and a constant C0 such
that for all L,

E
[
sup
0≤t≤1

∥∥∥H(L)
t

∥∥∥p1] ≤ C0. (3.24)

Assumption 3.7 is standard in the convergence of approximation schemes for SDEs
[75]. In practice, condition (3.24) is guaranteed throughout the training as both the
inputs and the outputs of the network are bounded.
Let us now describe the intuition behind the deep network limit when β > 0. Denote
tk = k/L and define for s ∈ [tk, tk+1):

M̃
(L)
k,s :=

(
WA

s −WA
tk

)
h
(L)
k +

(
W b

s −W b
tk

)
+ L1−βAtkh

(L)
k (s− tk) + L1−βbtk(s− tk).

Using Itô’s formula [81] to σ
(
M̃

(L)
k,s

)
for s ∈ [tk, tk+1), we obtain the following approxi-

mation
h
(L)
k+1 − h

(L)
k = δ(L)σ

(
M̃

(L)
k,tk+1

)
≃ D1 +D2 +D3, (3.25)

where

D1 := L−α
((
WA

tk+1
−WA

tk

)
h
(L)
k +

(
W b

tk+1
−W b

tk

))
,

D2 :=
1

2
L−ασ′′(0)Q

(
tk, h

(L)
k

)
(tk+1 − tk),

D3 := L1−β−α
(
Atkh

(L)
k (tk+1 − tk) + btk(tk+1 − tk)

)
.

We observe from D1 that (3.25) admits a diffusive limit only when α = 0. In this case,
we see that D2 and D3 do not explode only when β ≥ 1, corresponding to a stochastic
differential equation (SDE) limit that is diffusive. Another case where we obtain a
non-trivial limit is when α > 0 and α + β = 1, which leads to an ODE limit.
We now provide a precise mathematical description of the different scaling limits of
H(L) for various values of α and β, using the concept of uniform convergence in L2,
also known as strong convergence. For a general exponent p ≥ 1, we have the following
definition.

51

Definition 3.8 (Uniform convergence in Lp). Let p ≥ 1 and M be the class of random
functions X : [0, 1]× Ω→ Rd such that

E

[
sup
t∈[0,1]

∥X(t)∥p
]
<∞.

We say that a sequence (X(L))L∈N ⊂M converges uniformly in Lp to X∗ ∈M if

lim
L→∞

E
[
sup
0≤t≤1

∥∥∥X(L)
t −X∗

t

∥∥∥p] = 0. (3.26)

We now show that Scaling regime 2 together with a smooth activation function lead
to an ODE limit (which is different from the neural ODE) or a stochastic differential
equation (SDE) depending on the values of α and β.

Theorem 3.9 (ODE limit under Scaling regime 2). Under Assumptions 3.3, 3.5,
and 3.7, if α > 0, β > 0 and α + β = 1, then the interpolated hidden state dynam-
ics (3.23) converge uniformly in L2 to the solution to the ODE

dHt

dt
= AtHt + bt, H0 = x. (3.27)

In particular, this implies the convergence of the hidden state process for any typical
initialization (i.e almost surely with respect to the initialization). Note that in
Theorem 3.9, the limit (3.27) defines a linear input-output map behaving like a linear
network [7]. This is different from the neural ODE (3.2), where the activation function
σ appears in the limit.

Theorem 3.10 (SDE limit under Scaling regime 2). Let Assumptions 3.3, 3.5 and 3.7
hold and let α = 0 and β ≥ 1. Denote H as the solution to the SDE

dHt = dWA
t Ht + dW b

t +
1

2
σ′′(0)Q(t,Ht) dt+ 1β=1(AtHt + bt) dt, (3.28)

with initial condition H0 = x. If there exist p2 > 2 such that E
[
sup0≤t≤1 ∥Ht∥p2

]
<∞,

then the interpolated hidden state dynamics (3.23) converge uniformly in L2 to the
solution of (3.28).

The proofs of Theorem 3.10 is given in Section 3.4.4. And the proof of Theorem 3.9
follows similar ideas. In particular, D1 and D2 vanish in the limit when α > 0 in
(3.25).
Interestingly, when the activation function σ is smooth, all limits in both Theorems 3.9
and 3.10 depend on the activation only through σ′(0) (assumed to be 1 for simplicity)

52

and σ′′(0). In contrast to the behavior of the neural ODE limit (3.2), the characteristics
of σ away from 0 are not relevant to the limit. In addition, our proofs rely on the
smoothness of σ at 0. If the activation function is not differentiable at 0, then a
different limit should be expected.
The case A ≡ 0, b ≡ 0, α = 0, and β = 1 in Theorem 3.10 is considered in [124], under
the additional assumption that WA and W b are Brownian motions with constant
drift. We consider a more general setup, where we introduce nonzero terms A and b
and we allow WA and W b to be arbitrary Itô processes. Moreover, [124] prove weak
convergence, which corresponds to convergence of quantities averaged across many
trained networks with random independent initializations, whereas in practice, the
training is done only once. Thus, the strong convergence, shown in Theorems 3.4
and 3.10, is a more relevant notion for studying the asymptotic behavior of deep
neural networks.
Although the ResNet dynamics (3.14) is not expressed as an Euler scheme of a
(ordinary or stochastic) differential equation, we nevertheless show strong convergence
to a limitng ODE (in the case of Theorem 3.9) or SDE (in the case of Theorem 3.10),
using techniques inspired by [75]. The challenge is to bound the difference between the
ResNet dynamics and the Euler scheme of the limiting SDE. It is worth mentioning that
the results in [75] hold for a class of time-homogeneous (Markov) diffusion processes
whereas our result holds for Itô processes with bounded coefficients. This distinction
is important for training neural networks since the “diffusion” assumption involves the
distribution of the hidden state dynamics which can never be tested in practice. We
can only verify the smoothness of the hidden state dynamics as detailed in Section 3.3.
In addition, we also relax one technical condition assumed in [75], which is difficult to
verify in practice. See Remark 3.12.
Note that we assume that the Ito processes WA and W b are driven by uncorrelated
Brownian motions BA and Bb. This assumption might look strong, but we pose it
for ease of exposition: assuming a generic correlation structure between BA and Bb

would only a cross-term in the definition of Q.

3.4.3 Link with numerical experiments

Let us now discuss how the analysis above sheds light on the numerical results in
Section 3.3.2 and Section 3.3.3.
Figure 3.2 shows that β = 0.2 and α = 0.7 for the synthetic dataset with fully-
connected layers and tanh activation function. This corresponds to the assumptions

53

of Theorem 3.4 with the ODE limit (3.27). This is also consistent with the estimated
decomposition in Figure 3.3 (right) where the noise part is negligible.
Regarding ReLU activation with fully-connected layers, we observe that β + α = 0.9

from Figure 3.4 (left). Since ReLU is homogeneous of degree 1 (see Remark 3.2), |δ(L)|
can be moved inside σ, so without loss of generality we can assume α = 0 and β = 0.9.
If we replace the ReLU function by a smooth version σϵ, then the limit is described by
the stochastic differential equation (3.28). The ReLU case would then correspond to
a limit of this equation as ϵ→ 0. The existence of such a limit is, however, nontrivial
and left for future work.
From the experiments with convolutional architectures, we observe that the maximum
norm (Figure 3.11), the scaled norm of the increments, and the root sum of squares
(Figure 3.12) are upper bounded as the number of layers L increases. This indicates
that the weights fall into a sparse regime when L is large. In this case, there is no
continuous ODE or SDE limit and Scaling regimes 1 and 2 both fail.

3.4.4 Detailed proofs

3.4.4.1 Proof of Theorem 3.4

It suffices to prove the second case with limit (3.13). First we show that there exists
C∞ > 0 such that

sup
L

max
0≤k≤L

∥∥∥h(L)k

∥∥∥ ≤ C∞. (3.29)

Indeed, denote Cσ as the Lipschitz constant of σ. Then∥∥∥h(L)k+1 − h
(L)
k

∥∥∥ ≤ Cσ

L

∥∥∥Atkh
(L)
k + btk

∥∥∥ ≤ Cσ

L
(Amax + bmax)

(∥∥∥h(L)k

∥∥∥+ 1
)
,

where Amax := sup0≤t≤1

∥∥At

∥∥ < ∞, bmax := sup0≤t≤1

∥∥bt∥∥ < ∞, and Cmax := Amax +

bmax. Hence ∥∥∥h(L)k+1

∥∥∥ ≤ (CσCmax

L
+ 1

)∥∥∥h(L)k

∥∥∥+ CσCmax

L
.

By induction:

∥∥∥h(L)j

∥∥∥ ≤ ∥x∥
(
CσCmax

L
+ 1

)j

+
CσCmax

L

j∑
i=1

(
CσCmax

L
+ 1

)i−1

≤ (∥x∥+ CσCmax)

(
CσCmax

L
+ 1

)L

→ (∥x∥+ CσCmax) exp (CσCmax) as L→∞.

54

Hence (3.29) holds.
Denote ∆h

(L)
k := h

(L)
k+1 − h

(L)
k and M (L)

k (h) := Atkh+ btk . From (3.25) we have

∆h
(L)
k := h

(L)
k+1 − h

(L)
k = L−ασ

(
L−βM

(L)
k

(
h
(L)
k

))
.

Denote as well ∆h(L)k,i and M
(L)
k,i the i-th element of ∆h

(L)
k and M

(L)
k , respectively.

Applying a third-order Taylor expansion of σ around 0 with the help of Assumption 3.3,
for i = 1, 2, . . . , d, we get

∆h
(L)
k,i = L−ασd

(
L−βM

(L)
k,i

(
h
(L)
k

))
= L−β−αM

(L)
k,i

(
h
(L)
k

)
+

1

2
σ′′(0)L−2β−α

(
M

(L)
k,i

(
h
(L)
k

))2
+

1

6
σ′′′
(
ξ
(L)
k,i

)
L−3β−α

(
M

(L)
k,i

(
h
(L)
k

))3
= L−1M

(L)
k,i

(
h
(L)
k

)
+

1

2
σ′′(0)L−β−1

(
M

(L)
k,i (h

(L)
k)
)2

+
1

6
σ′′′
(
ξ
(L)
k,i

)
L−2β−1

(
M

(L)
k,i

(
h
(L)
k

))3
(3.30)

with
∣∣∣ξ(L)k,i

∣∣∣ ≤ L−β
∣∣∣Atkh

(L)
k + btk

∣∣∣
i
. The last equation holds since α + β = 1. Denote

tk = k/L for k = 0, 1, . . . , L as the uniform partition of the interval [0, 1]. For
t ∈ (tk, tk+1], define H̃(L)

0 := x = h
(L)
0 and

H̃
(L)
t := h

(L)
k + (t− tk)M (L)

k,i

(
h
(L)
k

)
+

1

2
σ′′(0)L−β−1

(
M

(L)
k,i

(
h
(L)
k

))2
+

1

6
σ′′′
(
ξ
(L)
k,i

)
L−2β−1

(
M

(L)
k,i

(
h
(L)
k

))3
.

Then we have H̃(L)
tk+1

= h
(L)
k +∆h

(L)
k = h

(L)
k+1 for all k = 0, 1, . . . , L− 1. Recall (Ht)t∈[0,1]

the solution to the ODE (3.13). Denote d(L)k (t) := Ht − H̃(L)
t for t ∈ (tk, tk+1] and

define the errors

e
(L),1
k := sup

tk<t≤tk+1

∥∥∥H̃(L)
t − h(L)k

∥∥∥ and e
(L),2
k := sup

tk<t≤tk+1

∥∥∥d(L)k (t)
∥∥∥ .

We first bound e(L),1k . Note that by definition:

e
(L),1
k ≤

∥∥∥M (L),i
k

(
h
(L)
k

)∥∥∥L−1 +
1

2
σ′′(0)L−β−1

(
M

(L),i
k

(
h
(L)
k

))2
+

1

6
c0L

−2β−1
∣∣∣M (L),i

k

(
h
(L)
k

)∣∣∣3
≤ D∞L

−1, (3.31)

where D∞ := AmaxC∞ + bmax + 1
2
σ′′(0)(AmaxC∞ + bmax)

2 + 1
6
c0(AmaxC∞ + bmax)

2.
Therefore we have

lim
L→∞

sup
0≤k<L

e
(L),1
k = 0.

55

Next, we bound e(L),2k . For t ∈ (tk+1, tk+2],

d
(L)
k+1(t) = d

(L)
k (tk+1)− (t− tk+1)M

(L),i
k+1

(
h
(L)
k+1

)
+

∫ t

tk+1

(
AsHs + bs

)
ds

− 1

2
σ′′(0)L−β−1

(
M

(L),i
k+1

(
h
(L)
k+1

))2
− 1

6
σ′′′ (ξik+1

)
L−2β−1

(
M

(L),i
k+1

(
h
(L)
k+1

))3
.

(3.32)

Denote c0 := supx∈R |σ′′′(x)| <∞, hence from (3.30) and (3.32),

e
(L),2
k+1 ≤ e

(L),2
k + sup

tk+1<t≤tk+2

∥∥∥∥∥
∫ t

tk+1

((
AsHs + bs

)
−
(
Atk+1

h
(L)
k+1 + btk+1

))
ds

∥∥∥∥∥
+
1

2
|σ′′(0)|L−β−1

∥∥∥M (L)
k+1(h

(L)
k+1)

∥∥∥2 + 1

6
c0L

−2β−1
∥∥∥M (L)

k+1(h
(L)
k+1)

∥∥∥3 .
Denote Hmax := sup0≤t≤1 ∥Ht∥ <∞. Then,

E
(L)
k := sup

tk+1<t≤tk+2

∥∥∥∥∥
∫ t

tk+1

((
AsHs + bs

)
−
(
Atk+1

h
(L)
k+1 + btk+1

))
ds

∥∥∥∥∥
≤ sup

tk+1<t≤tk+2

∥∥∥∥∥
∫ t

tk+1

(
bs − btk+1

)
ds

∥∥∥∥∥+ sup
tk+1<t≤tk+2

∥∥∥∥∥
∫ t

tk+1

(
As −Atk+1

)
Hsds

∥∥∥∥∥
+ sup

tk+1<t≤tk+2

∥∥∥∥∥Atk+1

∫ t

tk+1

(
Hs − h(L)k+1

)
ds

∥∥∥∥∥ .
Hence, we deduce

E
(L)
k ≤

∫ tk+2

tk+1

∥∥bs − btk+1

∥∥ ds+Hmax

∫ tk+2

tk+1

∥∥As −Atk+1

∥∥ ds+ Amax

∫ tk+2

tk+1

∥∥∥Hs − h(L)k+1

∥∥∥ ds
≤ M(1 +Hmax)

∫ tk+2

tk+1

|s− ttk+1
|κ/2ds+ Amax

∫ tk+2

tk+1

∥∥∥Hs − h(L)k+1

∥∥∥ ds
≤ M

1 + κ/2
(1 +Hmax)L

−(1+κ/2) + sup
0≤t≤1

∥At∥L−1
(
D∞L

−1 + e
(L),2
k+1

)
.

The last equation holds by (3.31). Then, we have for L > Amax,(
1− AmaxL

−1
)
e
(L),2
k+1 ≤ e

(L),2
k +

M

1 + κ
(1 +Hmax)L

−(1+κ) +
1

2
σ′′(0)L−(β+1) (AmaxC∞ + bmax)

2

+
1

6
c0L

−(2β+1) (AmaxC∞ + bmax)
3 + AmaxD∞L

−2

≤ e
(L),2
k + L−(1+ν)C2, (3.33)

with ν := min{κ, β, 1} > 0 and C2 a constant independent of k and L. Finally, when
L ≥ G1/γ + 2Amax we have from (3.33):

e
(L),2
0 ≤ L−(1+γ)G

1− AmaxL−1
≤ 1

L− Amax

, (3.34)

56

and for k = 0, . . . , L− 1,

e
(L),2
k+1 ≤ 1

1− AmaxL−1

(
e
(L),2
k + L−(1+γ)G

)

≤
(

1

1− AmaxL−1

)k+1

e
(L),2
0 + L−(1+γ)G

(
1

1−AmaxL−1

)k+2

− 1(
1

1−AmaxL−1

)
− 1

≤ exp

(
2Amax

k + 1

L

)
1

L− Amax

+ L−γ G

Amax

exp

(
2Amax

k + 2

L

)
. (3.35)

(3.35) holds since e(L),20 ≤ 1
L−Amax

and 1
1−AmaxL−1 < 1 + 2AmaxL

−1 ≤ exp(2AmaxL
−1)

when L > 2Amax. Therefore, we conclude

lim
L→∞

sup
0≤k<L

e
(L),2
k = 0.

3.4.4.2 Proof of Theorem 3.9

We provide a complete proof of Theorem 3.9 for the case α = 0 and β = 1. Other
cases follow similarly. When α = 0 and β = 1, we define the targeted SDE limit for
the discrete scheme (3.14) as follows:

dHt = µ(t,Ht)dt+ dV A
t Ht + dV b

t for t ∈ [0, 1] , H0 = x, (3.36)

in which
µ (t, h) := UA

t h+ U b
t +Ath+ bt +

1

2
σ′′(0)Q(t, h),

dV A
t :=

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl
, dV b

t := qbt dB
b
t ,

(3.37)

with V A
0 = 0 and V b

0 = 0. Here the quadratic variation process 1
2
σ′′(0)Q(t, h) is the

Itô correction term for the drift. On the one hand this correction term introduces
non-linearity into the drift and makes the proof challenging. On the other hand, this
term is the key for the convergence analysis. See (3.64) and (3.65).
Euler-Maruyama scheme of the limiting SDE. Denote ∆L = 1/L as the sub-
interval length and tk = k/L, k = 0, 1, . . . , L as the uniform partition of the interval
[0, 1]. Further denote ∆V A

k = V A
tk+1
− V A

tk
and ∆V b

k = V b
tk+1
− V b

tk
as the increment

of the stochastic processes. Define the Euler-Maruyama discretization scheme of the
SDE (3.36) as:

ĥ
(L)
k+1 − ĥ

(L)
k := µ

(
tk, ĥ

(L)
k

)
∆L +∆V A

k ĥ
(L)
k +∆V b

k , (3.38)

57

and the one-step forward increment follows:

f (L)(k, h) := µ (tk, h)∆L +∆V A
k h+∆V b

k . (3.39)

Therefore (3.38) can be rewritten as ĥ(L)k+1 = ĥ
(L)
k + f (L)

(
k, ĥ

(L)
k

)
.

Continuous-time extension. Recall that we extend the scheme
{
h
(L)
k : k = 0, . . . , L

}
to a continuous-time process H(L)

t on t ∈ [0, 1] by a piecewise constant and right-
continuous interpolation of {h(L)k : k = 0, . . . , L− 1}:

H
(L)
t :=

L∑
k=0

h
(L)
k 1tk≤t<tk+1

. (3.40)

We call H(L)
t the continuous-time extension (CTE) of {h(L)k : k = 0, . . . , L− 1}.

Continuous-time approximation. Denote

M
(L)
k (h) :=

(
µ (tk, h)−

1

2
σ′′(0)Q(tk, h)

)
∆L +∆V A

k h+∆V b
k

=
(
UA
tk
h+ U b

tk
+Atkh+ btk

)
∆L +∆V A

k h+∆V b
k

=: µ̃ (tk, h)∆L +∆V A
k h+∆V b

k , (3.41)

and from (3.25) we thus have

∆h
(L)
k := h

(L)
k+1 − h

(L)
k = σ

(
M

(L)
k

(
h
(L)
k

))
.

Denote ∆h
(L)
k,i and M

(L)
k,i the i-th element of ∆h(L)k and M

(L)
k , respectively. Applying

a third-order Taylor expansion of σ around 0 with the help of Assumption 3.3, for
i = 1, 2, . . . , d, we get

∆h
(L)
k,i = σ

(
M

(L)
k,i

(
h
(L)
k

))
=M

(L)
k,i

(
h
(L)
k

)
+

1

2
σ′′(0)M

(L)
k,i

(
h
(L)
k

)2
+

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
= µi

(
tk, h

(L)
k

)
∆L +

(
∆V A

k h
(L)
k

)
i
+
(
∆V b

k

)
i︸ ︷︷ ︸

f
(L)
i

(
k,h

(L)
k

)
+

1

2
σ′′(0)

(
M

(L)
k,i

(
h
(L)
k

)2
−Qi

(
tk, h

(L)
k

))
︸ ︷︷ ︸

N
(L)
k,i

(
h
(L)
k

)
+

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
= f

(L)
i

(
k, h

(L)
k

)
+N

(L)
k,i

(
h
(L)
k

)
+

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
,

with
∣∣∣ξ(L)k,i

∣∣∣ < ∣∣∣M (L)
k,i

(
h
(L)
k

)∣∣∣. The increment of the ResNet ∆h
(L)
k,i has two parts: the

increment of the Euler-Maruyama scheme f (L)
i

(
k, h

(L)
k

)
and the residual

D
(L)
k,i

(
h
(L)
k

)
:=

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
+N

(L)
k,i

(
h
(L)
k

)
. (3.42)

58

It is clear from here that the Euler-Maruyama scheme of the limiting SDE is different
from the ResNet dynamics. Hence classical results on the convergence of discrete SDE
schemes cannot be applied directly.
In our analysis it will be more natural to work with the following continuous-time
approximation (CTA), defined as

H̃
(L)
t := h

(L)
0 +

∫ t

0

µ
(
tks ,H

(L)
s

)
ds+

∫ t

0

(
dV A

s H(L)
s + dV b

s

)
+
∑
k<Lt

D
(L)
k

(
h
(L)
k

)
, (3.43)

where D(L)
k (h) =

(
D

(L)
k,1 (h), . . . , D

(L)
k,d (h)

)⊤
and ks is the integer for which s ∈ [tks , tks+1)

for a given s ∈ [0, 1).
Here H̃(L)

t approximates the CTE (3.40) with a continuous version, with interpolations
both in time and in space, of the f (L)(k, h) part while the residual term D

(L)
k (h) remains

the same. By design we have H̃(L)
tk

= HL
tk

= h
(L)
k , that is, H̃(L)

t and H
(L)
t coincide

with the discrete solution at grid points tk, k = 0, 1, . . . , L− 1. This relationship is
instrumental in order to control the error.
We will first study the difference between H̃ and h(L), and then the difference between
H and h(L), in the supremum norm. The sum of the two will give a bound for the
error of the discrete approximation.

3.4.4.3 Preliminary result

Lemma 3.11 (Local Lipschitz condition and uniform integrability). Under the as-
sumptions from Theorem 3.10, we have the folllowing results:

(i) For each R > 0, there exists a constant CR, depending only on R, such that
almost surely we have

∥µ(t, x)− µ(t, y)∥2 ≤ CR ∥x− y∥2 , ∀t ∈ [0, 1] ∀x, y ∈ Rd with ∥x∥ ∨ ∥y∥ ≤ R,(3.44)

where µ is defined in (3.37).

(ii) There exist some constants p > 2 and C > 0 such that

E
[
sup
0≤t≤1

∥∥∥H̃(L)
t

∥∥∥p] ∨ E
[
sup
0≤t≤1

∥Ht∥p
]
≤ C. (3.45)

Remark 3.12. Note that [75] assumes the uniform integrability condition for H̃(L)
t

which is difficult to verify in practice. Here we relax this condition by only assuming
the uniform integrability condition for the ResNet dynamics {h(L)k : k = 0, . . . , L}, see
Assumption 3.7. We can then prove (3.45) under Assumption 3.7 and some properties
of the Itô processes.

59

Proof of Lemma 3.11. First, there exists C2 > 0 such that

∥Q(t, x)−Q(t, y)∥ ≤ C2 ∥x− y∥ ∥x+ y∥ ≤ 2C2R ∥x− y∥ , (3.46)

since Q(t, x) is quadratic in x and sup0≤t≤1 ∥ΣA
t ∥ ≤ C1. Then,

∥µ (t, x)− µ (t, y) ∥2 =

∥∥∥∥UA
t (x− y) +At(x− y) +

1

2
σ′′(0) (Q(t, x)−Q(t, y))

∥∥∥∥2
≤

(
3 max

t∈[0,1]

∥∥UA
t

∥∥+ 3 max
t∈[0,1]

∥∥At

∥∥+ 3 |σ′′(0)|C2
2R

2

)
∥x− y∥2 .

Note that maxt∈[0,1]
∥∥At

∥∥ < ∞ since A ∈ C0
(
[0, 1],Rd

)
and maxt∈[0,1]

∥∥UA
t

∥∥ < C1

almost surely according to (3.18), respectively. Therefore (3.44) holds by taking
CR = 3 maxt∈[0,1]

∥∥UA
t

∥∥+ 3 maxt∈[0,1]
∥∥At

∥∥+ 3 |σ′′(0)|C2
2R

2.
Thanks to the assumption in Theorem 3.10, there exists a constant C3 > 0 such that
E
[
sup0≤t≤1 ∥Ht∥p1

]
≤ C3, then we only need to show that (3.45) holds for H̃ for some

p > 2. To see this, let ks be the integer for which s ∈ [tks , tks+1) for a given s ∈ [0, 1).
Then

H(L)
s − H̃(L)

s = h
(L)
ks
−
(
h
(L)
ks

+

∫ s

tks

µ
(
tkr ,H

(L)
r

)
dr +

∫ s

tks

(
dV A

r H
(L)
r + dV b

r

))
= −µ

(
tks , h

(L)
ks

)
(s− tks)−

(
V A
s − V A

tks

)
h
(L)
ks
−
(
V b
s − V b

tks

)
.

Hence, by the Minkowski inequality,∥∥∥H(L)
s − H̃(L)

s

∥∥∥p ≤ 3p−1
(∥∥∥µ(tks , h(L)ks

)∥∥∥p (∆L)
p +

∥∥∥h(L)ks

∥∥∥p ∥∥∥V A
s − V A

tks

∥∥∥p + ∥∥∥V b
s − V b

tks

∥∥∥p)
≤ C4

(∥∥∥h(L)ks

∥∥∥2p + ∥∥∥h(L)ks

∥∥∥p + 1 +
∥∥∥h(L)ks

∥∥∥p ∥∥∥V A
s − V A

tks

∥∥∥p + ∥∥∥V b
s − V b

tks

∥∥∥p)
(3.47)

for some C4 > 0, as µ(t, h) is quadratic in h. The value of p > 2 will be determined
later. From (3.47), we get

E
[
sup
0≤s≤1

∥∥∥H(L)
s − H̃(L)

s

∥∥∥p]
≤ C4

(
E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥2p]+ E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥p]+ 1

)
+ C5

((
E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥2p]E [sup
0≤s≤1

∥∥∥V A
s − V A

tks

∥∥∥2p])1/2

+ E
[
sup
0≤s≤1

∥∥∥V b
s − V b

tks

∥∥∥p])

≤ C4

(
E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥2p]+ E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥p]+ 1

)
+ C6

((
E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥2p]E [sup
0≤s≤1

∥∥V A
s

∥∥2p])1/2

+ E
[
sup
0≤s≤1

∥∥V b
s

∥∥p]) , (3.48)

60

for some constants C4, C5, C6 > 0 independent of L, R and δ. The first inequality
holds by the Hölder and (3.48) holds by the Minkowski inequality. Take p = 1

2
p1 > 2.

Then, (3.48) is bounded thanks to Assumption 3.7 for E
[
sup0≤t≤1 ∥H(L)

t ∥2p
]
<∞, and

we have E
[
sup0≤s≤1

∥∥WA
s

∥∥p] < ∞ and E
[
sup0≤s≤1

∥∥W b
s

∥∥p] < ∞ by (3.21). Hence,
by the Minkowski inequality, we have

E
[
sup
0≤t≤1

∥∥∥H̃(L)
t

∥∥∥p] ≤ 2p−1E
[
sup
0≤s≤1

∥∥∥H(L)
s − H̃(L)

s

∥∥∥p]+ 2p−1E
[
sup
0≤t≤1

∥∥∥H(L)
t

∥∥∥p] <∞.

3.4.4.4 Proof of Theorem 3.10

We are now ready to show the proof of Theorem 3.10.

Proof. Let us define two stopping times to utilize the local Lipschitz property of µ:

τR := inf
{
t ≥ 0 :

∥∥∥H̃(L)
t

∥∥∥ ≥ R
}
, ρR := inf {t ≥ 0 : ∥Ht∥ ≥ R} , θR := τR ∧ ρR,(3.49)

and define the approximation errors

e1(t) := H̃
(L)
t −Ht, and e2(t) := H̃

(L)
t −H(L)

t . (3.50)

The proof contains two steps. The first step is to show limL→∞ E
[
sup0≤t≤1 ∥e1(t)∥2

]
=

0 and the second step is to show limL→∞ E
[
sup0≤t≤1 ∥e2(t)∥2

]
= 0.

Following the idea in [75], we first show that for any δ > 0 (to be determined later):

E
[
sup
0≤t≤1

∥e1(t)∥2
]
≤ E

[
sup
0≤t≤1

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2]+ 2p+1δC

p
+

2(p− 2)C

pδ2/(p−2)Rp
, (3.51)

where C and p are defined in (3.45). To see this, recall that by Young’s inequality, for
r−1 + q−1 = 1, we have

ab = δ1/ra · δ1/q−1b ≤ δ

r
ar +

1

qδq/r
bq, ∀a, b, δ > 0. (3.52)

First decompose the left-hand side of (3.51) to obtain, for all δ > 0,

E
[
sup
0≤t≤1

∥e1(t)∥2
]

= E
[
sup
0≤t≤1

∥e1(t)∥21{τR>1,ρR>1}

]
+ E

[
sup
0≤t≤1

∥e1(t)∥21{τR≤1 or ρR≤1}

]
≤ E

[
sup
0≤t≤1

∥e1(t ∧ θR)∥21{θR>1}

]
+

2δ

p
E
[
sup
0≤t≤1

∥e1(t)∥p
]

+
1− 2/p

δ2/(p−2)
P (τR ≤ 1 or ρR ≤ 1) . (3.53)

61

where we apply (3.52) with r = p/2 to the second term. Now

P(τR ≤ 1) = E

[
1{τR≤1}

∥H̃(L)
τR ∥p
Rp

]
≤ 1

Rp
E
[
sup
0≤t≤1

∥∥∥H̃(L)
t

∥∥∥p] ≤ C

Rp
. (3.54)

A similar result can be derived for ρR, so that we have

P(τR ≤ 1 or ρR ≤ 1) ≤ P(τR ≤ 1) + P(ρR ≤ 1) ≤ 2C

Rp
. (3.55)

Using the inequalities in (3.54)–(3.55), along with

E
[
sup
0≤t≤1

∥e1(t)∥p
]
≤ 2p−1E

[
sup
0≤t≤1

(∥∥∥H̃(L)
t

∥∥∥p + ∥Ht∥p
)]
≤ 2pC (3.56)

in (3.53), we show the desired result (3.51).
To obtain a uniform bound on H̃ −H , we bound the first term on the right-hand
side of (3.51). Using the definition of the targeted SDE limit in (3.36):

Ht∧θR := H0 +

∫ t∧θR

0

µ(s,Hs)ds+

∫ t∧θR

0

(
dWA

s Hs + dW b
s

)
,

and the continuous-time approximation (3.43), we get

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2 =

∥∥∥∥∥
∫ t∧θR

0

(
µ
(
tks ,H

(L)
s

)
ds− µ (s,Hs)

)
ds

+

∫ t∧θR

0

dWA
s

(
H(L)

s −Hs

)
+

∑
k<L(t∧θR)

D
(L)
k

(
h
(L)
k

)∥∥∥∥∥
2

=

∥∥∥∥∥
∫ t∧θR

0

(
µ
(
s,H(L)

s

)
− µ(s,Hs) + µ

(
tks ,H

(L)
s

)
− µ

(
s,H(L)

s

))
ds

+

∫ t∧θR

0

dWA
s

(
H(L)

s −Hs

)
+

∑
k<L(t∧θR)

D
(L)
k

(
h
(L)
k

)∥∥∥∥∥
2

.

We first bound the above using Cauchy-Schwarz inequality:∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2
≤ 4

[∫ t∧θR

0

∥∥µ(s,H(L)
s

)
ds− µ (s,Hs)

∥∥2 ds]+ 4

∥∥∥∥∫ t∧θR

0

dWA
s

(
H(L)

s −Hs

)∥∥∥∥2

+ 4

[∫ t∧θR

0

∥∥µ(tks ,H(L)
s

)
ds− µ

(
s,H(L)

s

)∥∥2 ds]+ 4

∥∥∥∥∥∥
∑

k<L(t∧θR)

D
(L)
k

(
h
(L)
k

)∥∥∥∥∥∥
2

.

62

Now, from the local Lipschitz condition (3.44) and Doob’s martingale inequality [131],
we have for any τ ≤ 1,

E
[
sup
0≤t≤τ

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2]
≤ 4

(
CR + 4C2

1

)
E
∫ τ∧θR

0

∥∥H(L)
s −Hs

∥∥2 ds
+ 4E

[∫ t∧θR

0

∥∥µ(tks ,H(L)
s

)
ds− µ

(
s,H(L)

s

)∥∥2 ds] + 4
∑
k≤Lτ

E
∥∥∥D(L)

k

(
h
(L)
k

)
1∥h(L)

k ∥≤R

∥∥∥2
≤ C ′

R

∫ τ

0

E
[
sup
0≤r≤s

∥∥∥H̃(L)
r∧θR −Hr∧θR

∥∥∥2] ds+ C ′
R E
∫ τ∧θR

0

∥∥∥H(L)
s − H̃(L)

s

∥∥∥2 ds︸ ︷︷ ︸
1○

+ 4 E
[∫ t∧θR

0

∥∥µ(tks ,H(L)
s

)
− µ

(
s,H(L)

s

)∥∥2 ds]︸ ︷︷ ︸
2○

+4E

 sup
0≤t≤τ

∥∥∥∥∥∥
∑

k<L(t∧θR)

D
(L)
k

(
h
(L)
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
3○

(3.57)

where C ′
R := 8 (CR + 4C2

1). First, we give an upper bound for 2○. By the
Cauchy–Schwarz inequality,

∥µ(t, h)− µ(s, h)∥2 ≤ 5
(∥∥UA

t − UA
s

∥∥2 ∥h∥2 + ∥∥U b
t − U b

s

∥∥2 + ∥∥As −At

∥∥ ∥h∥2 + ∥∥bt − bs∥∥2
+

1

2
σ′′(0) ∥Q(t, h)−Q(s, h)∥2

)
.

Hence, for h ∈ Rd, the following holds almost surely by (3.19):

∥µ(t, h)− µ(s, h)∥2 ≤ CM |t− s|κ
(
1 + ∥h∥2 + ∥h∥4

)
. (3.58)

Under Assumption 3.7, there exists a constant C̃0 > 0 such that

E
[
sup
0≤t≤1

(∥∥∥H(L)
t

∥∥∥4 + ∥∥∥H(L)
t

∥∥∥2)] ≤ C̃0.

Hence by Tonelli’s theorem,

E
[∫ t∧θR

0

∥∥µ(tks ,H(L)
s

)
− µ

(
s,H(L)

s

)∥∥2 ds] ≤ ∫ 1

0

E
[∥∥µ(tks ,H(L)

s

)
− µ

(
s,H(L)

s

)∥∥2] ds
≤ (C̃0 + 1)CML

(∫ 1/L

0

rκdr

)

=
(C̃0 + 1)CM

1 + κ
L−κ. (3.59)

63

Upper bound on 3○. Define the following discrete filtration

Gk := σ
(
UA
s , U

A
s , q

A
s , q

b
s, B

A
s , B

b
s : s ≤ tk+1

)
. (3.60)

Note that h(L)k is Gk−1-measurable but not Gk-measurable. Define for k = 0, . . . , L− 1

and for i = 1, . . . , d:

X
(L)
k,i :=

((
∆V A

k h
(L)
k

)
i
+
(
∆V b

k

)
i

)2
− E

[((
∆V A

k h
(L)
k

)
i
+
(
∆V b

k

)
i

)2∣∣∣∣Gk−1

]
Y

(L)
k,i := E

[((
∆V A

k h
(L)
k

)
i
+
(
∆V b

k

)
i

)2∣∣∣∣Gk−1

]
−Qi

(
tk, h

(L)
k

)
∆L

J
(L)
k,i := µ̃i(t, h)

2(∆L)
2 + 2µ̃i(t, h)∆L

((
∆V A

k h
)
i
+
(
∆V b

k

)
i

)
.

We can then decompose

D
(L)
k,i

(
h
(L)
k

)
=

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
+N

(L)
k,i

(
h
(L)
k

)
=

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3
+

1

2
σ′′(0)

(
X

(L)
k,i + Y

(L)
k,i + J

(L)
k,i

)
.

Hence, we deduce the following bound on 3○ by Cauchy-Schwarz.

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k<L(t∧θR)

D
(L)
k,i

(
h
(L)
k

)∣∣∣∣∣∣
2

≤ σ′′(0)2 E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k<L(t∧θR)

X
(L)
k,i

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

k<L(t∧θR)

Y
(L)
k,i

∣∣∣∣∣∣
2

+ L
∑

k<L(t∧θR)

∣∣∣J (L)
k,i

∣∣∣2


+ 4 E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k<L(t∧θR)

1

6
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k,i

(
h
(L)
k

)3∣∣∣∣∣∣
2

≤ σ′′(0)2 E

 sup
0≤t≤τ

∣∣∣∣∣∑
k<Lt

X
(L)
k,i 1

∥∥∥h(L)
k

∥∥∥≤R

∣∣∣∣∣
2
+ σ′′(0)2 E

 sup
0≤t≤τ

∣∣∣∣∣∑
k<Lt

Y
(L)
k,i 1

∥∥∥h(L)
k

∥∥∥≤R

∣∣∣∣∣
2


+ σ′′(0)2L
L−1∑
k=0

E
[∣∣∣J (L)

k,i

∣∣∣2 1∥∥∥h(L)
k

∥∥∥≤R

]
+

1

9
σ′′′
(
ξ
(L)
k,i

)2
L

L−1∑
k=0

E
[
M

(L)
k,i

(
h
(L)
k

)6
1
∥∥∥h(L)

k

∥∥∥≤R

]
.

(3.61)

We provide an upper bound for each of the four terms in (3.61). For the first term,
denote X̃

(L)
k,i := X

(L)
k,i 1

(∥∥h(L)k

∥∥ ≤ R
)

and S
(L)
k,i :=

∑k
k′=0 X̃

(L)
k′,i so that

{
S
(L)
k,i : k =

−1, 0, . . . , L− 1
}

is a (Gk)–martingale. Hence, by Doob’s martingale inequality, we
have

E

 sup
0≤t≤τ

∣∣∣∣∣∑
k<Lt

X
(L)
k,i 1

∥∥∥h(L)
k

∥∥∥≤R

∣∣∣∣∣
2
 = E

[
sup
0≤t≤τ

∣∣∣S(L)
⌊Lt⌋,i

∣∣∣2] ≤ 4E
[∣∣∣S(L)

⌊Lτ⌋,i

∣∣∣2] . (3.62)

64

Fix k = 0, . . . , L− 1. For i = 1, . . . , d, we compute the following conditional expecta-
tion.

E
[(
S
(L)
k,i

)2 ∣∣∣ Gk−1

]
= E

[(
S
(L)
k−1,i

)2
+ 2X̃

(L)
k,i

k−1∑
k′=0

X̃
(L)
k′,i +

(
X̃

(L)
k,i

)2 ∣∣∣∣∣ Gk−1

]

=
(
S
(L)
k−1,i

)2
+ E

[(
X̃

(L)
k,i

)2 ∣∣∣ Gk−1

]
. (3.63)

The cross-term disappear as E
[
X̃

(L)
k,i

∣∣∣ Gk−1

]
= E

[
X

(L)
k,i

∣∣∣ Gk−1

]
1

(∥∥h(L)k

∥∥ ≤ R
)
= 0

by definition of X(L)
k,i . Furthermore, conditionally on Gk−1 and on

{∥∥h(L)k

∥∥ ≤ R
}
,

observe that X(L)
k,i is the centered square of a normal random variable whose variance

is O(L−1) uniformly in k by (3.18), so there exist CR,1 > 0 depending only on R such
that

sup
0≤k<L

E
[(
X̃

(L)
k,i

)2 ∣∣∣ Gk−1

]
≤ CR,1L

−2.

Hence, plugging back into (3.62), we obtain

E

 sup
0≤t≤τ

∣∣∣∣∣∑
k≤Lt

X i
k1

∥∥∥h(L)
k

∥∥∥≤R

∣∣∣∣∣
2
 ≤ 4CR,1L

−1. (3.64)

For the second term involving Y (L)
k,i , we explicitly compute the conditional expectation

using the definition of V in (3.37) and the definition of Q in (3.22).

Y
(L)
k,i = E

[(
∆V b

k

)2
i
+

d∑
j,l=1

h
(L)
k,j h

(L)
k,l

(
∆V A

k

)
ij

(
∆V A

k

)
il

∣∣∣∣∣ Gk−1

]
−Qi

(
tk, h

(L)
k

)
∆L

=

∫ tk+1

tk

(
E
[
Σb

s,ii

∣∣ Gk−1

]
+

d∑
j,l=1

h
(L)
k,j h

(L)
k,l E

[
ΣA

s,ijil

∣∣ Gk−1

])
ds−Qi

(
tk, h

(L)
k

)
∆L

=

∫ tk+1

tk

(
E
[
Σb

s,ii − Σb
tk,ii

∣∣ Gk−1

]
+

d∑
j,l=1

h
(L)
k,j h

(L)
k,l E

[
ΣA

s,ijil − ΣA
tk,ijil

∣∣ Gk−1

])
ds.

65

By Cauchy-Schwarz, Tonelli and (3.19) in Assumption 3.5 (ii) we obtain:

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k≤L(t∧θR)

Y
(L)
k,i 1

∥∥∥h(L)
k

∥∥∥≤R

∣∣∣∣∣∣
2 ≤ E

(L−1∑
k=0

∣∣∣Y (L)
k,i

∣∣∣1∥∥∥h(L)
k

∥∥∥≤R

)2


≤ E

(L−1∑
k=0

∫ tk+1

tk

(
E
[∣∣Σb

s,ii − Σb
tk,ii

∣∣ ∣∣ Gk−1

]
+R2

d∑
j,l=1

E
[∣∣ΣA

s,ijil − ΣA
tk,ijil

∣∣ ∣∣ Gk−1

])
ds

)2


≤
(

L−1∑
k=0

∫ tk+1

tk

(1 +R2)M1/2 |s− tks|κ/2 ds
)2

=M(1 +R2)2

(
L

∫ 1/L

0

rκ/2dr

)2

=
M(1 +R2)2

(1 + κ/2)2
L−κ =: CR,2L

−κ, (3.65)

where CR,2 > 0 depends only on R. Moving to the third term of (3.61) involving J (L)
k,i ,

observe that

sup
∥h∥≤R

E

∣∣∣∣∣
d∑

j=1

∫ tk+1

tk

(dV A
t)ijhj

∣∣∣∣∣
2
 ≤ R2d

d∑
j=1

E

∣∣∣∣∣
d∑

l,m=1

∫ tk+1

tk

(
qAs
)
ijlm

(
dBA

s

)
lm

∣∣∣∣∣
2
 ≤ C7R

2∆L,

E

[∣∣∣∣∫ tk+1

tk

(dV b
t)i

∣∣∣∣2
]
= E

∣∣∣∣∣
d∑

l=1

∫ tk+1

tk

(
qbr
)
il

(
dBb

s

)
l

∣∣∣∣∣
2
 ≤ C8∆L,

for some C7, C8 > 0 independent of R since sup0≤t≤1

∥∥ΣA
t

∥∥ ≤ C1 and sup0≤t≤1

∥∥Σb
t

∥∥ ≤
C1 almost surely. Then there exists CR,3 > 0 depending only on R such that

sup
∥h∥≤R

E
[∣∣∣J (L)

k,i

∣∣∣2 1∥∥∥h(L)
k

∥∥∥≤R

]
≤ CR,3L

−3. (3.66)

Finally, we bound the fourth term of (3.61) using Cauchy-Schwarz, Assumption 3.3
and property (3.18) of the Itô processes:

σ′′′(ξi)
2 sup
∥h∥≤R

E
[
M

(L)
k,i

(
h
)6] ≤ m2CR,4L

−3, (3.67)

for some constant CR,4 > 0 depending only on R. Combining the results in (3.64),
(3.65), (3.66) and (3.67), there exists constants CR,5, CR,6 > 0 depending only on R

such that

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k≤L(t∧θR)

D
(L),i
k

(
h
(L)
k

)∣∣∣∣∣∣
2 ≤ CR,5

4d
L−κ +

CR,6

4d
L−1. (3.68)

66

Upper bound on 1○. Given s ∈ [0, T ∧ θR), we have

H(L)
s − H̃(L)

s = h
(L)
ks
−
(
h
(L)
ks

+

∫ s

tks

µ(s,H(L)
s)ds+

∫ s

tks

(
dV A

s H
(L)
s + dV b

s

))
= −µ

(
tks , h

(L)
ks

)
(s− tks)−

(
V A
s − V A

tks

)
h
(L)
ks
−
(
V b
s − V b

tks

)
(3.69)

by continuity of µ. Hence∥∥∥H(L)
s − H̃(L)

s

∥∥∥2 ≤ 3
∥∥∥µ(tks , h(L)ks

)∥∥∥2 (∆L)
2 + 3

∥∥∥h(L)ks

∥∥∥2 ∥∥∥V A
s − V A

tks

∥∥∥2 + 3
∥∥∥V b

s − V b
tks

∥∥∥2 .(3.70)

Now, from the local Lipschitz condition (3.44), for ∥h∥ ≤ R we have almost surely

∥µ(s, h)∥2 ≤ 2
(
∥µ(s, h)− µ(s, 0)∥2 + ∥µ(s, 0)∥2

)
≤ 2

(
CR ∥h∥2 + ∥µ(s, 0)∥2

)
.

Combining the two previous inequalities we obtain∥∥∥H(L)
s − H̃(L)

s

∥∥∥2 ≤ 4

(
CR

∥∥∥h(L)ks

∥∥∥2 + ∥µ(s, 0)∥2 + 1

)(
∆2

L +
∥∥∥V A

s − V A
tks

∥∥∥2 + ∥∥∥V b
s − V b

tks

∥∥∥2) .
Hence, using (3.45) and the Lyapunov inequality [127], we get

E
∫ τ∧θR

0

∥∥∥H(L)
s − H̃(L)

s

∥∥∥2 ds
≤ E

∫ τ∧θR

0

4

(
CR

∥∥∥h(L)ks

∥∥∥2 + ∥µ(s, 0)∥2 + 1

)(
∆2

L +
∥∥∥V A

s − V A
tks

∥∥∥2 + ∥∥∥V b
s − V b

tks

∥∥∥2) ds

≤
∫ τ

0

4 E
[(
CR

∥∥∥h(L)ks

∥∥∥2 + ∥µ(s, 0)∥2 + 1

)(
∆2

L +
∥∥∥V A

s − V A
tks

∥∥∥2 + ∥∥∥V b
s − V b

tks

∥∥∥2)] ds

≤
∫ 1

0

4

(
CR E

[∥∥∥h(L)ks

∥∥∥2]+ ∥µ(s, 0)∥2 + 1

)(
∆2

L + 2C1∆L + 2C1∆L

)
ds

≤ 4

(
CR C

2/p
0 + 1 +

∫ 1

0

∥µ(s, 0)∥2 ds
)(

∆2
L + 4C1∆L

)
. (3.71)

Combining the results in (3.59), (3.68) and (3.71), we have in (3.57) that

E
[
sup
0≤t≤τ

∥∥∥H̃(L)
τ∧θR −Ht∧θR

∥∥∥2] ≤ C ′
R

(
CR C

2/p
0 + 1 +

∫ 1

0

∥µ(s, 0)∥2 ds
)(

L−2 + 4C1L
−1
)

+
(C̃0 + 1)CM

1 + κ
L−κ +

(
CR,5L

−κ + CR,6L
−1
)
+ C ′

R

∫ τ

0

E
[
sup
0≤r≤s

∥∥∥H̃(L)
r∧θR −Hr∧θR

∥∥∥2] ds.
Applying the Grönwall inequality,

E
[
sup
0≤t≤τ

∥∥∥H̃(L)
τ∧θR −Ht∧θR

∥∥∥2] ≤ C9CR,7L
−min{1,κ} exp(C ′

R), (3.72)

67

where C9 is a universal constant independent of L, R and δ and CR,7 is a constant
only depending on R. Combining (3.72) with (3.51), we have

E
[
sup
0≤t≤1

∥e1(t)∥2
]
≤ C9CR,7L

−min{1,κ} exp(C ′
R) +

2p+1δC

p
+

2(p− 2)C

pδ2/(p−2)Rp
. (3.73)

Given any ϵ > 0, we can choose δ > 0 so that 2p+1δC
p

< ϵ
3
, then choose R so that

2(p−2)C

pδ2/(p−2)Rp <
ϵ
3
, and finally choose L sufficiently large so that

C9CR,7L
−min{1,κ} exp(C ′

R) ≤
ϵ

3
.

Therefore in (3.73), we have,

E
[
sup
0≤t≤1

∥e1(t)∥2
]
≤ ϵ. (3.74)

It remains to provide a uniform bound for H − H̃. Recall the relationship
between H̃ and H defined in (3.69): by (3.18) we have almost surely that∥∥∥H(L)

s − H̃(L)
s

∥∥∥2 ≤ 3

(∥∥∥µ(tks , h(L)ks

)∥∥∥2 (∆L)
2 +

∥∥∥h(L)ks

∥∥∥2 ∥∥∥V A
s − V A

tks

∥∥∥2 + ∥∥∥V b
s − V b

tks

∥∥∥2)
≤ C10

(∥∥∥h(L)ks

∥∥∥4 + ∥∥∥h(L)ks

∥∥∥2 + 1

)
(∆L)

2

+ 3

(∥∥∥h(L)ks

∥∥∥2 ∥∥∥V A
s − V A

tks

∥∥∥2 + ∥∥∥V b
s − V b

tks

∥∥∥2) .
Therefore,

E
[
sup
0≤s≤1

∥∥∥H(L)
s − H̃(L)

s

∥∥∥2] ≤ C10

(
E
[
sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥4]+ E
[
sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥2]+ 1

)
(∆L)

2

+ 3

((
E
[
sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥4] E
[
sup
0≤s≤1

∥∥∥V A
s − V A

tks

∥∥∥4])1/2

+ E
[
sup
0≤s≤1

∥∥∥V b
s − V b

tks

∥∥∥2]) .
(3.75)

First, by Assumption 3.7,

E
[
sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥n] = E
[
sup
0≤s≤1

∥∥H(L)
s

∥∥n] <∞, n ∈ {2, 4} . (3.76)

Second, by the Power Mean inequality and Doob’s martingale inequality,

E

[
sup

tk≤s<tk+1

∥∥V A
s − V A

tk

∥∥4] = E

 sup
tk≤s<tk+1

 d∑
i,j=1

∣∣∣∣∣
d∑

k,l=1

∫ s

tk

(
qAr
)
ijkl

(
dBA

r

)
kl

∣∣∣∣∣
2
2

≤ d8
d∑

i,j,k,l=1

E

[
sup

tk≤s<tk+1

∣∣∣∣∫ s

tk

(
qAr
)
ijkl

(
dBA

r

)
kl

∣∣∣∣4
]

≤
(4
3

)4
d8

d∑
i,j,k,l=1

E

[∣∣∣∣∫ tk+1

tk

(
qAs
)
ijkl

(
dBA

s

)
kl

∣∣∣∣4
]
≤ C11∆

2
L,

68

Hence

E
[
sup
0≤s≤1

∥∥∥V A
s − V A

tks

∥∥∥4] ≤ E

[
L−1∑
k=0

(
sup

tk≤s<tk+1

∥∥∥V A
s − V A

tks

∥∥∥4)] ≤ C11∆L. (3.77)

By Hölder inequality,

E
[
sup
0≤s≤1

∥∥∥V A
s − V A

tks

∥∥∥2] ≤ (E [sup
0≤s≤1

∥∥∥V A
s − V A

tks

∥∥∥4])1/2

≤
√
C11∆

1/2
L . (3.78)

Combining (3.76), (3.77), and (3.78) in (3.75), we obtain

E
[
sup
0≤t≤1

∥e2(t)∥2
]
= E

[
sup
0≤t≤1

∥∥∥H(L)
t − H̃(L)

t

∥∥∥2] ≤ C12∆
1/2
L ,

for some constant C12 > 0. By choosing L > (C12/ϵ)
2, we have

E
[
sup
0≤t≤1

∥e2(t)∥2
]
≤ ϵ. (3.79)

Finally, combining (3.74) and (3.79) leads to the desired result.

3.5 Asymptotic analysis of the backpropagation dy-
namics

The most widely used method to train neural networks is the pairing of

• the backpropagation algorithm to find the exact gradient (or a stochastic ap-
proximation) of the loss function with respect to the network weights, and

• a variant of the gradient descent algorithm to iteratively update the network
weights.

We are interested to study the behaviour of the former in residual networks, under our
Scaling regimes 1 and 2. To do so, we will first formalize the objective function and
the discrete backward equation linking the gradient of the loss function across layers.

3.5.1 Backpropagation in supervised learning

Suppose we want to learn the mapping ftrue ∈ C1(Rd,Rd) through a dataset of input-
target pairs D := {(xi, yi) : i = 1, . . . , N} ⊂ Rd × Rd, where xi ∈ B for some B ⊂ Rd

compact and yi = ftrue(xi). The goal of any parametric supervised learning is to find,

69

given a class of mappings ϕθ : Rd → Rd, the parameter θ ∈ Θ that minimizes the
average training error:

JD(θ) :=
1

N

N∑
i=1

ℓ(ϕθ(xi), yi) =
1

N

N∑
i=1

ℓ(ϕθ(xi), ftrue(xi)). (3.80)

Here, ℓ : Rd × Rd → R+ is a loss function, for example the squared error ℓ(ŷ, y) =
∥y − ŷ∥2. In the following, we omit the dependence in D. Fix L ∈ N and define

θ(L) :=
(
A

(L)
k , b

(L)
k

)L
k=1
∈
(
Rd×d × Rd

)L
.

For an input x ∈ Rd, recall the following forward dynamics for the residual network

h
(L),x
0 = x,

h
(L),x
k+1 = h

(L),x
k + L−α σd

(
A

(L)
k h

(L),x
k + b

(L)
k

)
.

(3.81)

We define ϕθ(L)(x) := h
(L),x
L . Our goal is to compute ∇θ(L)J

(
θ(L)
)
. Observe from the

definition (3.80) and the chain rule that

∇
θ
(L)
k
J
(
θ(L)
)
=

1

N

N∑
i=1

∇
θ
(L)
k
h
(L), xi

k+1

(
∂h

(L), xi

L

∂h
(L), xi

k+1

∂ℓ

∂ŷ

(
h
(L), xi

L , yi

))
.

The terms ∂ℓ/∂ŷ and ∇θkhk+1 are straightforward to obtain, so the crux of the
challenge lies in computing ∂hL/∂hk+1. Using (3.81), for x ∈ Rd, we get

g
(L),x
k :=

∂h
(L), x
L

∂h
(L),x
k

=
∂h

(L), x
L

∂h
(L),x
k+1

∂h
(L),x
k+1

∂h
(L),x
k

= g
(L),x
k+1

(
Id + L−α diag

(
σ′
d

(
A

(L)
k h

(L),x
k + b

(L)
k

))
A

(L)
k

)
, (3.82)

where σ′
d(z) = (σ′(zi))

d
i=1 ∈ Rd for z ∈ Rd. The terminal condition is given by

g
(L),x
L = Id. We now obtain the asymptotic dynamics of g under three different cases.

In particular, we derive (backward) ODE limits for any set of weights under Scaling
regime 1 and the asymptotic limit derived from an SDE under Scaling regime 2. For
clarity, we omit the dependence in the input x for g(L)k .

3.5.2 Backward equation for the Jacobian under Scaling
regime 1

Let G(L) : [0, 1]→ Rd×d be a continuous-time extension of the Jacobians g(L)k defined
in (3.82):

G
(L)
t = g

(L)
k+11 k

L
<t≤ k+1

L
, k = 0, 1, . . . , L− 1. (3.83)

70

Theorem 3.13 (Backpropagation limits under Scaling regime 1). Under the same
assumptions as Theorem 3.4,

• Neural ODE regime: If α = 1, β = 0, and (Ht)t∈[0,1] is the solution to the
neural ODE (3.12), then the backpropagation dynamics converge uniformly to
the solution to the linear (backward) ODE

dGt

dt
= −Gtdiag

(
σ′
d

(
AtHt + bt

))
At, G1 = Id (3.84)

in the sense that limL→∞ sup0≤t≤1 ∥Gt −G(L)
t ∥ = 0.

• Linear ODE regime: If α + β = 1, β > 0, and (Ht)t∈[0,1] is the solution to the
linear ODE (3.13), then the backpropagation dynamics converge uniformly to
the solution to the linear (backward) ODE

dGt

dt
= −GtAt, G1 = Id (3.85)

in the sense that limL→∞ sup0≤t≤1 ∥Gt −G(L)
t ∥ = 0.

The ideas of the proof follow closely those of Theorem 3.4 and the complete proof is
given in Section 3.5.4.1. We readily see that under Scaling regime 1, the backward
dynamics of the gradient become linear. When β > 0, which is the case observed
in practice, the dependence on the activation function disappears in the large depth
limit, exactly as for the forward dynamics.

3.5.3 Backward equation for the Jacobian under Scaling
regime 2

Recall the set-up of Theorem 3.10. Let (Ω,F,F,P) be a probability space with a P-
complete filtration F = (Ft)t≥0. Let (BA

t)t≥0, resp. (Bb
t)t≥0, be d× d-dimensional, resp.

d-dimensional, independent F-Brownian motions. Recall that for Scaling regime 2,

A
(L)
k = Ak/LL

−1 +WA
(k+1)/L −WA

k/L b
(L)
k = bk/LL

−1 +W b
(k+1)/L −W b

k/L, (3.86)

where (WA
t)t∈[0,1] and (W b

t)t∈[0,1] are Itô processes [131] adapted to F and can be
written in the form:

(
dWA

t

)
ij
=

d∑
k,l=1

(
qAt
)
ijkl

(
dBA

t

)
kl

for i, j = 1, . . . , d,

dW b
t = qbtdB

b
t ,

(3.87)

71

with WA
0 = 0, W b

0 = 0, qAt ∈ Rd,⊗4 and qbt ∈ Rd×d for t ∈ [0, 1]. We use the notation
in (3.16) and (3.17) for the quadratic variation of WA and W b.
Define

ν(t, h) := At1β=1 +
1

2
σ′′(0)∇hQ(t, h). (3.88)

We will use the following assumption for the results in this section:

Assumption 3.14.

sup
L

E
[
sup
0≤t≤1

∥∥∥G(L)
t

∥∥∥4] <∞, E
[
exp

(
8

∫ 1

0

|tr (ν(s,Hs))| ds
)]

<∞.

The boundedness of the fourth moment of the Jacobians g(L)k in L is similar to
Assumption (3.7) and is standard in the convergence of approximation schemes for
SDE. The second part of Assumption 3.14 is a technical condition: we need the fourth
moment of the ∇xH

x
t to be bounded. Theorem 3.15 proves that the process t 7→ ∇xH

x
t

satisfy a linear SDE with drift ν(t,Ht) linear in Ht, so we need finiteness of the L8

norm of the exponential of the drift, see Lemma D.6 for more details. In practice, g(L)k

and h(L), xk stay bounded during training, so Assumption (3.14) is satisfied.

Theorem 3.15 (Backpropagation dynamics under Scaling regime 2). Let Assump-
tions 3.3, 3.5, 3.7, and 3.14 hold and let α = 0 and β = 1. Let (Ht)t∈[0,1] be a
solution to the SDE (3.28) and (Jt)t∈[0,1] ⊂ Rd×d be the unique solution to the linear
matrix-valued SDE

dJt =
(
ν(t,Ht)dt+ dWA

t

)
Jt, J0 = Id, (3.89)

where ν is defined in (3.88). Then, P−a.s., Jt is invertible for all t ∈ [0, 1] and

G(L) =
L−1∑
k=0

g
(L)
k 1[tk,tk+1)

L→∞−→ Gt := J1J
−1
t (3.90)

uniformly in L1(P) in the sense of Def. 3.8.

The steps to prove Theorem 3.15 are similar to those of Theorem 3.10 but the details
are technically more involved. Indeed, terms that depend on g

(L), x
k are not a priori

adapted to the filtration generated by the Ito processes WA and W b. To overcome
this challenge, we denote

J
(L), x
k := ∇xh

(L), x
k , (3.91)

and we can rewrite g(L), x0 = g
(L), x
k J

(L), x
k . This leads to a new perspective to understand

g
(L), x
k through two components J (L), x

k and g(L), x0 . The first term J
(L), x
k is adapted to

72

the filtration generated by the Ito processes, and g(L), x0 is the Jacobian of the output
with respect to the input, and does not depend on the layer. The complete proof is
provided in Section 3.5.4.2.

3.5.3.1 Connection with Neural SDE

In a recent work, [98] show that, when the hidden state H satisfies a continuous-time
’neural SDE’ dynamics, the Jacobian of the output with respect to the hidden states
satisfies a backward SDE:

dĜt = Ĝt

(
−ν(t, Ĥt)dt− dŴA

t

)
, Ĝ1 = Id, (3.92)

where ŴA is the time-reversed Brownian motion defined by ŴA
t := WA

t −WA
1 , and

Ĥt is the solution of the backward flow of diffeomorphisms generated by the forward
SDE (3.28).
It is clear that the limit Gt in (3.90) differs from the adjoint process (3.92). Our
limit Gt = J1J

−1
t does not satisfy any forward nor backward SDE, as its solution is a

function of H1 which depends on weights across all layers i.e. the entire path of WA.
Indeed, Theorem 3.1 in [157] states that t 7→ J−1

t solves the following SDE.

d(J−1
t) = J−1

t

(
−ν(t,Ht)dt− dWA

t + d
[
WA

]
t

)
, J−1

0 = Id.

Therefore, one can write

Gt = J1J
−1
t = J1

(
J−1
1 +

∫ 1

t

J−1
s

(
−ν(s,Hs)ds− dWA

s + d
[
WA

]
s

))
= Id +

∫ 1

t

Gs

(
−ν(s,Hs)ds− dWA

s + d
[
WA

]
s

)
. (3.93)

One can readily see that Gt depends on H1 for all t ∈ [0, 1]. Note that the quadratic
variation drift correction term stems from using Ito integrals instead of Stratonovitch
integrals.
In contrast to (3.92), (3.93) is the exact large-depth limit of gradients computed by
backpropagation in finite depth residual networks, as stated in Theorem 3.15.

3.5.4 Proofs

3.5.4.1 Proof of Theorem 3.13

The ideas of the proof follow closely those of Theorem 3.4, and we will provide here
the main arguments to the Neural ODE case. The other case is very similar.

73

Denote tk = k/L, k = 0, 1, . . . , L as the uniform partition of the interval [0, 1]. For
t ∈ (tk, tk+1], define

G̃
(L)
t := g

(L)
k+1

(
Id + (tk+1 − t) diag

(
σ′
d

(
AtkHtk + btk

))
Atk

)
,

where A and b are specified in Theorem 3.4. Hence, we can directly deduce that

sup
t∈[0,1]

∥∥∥G̃(L)
t −G(L)

t

∥∥∥ ≤ L−1 sup
0≤k<L

sup
t∈(tk,tk+1]

∥∥∥g(L)k+1diag
(
σ′
d

(
AtkHtk + btk

))
Atk

∥∥∥
≤ L−1 sup

0≤k<L

∥∥∥g(L)k+1

∥∥∥ sup
t∈[0,1]

∥∥diag (σ′
d

(
AtHt + bt

))
At

∥∥
By continuity of A, b and H, the first supremum is finite and by a similar argument
as in the proof of Theorem 3.4, the second supremum is also finite. Thus, there exists
a constant G∞ > 0 such that supt∈[0,1]

∥∥∥G̃(L)
t −G(L)

t

∥∥∥ ≤ G∞L
−1. Now, we also have,

for t ∈ (tk, tk+1],

G̃
(L)
t −Gt = G̃

(L)
tk+1
−Gtk+1

+ (tk+1 − t) g(L)k+1 diag
(
σ′
d

(
AtkHtk + btk

))
Atk

−
∫ tk+1

t

Gsdiag
(
σ′
d

(
AsHs + bs

))
Asds.

Hence, for e(L)k := suptk<t≤tk+1

∥∥∥G̃(L)
t −Gt

∥∥∥, we can estimate

e
(L)
k ≤ e

(L)
k+1 +

∫ tk+1

t

∥∥∥GsJs − g(L)k+1Jtk

∥∥∥ ds.
≤ e

(L)
k+1 +

∫ tk+1

t

(∥∥∥Gs − g(L)k+1

∥∥∥ ∥Js∥+ ∥∥∥g(L)k+1

∥∥∥ ∥Js − Jtk∥) ds.
≤ e

(L)
k+1 + J∞L

−1
(
e
(L)
k +G∞L

−1
)
+

∫ tk+1

t

∥∥∥g(L)k+1

∥∥∥ ∥Js − Jtk∥ ds,
where Js := diag

(
σ′
d

(
AsHs + bs

))
As and J∞ := sups∈[0,1] ∥Js∥ <∞. Now, recall that∥∥∥g(L)k+1

∥∥∥ is uniformly bounded in k, L, and we have A, b ∈ H1 and H ∈ C1, so there

exists a constant J ′
∞ <∞ such that ∥g(L)k+1∥

∫ tk+1

t
∥Js − Jtk∥ ds < J ′

∞L
−2. Thus,(

1− J∞L−1
)
e
(L)
k ≤ e

(L)
k+1 + (J∞G∞ + J ′

∞)L−2.

By Gronwall’s lemma and the fact that e(L)L = O(L−1), we deduce that maxk e
(L)
k =

O(L−1) and conclude

lim
L→∞

sup
t∈[0,1]

∥∥∥G̃(L)
t −Gt

∥∥∥ ≤ lim
L→∞

(
sup
t∈[0,1]

∥∥∥G̃(L)
t −G(L)

t

∥∥∥+max
k
e
(L)
k

)
= 0.

74

3.5.4.2 Proof of Theorem 3.15

The ideas of the proof follow closely those of Theorem 3.10, and we will provide here
the main arguments for the case α = 0 and β = 1. Other cases follow similarly. For
the ease of notation exposition, we consider U = 0 and we use C to denote some
generic constant (independent from L and other parameters, such as ε, δ, and R, to
be defined later) that may vary from step to step.
The proof consists of 11 steps that can be summarized as follows. Step 1 decomposes
the discrete gradient g(L)k into two terms: the Jacobian of the output with respect
to the input, and the Jacobian of the hidden state h(L)k with respect to the input,
which we denote by J (L)

k . We then write a forward equation for J (L)
k . Step 2 defines

a continuous-time approximation J̃
(L)
k and a continuous-time interpolation J

(L)
k .

Step 3 establishes a uniform bound O(L−1) between J̃
(L)
k and J

(L)
k . Step 4 defines

high-probability events under which the hidden states h(L)k and the continuous-time
limit Jt are uniformly bounded. Step 5 decomposes the difference between J̃ (L) and
J with a drift term and an error term D(L), which can be further decomposed into
a variance term N (L) and a Taylor remainder term R(L). Step 6 proves that R(L)

uniformly vanishes as O(L−1). Step 7 decomposes N (L) into three terms. Step 8 and 9
prove that these terms uniformly vanishes as O(L−min(1,κ)). Step 10 wraps everything
together to show a uniform L2 bound between J̃ (L) and J (L). Step 11 uses it to prove
a uniform L1 bound between the discrete gradients g(L)k and their limit Gt = J1J

−1
t .

Step 0: Well-posedness of the statement. The matrix-valued linear stochastic differen-
tial equation (3.89) has a continuous and adapted solution, and this solution is unique
in the sense that almost all sample processes of any two solutions coincide, see for
example [51]. Furthermore, P−a.s., Jt is invertible for all t ∈ [0, 1], see Corollary 2.1
in [42]. Also, Theorem 3.1 in [157] states that Kt := J−1

t solves the following SDE.

dKt = Kt

(
−ν(t,Ht)dt− dWA

t + d
[
WA

]
t

)
, K0 = Id.

Recall from Assumption 3.5 that the quadratic variation of WA is uniformly continuous
with resepect to the Lesbegue measure. Therefore, by Lemma D.6 and Assumption
3.14, we conclude that the fourth moments of the supremum of J and J−1 are finite.

E

[
sup

t∈[0,T]

max
(∥∥J−1

t

∥∥
F
, ∥Jt∥F

)4] ≤ C E
[
exp

(
8

∫ T

0

|tr (ν(s,Hs))| ds
)]1/2

<∞.

(3.94)

75

Step 1: Rewrite the discrete backpropagation equation. First, observe that multiply-
ing (3.82) together gives, for k = 0, . . . , L,

g
(L),x
0 = g

(L),x
k

[
0∏

k′=k−1

(
Id + diag

(
σ′
d

(
A

(L)
k′ h

(L),x
k′ + b

(L)
k′

))
A

(L)
k′

)]
. (3.95)

Define J (L),x
0 := Id and for k = 0, . . . , L− 1:

J
(L),x
k+1 :=

(
Id + diag

(
σ′
d

(
A

(L)
k h

(L),x
k + b

(L)
k

))
A

(L)
k

)
J
(L),x
k . (3.96)

Note that by the chain rule, we directly have J (L),x
k = ∇xh

(L),x
k and g(L),x0 = g

(L),x
k J

(L),x
k .

In the following, we omit the explicit dependence on the initial data x when the
context is clear. Recall now the definition M

(L)
k (h) := A

(L)
k h + b

(L)
k from (3.41).

By Taylor’s theorem on σ′, as σ′′′ is continuous, for each i = 1, . . . , d, there exists∣∣∣ξ(L)k,i

∣∣∣ < ∣∣∣M (L)
k

(
h
(L)
k

)
i

∣∣∣ such that

σ′
(
M

(L)
k

(
h
(L)
k

)
i

)
= σ′(0) + σ′′(0)M

(L)
k

(
h
(L)
k

)
i
+

1

2
σ′′′
(
ξ
(L)
k,i

)
M

(L)
k

(
h
(L)
k

)2
i
.

Hence, using σ′(0) = 1, ∆L = L−1, and (3.86), we get

J
(L)
k+1 =

(
Id + diag

(
σ′
d

(
M

(L)
k

(
h
(L)
k

)))
A

(L)
k

)
J
(L)
k

=
(
Id + A

(L)
k + σ′′(0)diag

(
M

(L)
k

(
h
(L)
k

))
A

(L)
k

)
J
(L)
k

+ diag

(
1

2
σ′′′
(
ξ
(L)
k

)
⊙M (L)

k

(
h
(L)
k

)⊙, 2
)
A

(L)
k J

(L)
k

=
(
Id +

(
Atk +

1

2
σ′′(0)∇hQ

(
tk, h

(L)
k

)
︸ ︷︷ ︸

=: ν
(
tk,h

(L)
k

)
)
∆L +∆WA

k

)
J
(L)
k

+
(
σ′′(0)

(
diag

(
M

(L)
k

(
h
(L)
k

))
A

(L)
k −

1

2
∇hQ

(
tk, h

(L)
k

)
∆L︸ ︷︷ ︸

=: N
(L)
k

(
J
(L)
k , h

(L)
k

)
))
J
(L)
k

+

(
diag

(
1

2
σ′′′
(
ξ
(L)
k

)
⊙M (L)

k

(
h
(L)
k

)⊙, 2
))

A
(L)
k J

(L)
k︸ ︷︷ ︸

=: R
(L)
k

(
J
(L)
k , h

(L)
k

)
= J

(L)
k + ν

(
tk, h

(L)
k

)
J
(L)
k +∆WA

k J
(L)
k +D

(L)
k

(
J
(L)
k , h

(L)
k

)
, (3.97)

where we define the error term D
(L)
k := σ′′(0)N

(L)
k J

(L)
k +R

(L)
k .

76

Step 2: Continuous-time approximation. Recall the (forward) SDE defined in the
statement of the theorem

dJt = ν(t,Ht)Jtdt+ dWA
t Jt, J0 = Id.

Recall the definition of H (L) in (3.40), and define similarly the continuous-time
extension (CTE) of

{
J
(L)
k : k = 0, . . . , L

}
:

J
(L)
t :=

L∑
k=0

J
(L)
k 1tk≤t<tk+1

. (3.98)

Let ks the index for which tks ≤ s < tks+1. Define the continuous-time approximation
(CTA) of Jt as

J̃
(L)
t := Id +

∫ t

0

ν
(
tks ,H

(L)
s

)
J (L)

s ds+

∫ t

0

dWA
s J

(L)
s +

∑
k<Lt

D
(L)
k

(
J
(L)
k , h

(L)
k

)
. (3.99)

Step 3: Uniform bound between J (L) and J̃ (L). Using (3.97) and (3.99), we have, for
s ∈ [0, 1],∥∥∥J̃ (L)

s − J (L)
s

∥∥∥2 = ∥∥∥(ν(tks , h(L)ks

)
(s− tks) +

(
WA

s −WA
tks

))
J
(L)
ks

∥∥∥2
≤
(
C

(
1 + sup

k

∥∥∥h(L)k

∥∥∥2) (∆L)
2 + 2

∥∥∥WA
s −WA

tks

∥∥∥2)∥∥∥J (L)
ks

∥∥∥2
Hence,

E
[
sup
0≤s≤1

∥∥∥J̃ (L)
s − J (L)

s

∥∥∥2]
≤
(
C

(
1 + E

[
sup
k

∥∥∥h(L)k

∥∥∥4]1/2) (∆L)
2 + E

[
sup
0≤s≤1

∥∥∥WA
s −WA

tks

∥∥∥4]1/2)E
[
sup
k

∥∥∥J (L)
k

∥∥∥4]1/2 .
By Assumptions 3.7 and 3.14, and equation (3.77):

E
[
sup
0≤s≤1

∥∥∥J̃ (L)
s − J (L)

s

∥∥∥2] < CL−1. (3.100)

Step 4: Initial computations for a uniform L1 bound between G and G(L). Fix ϵ > 0,
and let δ > 0 (to be determined later) that only depends on L and ϵ. Define for R > 1

E
(L)
R :=

{
sup
k≤L

∥∥∥h(L)k

∥∥∥ ≤ R

}
∩
{

sup
t∈[0,1]

∥Jt∥ ≤ R

}
. (3.101)

77

Using Assumption 3.7 and (3.94), we obtain similarly to (3.54) that

P
(
(E

(L)
R)c

)
≤
(
E

[
sup
t∈[0,1]

∥∥H t

∥∥4]+ E

[
sup
t∈[0,1]

∥Jt∥4
])

R−4 ≤ CR−4. (3.102)

Now, by Cauchy-Schwarz inequality, we have

ab = δ1/2a · δ−1/2b ≤ δ

2
a2 +

1

2δ
b2, ∀a, b, δ > 0.

We use it to decompose the L1 distance between G and G(L):

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥] = E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥1
E

(L)
R

]
+ E

[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥1
(E

(L)
R)c

]
≤ E

[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥1
E

(L)
R

]
+
δ

2
E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥2]
+

1

2δ
P
(
(E

(L)
R)c

)
.

Now, we have the following estimate

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥2] ≤ 2E
[
sup
0≤t≤1

∥∥J−1
t

∥∥4]1/2 E [∥J1∥4]1/2 + 2E
[
sup
0≤t≤1

∥∥∥G(L)
t

∥∥∥4]1/2 .
Therefore, by Assumption 3.14 and (3.94),

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥] ≤ E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥1
E

(L)
R

]
+ Cδ +

C

δR4
. (3.103)

Step 5: Initial computations for a uniform bound L2 between J and J̃ (L). First we
estimate, for t ∈ [0, 1],∥∥∥Jt − J̃ (L)

t

∥∥∥2 ≤ 3

∫ t

0

∥∥ν (tks ,H (L)
s

)
J (L)

s − ν (s,Hs) Js
∥∥2 ds+ 3

∥∥∥∥∫ t

0

dWA
s

(
J (L)

s − Js
)∥∥∥∥2

+ 3

∥∥∥∥∥∑
k<Lt

D
(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥∥∥
2

. (3.104)

The goal is to find an upper bound of the first two terms, consisting of the sum of the
L2 distance between J and J (L) and terms vanishing uniformly in L. We also want to
show that the error term D(L) uniformly vanishes in L. To handle the term involving
the drift ν, we first observe that for t1, t2 ∈ [0, T], h1, h2 ∈ Rd, and J1, J2 ∈ Rd×d, we
have

∥ν(t2, h2)J2 − ν(t1, h1)J1∥2 ≤ 3 ∥ν(t2, h2)∥2 ∥J2 − J1∥2 + 3 ∥ν(t2, h2)− ν(t2, h1)∥2 ∥J1∥2

+ 3 ∥ν(t2, h1)− ν(t1, h1)∥2 ∥J1∥2 .
≤ C

(
1 + ∥h2∥2

)
∥J2 − J1∥2 + C ∥h2 − h1∥2 ∥J1∥2

+ C ∥h1∥2 ∥J1∥2 |t2 − t1|κ .

78

We used the fact that ν is linear in h and ΣA
· is κ/2−Hölder continuous. We directly

deduce that

E
[
1
E

(L)
R

∫ T

0

∥∥ν (tks ,H (L)
s

)
J (L)

s − ν (s,Hs) Js
∥∥2 ds]

≤ C(1 +R2)E
[
1
E

(L)
R

∫ T

0

∥∥J (L)
s − Js

∥∥2 ds]+ CR2 E
[∫ T

0

∥∥H (L)
s −Hs

∥∥2 ds] (3.105)

+ CR2E
[∫ T

0

∥Hs∥2 ds
]
L−κ

≤ CR2 E
[
1
E

(L)
R

∫ T

0

∥∥J (L)
s − Js

∥∥2 ds]+ CR2L−min(1/2, κ). (3.106)

The last inequality holds by Theorem 3.10. Hence, we obtain from (3.104)

E
[
sup
0≤t≤1

∥∥∥Jt − J̃ (L)
t

∥∥∥2 1
E

(L)
R

]
≤ CR2 E

[
1
E

(L)
R

∫ T

0

∥∥J (L)
s − Js

∥∥2 ds]+ CR2L−min(1/2, κ)

+ 3E

 sup
0≤t≤1

∥∥∥∥∥∑
k<Lt

D
(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥∥∥
2

1
E

(L)
R

 . (3.107)

We applied Doob’s martingale inequality [131] on the second term of (3.104), as J ,
J , and E

(L)
R are adapted to the filtration generated by WA. We now estimate the

error term D(L) in (3.107). Recall that it decomposes into a variance term N (L) and a
Taylor remainder term R(L).
Step 6: Prove that the remainder R(L)

k uniformly vanishes. We proceed to show that

E

 sup
0≤t≤1

∥∥∥∥∥∑
k<Lt

R
(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥∥∥
2

1
E

(L)
R

 ≤ CR6L−1, (3.108)

which is straightforward since:

E

 sup
0≤t≤1

∥∥∥∥∥∑
k<Lt

R
(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥∥∥
2

1
E

(L)
R

 ≤ E

(L−1∑
k=0

∥∥∥R(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥)2

1
E

(L)
R


≤ CR2 E

(L−1∑
k=0

(∥∥∥A(L)
k

∥∥∥R +
∥∥∥b(L)k

∥∥∥)2 ∥∥∥A(L)
k

∥∥∥)2


≤ CR2LE

[
L−1∑
k=0

(∥∥∥A(L)
k

∥∥∥R +
∥∥∥b(L)k

∥∥∥)4 ∥∥∥A(L)
k

∥∥∥2] ≤ CR6L−1.

The last inequality holds for the same reasons as (3.66).

79

Step 7: Prove that the remainder N (L)
k uniformly vanishes. First note that we can

write N (L)
k,ij = N

(L),0
k,ij +

∑d
m=1N

(L),1
k,ij,m, where

N
(L),0
k,ij := b

(L)
k,i A

(L)
k,ij

N
(L),1
k,ij,m :=

(
A

(L)
k,imA

(L)
k,ij −

(
ΣA

tk

)
imij

∆L

)
h
(L)
k,m (3.109)

We assumed that the Ito processes WA and W b are driven by uncorrelated Brownian
motions, hence N (L),0

k,ij uniformly vanishes in L2 at rate ∆L. Thus, we get

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

N
(L)
k,ij

∣∣∣∣∣
2

1
E

(L)
R

 ≤ CL−1 + d

d∑
m=1

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

N
(L),1
k,ij,m

∣∣∣∣∣
2

1
E

(L)
R

 . (3.110)

(3.111)

Using the discrete (forward) filtration
{
Gk : k = −1, 0, . . . , L− 1

}
defined in (3.60),

we now expand (3.109) using the definition of Scaling regime 2.

N
(L),1
k,ij,m =

((
∆WA

k

)
im

(
∆WA

k

)
ij
−
∫ tk+1

tk

E
[(
ΣA

s

)
imij

∣∣∣ Gk−1

]
ds

)
h
(L)
k,m︸ ︷︷ ︸

1○

+ h
(L)
k,m

∫ tk+1

tk

E
[(
ΣA

s − ΣA
tk

)
imij

∣∣∣ Gk−1

]
ds︸ ︷︷ ︸

2○

+
[(
Atk

)
im

(
∆WA

k

)
ij
+
(
Atk

)
ij

(
∆WA

k

)
im

]
h
(L)
k,m∆L +

(
Atk

)
im

(
Atk

)
ij
h
(L)
k,m(∆L)

2︸ ︷︷ ︸
3○

.

Step 8: Prove that the term 1○ uniformly vanishes. Define

X
(L)
k,ij,m :=

(
∆WA

k

)
im

(
∆WA

k

)
ij
−
∫ tk+1

tk

E
[(
ΣA

s

)
imij

∣∣∣ Gk−1

]
ds,

and S
(L)
k,ij,m :=

∑k
k′=0X

(L)
k′,ij,m. Observe that

{
S
(L)
k,ij,m : k = 0, . . . , L

}
is a

(Gk)−martingale, where the filtration Gk is defined in (3.60). Hence, by Doob’s
martingale inequality, we have

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

X
(L)
k,ij,m

∣∣∣∣∣
2
 = E

[
sup

0≤t≤T

∣∣∣S(L)
⌊Lt⌋,ij,m

∣∣∣2] ≤ 4E
[∣∣∣S(L)

⌊LT ⌋,ij,m

∣∣∣2] . (3.112)

Fix k = 0, . . . , L− 1 and compute the following conditional expectation.

E
[(
S
(L)
k,ij,m

)2 ∣∣∣∣ Gk−1

]
= E

[(
S
(L)
k−1,ij,m

)2
+ 2X

(L)
k,ij,mS

(L)
k−1,ij,m +

(
X

(L)
k,ij,m

)2 ∣∣∣∣ Gk−1

]
=
(
S
(L)
k−1,ij,m

)2
+ E

[(
X

(L)
k,ij,m

)2 ∣∣∣∣ Gk−1

]
. (3.113)

80

The cross-term disappear as E
[
X

(L)
k,ij,m

∣∣∣ Gk−1

]
= 0. Furthermore, conditionally on

Gk−1, observe that
(
X

(L)
k,ij,m

)2 is the variance of a product of two normal random
variable with O(L−1) variance, uniformly in k by (3.18), so

sup
0≤k<L

E
[(
X

(L)
k,ij,m

)2 ∣∣∣∣ Gk−1

]
≤ CL−2.

Hence, plugging it back into (3.112), we obtain

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

1○

∣∣∣∣∣
2

1
E

(L)
R

 ≤ R2 E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

X
(L)
k,ij,m

∣∣∣∣∣
2
 ≤ CR2L−1. (3.114)

Step 9: Prove that the terms 2○− 3○ uniformly vanishes. The term 2○ can be esti-
mated directly using Cauchy-Schwarz, Tonelli, and (3.19):

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

2○

∣∣∣∣∣
2

1
E

(L)
R

 ≤ R2 E

(L∑
k=0

∫ tk+1

tk

E
[∣∣∣(ΣA

s − ΣA
tk

)
imij

∣∣∣ ∣∣∣ Gk−1

]
ds

)2


≤ CR2

(
L∑

k=0

∫ tk+1

tk

|s− tks|κ/2 ds
)2

≤ CR2L−κ. (3.115)

The estimation for term 3○ is straightforward and similar to (3.66):

E

 sup
0≤t≤T

∣∣∣∣∣∑
k<Lt

3○

∣∣∣∣∣
2

1
E

(L)
R

 ≤ CR2L−1. (3.116)

Step 10: Uniform bound between J and J̃ (L). From equations (3.108) (3.110), (3.114),
(3.115), and (3.116), we deduce that

E

 sup
0≤t≤1

∥∥∥∥∥∑
k<Lt

D
(L)
k

(
J
(L)
k , h

(L)
k

)∥∥∥∥∥
2

1
E

(L)
R

 ≤ CR6L−min(1,κ). (3.117)

We then plug (3.117) into (3.107), together with Tonelli’s theorem, to get

E
[
sup
0≤t≤1

∥∥∥Jt − J̃ (L)
t

∥∥∥2 1
E

(L)
R

]
≤ CR2 E

[
1
E

(L)
R

∫ T

0

∥∥J (L)
s − Js

∥∥2 ds]+ CR6L−min(1/2, κ)

≤ CR2 E
[
1
E

(L)
R

∫ T

0

∥∥∥J̃ (L)
s − Js

∥∥∥2 ds]+ CR6L−min(1/2, κ).

We use (3.100) for the last inequality. Hence, by Gronwall lemma, we deduce:

E
[
sup
0≤t≤1

∥∥∥Jt − J̃ (L)
t

∥∥∥2 1
E

(L)
R

]
≤ CR6L−min(1/2, κ) exp

(
CR2

)
. (3.118)

81

Step 11: Difference between G and g. We first estimate the L1 distance between the
discrete gradients g(L)k and the continuous-time limit Gt. For each t ∈ [0, 1], we have
the identity

G
(L)
t −Gt =

(
J
(L)
L − J1

)
J−1
t + g

(L)
kt
− J (L)

L J−1
t

=
(
J
(L)
L − J1

)
J−1
t + g

(L)
kt

(
Jt − J (L)

kt

)
J−1
t .

Hence, by Assumption 3.14, (3.94), (3.100), and (3.118):

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥1
E

(L)
R

]
≤ E

[∥∥∥J (L)
1 − J1

∥∥∥2 1
E

(L)
R

]1/2
E
[
sup
0≤t≤1

∥∥(Jt)−1
∥∥2]1/2

+ E
[
sup
0≤t≤1

∥∥Gt

∥∥4]1/4 E [sup
0≤t≤1

∥∥∥Jt − J (L)
t

∥∥∥2 1
E

(L)
R

]1/2
E
[
sup
0≤t≤1

∥∥(Jt)−1
∥∥4]1/4 .

≤ CR3L−min(1/4, κ/2) exp
(
CR2

)
.

We plug it in (3.103) to obtain

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥] ≤ C1R
3L−min(1/4, κ/2) exp

(
C2R

2
)
+ C3δ +

C4

δR4
. (3.119)

To conclude, given any ϵ > 0, we can choose δ > 0 such that δ < ϵ
3C3

, and then choose
R > 1 so that R4 > 3C4

δϵ
, and finally L sufficiently large so that

C1R
3L−min(1/4, κ/2) exp

(
C2R

2
)
<
ϵ

3
.

Therefore, we have in (3.119)

E
[
sup
0≤t≤1

∥∥∥Gt −G(L)
t

∥∥∥] ≤ ϵ.

82

Chapter 4

Convergence and implicit
regularisation of gradient descent for
deep residual networks

4.1 Introduction

Whether gradient descent methods find globally optimal solutions in the training
of neural networks and how trained neural networks generalize are two major open
questions in the theory of deep learning. The non-convexity of the loss functions for
neural network training may lead to sub-optimal solutions when applying gradient
descent methods. It is thus relevant to understand from a theoretical point of view
whether specific neural network architectures with a proper choice of learning rates for
gradient descent methods can improve the optimization landscape and/or eliminate sub-
optimal solutions [146]. There is some empirical evidence that gradient descent seems
to select solutions that generalize well [162] even without any explicit regularization.
Hence, it is believed that gradient descent induces an implicit regularization [119] and
characterizing the nature of this regularization is an interesting research question.
In the present work we prove linear convergence of gradient descent to a global
minimum for a class of deep residual networks with constant layer width and smooth
activation function. Furthermore, we show that under practical assumptions, the
trained weights admit a scaling limit as a function of the layer index which has finite
2-variation. Our result shows that how implicit regularization emerges from gradient
descent. Our proofs are based on non-asymptotic estimates for the loss function and
norms of the network weights along the gradient descent path. These non-asymptotic
estimates are interesting in their own right and may prove useful to other researchers
for the study of dynamics of learning algorithms.

83

4.1.1 Convergence and regularization properties of deep learn-
ing algorithms

Existing results on convergence and implicit regularization in deep learning exploit
three paradigms: over-parametrized neural networks with fixed depth and large width,
linear neural networks with sufficiently large depth, and mean-field residual networks.
Under sufficient over-parametrization by width with fixed depth, many popular neural
network architectures (including feed-forward, convolutional, and residual) with ReLU
activation find a global optimum in linear time with respect to the remaining error
and the trained network generalizes well [3, 4]. However, the associated generalization
bounds are intractable, and the amount of over-parametrization implied in these results
is often unrealistically large. One can improve the asymptotic analysis [163, 164], but
it still falls short of leading to any practical insight. For smooth activation functions,
[44] studied the convergence of gradient descent for various network architectures,
including residual networks. They show that for any depth, if the residual layers
are wide enough and the learning rate is small enough, gradient descent on the
empirical mean-squared loss converges to a solution with zero training loss in linear
time. The rate of convergence is proportional to the learning rate and the minimum
eigenvalue of the Gram matrix. [49] showed that in the over-parametrized regime,
for a suitable initialization with the last layer initialized at zero and other weights
initialized uniformly, gradient descent can find a global minimum exponentially fast
with high probability.
For linear deep neural networks (i.e. with identity activation function), [15] showed
that training with gradient descent is able to learn the positive definite linear
transformations using identity initialization. [153] proposed a new initialization
scheme named zero-asymmetric (ZAS) and proved that that under such initialization,
for an arbitrary target matrix, gradient descent converges to an ϵ-optimal point
in O(L3 log(1/ϵ)) iterations, which scales polynomially with the network depth L.
Subsequent refinements of the convergence rates and the width requirements have
been established in [43, 165]. Finally, [160] showed the implicit regularization of
gradient descent for linear fully-connected networks to l2 max-margin solutions.

Another line of work deals with mean-field residual networks by looking at the
continuum limit of residual networks when either the depth L or the width d goes
to infinity. [158] build on the analysis of [39] for feed-forward networks to study the
average behaviour of randomly initialized residual networks with width tending to
infinity. They show that a careful initialization, depending on the depth, may enhance

84

expressivity. Further, [106] proposed a continuum limit of deep residual networks by
letting the depth L tends to infinity and showed that every local minimum of the
loss landscape is global. This characterization enables them to derive the first global
convergence result for multi-layer neural networks in the mean-field regime.
In addition to the network architectures listed above, non-linear neural networks with
fixed width and large but finite depth are successful and practically more popular
[71, 73]. It is well-documented that for a fixed number of parameters, going deeper
allows the models to capture richer structures [50, 147]. However, the theoretical
foundations for such networks remain widely open due to their complex training
landscape.

4.1.2 Contributions

We consider a supervised learning problem where we seek to learn an unknown mapping
with inputs and outputs in Rd using a residual network with constant width d and a
smooth activation function. We study the convergence and implicit regularization of
gradient descent for the mean-squared error.

• Linear convergence. For ϵ > 0, we prove that for a residual network of depth
L = Ω(1/ϵ), we can choose a learning rate schedule such that gradient descent
on the training loss converges to a ϵ-optimal solution in Θ(log(1/ϵ)) iterations.

• Scaling limit of trained weights. The trained weights, as a function of the
layer, may admit a scaling limit as L→∞. We prove that such a scaling limit
is a matrix-valued function with finite 2-variation.

• Non-asymptotic estimates on loss function and weights along the
gradient descent path. In addition to the convergence results mentioned
above, we obtain (non-asymptotic) estimates along the gradient descent path
for the loss function and various norms of the weights, with tractable bounds.

• Relevance to practical settings. We illustrate the relevance of our theoretical
results in practical settings using detailed numerical experiments with networks
of realistic width and depth.

Our analysis generalizes previous results on linear neural networks [153] to a more
general nonlinear setting relevant for learning problems. Our non-asymptotic results
stand in contrast to the mean-field analysis [106] which requires infinite depth. Our
tractable bounds improve upon the ones found for networks over-parametrized by

85

width [4, 44, 49, 163, 164], where the trained weights do not leave the lazy training
regime [33]: in our setting, the trained weights are not necessarily staying close to
their initialization. A key ingredient in the proof is to study the evolution of various
norms for the weights under gradient descent iterations. These estimates are provided
in Lemmas 4.4 and 4.5.
Our theoretical results suggest that initialization of weights at scale L−1 together
with a L−1/2 scaling of the activation function leads to convergence under a constant
learning rate. The overarching principle is to make sure that the gradient stays on
the same scale as the weights (here L−1/2) during training. Our analysis also extends,
with minimal changes, to the case where linear layers are added at the beginning and
the end of the network.

Notations Define (em)m′ = 1{m′=m} ∈ Rd. For a vector x ∈ Rd, we denote ∥x∥2 the
Euclidean norm of x, and for a matrix M ∈ Rd×d, we denote ∥M∥F the Frobenius
norm of M . When the context is clear, we omit the superscript x for the quantities
that depend on the input x. We denote f = O(g) if there exists c > 0 such that
f(z) ≤ cg(z), where z = (L, k, t, ηL(t), c0). That means, our Big-O notation involves a
constant that is independent of the depth L, the layer number k, the iteration number
t, the learning rates ηL(t), and the universal constant c0 defined in Assumption 4.1.
Similar definitions stand for Ω and Θ. For a function σ : R→ R, define σd : Rd → Rd

by σd(x)i = σ(xi) for i = 1, . . . , d.

4.2 Residual networks

Let x ∈ Rd be an input vector, δL be a fixed positive real number, and α(L) ∈ RL×d×d

be a set of parameters (or weights). In this section, we focus on a ResNet architecture
without bias with L fully-connected layers:{

h
x, (L)
k = h

x, (L)
k−1 + δLσd

(
α
(L)
k h

x, (L)
k−1

)
, k = 1, . . . , L,

h
x, (L)
0 = x.

(4.1)

The output of the network is hx, (L)L , which we denote by ŷL
(
x,W (L)

)
to emphasize

the dependence on the input x and the weights α(L). 1 Fix a training set DN :=

{(xi, yi) : i = 1, . . . , N} ⊂ Rd × Rd, and the loss function ℓ : Rd × Rd → R+ defined
by ℓ(y, ŷ) := 1

2
∥y − ŷ∥22.

1The analysis with bias is done by expanding the weights α
(L)
k and the hidden states h

(L)
k with an

additional dimension.

86

We study the dynamics of the weights induced by gradient descent (GD) on the
mean-squared error JL : RL×d×d → R+ defined by

JL
(
α(L)

)
:=

1

N

N∑
i=1

ℓ
(
yi, ŷL

(
xi, α

(L)
))

=
1

2N

N∑
i=1

∥∥yi − ŷL(xi, α(L)
)∥∥2

2
. (4.2)

We consider a gradient descent learning algorithm which sequentially updates the
weights using an initialization A(L)(0) ∈ RL×d×d and

∆A
(L)
k (t) := A

(L)
k (t+ 1)− A(L)

k (t) = −ηL(t)∇αk
JL
(
A(L)(t)

)
, (4.3)

where ηL(t) > 0 is the learning rate at iteration t ∈ N, which may depend on the
depth L, but is independent of the layer index k.

Assumption 4.1. There exists a constant c0 > 0 such that

(i) Smooth activation function: σ ∈ C2(R), σ′(0) = 1 and for all z ∈ R, |σ(z)| ≤ |z|,
|σ′(z)| ≤ 1 and |σ′′(z)| ≤ 1.

(ii) Scaling factor: δ(L) = L−1/2.

(iii) Separated unit data: ∥xi∥2 = ∥yi∥2 = 1 and ∀i ̸= j, |⟨xi, xj⟩| ≤ (8N)−1e−4c0.

(iv) Initialisation with O(1/L) weights:

sup
k,m

∥∥∥A(L)
k,m(0)

∥∥∥
2
≤ 2−9/2N−1/2d−1/2e−4.2c0L−1.

(v) Small initial loss: JL(A(L)(0)) ≤ 2−153−2N−2d−1c20e
−8.2c0.

Note that tanh satisfies Assumption 4.1 (i). Assumption 4.1 (ii) comes from the
scaling we observe in the experiments of Section 4.4.1. Assumption 4.1 (iii) requires
the training points to be sufficiently orthogonal to one another. Among other cases, it
is satisfied in the small data regime: take for example N points uniformly at random
on the d−dimensional sphere, where d > N4. Hence, for xi ∼ U(Sd−1) i.i.d., we have
by a union bound and Chebychev inequality:

P
(
max
i ̸=j
|⟨xi, xj⟩| > N−1

)
≤ N2P

(
|⟨x1, x2⟩| > N−1

)
≤ N4Var [⟨x1, x2⟩] ≤ N4

d∑
m=1

E
[
(x1)

2
m

]
E
[
(x2)

2
m

]
= N4d−1 < 1.

Assumption 4.1 (iv) guarantees that the network at initialization stay well-behaved,
and does not bias the optimization path. Note also that Assumption 4.1 (iv) does

87

not rule out the case of a stochastic initialization. Assumption 4.1 (v) relates to the
fact that we are going to prove local convergence of gradient descent to zero training
loss. Proving global convergence under our general framework is out of reach, as local
minima are guaranteed to exist, see Theorem 2 in [126]. In this paper, we address
Corollary 3 in [126] by providing conditions on the dataset and on the initialization
procedure to show convergence of gradient descent for residual networks of large depth
and finite width.

4.3 Dynamics of weights and hidden states under
gradient descent

Recall that α(L) denotes a generic weight vector, whereas A(L)(t) denotes the weight
vector obtained after t iterations of gradient descent on the objective function JL,
where the initial weights A(L)(0) follow Assumption 4.1 (iv). The main results can be
summarized as follows.
First, in Section 4.3.1, we prove that if the network weights α(L)

k are O(L−1/2), then
the hidden states hx, (L)k and the Jacobian

M
x, (L)
k :=

∂h
x, (L)
L

∂h
x, (L)
k

∈ Rd×d (4.4)

are uniformly bounded in k and L. Then, under the same scaling assumption, we
derive an upper bound for the norm of the gradient ∇αJL of the objective function
with respect to the weights α(L). Furthermore, we derive a lower bound for the norm of
the gradient ∇αJL under the additional regularity assumption α(L)

k+1 − α
(L)
k = O(L−1).

Next, in Section 4.3.2, we let α(L)(0) ∈ RL×d×d be any initialization and define
recursively α(L)(t+1) = α(L)(t)−ηL(t)∇αJL

(
α(L)(t)

)
. Under some scaling assumptions

for α(L)(t) for t = 0, . . . , T − 1, we show that the loss function JL
(
α(L)(t)

)
at time T

admits an explicit upper bound. To show this, we study the effect of gradient descent
on the following norms of the weight vector:

f (L)
(
α(L)(t)

)
:=

1

2

L∑
k=1

∥∥∥α(L)
k (t)

∥∥∥2
F

and g (L)
(
α(L)(t)

)
:=

1

2
L

L−1∑
k=1

∥∥∥α(L)
k+1(t)− α

(L)
k (t)

∥∥∥2
F
.

(4.5)
The scaling in L is chosen in such a way that we will be able to prove a uniform bound
(in t and L) of the above norms along the gradient descent path A(L)(t) when A(L)(0)

satisfy Assumption 4.1 (iii).

88

Finally in Section 4.3.3 we show that under Assumption 4.1 with the parameter A(L)(t)

evolving according to the gradient descent dynamics (4.3), we have that for all ϵ > 0,
if we let L = Ω(1/ϵ), ηL(t) = η0, and T const

L = Θ(η−1
0 logL) = Ω(η−1

0 log 1/ϵ), then
JL
(
A(L)(T const

L)
)
< ϵ. That is, the loss function can be made arbitrarily small with

practical values for the depth and the number of gradient steps. To prove this, we use
recursion: we first verify the scaling assumptions

A(L)(t) = O(c0L
−1/2) and A

(L)
k+1(t)− A

(L)
k (t) = O(e−4.2c0L−1), (4.6)

at initialization, i.e. for t = 0. This enables us to use the results of Section 4.3.1
to deduce an upper bound on the loss function JL

(
A(L)(1)

)
at time t = 1, which in

turn yields that the scaling assumptions (4.6) are verified for t = 1. We continue this
process until the upper bound on the loss is smaller than ϵ.
Further, we prove that for TL satisfying (4.10), if the (pointwise) limit

A∗
s := lim

L→∞
A

(L)
⌊Ls⌋(TL) (4.7)

converges uniformly in s ∈ [0, 1] at a O(L−1/2) rate, then A∗ is of finite 2-variation,
giving an implicit regularity to the solution found by gradient descent. The numerical
experiments in Section 4.4 confirm that these effects are observable in settings relevant
to practical supervised learning problems.

4.3.1 Bounds on the hidden states, their Jacobians, and the
loss gradients

We start the analysis by computing bounds on the hidden states and their Jacobians
(4.4). To do so, we define the following norm on the weights:∥∥α(L)

∥∥
F,∞ := max

k=1,...,L

∥∥∥α(L)
k

∥∥∥
F
, (4.8)

where α(L) ∈ RL×d×d is a generic weight vector. We check that the hidden states are
uniformly bounded from above and below in k and L, and we prove an upper bound on
the Jacobians, uniformly in k and L. We get explicit bounds when L is large enough:

∥x∥2 e−2cA ≤
∥∥∥hx, (L)k

∥∥∥
2
≤ ∥x∥2 e1.1cA and

∥∥∥Mx, (L)
k em

∥∥∥
2
≤ ecA ,

given the assumption that
∥∥α(L)

∥∥
F,∞ ≤ cAL

−1/2. The proof can be found in Appendix
B.2. Note that the bounds are deterministic, unlike the probabilistic results from
[4, 7]. Next, we derive that the norm of the gradient of the objective function is

89

bounded above by J1/2
L , so that it ensures that the gradient updates (4.3) stay local.

The precise result and its proof can be found in Appendix B.3.
More crucially, we also need a lower bound on the norm of the gradient as a function
of the suboptimality gap. We first establish a lower bound for the gradient of the loss
with respect to the weights of the first layer.

Lemma 4.2. Under Assumption 4.1 (i)–(iii), let α(L) ∈ RL×d×d such that L ≥
max(5c0, 4c

2
0) and

∥∥α(L)
∥∥
F,∞ ≤ c0L

−1/2 hold. Then, we have

∥∥∇α1JL
(
α(L)

)∥∥2
F
≥ 1

4N
e−2c0L−1JL

(
α(L)

)
.

Proof. Fix L ≥ max(5c0, 4c
2
0). In the proof, we omit the explicit dependence in L.

Observe first that

∥∇αk
JL(α)∥2F =

d∑
m,n=1

(
1

N

N∑
i=1

∂ℓ

∂αk,mn

(yi, ŷ (xi, α))

)2

=
d∑

m,n=1

δ2L
N2

N∑
i,j=1

hxi
k−1,nh

xj

k−1,nσ̇k,xi,mσ̇k,xj ,m

(
(Mxi

k)⊤ (ŷ (xi, α)− yi)
)
m((

M
xj

k

)⊤
(ŷ (xj, α)− yj)

)
m

=
δ2L
N2

N∑
i,j=1

〈
hxi
k−1, h

xj

k−1

〉
M̃k,i,j,

where

M̃k,i,j =
〈
σ̇k,xi

⊙ (Mxi
k)⊤ (ŷ (xi, α)− yi) , σ̇k,xj

⊙
(
M

xj

k

)⊤
(ŷ (xj, α)− yj)

〉
.

We focus on the case k = 1. We first estimate, by Cauchy-Schwarz and Lemma B.1,∣∣∣M̃1,i,j

∣∣∣ ≤ ∥Mxi
1 ∥2

∥∥Mxj

1

∥∥
2
∥ŷ (xi, α)− yi∥2 ∥ŷ (xj, α)− yj∥2

≤ e2c0 ∥ŷ (xi, α)− yi∥2 ∥ŷ (xj, α)− yj∥2 .

Lower bound when i = j First, as |σ′′| ≤ 1 and L ≥ 4c20, we have σ̇1,xi,m =

σ′(α1xi)m ≥ 1− ∥α1∥F ∥xi∥2 ≥ 1− c0L−1/2 ≥ 1
2
. Hence,

M̃1,i,i =
∥∥∥σ̇1,xi

⊙ (Mxi
1)⊤ (ŷ (xi, α)− yi)

∥∥∥2
2

≥ 1

4
∥ŷ (xi, α)− yi∥22

L∏
k=1

(
1− δL ∥diag(σ̇k,xi

)αk∥2
)2

≥ 1

4

(
1− c0

L

)2L
∥ŷ (xi, α)− yi∥22 ≥

1

4
e−2c0 ∥ŷ (xi, α)− yi∥22 ,

90

where we applied Lemma D.2 in the second line, and the fact that ∥·∥2 ≤ ∥·∥F . By
Assumption 4.1 (iii), |⟨xi, xj⟩| ≤ (8N)−1e−4c0 for all i ̸= j, so we deduce

∥∇α1JL(α)∥2F =
δ2L
N2

(
N∑
i=1

M̃1,i,i ∥xi∥22 +
∑
i ̸=j

M̃1,i,j⟨xi, xj⟩
)

≥ 1

LN2

(
N

2
e−2c0JL(α)−

1

8N
e−4c0

∑
i ̸=j

∣∣∣M̃1,i,j

∣∣∣)

≥ 1

LN2

(
N

2
e−2c0JL(α)−

1

8N
e−2c0

∑
i ̸=j

∥ŷ (xi, α)− yi∥2 ∥ŷ (xj, α)− yj∥2

)

≥ 1

LN2

N
2
e−2c0JL(α)−

1

8N
e−2c0

(
N∑
i=1

∥ŷ (xi, α)− yi∥2

)2


≥ 1

LN2

(
N

2
e−2c0JL(α)−

N

4
e−2c0JL(α)

)
=

1

4N
e−2c0L−1JL(α).

Next, if we assume that the weights α(L) are close to each other in neighbouring layers,
we can deduce that the gradient of the loss with respect to weights in neighbouring
layers are also close to each other. Hence, if we couple this fact with Lemma 4.2, we
can prove a lower bound on the norm of the gradient of the loss with respect to the
full weight vector α(L).

Lemma 4.3. Under Assumption 4.1 (i)–(iii), let α(L) ∈ RL×d×d such that L ≥
max(5c0, 4c

2
0),
∥∥α(L)

∥∥
F,∞ ≤ c0L

−1/2, and
∥∥∥α(L)

k+1 − α
(L)
k

∥∥∥
F
≤ 2−7/2N−1/2e−4.2c0L−1 for

each k. Then,

∥∥∇α(L)JL
(
α(L)

)∥∥2
F
≥
(

1

16
N−1e−2c0 − 17dc40e

6.4c0L−1

)
JL(α).

Proof. Fix L ≥ max(5c0, 4c
2
0). In the proof, we omit the explicit dependence in L. We

use Lemma B.5 to estimate the difference of neighbouring gradients:

∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

=
δL
N

N∑
i=1

hxi
k−1,n (σ̇k,xi,m − σ̇k+1,xi,m)∇ŷ ℓ (yi, ŷ(xi, α))

⊤Mxi
k+1em

+
δ2L
N

N∑
i=1

∇ŷ ℓ (yi, ŷ(xi, α))
⊤Mxi

k+1ξ
xi, (L)
k,mn ,

91

where ξx, (L)k,mn satisfies∥∥∥ξx, (L)k,mn

∥∥∥2
2
≤ 2

(
hxk−1,n

)2 ∥αk+1 − αk∥2F + 2 ∥αk,n∥42
∥∥hxk−1

∥∥4
2
.

By Lemma B.1 and the fact that σ′ is 1−Lipschitz by Assumption 4.1 (i), we bound
further:∥∥∇αk+1

JL (α)−∇αk
JL (α)

∥∥2
F
=

d∑
m,n=1

(
∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

)2

≤ 4
d∑

m,n=1

1

LN

N∑
i=1

(
hxi
k−1,n

)2 ∥Mxi
k em∥22

(
αkh

xi
k−1 − αk+1h

xi
k

)2
m
ℓ(yi, ŷ(xi, α))

+
4

L2N

N∑
i=1

e2c0
(
2de2.2c0 ∥αk+1 − αk∥2F + 2dc40e

4.4c0L−2
)
ℓ(yi, ŷ(xi, α))

≤ e4.2c0
4

LN

N∑
i=1

∥∥αkh
xi
k−1 − αk+1h

xi
k

∥∥2
2
ℓ(yi, ŷ(xi, α)) + 9dc40e

6.4c0L−4JL(α).

Then, simply note that∥∥αkh
xi
k−1 − αk+1h

xi
k

∥∥2
2
≤ 2 ∥(αk+1 − αk)h

xi
k ∥22 + 2

∥∥αk

(
hxi
k − hxi

k−1

)∥∥2
2

≤ 1

64
N−1e−6.2c0L−2 + 2c40e

2.2c0L−3.

Hence,∥∥∇αk+1
JL (α)−∇αk

JL (α)
∥∥2
F
≤
(

1

16
N−1e−2c0 + 17dc40e

6.4c0L−1

)
L−3JL(α).

Finally, we use the reverse triangle inequality and Cauchy-Schwarz inequality:

∥∇αk
JL (α)∥2F ≥

1

2
∥∇α1JL (α)∥2F − (k − 1)

k−1∑
k′=1

∥∥∇αk+1
JL (α)−∇αk

JL (α)
∥∥2
F

≥ 1

8
N−1e−2c0L−1JL(α)−

(k − 1)2

L3

(
1

16
N−1e−2c0 + 17dc40e

6.4c0L−1

)
JL(α)

≥
(

1

16
N−1e−2c0 − 17dc40e

6.4c0L−1

)
L−1JL(α).

The second inequality holds by Lemma 4.2 and (i) above. Hence,∥∥∇αJL
(
α(L)

)∥∥2
F
=

L∑
k=1

∥∥∇αk
JL(α

(L))
∥∥2
F
≥
(

1

16
N−1e−2c0 − 17dc40e

6.4c0L−1

)
JL(α).

It guarantees that for L ≫ 1, every critical point close to the origin is a global
minimum of the objective function, similarly to what is known for linear residual
networks [68, 87, 93, 104].

92

4.3.2 Behaviour of weight norms along the gradient descent
path

In Section 4.3.1, we establish bounds on the gradient of the loss function evaluated
at a generic weight vector α(L) ∈ RL×d×d. We now proceed to understand how α(L)

changes under a gradient descent update. To do so, we study the local version of the
weight norms defined in (4.5). Define for x, y ∈ Rd and k = 0, . . . , L:

G
x,y, (L)
k

(
α(L)

)
:=

∂ℓ(y, ·)
∂h

(L)
k

(
ŷ
(
x, α(L)

))
∈ Rd. (4.9)

Also, for clarity, denote hx,(L)k

(
α(L)

)
∈ Rd for the hidden state of the kth layer using

input x ∈ Rd and network weights α(L) ∈ RL×d×d.

Lemma 4.4. Let α(L) ∈ RL×d×d and define α̃(L) := α(L) − ηL∇αJL
(
α(L)

)
. Define

further f (L)
k,m

(
α(L)

)
:= 1

2
L
∥∥∥α(L)

k,m

∥∥∥2
2

Under Assumption 4.1 (i)–(ii), we have

f
(L)
k,m

(
α̃(L)

)1/2 ≤ f
(L)
k,m

(
α(L)

)1/2
+

1√
2
ηL

(
1

N

N∑
i=1

∥∥∥hxi, (L)
k−1

(
α(L)

)∥∥∥2
2

∥∥∥Gxi,yi, (L)
k

(
α(L)

)∥∥∥2
∞

)1/2

.

Lemma 4.5. Let α(L) ∈ RL×d×d and cA > 0 such that L ≥ 5cA and∥∥α(L)
∥∥
F,∞ ≤ cAL

−1/2. Define α̃(L) := α(L) − ηL∇αJL
(
α(L)

)
, and let g(L)k

(
α(L)

)
:=

1
2
L2
∥∥∥α(L)

k+1 − α
(L)
k

∥∥∥2
F
. Under Assumption 4.1 (i)–(ii), we have

g
(L)
k

(
α̃(L)

)
≤ g

(L)
k

(
α(L)

)(
1 + L−1/2ηL

1

N

N∑
i=1

∥∥∥hxi, (L)
k−1

(
α(L)

)∥∥∥2
2

∥∥∥Gxi,yi, (L)
k+1

(
α(L)

)∥∥∥
∞

)2

+ O
(
cAe

2.1cA
(
cAe

1.1cAL−1 + 2L−1/2
)
ηLgk

(
α(L)

)1/2
JL
(
α(L)

)1/2)
,

where the Big-O constant is also independent of cA.

The proofs of Lemmas 4.4 and 4.5 can be found in Appendix B.5.

4.3.3 Local convergence of gradient descent

In this section, we initialize the weight vector A(L)(0) according to Assumption 4.1
(iv) and we let the weights A(L)(t) evolve according to the gradient descent dynamics
(4.3). We show that under some a priori conditions on the initial parameters, the
initial loss, and the learning rates, we are able to prove a practical upper bound on
the loss function along the gradient descent path.

93

Theorem 4.6. Let L be large enough. Under Assumption 4.1 (i)–(v), let the parameter
A(L)(t) evolve according to the gradient descent dynamics (4.3) with learning rates
ηL(t) until time TL ∈ N, chosen in such a way that for each t = 0, . . . , TL− 1, we have

ηL(t) ≤
1

160
N−1d−1e−10.5c0 and

TL−1∑
t=0

ηL(t) ≤ d−1 logL. (4.10)

Then, for each t = 0, . . . , TL, we have

JL(A(t)) ≤ exp

(
− 1

32
N−1e−2c0

t−1∑
t′=0

ηL(t
′)

)
J0 + 34dc40e

6.4c0

(
t−1∑
t′=0

ηL(t
′)

)
L−1J0.

Theorem 4.6 is a local convergence result since we assume that the initial loss lies
below a certain level by Assumption 4.1 (v). We are able to show convergence as
L→∞ of the loss to zero when the horizon TL depends explicitly on the depth while
satisfying (4.10).

Proof. We choose L big enough so that
3

64
N−1d−1c20e

2.2c0(logL)3/2 ≤ L1/2, 34c40e
6.4c0 logL ≤ L. (4.11)

Note that it trivially implies that L ≥ max(4c20, 5c0). In the proof, we omit the explicit
dependence in L. Denote J0 := JL(A(0)) the initial loss. We first prove jointly that

JL(A(t)) ≤ 2J0,

max
k
∥Ak(t)∥F ≤ c0L

−1/2,

max
k
∥Ak+1(t)− Ak(t)∥F ≤ 2−7/2N−1/2e−4.2c0L−1.

(4.12)

for t = 0, . . . , TL by induction on t. For t = 0, by Assumption 4.1 (iv), we directly
have

max
k
∥Ak(0)∥F ≤ d1/2 sup

k,m
∥Ak,m(0)∥2 ≤ L−1 < c0L

−1/2,

∥Ak+1(0)− Ak(0)∥F ≤ d1/2 sup
m
∥Ak+1,m(0)− Ak,m(0)∥2 < 2−7/2N−1/2e−4.2c0L−1.

(4.13)
Let t ≥ 0. Assume that (4.12) holds true for all t′ ≤ t < TL. We prove that (4.12) holds
for t+ 1. Define fk,m(t) := fk,m

(
A(L)(t)

)
as in Lemma 4.4 and gk(t) := gk

(
A(L)(t)

)
as

in Lemma 4.5. As L ≥ max(4c20, 5c0), we can apply Lemma 4.4 and Lemma B.1 with
the induction hypothesis.

fk,m(t+ 1)1/2 ≤ fk,m(t)
1/2 +

1√
2
e2.1c0ηL(t)

(
2

N

N∑
i=1

ℓ (yi, ŷ(xi, A(t)))

)1/2

= fk,m(t)
1/2 + e2.1c0ηL(t)JL(A(t))

1/2. (4.14)

94

Similarly, we apply Lemma 4.5 with cA = c0 and Lemma B.1 with the induction
hypothesis.

gk(t+ 1) ≤ gk(t)
(
1 + e3.2c0ηL(t)L

−1/2JL(A(t))
1/2
)2

+ O
(
c0e

2.1c0
(
c0e

1.1c0L−1 + 2L−1/2
)
ηLgk(t)

1/2JL
(
A(t)

)1/2)
. (4.15)

Now, we want to apply Lemma B.6 to bound JL(A(t)). We check that using Lemma
4.3, the assumptions of Lemma B.6 are verified for

cA(t
′) = c0, c ≡ c(t′) =

1

16
N−1e−2c0 , c ≡ c(t′) = 34dc40e

6.4c0J0 for t′ ≤ t.

Thus, as ηL(t) < 2−55−1N−1d−1e−10.5c0 < 2−1c0e
−3.2c0 , we deduce the following bound

on the loss function at all times t′ = 0, . . . , t+ 1.

JL(A(t
′)) ≤ exp

(
−1

2
c

t′−1∑
t′′=0

ηL(t
′′)

)
J0 + cL−1

t′−1∑
t′′=0

ηL(t
′′) (4.16)

Bound on JL(A(t+ 1)): Plugging in (4.10) and (4.11) into (4.16), we verify that

JL(A(t+ 1)) ≤
(
1 + 34c40e

6.4c0L−1 logL
)
J0 ≤ 2JL(A(0)).

Bound on fk,m(t+ 1): We plug (4.16) into (4.14) and sum over t to deduce

fk,m(t+ 1)1/2 ≤ fk,m(0)
1/2 + e2.1c0

t∑
t′=0

ηL(t
′)JL(A(t

′))1/2

≤ 1

3
√
2
d−1/2c0L

−1/2 + e2.1c0RL(t), (4.17)

where we use (4.13) for the second inequality and

RL(t) :=
t∑

t′=0

ηL(t
′)JL(A(t

′))1/2.

To find an upper bound to RL(t), we use the inequality
√
x+ y ≤ √x+

√
y in (4.16),

with the help of (4.11):

RL(t) ≤
t∑

t′=0

ηL(t
′) exp

(
−1

4
c

t′−1∑
t′′=0

ηL(t
′′)

)
J
1/2
0 + c1/2L−1/2

t∑
t′=0

ηL(t
′)

(
t′−1∑
t′′=0

ηL(t
′′)

)1/2

Now, we estimate the following quantity using (4.10):

t∑
t′=0

ηL(t
′)

(
t′−1∑
t′′=0

ηL(t
′′)

)1/2

≤
(

t∑
t′=0

ηL(t
′)

)3/2

≤ d−3/2(logL)3/2.

95

Next, we use the fact ηL(t) < η = 2−55−1N−1d−1e−10.5c0 and(
1− exp

(
−1

4
cη
))

x ≤ η
(
1− exp

(
−1

4
cx
))

for all x ∈ [0, η]

to deduce that the following sum is telescoping:

t∑
t′=0

ηL(t
′) exp

(
−1

4
c

t′−1∑
t′′=0

ηL(t
′′)

)
≤ 1− exp

(
−1

4
c
∑t

t′=0 ηL(t
′)
)

1− exp(−1
4
cη)

η

≤ 8c−1.

Hence, by Assumption 4.1 (v) and (4.11),

RL(t) ≤ 128Ne2c0J
1/2
0 + 6d1/2c20e

3.2c0(logL)3/2L−1/2J
1/2
0

≤ 2c0

3
√
2
d−1/2e−2.1c0 (4.18)

Plugging it in (4.17), we obtain

fk,m(t+ 1)1/2 ≤ c0

3
√
2
d−1/2 +

2c0

3
√
2
d−1/2 =

c0√
2
d−1/2.

Hence, this completes the induction step for the norm of A:∥∥A(L)(t+ 1)
∥∥
F,∞ ≤

√
2d1/2L−1/2 sup

k,m
fk,m(t+ 1)1/2 ≤ c0L

−1/2.

Bound on gk(t+ 1): By (4.11), L1/2 ≥ c0e
1.1c0 , so we can rewrite (4.15):

gk(t+ 1) ≤ gk(t)uL(t) + gk(t)
1/2O

(
c0e

2.1c0ηL(t)L
−1/2JL(A(t))

1/2
)
,

where
uL(t) :=

(
1 + ηL(t)L

−1/2e3.2c0JL(A(t))
1/2
)2
.

We can thus apply Lemma D.4 (ii), together with the identity 1 + x ≤ exp(x) and
(4.18) to deduce that

gk(t+ 1)1/2 ≤ exp
(
e3.2c0RL(t)L

−1/2
) (
gk(0)

1/2 + O
(
c0e

2.1c0RL(t)L
−1/2

))
≤ exp

(
c0e

1.1c0L−1/2
) (

1 + O(c20L
−1/2)

)
gk(0)

1/2

≤
√
2gk(0)

1/2.

The last inequality is derived with the help of (4.11). We finish the induction step by
observing that gk,m(0)1/2 ≤ 2−9/2N−1/2d−1/2e−4.2c0 by Assumption 4.1 (iv).

96

Convergence of JL(A(TL))→ 0: We now have all the tools to deduce the rate of
convergence of JL(A(TL)) to zero. We observe from the induction result above that
the assumptions of Lemma B.6 are verified for cA(t) = c0, c(t) = 2−4N−1e−2c0 and
c(t) = 34dc40e

6.4c0J0 by Lemma 4.3, for each t ∈ [0, T). In particular, we have

JL(A(TL)) ≤ exp

(
− 1

32
N−1e−2c0

TL−1∑
t=0

ηL(t)

)
J0 + 34dc40e

6.4c0

(
TL−1∑
t=0

ηL(t)

)
L−1J0.

(4.19)

Remark 4.7. Let η0 > 0 be a fixed learning rate, independent of k, L and t, and let
J0 := JL

(
A(L)(0)

)
be the initial loss. Observe that from Theorem 4.6, if we choose

• ηL(t) = η0 and T const
L = Θ(η−1

0 logL), then conditions (4.10) are satisfied, so we
deduce

JL
(
A(L)(T const

L)
)
≤ exp(−cη0T const

L)J0 + O(η0T
const
L L−1).

Hence, for an error level ϵ > 0, gradient descent with constant learning rate for
a network of depth L = Ω(1/ϵ) reaches JL

(
A(L)(T const

L)
)
< ϵ in Θ(η−1

0 log 1/ϵ)

iterations.

• ηL(t) = η0(t+ 1)−1 and T decay
L = Θ(exp(η−1

0 logL)), then conditions (4.10) are
satisfied. We deduce that

JL

(
A(L)(T decay

L)
)
≤ exp(−cη0 log T decay

L)J0 + O(η0 log T
decay
L L−1).

Hence, for an error level ϵ > 0, gradient descent with decaying learning
rate for a network of depth L = Ω(1/ϵ) reaches JL

(
A(L)(T decay

L)
)
< ϵ in

Θ(exp(η−1
0 log 1/ϵ)) iterations.

The above convergence rates above are confirmed by our experiments in Section
4.4. Note that gradient descent converges exponentially faster when using constant
learning rates rather than decaying ones. This is because the parameters A(L)(t) and
the gradients ∇AJL(A

(L)(t)) are already on the same scale O(L−1/2). Note also that
Theorem 4.6 is not in contradiction with [16, Theorem 6] stating that gradient descent
might get stuck at the critical point

(
δ(L), A(L)

)
= (0, 0) that is usually not a global

minimizer. Indeed, we force δ(L) to have a non-trivial scaling by Assumption 4.1 (iv),
so that (0, 0) is simply not a point in the parameter space.

97

4.3.4 Scaling limit of trained weights

In many cases the trained weights, viewed as a function of the layer index k/L, have
a scaling limit which is a function defined on [0, 1]. We show that such a limit then
admits finite p-variation with p = 2.

Proposition 4.8. Let
(
A(L)(t) : t = 1, . . . , TL

)
follow the gradient descent dynamics

(4.3), where the assumptions of Theorem 4.6 are satisfied for T = TL. Assume there
exists A∗ := [0, 1]→ Rd×d such that

sup
s∈[0,1]

L1/2
∥∥∥L1/2A

(L)
⌊Ls⌋(TL)−A∗

s

∥∥∥
F

L→∞−→ 0 (4.20)

Then, the scaling limit A∗ has finite p-variation with p = 2.

Conditions 4.20 may seem strong, but they are related to the norm f
(L)
k,m(TL) defined

in Lemma 4.4 having a limit as L→∞. Under the hypothesis of Theorem 4.6, we
have shown in the proof of Theorem 4.6 that the norm f

(L)
⌊Ls⌋,m(TL) stay uniformly

bounded (in s and m) as L→∞. Condition 4.20 has also been verified in numerical
experiments, see Section 4.4.3.

Proof. Fix a partition π = {0 = s0 < s1 < . . . < sK = 1}, where the mesh of the
partition ∥π∥ is small enough. In the following, c > 0 denotes a constant independant
of s and L. For i = 1, . . . , K − 1, let Li ∈ N big enough so that Theorem 4.6 applies.
We estimate directly∥∥∥A∗

si+1
−A∗

si

∥∥∥
F
≤
∥∥∥L1/2

i A
(Li)
⌊Lisi+1⌋(TLi

)−A∗
si+1

∥∥∥
F
+
∥∥∥L1/2

i A
(Li)
⌊Lisi⌋(TLi

)−A∗
si

∥∥∥
F

+ L
1/2
i

∥∥∥A(Li)
⌊Lisi+1⌋(TLi

)− A(Li)
⌊Lisi⌋(TLi

)
∥∥∥
F

≤ cL
−1/2
i + L

1/2
i

∥∥∥A(Li)
⌊Lisi+1⌋(TLi

)− A(Li)
⌊Lisi⌋(TLi

)
∥∥∥
F

We now use the proof of Theorem 4.6 to deduce a uniform bound (in k and L) on the
quantity g(L)k (TL) defined in Lemma 4.5. That means, L

∥∥∥A(L)
⌊Ls⌋(TL)− A

(L)
⌊Ls⌋+1(TL)

∥∥∥
F
<

c <∞. We can apply the triangle inequality to deduce∥∥∥A∗
si+1
−A∗

si

∥∥∥
F
≤ cL

−1/2
i + cL

−1/2
i (⌊Lisi+1⌋ − ⌊Lisi⌋) ≤ cL

−1/2
i + cL

1/2
i |si+1 − si| .

Hence,
K−1∑
i=0

∥∥∥A∗
si+1
−A∗

si

∥∥∥2
F
≤ c

K−1∑
i=0

L−1
i + Li |si+1 − si|2 . (4.21)

As ∥π∥ is small enough, we can choose Li = Θ(|si+1 − si|−1) to deduce that the RHS
of (4.21) is bounded uniformly in π. Taking a supremum over all such partitions then
show that A∗ has finite p-variation with p = 2.

98

4.4 Numerical experiments

To illustrate the results of Section 4.3, we design numerical experiments with the
following set-up. We have a fixed training set {(xi, yi) : i = 1, . . . , N} in Rd × Rd,
where d is the dimension of the inputs and outputs and N is the size of the dataset.
For any depth L ∈ N, we initialize the weights of the network (4.1) with δL = L−α0 and
each entry of A(L)

k is independent and normally distributed with standard deviation
d−1L−β0 , where α0, β0 ∈ [0, 1]. The weights are trained using gradient descent on the
(unregularized) mean squared error JL defined in (4.2) with a fixed learning rate η0
independent of d, k, L and the training time t. We perform a fixed number T ∈ N of
gradient updates, with no early stopping.

4.4.1 Identification of scaling behavior

We run two experiments to discover the best scaling for δL. Denote αt the scaling of δL
at time t, i.e. αt ∝ L−αt , and denote βt the scaling of the weights A(L)(t) at time t, i.e.
A(L)(t) ∝ L−βt . The first experiment is to let δL trainable with gradient descent with
learning rate η0, and observe the resulting scaling αt. We observe in Figure 4.1 (left)

Figure 4.1: Left: scaling αt of δL against the initial scaling α0 for different training times. Right:
Average loss value across depths L ∈

{
2k : k ∈ [3, 12]

}
for different initializations α0, as a function of

the number of gradient steps t.

that αt tend to get closer to 1/2 as t increases. However, this is far from being exact,
even though the networks have all converged, see Figure 4.1 (right). It is interesting
to note that α0 = 1/2 is a fixed point, meaning that the networks initialized with
this scaling will keep αt ≈ 1/2 during the entire training. The second experiment
is to let δL = L−α0 at initialization and keep it fixed during training, i.e. αt = α0

for each t. We thus have weights A(L)(0) that scale like L−β0 initially, and that are
updated with ηL(t)∇Ak

JL(A
(L)(t)) ∝ L−α0JL(A

(L)(t))1/2 by Lemma B.3. Thus, it is

99

reasonable to expect that if β0 > α0, and the loss JL at small times t is independent
of the depth, then βt ≈ α0 for small times t. In fact, we observe in Figure 4.2 (left)

Figure 4.2: Both figures: horizontal axis is the initial scaling β0 of the weights A, and the vertical
axis is the fixed scaling α0 of δL. Left: Final total scaling α0 + βT . Right: Average final loss after
T = 200 epochs. The depths at which we train our networks are L ∈

{
2k : k ∈ [3, 10]

}
.

that the total scaling α0 + βT is independent of β0 and is roughly equal to 2α0. We
observe in Figure 4.2 (right) that the parameters that gives the best performance is
around α0 = 1/2, again independently of β0. This is expected, as

h
(L)
k − h

(L)
k−1 = δLσd

(
A

(L)
k h

(L)
k−1

)
∝ L−α0−β,

so the final scaling of the increments of the hidden states is roughly 2α0, which should
be around 1 to guarantee stability of the large depth limit.

4.4.2 Rate of convergence

We now verify that the convergence rates of gradient descent agree with the theoretical
rates derived in Remark 4.7. To do so, we run our experiments with different initial
learning rates, and take the average loss curve across the depths. We then plot the
number of gradient steps needed to reach a certain loss level. We observe in Figure 4.3
that the number of gradient steps needed to attain a given level ϵ is linear in log(1/ϵ)

for constant learning rates, and exponential in log(1/ϵ) for learning rates decaying like
1/t. We also see that in both cases, the rate of convergence is inversely proportional
to the initial learning rate η0.

4.4.3 Emergence of regularity of weights as a function of the
layer index

Recall the results of Proposition 4.8 stating that under condition (4.20), the rescaled
trained weights L1/2A

(L)
⌊Ls⌋(T) converge to a limit A∗

s that has finite 2-variation. We

100

Figure 4.3: Both figures: horizontal axis is the inverse loss level 1/ϵ, in log-scale, and the vertical
axis is the number of gradient steps needed for the average loss to drop below ϵ. The average is taken
over the depths L ∈

{
2k : k ∈ [3, 10]

}
. Left: constant learning rates ηL(t) = η0. Right: decaying

learning rates ηL(t) = η0(t+ 1)−1.

verify that condition (4.20) holds by running experiments for varying depths and
looking at the quantities

f (L)(t) :=
1

2

L∑
k=1

∥∥∥A(L)
k (t)

∥∥∥2
F

and g (L)(t) :=
1

2
L

L−1∑
k=1

∥∥∥A(L)
k+1(t)− A

(L)
k (t)

∥∥∥2
F
.

Figure 4.4: Evolution of weight norms along gradient descent path for different depths L ∈{
24, 25, 26, 28, 210

}
. Left: L2-type norm f (L)(t) as a function of gradient iterations. Right: Quadratic

variation-type norm g(L)(t) as a function of gradient iterations.

We observe in Figure 4.4 that at initialization t = 0, the sum of the squared norms
f (L) is O(L−1), and becomes O(1) during training t≫ 1. However, the smoothness of
the weights as measured by g (L)(t) is constant with t for large L. That means, the
conservation of smoothness during training is a feature of the architecture (smooth
activation function) and of gradient descent, not of the particular weight initialization
nor of a particular scaling.

101

We observe in Figure 4.5 that as L → ∞, the rescaled trained weights converge
to a limit A∗. This is a striking result, indicative of the stability of this network
architecture [67]: there is no a priori reason that networks with different depths and
trained independently of each other should behave similarly. The limiting behaviour
of trained weights of residual networks with a smooth activation function was first
observed in [36], where the limit is explicitly derived and proved.

Figure 4.5: Scatter plot of the rescaled weights L1/2A
(L)
k,(7,18)(T) for different values of L ∈

{4x : x ∈ [3, 6]} at the end of the training T = 500. Horizontal axis is the scaled layer index k/L.

4.5 Conclusion

We prove linear convergence of gradient descent to a global minimum of the training
loss for deep residual networks with constant layer width and smooth activation
function. We further show that if the trained weights, as a function of the layer index,
admits a scaling limit as the depth of the network tends to infinity, then it has finite
2−variation.
A natural question to investigate next is the generalization capability of the trained
weights obtained by gradient descent, which we characterize in this work. Indeed, it is
still an open question whether the weights obtained by gradient descent admit the
tightest generalization gap among all the other global minima. Also, our work can be
generalized to study other residual architectures (for example with ReLU activation)
by looking at alternative norms along the gradient descent path.

102

Chapter 5

Mean-field limit and global
convergence of gradient descent for
path-homogeneous models

5.1 Introduction

Many tasks in machine learning, including random feature selection [112, 130, 134],
matrix factorization [8, 66], ensemble averaging [121, 137] and training a two layer
neural network [31, 114, 133, 141] can be formulated as a minimization of a smooth
convex functional of a positive measure

min
µ∈M+(Θ)

F (µ) = L

(∫
Θ

Φ(θ)dµ(θ)

)
+

∫
Θ

V (θ)dµ(θ), (5.1)

where Φ: Θ → H is a smooth function from the set of parameters Θ ⊂ Rd to a
separable Hilbert space H, L : H → R+ is a smooth and convex loss functional,
V : Θ → R is the optional regularization term and M+(Θ) is the set of positive
measures over the parameter set.
We observe straight away that the optimization problem (5.1) is convex as long as the
loss functional L is convex. However, the optimization is defined over a set of measures,
an infinite dimensional space, making the conventional convex optimization approach
not applicable. Nevertheless, an interesting behavior emerges as one parametrizes
the measure µ as a sum of finitely many particles – an atomic measure – and defines
a gradient field that sets the dynamics of the particles called the particle gradient
flow. It can be shown that in the many-particle limit, the particle gradient flow of the
objective functional F provably converges to a global minimizer of (5.1).
The interplay between the many-particle limit and its asymptotic regime is a widely
studied principle in deep learning theory to explain the success of SGD in terms of

103

convergence [31, 114, 141, 133], regularization properties [32] and also the convergence
of SGD in the case of continuous limit of residual networks [105].
Many papers in the literature make use of the 2-homogeneity property which restricts
the analysis to the case of a neural network with a single hidden layer. We show that
several of the results for single hidden layer networks also apply in the case of a wider
set of functions Φ which we call path-homogeneous. They are defined by the existence
of a vector α ∈ Rd whose entries are greater or equal to one and a real number k
greater or equal to the biggest entry in α such that the following holds

Φ (λα ⊙ θ) = λkΦ(θ), ∀θ ∈ Θ ,∀λ > 0,

where ⊙ is the element-wise Hadamard product and λα denotes a vector whose ith

entry is λαi .
The above notion of path-homogeneity mathematically captures the importance of
parameter scaling in neural networks depending on the depth. The same scaling
property plays a vital role in several of the successful optimization heuristics such as
batch normalization [79] or Path-SGD [117].

5.1.1 Outlook and contributions

• In Section 5.2, we formally introduce the notion of path-homogeneity and show
that multi-layer ReLU networks fall into this category of functions.

• In Section 5.3, we prove a global convergence result of the many-particle limit
for path-homogeneous models. We show that similar techniques can be used to
prove a global convergence result for continuous-depth residual networks studied
in [105].

• In Section 5.4, we introduce a stability-based approach to compute an a priori
upper bound on the generalization error for the Wasserstein gradient flow for
2–homogeneous models.

• In Section 5.5, we perform numerical experiments on multi-layer ReLU networks
showing that the asymptotic regime occurs at a small number of particles
that increases with the depth of the network. We observe that increasing the
number of particles for a deep convolutional neural network applied to CIFAR-10
classification empirically improves the test accuracy even if the training loss
remains the same.

104

5.1.2 Related work

Mean-field limit of two-layer neural networks. A number of works use (5.1)
and choose µ to be an atomic measure with m particles to model a two-layer neural
network with m hidden states. Using this framework [114] and [141] proved that the
dynamics of the gradient descent training of a two-layer neural network converges to
a well-defined PDE as m tends to infinity. Furthermore, the work of [133] proves the
long-term convergence of gradient descent to the true model in the large data limit at
a rate m−1 as m→∞. Finally, [31] showed convergence to a global minimizer in the
small data regime using 2-homogeneity of the network and a uniform initialization.
Our work extends the results of [31] to the case where each particle represents practical
architectures of neural networks that have arbitrary depth, that can include biases,
batch normalization and pooling layers.

Ensemble averaging. Ensemble averaging is a simple technique to improve the test
accuracy of a model that is often used, for example in the winning solutions of data
science competitions. The idea is that by combining outputs of multiple models, it is
possible to reduce the variance of the prediction by averaging out inaccuracies, thereby
improving generalization. Solving (5.1) with µ restricted to an atomic measure with
m particles can be interpreted as ensemble averaging over m models defined by Φ.
Note however, that applying the particle gradient flow on an atomic measure does not
correspond to training each of the models independently as is usually done in ensemble
training. It takes into account correlation between each of the models’ predictions
and is close in spirit to the idea of negative correlation learning of ensembles [102].
Our experiments show that the particle gradient flow is a suitable method for training
average ensembles of deep neural networks. We empirically observe that as we increase
the number of particles, the average ensemble continues to decrease the test
loss even if its loss on the train dataset plateaus.

Residual network as an ensemble of shallow models. Adding skip connections
between layers in neural networks introduced models that are of several orders of
magnitude deeper than was previously feasible. By allowing the inputs to bypass
layers, residual networks challenged the conventional way of thinking about learning
models as a strict pipeline sequence. It is widely believed that the effective depth of
residual networks is much lower than the number of residual layers and it has been
observed that residual networks behave like an ensemble of shallow networks [150].

105

The work of [105] introduces the continuum limit of residual networks modeled by
a differential equation and proves a global convergence of gradient descent as the
number of particles goes to infinity. However, the proof only accommodates for residual
blocks with a single layer which does not correspond to practice. Using the notion of
path-homogeneity we are able to extend this result to allow for multi-layer residual
blocks with biases and batch-normalization.

Optimization with scale invariant parameters. Training a deep neural network
is a challenging optimization problem and various heuristics emerged to speed it up.
For example, batch normalization (BN) is a widely used approach that rescales weights
between layers [79]. In a similar vein, the work of [117] introduces Path-SGD, an
optimization method that preserves the scaling property of ReLU networks while
keeping the input-output map unchanged, leading to better empirical performance
compared to SGD or AdaGrad. Our notion of path-homogeneity mathematically
factors the scaling invariance property of neural networks into the convergence analysis
of Wasserstein gradient flows.

Generalization for overparametrized two-layer neural networks. When
the number of parameters far exceeds the number of samples, the standard
Vapnik–Chervonenkis bounds become vacuous. In this regime, norm-based have been
introduced to study the generalization properties of 2–layer neural networks through
the lens of Rademacher complexity, for example [17, 156]. However, empirical studies
[85] show little correlation between norms/margins and generalization. Uniform
stability of the optimization procedure has also been introduced [24, 69], at the
expense of ignoring the precise network architecture. This can lead to vacuous bounds
under input or label noise [162]. More precise results [9, Theorem 5.1] proved that the
excess generalization error is given by a function of Gram matrix H∞ from a kernel
associated with the ReLU activation. Also, [29] prove that if the dataset is generated
by a known measure µtrue, then the generalization bound is given by the χ2 distance
between µtrue and the initialization µ0. However, the latter two bounds rely on strong
assumptions on the optimization procedure, namely that the weights stay in the lazy
regime, that is, close to initialization.

106

5.1.3 Notation

We denote M (Θ) to be the set of measures over the parameter set Θ (or M+ for
the set of non-negative measures). For a vector x ∈ Rd, define diag(x) ∈ Rd×d with
diag(x)ii = xi and diag(x)ij = 0 for i ̸= j. We denote the Mahalanobis distance for a
positive semi-definite matrix A ∈ Rd×d as ∥x∥A :=

√
xTAx. The space of continuous

functions from X to Y is denoted as C(X,Y) and P2(Θ) is the space of probability
distributions over Θ with finite second moment and Wp is the p-Wasserstein distance.

5.2 Path-homogeneity

5.2.1 Definitions

Definition 5.1 (Path-homogeneous function). Let U be a real vector space and
f : Rd → U . We say that f is path-homogeneous if there exists α ∈ Rd

≥1 and k ∈ R
such that k ≥ maxi αi and

f (λα ⊙ x) = λkf(x), ∀x ∈ Rd ∀λ > 0.

To specify which α and k fulfill the above definition, we say that f is
(α, k)−homogeneous.

5.2.2 Path-homogeneous function

Let f be a (α, k)−homogeneous function. Define for a fixed x ∈ Rd\ {0} the path
px : λ ∈ R>0 7→ λα ⊙ x ∈ Rd. We then have f (px(λ)) = f(λα ⊙ x) = λkf(x). Let
A := diag(α). Define now the ellipse

E :=
{
x ∈ Rd : ∥x∥A = 1

}
. (5.2)

The projection πE : Rd\ {0} → E along the curves (px)x∈E is well-defined in the sense
that for any x ∈ Rd\ {0}, there is a unique ξ ∈ E such that x ∈ pξ (R>0). The reason
behind choosing the ellipse E as a reference set is motivated by the fact that the
tangent vector field of the paths pξ with ξ ∈ E at λ = 1 is perpendicular to E. Thus,
we can decompose nicely the gradient of an (α, k)−homogeneous function using its
normal and tangential component, see Remark C.5 in Supplemental material.
Define finally the projection operator h : M

(
Rd
)
→M (E) such that for µ ∈M

(
Rd
)
,

for every continuous and bounded function ψ : E→ R,∫
E

ψ(ξ)dh(µ)(ξ) =

∫
Rd\{0}

λ(x)kψ (πE(x)) dµ(x). (5.3)

107

Remark 5.2. Note that h preserves (α, k)−homogeneous functions, i.e. if f : Rd → R
is (α, k)− homogeneous, then

∫
E
fdh(µ) =

∫
Rd fdµ. It means that h properly scales

down the measure on E for (α, k)−homogeneous functions.

Definition (5.1) is motivated by the fact that multi-layer neural networks with ReLU
activations are path-homogeneous, as first noticed in [118].

5.2.3 Multi-layer ReLU networks

Let Φ(θ) ∈ L2 (X,Y) be a neural network from the input space X to the output space
Y with parameters θ ∈ Θ, K ∈ N layers and widths of the hidden layers (d0, . . . , dK),
where d0 is the input dimension and dK is the output dimension of the network. The
neural network is of the form Φ(θ)(x) = hθK ◦ · · · ◦ hθ1(x), where θ = (θ1, . . . , θK),
and θk = (Wk, bk) are the parameters of the kth layer, hθk(z) = σ(Wkz + bk) is the
single layer mapping and σ = max(·, 0) is the ReLU activation function that applies
element-wise.
We can readily see that Φ is path-homogeneous. Indeed, for i = 1, . . . , d, if we let
αi = 1 when θi corresponds to an entry of any matrix Wk, and αi = k when θi

corresponds to an entry of the bias bk, then we have Φ(λα ⊙ θ) = λKΦ(θ). As a result
a K-layer neural network Φ is (α,K)-homogeneous.
Now, the problem statement (5.1) indicates that the model of interest is not Φ(θ)

where the variable to optimize is θ ∈ Θ, but
∫
Θ
Φ(θ)dµ(θ) where the variable to

optimize is µ ∈M+(Θ). That means, if we take for example µm = m−1
∑m

i=1 δθi , then

Φ(µm) :=

∫
Θ

Φ(θ)dµm(θ) =
1

m

m∑
i=1

Φ(θi).

When Φ is a fully-connected multi-layer neural network of depth K with hidden layer
widths (d0, . . . , dK), Φ(µm) is a multi-layer neural network of depth K+2 with hidden
layer widths (d0,md0, . . . ,mdK , dK) with the following properties.

(i) The first layer is deterministic and non-trainable: it is duplicating the input
x ∈ Rd0 into m copies.

(ii) The neuron n1 at layer k is connected to neuron n2 at layer k + 1 if and only if
⌊n1/dk⌋ = ⌊n2/dk+1⌋.

(iii) The last layer is deterministic and non-trainable: it is averaging over the outputs
Φ(θi)(x) ∈ RdK for i = 1, . . . ,m.

108

The network structure of Φ(µm) is drawn in Figure 5.1. We see that the neural
connections are local, and are not scaling with m. These types of networks fall under
the umbrella of locally-connected neural networks in the literature. Convolutional
neural networks are an example of such networks, with the additional constraint that
weights are shared across channels.

Remark 5.3. Observe that σ is not differentiable at 0, so Φ is not differentiable
everywhere, invalidating Assumption 5.6. However, this is only a technical issue which
can be circumvented by using the differentiable parametrization as was done in [31,
Section 4.2] consisting of duplicating the network at each layer with its opposite sign
thus ensuring differentiability around 0.

Pooling and Batch Normalization Neural networks with pooling layers and
batch normalization layers are also path-homogeneous. Indeed, a max-pooling or
average-pooling layer, does not alter the (α, k)−homogeneity of the network. On the
other hand, a batch normalization [79] layer preserves the path-homogeneity of the
network, but does affect the values of α and k. If Φ(θ)(x) is a (α, k)−homogeneous
network and the input samples are (xb)

B
b=1, then applying batch normalization (BN)

to Φ yields

BNβ,γ ◦ Φ(θ)(x) = β + γ · Φ(θ)(x)−mean (Φ(θ)(xb))
B
b=1

sd (Φ(θ)(xb))
B
b=1

. (5.4)

Thus θ 7→ BNβ,γ ◦ Φ(θ)(x) becomes (α′, k′)-homogeneous, where α′ = (α, 1, 1) and
k′ = 1 which results into a faster observed convergence of the many-particle limit.
This is in line with the empirical evidence showing that factoring in the scale of the
weights in a deep ReLU network helps to overcome unbalanced initialization and
improves generalization [117, 118].

5.3 Global convergence of Wasserstein gradient flow
for path-homogeneous models

This section introduces the mathematical framework of particle and Wasserstein
gradient flows that underpins our theoretical results. It then establishes the main
convergence result of the Wasserstein gradient flow (5.8) to a global minimum of (5.1)
as t→∞ in the case where the model Φ and the regularizer V are path-homogeneous.

109

x y1

x y2

x ym

...

...

...

x y

1
m

1
m

1
m

=

=

=

input

copied
inputs

hidden layers

individual
predictions

output

Figure 5.1: Neural network representation for the model x 7→ y = Φ(µm)(x) =
∫
Θ
Φ(θ)(x)dµm(θ).

Here, x is the input, Φ(θ) is a neural network mapping with parameter θ, µm = 1
m

∑m
i=1 δθi is an

atomic measure over the parameter space with θ1, . . . , θm ∈ Θ, yi = Φ(θi)(x) is the output of the
neural network Φ(θi), and y = 1

m

∑m
i=1 yi is the output of the model.

110

5.3.1 Calculus on the space of measures

Let Θ ⊂ Rd be the closure on an open convex set, and denote by Pp(Θ) the space of
probability measures on Θ that have finite p-moment, for p ≥ 1. Let µ, ν ∈ Pp(Θ).
We call π ∈ Pp(Θ × Θ) a coupling of µ and ν if for any Borel B ⊂ Θ, we have
π(B × Θ) = µ(B) and π(Θ × B) = ν(B), i.e. the first marginal of π is µ and the
second marginal is ν. We denote by Γ(µ, ν) the set of all couplings of µ and ν. We
define the Wasserstein distance between µ and ν as

Wp(µ, ν) := inf

{(∫
Θ×Θ

∥u1 − u2∥p dπ(u1, u2)
)1/p

: π ∈ Γ(µ, ν)

}
.

We denote the set of optimal couplings as Γo(µ, ν), i.e πo ∈ Γo(µ, ν) if and only if
W p

p (µ, ν) =
∫
Θ×Θ
∥u1 − u2∥p dπo(u1, u2). It turns out that we have a dual formulation

for the W1 distance given by the Kantorovitch-Rubinstein theorem [151, Theorem
1.14].

W1(µ, ν) = sup

{∫
Θ

φ d(µ− ν) : ϕ ∈ L1(d |µ− ν|), ∥φ∥Lip ≤ 1

}
where ∥φ∥Lip = supu̸=u′

|φ(u)−φ(u′)|
∥u−u′∥ is the Lipschitz constant of φ.

We say that a functional F : M+(Θ)→ R is continuously differentiable if there exists
a bounded continuous function F ′ : M+(Θ)×Θ→ R such that for all µ, ν ∈M+(Θ),

F (µ)− F (ν) =
∫ 1

0

dλ

∫
Θ

F ′((1− λ)ν + λµ, u)(µ(du)− ν(du)). (5.5)

We call F ′ the linear functional derivative of F . Note that (5.5) defines F ′ up to a
constant shift, so we also impose the normalizing condition

∫
Θ
F ′(µ, u)dµ(u) = 0 so

that at most one linear functional derivative can exist. It is also denoted δF
δµ

in the
literature. Further, we call ∇uF

′(µ, u) the intrinsic derivative of F .

5.3.2 Particle and Wasserstein gradient flow

If Φ is a path-homogeneous function, the minimum over the set of positive measures
is equal to the minimum over the set of probability measures, minµ∈M+(Θ) F (µ) =

minµ∈P(Θ) F (µ), see Lemma C.1 for a proof. Therefore it suffices to work in the space
of probability distributions.
We parametrize the measure µ in (5.1) as a mixture of m particles µm = 1

m

∑m
i=1 δui

at positions u = {ui}mi=1 ∈ Θm referred to as an atomic measure. The objective can

111

be expressed as

Fm(u) := F

(
1

m

m∑
i=1

δui

)
= L

(
1

m

m∑
i=1

Φ(ui)

)
+

1

m

m∑
i=1

V (ui). (5.6)

We now define the particle gradient flow for the atomic measure consisting of finitely
many particles based on the derivative of (5.6).

Definition 5.4 (Particle gradient flow). A particle gradient flow for the functional
Fm is an absolutely continuous path u : R+ → Θm such that u′(t) = −m∇Fm(u(t))

for almost every t ≥ 0.

We have an explicit formulation of the velocity of each particle: u′
i(t) = vt (ui(t)),

where vt is the velocity field at time t defined as minus the intrinsic derivative of F
evaluated at the empirical measure µm,t:

vt(u) := −∇F ′(µm,t)(u) = −
[〈

dL

(∫
Θ

Φdµm,t

)
, ∂jΦ(u)

〉]d
j=1

−∇V (u) . (5.7)

For a precise statement of a more general case where V can be non-smooth, see [31,
Proposition 2.3]. Note that the explicit expression defining the velocity of each particle
in Equation (5.7) gives us an insight at how we can extend the particle gradient flow
to an arbitrary measure [31].
We now have the necessary tools to extend the definition of the classical gradient flow
from Definition 5.4 to the set of measures.

Definition 5.5 (Wasserstein gradient flow). A Wasserstein gradient flow for the
functional F on [0, T) is an absolutely continuous path (µt)t∈[0,T) ⊂ P2(Θ) which is a
distributionally weak solution to the PDE

∂tµt + div(vtµt) = 0, where vt(u) = −∇F ′(µt)(u). (5.8)

That means,∫ T

0

∫
Θ

(
∂φ

∂t
(t, u) + vt(u)

⊤∇uφ(t, u)

)
dµt(u)dt = 0, ∀φ ∈ C∞

c ((0, T)×Θ). (5.9)

One can show that under some mild regularity conditions, vt belongs to the tangent
vector space of µt if and only if the continuity equation ∂tµt+div(vtµt) = 0 is satisfied,
see [5, Proposition 8.4.5].
To establish the existence of the Wasserstein gradient flow for the functional F defined
in (5.1), we make the following assumptions.

112

Assumption 5.6. Denote Φ̃ = Φ
∣∣
E
, Ṽ = V

∣∣
E
, and

HE =

{∫
E

Φ̃dρ : ρ ∈ P2(E)

}
.

We have:

(i) L : H→ R+ is convex, differentiable and its Frechet derivative dL is bounded on
HE, i,e ∥dL∥∞,E := suph∈HE

∥dL(h)∥H < ∞. Also, dL is LipdL,E–Lipschitz on
HE and bounded on sublevel sets, i.e. sup {∥dL(h)∥H : L(h) < c} <∞ for each
c > 0.

(ii) Φ: Θ→ H is Frechet differentiable, and its Frechet derivative dΦ is bounded on
E, that is, ∥dΦ∥∞,E := supξ∈E

∥∥∥DξΦ̃
∥∥∥ <∞, and D·Φ̃ is LipdΦ,E–Lipschitz on E.

(iii) V is differentiable, and its gradient is bounded by ∥∇V ∥∞,E on E, and is Lip∇V,E–
Lipschitz on E.

We prove now that under Assumption 5.6, there exists a Wasserstein gradient flow
(µt)t≥0 for the functional F . However, (µt)t≥0 may not be unique. But the Wasserstein
gradient flow on E is unique: to see that, define for ρ ∈M+(E) the functional

FE(ρ) := L

(∫
E

Φ(ξ)dρ(ξ)

)
+

∫
E

V (ξ)dρ(ξ). (5.10)

Observe that as Φ and V are (α, k)–homogeneous, we have F (µ) = FE(h(µ)). That
means, optimizing F is equivalent to optimizing FE. Now, there exist a unique gradient
flow (ρt)t≥0 ⊂ Θ2(E) for the functional FE.

Proposition 5.7. Under Assumption 5.6, assume that there exists r0 > 0 such that
supp(µ0) ⊂ r0E. Then there exists a Wasserstein gradient flow (µt)t≥0 starting from
µ0 for the functional F . Moreover, there exists a unique gradient flow (ρt)t≥0 on P2(E)

such that ∂tρt + div(vEt ρt) = 0, where vEt (ξ) = −DξF
′
E(ρt).

Here, Dξ is the differential at point ξ on the manifold E. Uniqueness of the gradient
flow on P2(Θ) is not guaranteed, but uniqueness on P2(E) is.

Proof. For the existence of a Wasserstein gradient flow, observe that F is a proper,
coercive, and differentiable functional, hence [5, Corollary 11.1.8] applies here.
For the uniqueness of the gradient flow for FE, it suffices to show that FE is λE–
semiconvex along generalized geodesics, for some λE ∈ R. Uniqueness of the gradient
flow and an associated system of evolution variational inequalities follows from [5,

113

Theorem 11.1.4].
Let τ ∈ P(E×E) a transport plan such that both marginals have finite second moments,
and denote the cost associated to it by

Cp(τ) :=

(∫
E2

dE(x, y)
pdτ(x, y)

)1/p

for p ≥ 1, where dE(x, y) is the geodesic distance between x and y. Now, E is a
compact Riemannian manifold, so there exists a geodesic γ· ≡ γ·(x, y) : [0, 1] → E

such that γ0(x, y) = x and γ1(x, y) = y. Let ρτs := (γs)#τ , and define g(s) = FE(ρ
τ
s)

for s ∈ [0, 1]. Since dL, dΦ and ∇V are Lipschitz on E, g is differentiable with

ġ(s) =
d

ds
FE(ρ

tau
s) =

〈
dL

(∫
E

Φdρτs

)
,

∫
E2

DγsΦ(γ̇s)dτ
〉
+

∫
E2

DγsV (γ̇s)dτ

Therefore, for 0 ≤ s < s′ ≤ 1, we can bound

|ġ(s′)− ġ(s)| ≤ (I) + (II) + (III) + (IV),

where

(I) =

∣∣∣∣〈dL(∫
E

Φdρτs

)
,

∫
E2

Dγs′
Φ (γ̇s′ − γ̇s) dτ

〉∣∣∣∣
(II) =

∣∣∣∣〈dL(∫
E

Φdρτs

)
,

∫
E2

(
Dγs′

Φ−DγsΦ
)
(γ̇s)dτ

〉∣∣∣∣
(III) =

∣∣∣∣〈dL(∫
E

Φdρτs′

)
− dL

(∫
E

Φdρτs

)
,

∫
E2

Dγs′
Φ (γ̇s′) dτ

〉∣∣∣∣
(IV) =

∣∣∣∣∫
E2

Dγs′
V (γ̇s′ − γ̇s) dτ

∣∣∣∣+ ∣∣∣∣∫
E2

(
Dγs′

V −DγsV
)
(γ̇s)dτ

∣∣∣∣
We need bounds on the (differences of the) speed of geodesics with respect to the
geodesical distance dE between the endpoints. As E is diffeomorphic to the sphere
Sd−1, the geodesics are (globally) the shortest paths between points, and the following
holds.

∥γ̇s(x, y)∥ = dE(x, y) and ∥γ̇s′(x, y)− γ̇s(x, y)∥ ≤ dE(x, y)
2 |s′ − s|

114

Therefore, we can bound (I) – (IV).

(I) ≤ ∥dL∥∞,E ∥dΦ∥∞,E |s′ − s|
∫
E2

dE(x, y)
2dτ(x, y)

= ∥dL∥∞,E ∥dΦ∥∞,EC
2
2(τ) |s′ − s|

(II) ≤ ∥dL∥∞,E LipdΦ,E

∫
E2

∥γs′(x, y)− γs(x, y)∥ ∥γ̇s∥ dτ(x, y)

≤ ∥dL∥∞,E LipdΦ,EC
2
2(τ) |s′ − s|

(III) ≤ LipdL,E

∥∥∥∥∫
E2

(Φ(γs′)− Φ(γs)) dτ

∥∥∥∥ ∥dΦ∥∞,E

∫
E2

∥γ̇s′∥ dτ

≤ LipdL,E ∥dΦ∥∞,EC
2
1(γ) |s′ − s|

(IV) ≤ ∥∇V ∥∞,EC
2
2(γ) |s′ − s|+ Lip∇V,EC

2
2(γ) |s′ − s|

As a consequence, using C1(γ) ≤ C2(γ) by Cauchy-Schwarz, we get that ġ is λEC2
2 (γ)–

Lipschitz, with

λE = ∥dL∥∞,E ∥dΦ∥∞,E + ∥dL∥∞,E LipdΦ,E + LipdL,E ∥dΦ∥∞,E + ∥∇V ∥∞,E + Lip∇V,E.

Hence, by definition, FE is λE–semiconvex along generalized geodesics.

Remark 5.8. Under Assumption 5.6, the particle gradient flow of m particles in
Definition 5.4 converges to a Wasserstein gradient flow as m→∞, see [31, Theorem
2.6.].

We can see from Definition 5.5 that a probability measure µ ∈ P2(Θ) is stationary
if and only if ∇F ′(µ)(u) = 0 for µ−a.e. u ∈ Θ. But stationarity does not imply
optimality, even when L is convex. Instead, one has the following characterization,
taken from [121].

Lemma 5.9 (Optimality condition). The measure µ∗ ∈M+(Θ) is a minimizer of F
if and only if F ′(µ∗)(u) ≥ 0 for all u ∈ Θ and F ′(µ∗)(u) = 0 for u ∈ supp(µ∗).

Proof. Suppose first that µ∗ ∈M+(Θ) is a minimizer of F (µ) = L
(∫

Φdµ
)
+
∫
V dµ.

Thus, for all µ ∈M+(Θ) , we have that∫
F ′(µ∗)d(µ− µ∗) =

d

dϵ
F ((1− ϵ)µ∗ + ϵµ)

∣∣
ϵ=0

= lim
ϵ→0

F ((1− ϵ)µ∗ + ϵµ)− F (µ∗)

ϵ
≥ 0.

By letting µ = µ∗ + δu for a fixed u ∈ Θ, we deduce first that F ′(µ∗)(u) ≥ 0 for all
u ∈ Θ. Next, by letting µ be the zero measure, we obtain

∫
F ′(µ∗)dµ∗ = 0, so by

positivity of µ∗, F ′(µ∗)(u) = 0 for u ∈ supp(µ∗).

115

To show the converse, first observe that the two conditions imply that
∫
F ′(µ∗)d(µ−

µ∗) ≥ 0. As L is convex, F is convex and we have

F (µ)− F (µ∗) =
d

dϵ
((1− ϵ)F (µ∗) + ϵF (µ))

∣∣
ϵ=0

≥ d

dϵ
F ((1− ϵ)µ∗ + ϵµ)

∣∣
ϵ=0

=

∫
F ′(µ∗)d(µ− µ∗) ≥ 0.

So µ∗ is a global minimizer.

5.3.3 Convergence to the global minimum

We make the following assumptions to prove the global convergence of the Wasserstein
gradient flow.

Assumption 5.10. Φ and V are (α, k)−homogeneous and the support of h(µ0) is the
whole of E.

We stress that Φ and V share the same α and k. The fact that supp(h(µ0)) = E

ensures that the measure allocates a non-zero mass everywhere in the ellipse at least
during a short period of time to ensure that the gradient flow does not miss any
important region of the parameter space. This assumption is also used by [34] to
prove global convergence.

Proposition 5.11 (Wasserstein gradient flow escapes local minima). Let Assumption
5.6 and Assumption 5.10 hold true and let µ ∈ M+(Θ) be a measure such that
{θ ∈ Θ : F ′(µ)(θ) < 0} is not empty. Then there exists ϵ > 0 and a subset of the
parameter set P ⊂ Θ such that if (µt)t≥0 is the Wasserstein gradient flow of F
satisfying ∥h(µ)− h(µt0)∥BL < ϵ for some t0 ≥ 0 and µt0(P) > 0, then there also
exists t1 > t0 such that ∥h(µ)− h(µt1)∥BL > ϵ.

The proof of Proposition 5.11 can be found in Appendix C.2.2. We now establish that
for the projected Wasserstein gradient flow that converges weakly to the measure ν,
F ′ evaluated at ν vanishes on its support.

Proposition 5.12 (F ′ vanishes for the limit of the projected Wasserstein gradient
flow). Let (µt)t≥0 be a Wasserstein gradient flow of F and let Assumption 5.6 and
Assumption 5.10 hold. If h(µt) converges weakly to ν ∈M+(E), then F ′(ν) vanishes ν
almost surely.

116

Proof. As F ′(µt) is an (α, k)−homogeneous function, we know by Remark C.5 that the
velocity field (vt)t≥0 = (−∇F ′(µt))t≥0 associated to the gradient flow (µt)t≥0 satisfies

∀ξ ∈ E : −vt(ξ) =
kg̃µt(ξ)

∥Aξ∥2
n⃗ξ + ι(∇g̃µt(ξ)) +∇V (ξ), (5.11)

where A is a diagonal matrix with entries Ai,i = αi. Hence by Lemma C.6, vt converges
uniformly to vν = −∇F ′(ν) on E as t→∞, so in particular∫

E

F ′(µt)(ξ)dh(µt)(ξ)→
∫
E

F ′
ν(ξ)dν(ξ). (5.12)

We first use the conservation of energy for the Wasserstein gradient flow [5, Theorem
11.2.1.] to obtain

∀t ≥ 0 : − d

dt
F (µt) =

∫
Θ

|∇F ′(µt)(u)|2 dµt(u) (5.13)

We use Cauchy-Schwarz on the right-hand side of Equation (5.13) and Remark C.4 to
deduce that

− d

dt
F (µt) ≥

(∫
Θ
⟨∇F ′(µt)(u), Au⟩dµt(u)

)2∫
Θ
∥Au∥22 dµt(u)

(5.14)

= k2
(∫

E
F ′(µt)(ξ)dh(µt)(ξ)

)2∫
Θ
∥Au∥22 dµt(u)

. (5.15)

We find a uniform upper bound on the denominator of (5.15) as follows.∫
Θ

∥Au∥22 dµt(u) ≤ k2
∫
Θ

∥u∥2 dµt(u) ≤ 2k2
(∫

Θ

∥u∥22 dµ0(u) + F (µ0)

)
=: C2 <∞.

The first inequality holds as maxi αi ≤ k and the second one by Lemma C.7 with
ψ(u) = ∥u∥22 and C = 4. We deduce that

− d

dt
F (µt) ≥

k2

C2

(∫
E

F ′(µt)(ξ)dh(µt)(ξ)

)2

. (5.16)

But F is lower bounded, so the right-hand side of Equation (5.16) must vanish as
t→∞. Thus, by Equation (5.12), we get that F ′(ν) vanishes ν almost surely.

By Lemma 5.9, it remains to show that F ′(ν) is non-negative everywhere. Note
that instead of the separation assumption on the initialization µ0 introduced in [31,
Theorem 3.3], we enforce the full support of h(µ0) on E, introduced in [34, Theorem
2.2]. It is a slightly stronger assumption, but the proof simplifies considerably. Note,
that this is only a technical issue and our results would hold also under a more general
assumption of separability of ellipses similar to the assumption made for [31, Theorem
3.3], but we omit the proof here for simplicity.

117

Proposition 5.13 (F ′ is non-negative everywhere). Assume that h(µ0) has full support
in E and that h(µt) converges weakly to ν ∈M+(E). Then F ′(ν)(ξ) ≥ 0 for all ξ ∈ E.

Proof. For the sake of contradiction, assume that F ′(ν) is not non-negative ev-
erywhere. Let ϵ > 0 and P = π−1

E (K) ⊂ Θ given by Proposition 5.11, and let
t0 = sup {t ≥ 0 : ∥h(µt)− ν∥BL ≥ ϵ}, which is finite because h(µt) converges weakly
to ν. But h(µt0) has full support as Xt0 : Θ→ Θ defined in Equation (C.15) is a dif-
feomorphism and µt0 = (Xt0)#µ0. So h(µt0)(K) > 0, thus µt0(P) > 0 and Proposition
5.11 applies, leading to a contradiction.

Theorem 5.14. Under Assumptions 5.6 and 5.10, if h(µt) converges weakly, then
its limit is a global minimizer of F over M+ (Θ). In particular, if (um(·))m∈N is
a sequence of particle gradient flows initialized in the support of µ0 such that µm,0

converges weakly to µ0, then

lim
m,t→+∞

F (µm,t) = min
µ∈M+(Θ)

F (µ)

and the left-hand side limits can be exchanged.

Proof. We now show that Theorem 5.14 is a consequence of the above results. Indeed,
assume that ν ∈ M+(E) is the weak limit of h(µt)t as t → ∞. Proposition 5.12
ensures that F ′(ν) vanishes on its support, and Proposition 5.13 ensures that F ′(ν) is
non-negative everywhere. Thus, by Lemma 5.9, ν is a global minimizer of F . The
fact that we can permute the limits m→∞ and t→∞ can be proven similarly to
[31, Theorem 3.3].

Remark 5.15. We stress that the result here is a qualitative one. A step towards
obtaining quantitative convergence rate without injecting exogenous noise like in [77,
114] would be to study the dynamics of the projected gradient flows like in [34, Theorem
3.8]. We leave precise statements for future work.

5.3.4 Global convergence for continuous-depth residual net-
works

In this section, we show that path-homogeneity can be used in the context of the mean-
field limit of continuous-depth residual networks studied in [105]. Let X = Y ⊂ Rd0

be the input and the output space, D ⊂ X × Y an input-output distribution and
ℓ : Y×Y→ R+ a loss function. Let Θ ⊂ Rd be a set of parameters, and σ : Θ×X→ X

the hidden state mapping that takes the parameter of a single layer, together with its

118

hidden state, and outputs the hidden state at the next layer. As we will work with
the continuous-depth limit, we extend the parameter space to Θ× [0, 1]. The second
parameter t ∈ [0, 1] indicates at which (infinitesimal) layer the first parameter θ ∈ Θ

is acting on. Similarly to the relaxation in (5.1), we consider µ ∈M+ (Θ× [0, 1]). The
output of the continuous-depth residual network is then given by the solution at depth
t = 1 of the ODE

Żµ(x, t) =

∫
Θ

σ(Zµ(x, t), θ)dµ(θ, t), Zµ(x, 0) = x.

The loss functional is given by E(µ) := E(X,Y)∼D [ℓ(Zµ(X, 1), Y)]. Note that unlike
[105], we omit the projection of the input and the output to a hidden space, as it
does not influence the theoretical results. We extend [105, Theorem 3.9] about the
convergence to a global minimum to include biases and batch normalization in the
residual blocks using path-homogeneity, which is closer to what is done in practice.

Theorem 5.16 (Continuous-depth residual networks with path-homogeneous blocks).
Let σ : Θ × X → X be the residual block which is (α, k)-homogeneous with respect
to the parameters and (µs)s≥0 be the solution of the Wasserstein gradient flow of the
mean-field model for continuous-depth residual networks:

∂(θ,t)µ

∂s
= div(θ,t)

(
µ · ∇(θ,t)

δL

δµ

)
. (5.17)

Consider a stationary solution to the gradient flow µ∞ which concentrates in one of
the nested sets from Assumption 5.6 (iii) and separates the ellipses λaE× [0, 1] and
λbE× [0, 1] where E is defined as in (5.2). Then µ∞ is a global minimum and satisfies
F (µ∞) = 0.

Proof. This proof follows the same line of arguments as the proof in [105, Theorem
3.9.] with differences in equations (5.19), (5.20) and (5.21).
By [121] and µ∞ being a steady state, the following must hold

∇(θ,t)
δF

δµ

∣∣∣
µ=µ∞

= 0, (5.18)

µ∞-almost everywhere.
By the homogeneity property and the separation property of the support of µ∞, we
prove that ∇(θ,t)

δF
δµ
|µ=µ∞ = 0 almost everywhere, so also outside of the support of µ∞.

Indeed, by the separation of ellipses assumption, for any (θ, t) ∈ Rd1×d1 × [0, 1], there
exists λ > 0 such that (λα ⊙ θ, t) ∈ supp(µ∞). By the (α, k)−homogeneity of σ, we

119

have that

δF

δµ
(λα ⊙ θ, t) = E [σ (Zµ(x, t), λ

α ⊙ θ)] pµ(x, t) (5.19)

= λkE [σ (Zµ(x, t), θ)] pµ(x, t) (5.20)

= λk
δF

δµ
(θ, t) , (5.21)

where pµ(x, t) is the adjoint process as defined in [105]. As a consequence we have
that ∇(θ,t)

δF
δµ
(λα ⊙ θ) = λk∇(θ,t)

δF
δµ
(θ, t).

We therefore deduce that since ∇(θ,t)
δF
δµ
|µ=µ∞ = 0, µ∞−a.e., we have ∇(θ,t)

δF
δµ
|µ=µ∞ = 0

almost everywhere. Therefore the differential is constant: δF
δµ
|µ=µ∞ = c.

By [105, Theorem 3.2.], if F (µ∞) > 0, there exists a distribution ν ∈ P (Θ× [0, 1])

such that 〈
δF

δµ

∣∣∣
µ=µ∞

, µ− ν
〉
> 0. (5.22)

This is however in contradiction with〈
δF

δµ

∣∣∣
µ=µ∞

, µ− ν
〉

= c

(∫
Θ

µ (θ, t) dθdt−
∫
Θ

ν (θ, t) dθdt

)
= 0, (5.23)

due to the probability measures integrating to one. Thus the stationary solution must
satisfy F (µ∞) = 0 implying that it is a global optimum.

5.4 Generalization properties in the 2-homogeneous
case

We now reformulate the minimization problem in Equation (5.1) as a supervised
learning problem on M+(Θ), and we study the generalization properties of the solution
found by the Wasserstein gradient flow. We first define the framework in which we
operate.

5.4.1 Assumptions and definitions

Let X be the input space, Y the output space, and assume that the support of the
data distribution D is bounded in X × Y. A model is a function ϕ that takes an
input x ∈ X and a parameter θ ∈ Θ, and gives the output ϕ(θ, x) ∈ Y. The goal
of a supervised learning problem is to find a (parametric) function that explain the
output the best given the input, as measured by a loss function ℓ : Y×Y→ R+. In our
measure-theoretic framework, the input-output function is parametrized by a measure

120

µ ∈M+(Θ) over the parameter space: for an input x ∈ X, the prediction is given by∫
Θ
ϕ(θ, x)dµ(θ) ∈ Y. The objective function to minimize is thus

R(µ) := E(X,Y)∼D

[
ℓ

(∫
Θ

ϕ(θ,X)dµ(θ), Y

)]
. (5.24)

over µ ∈ M+(Θ). We call R(µ) the population risk of a measure µ. However,
minimizing R is intractable, as we usually only have access to i.i.d. samples Sn =

{(xi, yi)}ni=1, where (xi, yi) ∼ D. Therefore, we can only evaluate the empirical risk of
a measure µ on the dataset Sn, as defined by

Remp(µ, Sn) :=
1

n

n∑
i=1

ℓ

(∫
Θ

ϕ(θ, xi)dµ(θ), yi

)
.

Optimizing Remp(µ, Sn) directly is risky, as we might overfit to the sample set Sn, and
the fitted model might perform poorly on the full distribution D. To circumvent this,
we add a regularization term V : Θ→ R+, with regularization coefficient ρn > 0. Our
objective function can thus be written as

min
µ∈M+(Θ)

Fn(µ, Sn) := Remp(µ, Sn) + ρn

∫
Θ

V (θ)dµ(θ) (5.25)

Note that the regularization coefficient ρn depends on the sample size. This is because
all other things being equal, the more samples we have, the closer our empirical data
distribution is to D, so the less we need to regularize.
We can rewrite (5.25) in the framework of (5.1): let Φ: Θ → C(X,Y) defined by
Φ(θ)(x) := ϕ(θ, x), and L : C(X,Y)→ R+ defined by L(f) := 1

n

∑n
i=1 ℓ (f(xi), yi). We

thus have
Remp(µ, Sn) = L

(∫
Θ

Φ(θ)dµ(θ)

)
.

A important task in supervised learning is to understand how far away R(µ) is to
Remp(µ, Sn), for a given µ. One way to quantify this is to find an upper bound to

PSn∼Dn

(
R(µ)−Remp(µ, Sn) > ϵ

)
, (5.26)

where Dn is the uniform distribution over i.i.d. datasets of size n sampled from D,
and ϵ > 0. We assume 2–homogeneity of the model and its regularizer, and Lipschitz
continuity on the d–dimensional sphere E = Sd−1, which is usually satisfied in practice.

Assumption 5.17. Denote ϕ̃ = ϕ
∣∣
Sd−1×X

and Ṽ = V
∣∣
Sd−1. Under the setup described

above, we have for each x ∈ X:

(i) ϕ(· , x) and V are 2–homogeneous,

121

(ii) ϕ(· , x) is Frechet differentiable, and the derivative D· ϕ̃(· , x) is uniformly
bounded by ∥Dϕ∥Sd−1,∞ <∞, and is LipDϕ, Sd−1,∞–Lipschitz continuous,

(iii) ℓ : Y× Y→ R+ is convex in its first variable, with ℓ(y, y) = 0, ∀y ∈ Y, ∥ℓ∥C2 :=

∥∂2ℓ/∂y21∥∞ <∞, and there exists Cℓ > 0 such that ∥∂ℓ/∂y1∥2 ≤ C2
ℓ ℓ,

(iv) V is differentiable, and the derivative D·Ṽ is uniformly bounded by ∥DV ∥Sd−1,
and is LipDV, Sd−1–Lipschitz continuous.

Assumption (iii) is satisfied for the quadratic loss ℓ(y1, y2) = ∥y1 − y2∥2 for Cℓ = 2.

5.4.2 Preliminary analysis

In the following, we study the generalization gap (5.26) where µ is an approximation
of the stationary measure of the Wasserstein gradient flow (µt)t≥0. More specifically,
for a training time T > 0, let AT

wgf : supp(D)n → P2(Θ) denote the algorithm that
takes a training set Sn = {(xi, yi)}ni=1 ∼ Dn (and an initialization µ0 ∈ P2(Θ)), and
outputs the measure AT

wgf(Sn) := µT . Recall that (µt)t≥0 is a Wasserstein gradient
flow defined in (5.8) for the objective functional Fn(µ, Sn) defined in (5.25).
Our approach to bound (5.26) relates to the stability approach of generalization
introduced in [24], see also [88, 52]. For a dataset Sn ∈ supp(D)n and i ∈ {1, . . . , n},
we denote the removal of sample (xi, yi) from Sn by

S\in := {(xi′ , yi′) : i′ ̸= i} (5.27)

Definition 5.18 ([24], Definition 6). An algorithm A has uniform stability β with
respect to the loss function ℓ if for each Sn ∈ supp(D)n, i ∈ {1, . . . , n}, and (x, y) ∈
supp(D), we have∣∣∣∣ℓ(∫

Θ

ϕ(θ, x)dA(Sn)(θ), y

)
− ℓ
(∫

Θ

ϕ(θ, x)dA(S\in)(θ), y

)∣∣∣∣ ≤ β

n
.

Uniform stability guarantees tight exponenential generalization bounds using concen-
tration inequalities [24, 41].

Proposition 5.19 ([24], Theorem 12). Let A be an algorithm with uniform stability
β with respect to ℓ, which satisfies

ℓ

(∫
Θ

ϕ(θ, x)dA(S)(θ), y

)
∈ [0, B] , ∀S ⊂ supp(D), ∀(x, y) ∈ supp(D). (5.28)

Then, for δ ∈ (0, 1), with probability 1− δ over the choice of the dataset Sn, we have

R (A(Sn)) ≤ Remp(A(Sn), Sn) +
2β

n
+ (4β +B)

√
log 1/δ

2n
.

122

To prove uniform stability of the Wasserstein gradient flow algorithm AT
wgf , we first

study the dynamics of h(µt). We prove that t 7→ h(µt) solves an advection-reaction
equation [57]. A similar version of the result below was first established in [34,
Proposition 2.1]; we provide a more detailed proof.

Lemma 5.20. Let F defined in (5.1) and FSd−1 defined in (5.10), where Φ and V

are 2–homogeneous. Let (µt)t≥0 ⊂ P2(Θ) be a gradient flow for the functional F ,
and define M0 :=

∫
Θ
∥u∥2 dµ0(u) < ∞. Then ρt = M−1

0 h(µt) ∈ P2(S
d−1) solves the

following (distributional) PDE.

∂tρt + div(vSt ρt) = 2F ′
Sd−1(M0ρt)ρt, (5.29)

where vSt (ξ) = −DξF
′
Sd−1(M0ρt). Furthermore, vSt is a tangent vector field of ρt with

respect to the Wasserstein metric.

The proof of Lemma 5.20 can be found in Appendix C.3.1. In physical terms, we
have the standard advection term div(vSt ρt) that is moving the particles along the
vector field vSt in the same fashion as (5.8). We also have a reaction term 2F ′

Sd−1(M0ρt)

that is removing mass in suboptimal regions of the space where F ′
Sd−1 is negative, see

Lemma 5.9.
Furthermore, we have a version of Gronwall inequality for the Wasserstein distance
between two absolutely continuous curves and their tangent vector fields.

Lemma 5.21. Let M be a complete Riemannian manifold, and let mj : [0,∞) →
P2(M), j = 1, 2, be absolutely continuous curves in the space of probability measures
over M . Let vjt be a tangent vector field of mj

t with respect to the Wasserstein metric
on M . Then, for L1-a.e. t ≥ 0,

d

dt
W 2

2

(
m1

t ,m
2
t

)
≤ 2

∫
M2

(〈
γ̇p1,p2(1), v

2
t (p2)

〉
−
〈
γ̇p1,p2(0), v

1
t (p1)

〉)
dτt(p1, p2) (5.30)

for τt ∈ Γo(m
1
t ,m

2
t) and γp1,p2 : [0, 1]→M a geodesic joining p1 and p2. Moreover, if

the geodesics satisfy supt∈[0,1] ∥γ̈p1,p2(t)∥ ≤ dM(p1, p2)
2, v1t is Lip1

t–Lipschitz, and v2t ,
resp. v1t − v2t , is uniformly bounded by ∥v2t ∥∞, resp. ∥v2t − v1t ∥∞, then

d

dt
W 2

2

(
m1

t ,m
2
t

)
≤ 2

(∥∥v2t ∥∥∞ + Lip1
t

)
W 2

2

(
m1

t ,m
2
t

)
+ 2

∥∥v2t − v1t ∥∥∞W2

(
m1

t ,m
2
t

)
.

The proof of Lemma 5.21 can be found in Appendix C.3.2.

123

5.4.3 Generalization bound: main result

Define, for a function f : Sd−1 → R,

∥f∥C2 := sup
ξ∈Sd−1

∥Dξf∥∞ + LipDf , (5.31)

where LipDf is the Lipschitz constant of the derivative D·f . We now prove uniform
stability of the Wasserstein gradient flow.

Proposition 5.22. Under Assumption 5.17, AT
wgf has uniform stability βT , where

βT = exp

(∫ T

0

C1(t)dt

)
C2(T)

∫ T

0

C2(t)dt (5.32)

and

C1(t) := CℓRemp(h(µt), Sn)
1/2 ∥ϕ∥C2 + ρn ∥V ∥C2 + ∥ℓ∥C2 ∥Dϕ∥2Sd−1,∞

C2(t) := Cℓ ∥Dϕ∥Sd−1,∞ sup
(x,y)∈supp(D)

ℓ
(
y(x, µt), y

)1/2
.

(5.33)

Proof. Fix a sample set Sn = {(xi, yi) : i = 1, . . . , n} and let µ : R+ → P2(Θ) be the
Wasserstein gradient flow for the functional Fn(· , Sn), defined in (5.25). That means,
AT

wgf (Sn) = µT . For i = 1, . . . , n, the objective functional when removing the ith

sample (xi, yi) from the sample set Sn is denoted by µ 7→ Fn(µ, S
\i
n) = Remp(µ, S

\i
n) +

ρn
∫
Θ
V (θ)dµ(θ). Let µ\i be the Wasserstein gradient flow for the functional Fn(· , S\in),

so that AT
wgf (S

\i
n) = µ

\i
T . Denote as well y(x, µ) :=

∫
Θ
ϕ(· , x)dµ =

∫
Sd−1 ϕ(· , x)dh(µ)

the output of the mean-field map for the input x ∈ X and measure µ ∈M+(Θ).
Step 1: We first derive an explicit formula for the tangent vector field vSt of h(µt). Re-
call that the loss functional LSn : L

2(X,Y)→ R is defined by L(f) = 1
n

∑n
i=1 ℓ(f(xi), yi).

From Lemma 5.20, we have for ξ ∈ Sd−1:

vSt (ξ) = −DξF
′
n(h(µt), Sn)(ξ)

= −
〈
dLSn

(∫
Sd−1

Φdh(µt)

)
, DξΦ(ξ)

〉
− ρnDξV (ξ)

= − 1

n

n∑
i=1

∂ℓ

∂y1

(
y(xi, µt), yi

)
Dξ ϕ(ξ, xi)− ρnDξV (ξ). (5.34)

Similarly, the tangent vector field v
S, \i
t of h

(
µ
\i
t

)
is given by

v
S, \i
t (ξ) = − 1

n

∑
i′ ̸=i

∂ℓ

∂y1

(
y
(
xi′ , µ

\i
t

)
, yi′

)
Dξ ϕ(ξ, xi′)− ρnDξV (ξ). (5.35)

124

Step 2: We now verify the conditions of the second part of Lemma 5.21. First,
geodesics γp,v on Sd−1 with initial position and speed (p, v) satisfy γ̈p,v = −∥v∥2 γp,v,
so ∥γp1,p2(t)∥ = dM(p1, p2)

2, for each t ∈ [0, 1]. Next, Assumption 5.17 together with
(5.34) ensures that vSt is LipS

t –Lipschitz continuous, with

LipS
t =

1

n

n∑
i=1

∥∥∥∥ ∂ℓ∂y1 (y(xi, µt), yi)

∥∥∥∥LipDϕ, Sd−1,∞ + ρnLipDV, Sd−1

≤ CℓRemp(h(µt), Sn)
1/2LipDϕ, Sd−1,∞ + ρnLipDV, Sd−1 . (5.36)

We also note from (5.35) that vS, \it is uniformly bounded by∥∥∥vS, \it

∥∥∥
∞

=
1

n

∑
i′ ̸=i

∥∥∥∥ ∂ℓ∂y1
(
y
(
xi′ , µ

\i
t

)
, yi′

)∥∥∥∥ ∥Dϕ∥Sd−1,∞ + ρn ∥DV ∥Sd−1

≤ CℓRemp(h(µt), Sn)
1/2 ∥Dϕ∥Sd−1,∞ + ρn ∥DV ∥Sd−1 . (5.37)

Furthermore, for ξ ∈ Sd−1, we estimate the difference∥∥∥vSt (ξ)− v
S, \i
t (ξ)

∥∥∥
≤ 1

n

∥∥∥∥ ∂ℓ∂y1 (y(xi, µt), yi)

∥∥∥∥ ∥Dϕ∥Sd−1,∞

+
1

n

∑
i′ ̸=i

∥∥∥∥ ∂ℓ∂y1
(
y
(
xi′ , µ

\i
t

)
, yi′

)
− ∂ℓ

∂y1

(
y(xi′ , µt), yi′

)∥∥∥∥ ∥Dϕ∥Sd−1,∞

≤ 1

n
Cℓ ℓ

(
y(xi, µt), yi

)1/2 ∥Dϕ∥Sd−1,∞ +
1

n

∑
i′ ̸=i

∥ℓ∥C2

∥∥∥y(xi′ , µ\it − µt

)∥∥∥ ∥Dϕ∥Sd−1,∞

Therefore, by the dual formulation of the 1–Wasserstein distance, we deduce∥∥∥vSt − v
S, \i
t

∥∥∥
∞
≤ 1

n
Cℓ ℓ

(
y(xi, µt), yi

)1/2 ∥Dϕ∥Sd−1,∞

+ ∥ℓ∥C2 ∥Dϕ∥2Sd−1,∞W1

(
h
(
µ
\i
t

)
, h(µt)

)
(5.38)

Step 3: We combine (5.36), (5.37), and (5.38) together with Lemma 5.21 to get

d

dt
W 2

2

(
h(µt), h

(
µ
\i
t

))
≤ 2C1(t)W

2
2

(
h(µt), h

(
µ
\i
t

))
+

2

n
C2(t)W2

(
h(µt), h

(
µ
\i
t

))
,

where C1 and C2 are defined in (5.33). We can thus apply Lemma D.5, a variant of
Gronwall lemma, to deduce the following bound on the Wasserstein distance between
µT and µ

\i
T .

W2

(
h(µT), h

(
µ
\i
T

))
≤ 1

n
exp

(∫ T

0

C1(t)dt

)∫ T

0

C2(t)dt. (5.39)

125

Step 5: Finally, we get that for each (x, y) ∈ supp(D),∣∣∣ℓ(y(x, µT), y
)
− ℓ
(
y
(
x, µ

\i
T

)
, y
)∣∣∣ ≤ ∥∥∥∥ ∂ℓ∂y1 (y(x, µT), y

)∥∥∥∥ ∥∥∥y(x, µT − µ
\i
T

)∥∥∥
≤ Cℓ ℓ

(
y(x, µT), y

)1/2 ∥Dϕ∥Sd−1,∞W1

(
h(µT), h

(
µ
\i
T

))
≤ C2(T)W2

(
h(µT), h

(
µ
\i
T

))
.

The result follows by definition.

We can now apply Proposition 5.19 to compute an exponential generalization bound
for the Wasserstein gradient flow alogrithm.

Theorem 5.23. Let δ ∈ (0, 1). Under Assumption 5.17, with probability 1− δ over
the choice of the dataset Sn, we have

R
(
AT

wgf(Sn)
)
≤ Remp

(
AT

wgf(Sn), Sn

)
+

2βT
n

+ (4βT +B)

√
log 1/δ

2n
, (5.40)

where βT is defined in (5.32) and

B = 2 ∥ℓ∥C2

(
∥ϕ∥2Sd−1,∞

(∫
Θ

∥u∥2 dµ0(u)

)2

+ sup
y∼DY

∥y∥2
)
.

Proof. In order to apply Proposition 5.19, we need to compute the uniform bound B
on the loss function. We first have

ℓ(y′, y) ≤ ℓ(y, y) +
∂ℓ

∂y1
(y, y)⊤(y′ − y) + ∥ℓ∥C2 ∥y′ − y∥2

Assumption 5.17 (iii) states that ℓ(y, y) = 0, as well as ∥∂ℓ/∂y1(y, y)∥ ≤ Cℓℓ(y, y)
1/2 =

0. Therefore, ℓ(y′, y) ≤ ∥ℓ∥C2 ∥y′ − y∥2. Now,∫
Θ

ϕ(· , x)dAT
wgf(Sn) =

∫
Sd−1

ϕ(· , x)dh(AT
wgf(Sn))

≤ ∥ϕ∥Sd−1,∞

∫
Θ

∥u∥2 dµ0(u)

The last step holds by Lemma 5.20. We conclude that

ℓ

(∫
Θ

ϕ(· , x)dAT
wgf(Sn), y

)
≤ 2 ∥ℓ∥C2

(
∥ϕ∥2Sd−1,∞

(∫
Θ

∥u∥2 dµ0(u)

)2

+ sup
y∼DY

∥y∥2
)

126

100 101

Number of particles

10−5

10−3

10−1

T
ra
in
in
g
lo
ss

R
em

p

100 101

Number of particles

10−5

10−3

10−1

100 101

Number of particles

10−5

10−3

10−1

Particle gradient flow

m0

Last layer only

Figure 5.2: Final training loss against the number of particles m, with m0 = 6. The light blue
points are 10 individual runs, the solid blue line is their median and the red curve is only optimizing
the last layer. Left: d0 = 64, K = 2. Middle: d0 = 8, dh = 8, K = 3. Right: d0 = 4, dh = 4, K = 4.

We observe from (5.32) that βT depends exponentially on the horizon (or number of
iterations) T . This is in contrast with convex losses, that show a linear dependence
on the number of iterations for gradient descent [69].
Now, in a sparse optimization setting, we have linear convergence of gradient flow [34]:
T does not depend on n or d, which means that our bound (5.40) does not suffer from
the curse of dimensionality, despite having weak assumptions on the data distribution.
However, this bound is not practical as approximating the Wasserstein gradient flow
with m particles induces an error that scales like m1/d. The results are in line with
[12]: when no assumption on the data manifold is made, the generalization bound
scales like n1/d.

5.5 Numerical experiments

In this section, we empirically study the previous abstract theory on specific examples
by simulating the particle gradient flow using discrete SGD steps with gradients for
each model computed with respect to the average prediction. We show on synthetic
experiments that the particle gradient flow converges to an optimal set of parameters.
The experiments on CIFAR-10 classification demonstrate favourable generalization
properties.

5.5.1 Particle complexity for convergence of multi-layer ReLU
networks

We numerically investigate the particle complexity required for the convergence of
the particle gradient flow to a global minimum. To do so, we generate synthetic
data and a true neural network that achieves zero loss on the data as follows. We

127

1 2 3 4 5 6 7 8 9 10
Number of particles

0.0

0.2

0.4

0.6

0.8

1.0
L
os
s

Train

Test

1 2 3 4 5 6 7 8 9 10 11 12
Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

L
os
s

Train

Test

Figure 5.3: Particle gradient flow on AlexNetSmall and VGG11 tested on CIFAR-10. Left:
AlexNetSmall on CIFAR-10. Right: VGG11 (11 layers)

generate the input data from the uniform distribution x ∈ [−1, 1]d0 , the parameters
(θj)

m0
j=1 are fixed weights and biases of a K-layer neural network, and the output labels

y = 1
m0

∑m0

j=1 ϕ(θj, x), where m0 is the true number of particles. We simulate the
gradient flow using a mixture of m particles with the mean squared loss ℓ using 10, 000

gradient updates with early stopping if the loss has not improved in the last 1, 000

updates or if the loss dropped below 10−6. We compare the particle gradient flow with
randomly initializing m particles (θ̃j)

m
j=1 and only optimizing the last layer containing

the weights (wj)
m
j=1, so that the input-output map x 7→∑m

j=1wjϕ(θ̃j, x) is linear in w.
We see in Figure 5.2 that the effect of depth is two-fold. First, as the depth increases
the individual networks ϕ become more expressive and the gradient flow converges to
a lower loss even with less than m0 particles. On the other hand, the networks become
harder to train to global convergence, requiring more particles or longer training to
achieve the target loss of 10−6.

5.5.2 Convergence of the particle gradient flow of deep convo-
lutional networks

We empirically explore the convergence of particle gradient flow on ensembles of two
different architectures, VGG11 [140] (11 layers) and a smaller modification of an
AlexNet [92] that we call AlexNetSmall (6 layers) on CIFAR-10.
Figure 5.3 shows the final loss of models after 250 epochs of training on CIFAR-10.
We see that the training loss of both models is improved with increasing the number
of particles until it converges to a maximum at m̃ = 8 for AlexNetSmall and m̃ = 4

for VGG11, beyond which the training capabilities do not improve.

128

Surprisingly, we do not observe overfitting behaviour after increasing the number
of particles beyond m̃. For AlexNetSmall the test loss stays roughly constant for
m ≥ 5. For VGG11, we observe an improvement in test loss even in a regime where
the training loss has saturated. We believe that this suggests favorable generalization
properties of average ensembles trained with particle gradient flow.

129

Bibliography

[1] Ralph Abraham and Joel Robbin. Transversal mappings and flows. W.A.
Benjamin, New York, USA, 1967.

[2] Ibrahim M Alabdulmohsin. Algorithmic stability and uniform generalization.
In Advances in Neural Information Processing Systems, volume 28, 2015.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization
in Overparameterized Neural Networks, Going Beyond Two Layers. In Advances
in Neural Information Processing Systems, pages 6158–6169, 2019.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for
Deep Learning via Over-Parameterization. In Proceedings of Machine Learning
Research, volume 97, pages 242–252, 2019.

[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows in Metric
Spaces and in the Space of Probability Measures. Lectures in Mathematics, ETH
Zürich, Zurich, Switzerland, 2008.

[6] Dyego Araújo, Roberto I. Oliveira, and Daniel Yukimura. A mean-field limit for
certain deep neural networks, 2019.

[7] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A Convergence Anal-
ysis of Gradient Descent for Deep Linear Neural Networks. In 7th International
Conference on Learning Representations (ICLR), 2019.

[8] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit Regularization
in Deep Matrix Factorization. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[9] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-
grained analysis of optimization and generalization for overparameterized two-
layer neural networks. In Proceedings of the 36th International Conference on

130

https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf
https://openreview.net/forum?id=SkMQg3C5K7
https://openreview.net/forum?id=SkMQg3C5K7
https://proceedings.neurips.cc/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf

Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 322–332. PMLR, 2019.

[10] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and
Ruosong Wang. On exact computation with an infinitely wide neural net. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[11] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger general-
ization bounds for deep nets via a compression approach. In Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 254–263. PMLR, 2018.

[12] Francis Bach. Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(19):1–53, 2017.

[13] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell,
and Julian McAuley. ReZero is all you need: fast convergence at large depth.
In Proceedings of Machine Learning Research, volume 161, pages 1352–1361.
PMLR, 2021.

[14] David Barrett and Benoit Dherin. Implicit gradient regularization. In Interna-
tional Conference on Learning Representations, 2021.

[15] Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity
initialization efficiently learns positive definite linear transformations by deep
residual networks. In International Conference on Machine Learning (ICML),
pages 521–530. PMLR, 2018.

[16] Peter L. Bartlett, Steven N. Evans, and Philip M. Long. Representing smooth
functions as compositions of near-identity functions with implications for deep
network optimization, 2018.

[17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized
margin bounds for neural networks. In Advances in Neural Information Process-
ing Systems, volume 30, 2017.

[18] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign
overfitting in linear regression. Proceedings of the National Academy of Sciences,
117(48):30063–30070, 2020.

131

https://proceedings.mlr.press/v161/bachlechner21a/bachlechner21a.pdf
https://pubmed.ncbi.nlm.nih.gov/30645179/
https://pubmed.ncbi.nlm.nih.gov/30645179/
https://pubmed.ncbi.nlm.nih.gov/30645179/
https://arxiv.org/pdf/1804.05012.pdf
https://arxiv.org/pdf/1804.05012.pdf
https://arxiv.org/pdf/1804.05012.pdf

[19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings
of the National Academy of Sciences, 116(32):15849–15854, 2019.

[20] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, 1994.

[21] Yoshua Bengio. Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, page 437–478. Springer,
2012.

[22] Leon Bottou. Online Algorithms and Stochastic Approximations. Cambridge
University Press, Cambridge, UK, 1998.

[23] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for
large-scale machine learning. SIAM Review, 60(2):223–311, 2018.

[24] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of
Machine Learning Research, 2:499–526, 2002.

[25] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[26] Alan J Bray and David S Dean. Statistics of critical points of gaussian fields on
large-dimensional spaces. Physical Review Letters, 98(15):150–201, 2007.

[27] Yuan Cao and Quanquan Gu. Generalization Bounds of Stochastic Gradient
Descent for Wide and Deep Neural Networks. In Advances in Neural Information
Processing Systems (NeuIPS), 2019, 2019.

[28] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural Ordinary Differential Equations. In Advances in Neural Information
Processing Systems 31, pages 6571–6583, 2018.

[29] Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A generalized neural
tangent kernel analysis for two-layer neural networks. In Advances in Neural
Information Processing Systems, volume 33, pages 13363–13373, 2020.

[30] Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient
and Langevin processes. In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pages 1810–1819, 2020.

132

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=279181
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=279181
http://papers.nips.cc/paper/9266-generalization-bounds-of-stochastic-gradient-descent-for-wide-and-deep-neural-networks.pdf
http://papers.nips.cc/paper/9266-generalization-bounds-of-stochastic-gradient-descent-for-wide-and-deep-neural-networks.pdf
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf

[31] Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent
for Over-parameterized Models using Optimal Transport. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[32] Lenaic Chizat and Francis Bach. Implicit Bias of Gradient Descent for Wide
Two-layer Neural Networks Trained with the Logistic Loss, February 2020.

[33] Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in
Differentiable Programming. In Advances in Neural Information Processing
Systems, 2019.

[34] Lénaïc Chizat. Sparse Optimization on Measures with Over-parameterized
Gradient Descent, July 2019.

[35] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In
Advances in Neural Information Processing Systems, volume 22, 2009.

[36] Alain-Sam Cohen, Rama Cont, Alain Rossier, and Renyuan Xu. Scaling Prop-
erties of Deep Residual Networks. In Proceedings of the 38th International
Conference on Machine Learning, pages 2039–2048, 2021.

[37] Alain-Sam Cohen, Rama Cont, Alain Rossier, and Renyuan Xu. Scaling prop-
erties of deep residual networks. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 2039–2048. PMLR,
18–24 Jul 2021.

[38] George V. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2:303–314, 1989.

[39] Amit Daniely, Roy Frostig, and Yoram Singer. Toward Deeper Understanding of
Neural Networks: The Power of Initialization and a Dual View on Expressivity.
In Advances in Neural Information Processing Systems 29, pages 2253–2261,
2016.

[40] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems, volume 27, 2014.

[41] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern
Recognition, volume 1. Springer, New York, USA, 1996.

133

https://proceedings.neurips.cc/paper/2018/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
http://proceedings.mlr.press/v139/cohen21b/cohen21b.pdf
http://proceedings.mlr.press/v139/cohen21b/cohen21b.pdf
http://papers.nips.cc/paper/6427-toward-deeper-understanding-of-neural-networks-the-power-of-initialization-and-a-dual-view-on-expressivity.pdf
http://papers.nips.cc/paper/6427-toward-deeper-understanding-of-neural-networks-the-power-of-initialization-and-a-dual-view-on-expressivity.pdf

[42] Hans M. Dietz. On the solution of matrix-valued linear stochastic differential
equations driven by semimartingales. Stochastics: An International Journal of
Probability and Stochastic Processes, 34:127–147, 1991.

[43] Simon Du and Wei Hu. Width Provably Matters in Optimization for Deep
Linear Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research, pages 1655–1664,
2019.

[44] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient
Descent Finds Global Minima of Deep Neural Networks. In Proceedings of the
36th International Conference on Machine Learning, pages 1675–1685, 2019.

[45] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient de-
scent provably optimizes over-parameterized neural networks. In International
Conference on Learning Representations, 2019.

[46] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs.
In Advances in Neural Information Processing Systems, volume 32, 2019.

[47] Weinan E, Jiequn Han, and Qianxiao Li. A mean-field optimal control for-
mulation of deep learning. Research in the Mathematical Sciences, 6(1):1–41,
2019.

[48] Weinan E, Chao Ma, Qingcan Wang, and Lei Wu. Analysis of the gradient
descent algorithm for a deep neural network model with skip-connections. CoRR,
abs/1904.05263, 2019.

[49] Weinan E, Chao Ma, Qingcan Wang, and Lei Wu. Analysis of the Gradient
Descent Algorithm for a Deep Neural Network Model with Skip-connections.
arXiv preprint arXiv:1904.05263, 2019.

[50] Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural
Networks. In 29th Annual Conference on Learning Theory, pages 907–940.
PMLR, 2016.

[51] Michel Emery. Equations différentielles stochastiques lipschitziennes: étude de
la stabilité. Séminaire de probabilités (Strasbourg), 13:281–293, 1979.

134

http://proceedings.mlr.press/v97/du19a/du19a.pdf
http://proceedings.mlr.press/v97/du19a/du19a.pdf
http://proceedings.mlr.press/v97/du19c/du19c.pdf
http://proceedings.mlr.press/v97/du19c/du19c.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://arxiv.org/pdf/1904.05263.pdf
https://arxiv.org/pdf/1904.05263.pdf
https://proceedings.mlr.press/v49/eldan16.html
https://proceedings.mlr.press/v49/eldan16.html

[52] Vitaly Feldman and Jan Vondrak. High probability generalization bounds for
uniformly stable algorithms with nearly optimal rate. In Alina Beygelzimer and
Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning Research, pages 1270–1279.
PMLR, 2019.

[53] Gerald B Folland. Real Analysis: Modern Techniques and Their Applications.
John Wiley & Sons, 1999.

[54] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference on Learning
Representations, 2019.

[55] C. Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified
network optimization. In International Conference on Learning Representations,
2017.

[56] Spencer Frei, Yuan Cao, and Quanquan Gu. Algorithm-dependent generalization
bounds for overparameterized deep residual networks. CoRR, abs/1910.02934,
2019.

[57] Thomas O. Gallouët and Léonard Monsaingeon. A jko splitting scheme for
kantorovich–fisher–rao gradient flows. SIAM Journal on Mathematical Analysis,
49(2):1100–1130, 2017.

[58] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit Regularization
of Discrete Gradient Dynamics in Linear Neural Networks. In Advances in Neural
Information Processing Systems 32, pages 3202–3211, 2019.

[59] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of Machine Learning Research,
volume 9, pages 249–256, 2010.

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[61] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing Systems, volume 27, 2014.

135

http://papers.nips.cc/paper/8583-implicit-regularization-of-discrete-gradient-dynamics-in-linear-neural-networks.pdf
http://papers.nips.cc/paper/8583-implicit-regularization-of-discrete-gradient-dynamics-in-linear-neural-networks.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://www.deeplearningbook.org

[62] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2015.

[63] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour, 2018.

[64] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing
implicit bias in terms of optimization geometry. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 1832–1841,
2018.

[65] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit Bias
of Gradient Descent on Linear Convolutional Networks. In Advances in Neural
Information Processing Systems 31, pages 9461–9471, 2018.

[66] Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur,
and Nathan Srebro. Implicit regularization in matrix factorization. In Advances
in Neural Information Processing Systems 31 (NeurIPS), 2017.

[67] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.
Inverse Problems, 34(1), 2018.

[68] Moritz Hardt and Tengyu Ma. Identity Matters in Deep Learning. In 5th
International Conference on Learning Representations (ICLR), 2017.

[69] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better:
Stability of stochastic gradient descent. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1225–1234, New York, New York, USA, 20–22 Jun 2016. PMLR.

[70] Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning
rate to generalize well: Theoretical and empirical evidence. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2015.

136

http://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf
http://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf
https://arxiv.org/pdf/1705.03341.pdf
https://openreview.net/forum?id=ryxB0Rtxx
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings
in Deep Residual Networks. In European Conference on Computer Vision, pages
630–645, 2016.

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society, 2016.

[74] Jahn Heymann, Lukas Drude, and Reinhold Haeb-Umbach. Wide Residual
BLSTM Network with Discriminative Speaker Adaptation for Robust Speech
Recognition. In Computer Speech and Language, 2016.

[75] Desmond J Higham, Xuerong Mao, and Andrew M Stuart. Strong convergence
of euler-type methods for nonlinear stochastic differential equations. SIAM
Journal on Numerical Analysis, 40(3):1041–1063, 2002.

[76] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6:107–116, 04 1998.

[77] Kaitong Hu, Zhenjie Ren, David Siska, and Lukasz Szpruch. Mean-Field Langevin
Dynamics and Energy Landscape of Neural Networks. arXiv:1905.07769, May
2019.

[78] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep
Networks with Stochastic Depth. In European Conference on Computer Vision,
2016.

[79] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. 32nd International Conference
on Machine Learning, ICML 2015, 1:448–456, 2015.

[80] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. CoRR, abs/1502.03167,
2015.

[81] Kiyosi Itô. Stochastic integral. Proc. Imp. Acad., 20(8):519–524, 1944.

137

https://arxiv.org/pdf/1603.05027v3.pdf
https://arxiv.org/pdf/1603.05027v3.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://ris.uni-paderborn.de/publication/11834
https://ris.uni-paderborn.de/publication/11834
https://ris.uni-paderborn.de/publication/11834
https://arxiv.org/pdf/1603.09382.pdf
https://arxiv.org/pdf/1603.09382.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

[82] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel:
Convergence and Generalization in Neural Networks. In Advances in Neural
Information Processing Systems, volume 31, pages 8571–8580, 2018.

[83] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear
networks. In International Conference on Learning Representations, 2019.

[84] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear
networks, 2019.

[85] Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and
Samy Bengio. Fantastic generalization measures and where to find them. In
International Conference on Learning Representations, 2020.

[86] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in Neural Information Processing
Systems, volume 26, 2013.

[87] Kenji Kawaguchi. Deep Learning without Poor Local Minima. In Advances in
Neural Information Processing Systems 29, pages 586–594, 2016.

[88] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in
deep learning. Mathematical Aspects of Deep Learning, pages 112–148, 2022.

[89] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. In International Conference on Learning
Representations, 2017.

[90] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[91] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. Citeseer, 2009.

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25 (NIPS 2012), pages 1097—-1105, 2012.

[93] Thomas Laurent and James von Brecht. Deep Linear Networks with Arbitrary
Loss: All Local Minima Are Global. In Proceedings of Machine Learning
Research, volume 80, 2018.

138

https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://arxiv.org/pdf/1810.02032.pdf
https://arxiv.org/pdf/1810.02032.pdf
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf

[94] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86, pages
2278–2324, 1998.

[95] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak,
Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any
depth evolve as linear models under gradient descent*. Journal of Statistical
Mechanics: Theory and Experiment, 2020(12), 2020.

[96] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient
descent only converges to minimizers. In 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 1246–1257,
2016.

[97] Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and
adaptive stochastic gradient algorithms. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 2101–2110, 2017.

[98] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David K. Duve-
naud. Scalable Gradients and Variational Inference for Stochastic Differential
Equations. In Proceedings of The 2nd Symposium on Advances in Approximate
Bayesian Inference, volume 118 of Proceedings of Machine Learning Research,
pages 1–28. PMLR, 2020.

[99] Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd
with stochastic differential equations (sdes). In Advances in Neural Information
Processing Systems, volume 34, pages 12712–12725, 2021.

[100] Shiyu Liang and R. Srikant. Why deep neural networks for function approxima-
tion? In International Conference on Learning Representations, 2017.

[101] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport
in competition with reaction: The hellinger–kantorovich distance and geodesic
curves. SIAM Journal on Mathematical Analysis, 48(4):2869–2911, 2016.

[102] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks,
12(10):1399–1404, dec 1999.

[103] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with
restarts. CoRR, abs/1608.03983, 2016.

139

https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
http://proceedings.mlr.press/v118/li20a/li20a.pdf
http://proceedings.mlr.press/v118/li20a/li20a.pdf

[104] Haihao Lu and Kenji Kawaguchi. Depth Creates No Bad Local Minima, 2017.

[105] Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A Mean-field
Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via
Overparameterization From Depth, March 2020.

[106] Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean
field analysis of deep ResNet and beyond: Towards provably optimization via
overparameterization from depth. In International Conference on Machine
Learning, pages 6426–6436. PMLR, 2020.

[107] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer
neural networks: Bridging deep architectures and numerical differential equations.
In 35th International Conference on Machine Learning, ICML, pages 5181–5190,
2018.

[108] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation:
Understanding the effectiveness of SGD in modern over-parametrized learn-
ing. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 3325–3334, 2018.

[109] Stéphane Mallat. Understanding deep convolutional networks. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 374(2065), 2016.

[110] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradi-
ent descent as approximate bayesian inference. Journal of Machine Learning
Research, 18(134):1–35, 2017.

[111] Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, and
Zoubin Ghahramani. Gaussian process behaviour in wide deep neural networks,
2018.

[112] Song Mei and Andrea Montanari. The Generalization Error of Random Features
Regression: Precise Asymptotics and Double Descent Curve, 2019.

[113] Song Mei and Andrea Montanari. The generalization error of random features
regression: Precise asymptotics and the double descent curve. Communications
on Pure and Applied Mathematics, 75(4):667–766, 2022.

140

https://arxiv.org/pdf/1702.08580.pdf
https://arxiv.org/pdf/1710.10121.pdf
https://arxiv.org/pdf/1710.10121.pdf

[114] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018.

[115] H. N. Mhaskar. Neural networks for optimal approximation of smooth and
analytic functions. Neural Computation, 8(1):164–177, 1996.

[116] Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable
to explain generalization in deep learning. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[117] Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-
normalized optimization in deep neural networks. In Advances in Neural Infor-
mation Processing Systems 28 (NIPS 2015), pages 2422–2430, 2015.

[118] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro.
Geometry of Optimization and Implicit Regularization in Deep Learning, May
2017.

[119] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In Search of the Real
Inductive Bias: On the Role of Implicit Regularization in Deep Learning. arXiv
preprint arXiv:1412.6614, 2014.

[120] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural
networks. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, page 2603–2612, 2017.

[121] Atsushi Nitand and Taiji Suzuki. Stochastic Particle Gradient Descent for
Infinite Ensembles. arXiv:1712.05438, December 2017.

[122] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A.
Abolafia, Jeffrey Pennington, and Jascha Sohl-dickstein. Bayesian deep convolu-
tional networks with many channels are gaussian processes. In International
Conference on Learning Representations, 2019.

[123] Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. ResNet
After All: Neural ODEs and Their Numerical Solution. In International Confer-
ence on Learning Representations, 2021.

141

https://arxiv.org/abs/1412.6614v4
https://arxiv.org/abs/1412.6614v4
https://openreview.net/forum?id=HxzSxSxLOJZ
https://openreview.net/forum?id=HxzSxSxLOJZ

[124] Stefano Peluchetti and Stefano Favaro. Infinitely deep neural networks as
diffusion processes. In Intl Conference on Artificial Intelligence and Statistics,
pages 1126–1136. PMLR, 2020.

[125] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence
of spectral universality in deep networks. In Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pages 1924–1932, 2018.

[126] Henning Petzka and Cristian Sminchisescu. Non-attracting Regions of Local
Minima in Deep and Wide Neural Networks. Journal of Machine Learning
Research, 22(143):1–34, 2021.

[127] Eckhard Platen and Nicola Bruti-Liberati. Numerical solution of stochastic
differential equations with jumps in finance, volume 64. Springer Science &
Business Media, 2010.

[128] B. T. Polyak. Gradient methods for minimizing functionals. U.S.S.R. Comput.
Math. Math. Phys., 3:864–878, 06 1963.

[129] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. Exponential expressivity in deep neural networks through transient
chaos. In Advances in Neural Information Processing Systems, volume 29, 2016.

[130] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems 20, pages 1177–1184,
2008.

[131] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion.
Springer, 2013.

[132] Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[133] Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles:
long time convergence and asymptotic error scaling of neural networks. In
Advances in Neural Information Processing Systems (NeurIPS 2018), pages
7146–7155, 2018.

142

http://jmlr.org/papers/v22/19-586.html
http://jmlr.org/papers/v22/19-586.html
https://zbmath.org/?q=an:0196.47701

[134] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning
with random features. In Advances in Neural Information Processing Systems
30 (NeurIPS 2017), pages 3215–3225, 2017.

[135] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill Publishing
Company, New York City, USA, 1964.

[136] Daniel Russo and James Zou. Controlling bias in adaptive data analysis using
information theory. In Proceedings of the 19th International Conference on Ar-
tificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning
Research, pages 1232–1240. PMLR, 2016.

[137] Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining
and Knowledge Discovery, 8(4):e1249, 2018.

[138] Michael E. Sander, Pierre Ablin, and Gabriel Peyré. Do Residual Neural
Networks discretize Neural Ordinary Differential Equations? In Advances in
Neural Information Processing Systems, volume 35, 2022.

[139] Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of
convolutional layers. CoRR, abs/1805.10408, 2018.

[140] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In 3rd International Conference on Learning
Representations (ICLR 2015), 2015.

[141] Justin Sirignano and Konstantinos Spiliopoulos. Mean Field Analysis of Neural
Networks: A Law of Large Numbers. SIAM Journal on Applied Mathematics,
80(2):725–752, jan 2020.

[142] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep
neural networks. Mathematics of Operations Research, 47(1):120–152, 2022.

[143] Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of
implicit regularization in stochastic gradient descent. In International Conference
on Learning Representations, 2021.

[144] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37,
pages 2256–2265, 2015.

143

https://arxiv.org/abs/2205.14612
https://arxiv.org/abs/2205.14612

[145] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[146] Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, and Rayadurgam Srikant. The
Global Landscape of Neural Networks: An Overview. IEEE Signal Processing
Magazine, 37(5):95–108, 2020.

[147] Matus Telgarsky. Representation Benefits of Deep Feedforward Networks, 2015.

[148] Matthew Thorpe and Yves van Gennip. Deep Limits of Residual Neural Networks.
Res. Math Sci., 10(6), 2023.

[149] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, volume 30, 2017.

[150] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave
like ensembles of relatively shallow networks. In Advances in Neural Information
Processing Systems 29 (NIPS 2016), pages 550–558, 2016.

[151] Cédric Villani. Topics in Optimal Transportation, volume Graduate Studies in
Mathematics 58. American Mathematical Society, Providence, Rhode Island,
2003.

[152] Lei Wu, Qingcan Wang, and Chao Ma. Global Convergence of Gradient De-
scent for Deep Linear Residual Networks. In Advances in Neural Information
Processing Systems 32, pages 13389–13398, 2019.

[153] Lei Wu, Qingcan Wang, and Chao Ma. Global Convergence of Gradient De-
scent for Deep Linear Residual Networks. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[154] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization
capability of learning algorithms. In Advances in Neural Information Processing
Systems, volume 30, 2017.

[155] Huan Xu and Shie Mannor. Robustness and generalization. Machine Learning,
86(3):391–423, 2012.

144

https://ieeexplore.ieee.org/document/9194023
https://ieeexplore.ieee.org/document/9194023
http://arxiv.org/abs/1509.08101
http://papers.nips.cc/paper/9493-global-convergence-of-gradient-descent-for-deep-linear-residual-networks.pdf
http://papers.nips.cc/paper/9493-global-convergence-of-gradient-descent-for-deep-linear-residual-networks.pdf
https://proceedings.neurips.cc/paper/2019/file/14da15db887a4b50efe5c1bc66537089-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/14da15db887a4b50efe5c1bc66537089-Paper.pdf

[156] Mengjia Xu, Akshay Rangamani, Qianli Liao, Tomer Galanti, and Tomaso
Poggio. Dynamics in deep classifiers trained with the square loss: Normalization,
low rank, neural collapse, and generalization bounds. Research, 6:0024, 2023.

[157] Liqing Yan. Right and left matrix-valued stochastic exponentials and explicit
solutions to systems of sdes. Stochastic Analysis and Applications, 30:1:160–173,
2012.

[158] Ge Yang and Samuel Schoenholz. Mean Field Residual Networks: On the Edge
of Chaos. In Advances in Neural Information Processing Systems 30, pages
7103–7114, 2017.

[159] Dmitry Yarotsky. Error bounds for approximations with deep relu networks.
Neural Networks, 94:103–114, 2017.

[160] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A Unifying View on Im-
plicit Bias in Training Linear Neural Networks. arXiv preprint arXiv:2010.02501,
2020.

[161] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Proceedings
of the British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA
Press, 2016.

[162] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding Deep Learning (still) Requires Rethinking Generalization. Com-
munications of the ACM, 64(3):107–115, 2021.

[163] Huishuai Zhang, Da Yu, Mingyang Yi, Wei Chen, and Tie-Yan Liu. Convergence
Theory of Learning Over-parameterized ResNet: A Full Characterization, 2019.

[164] Difan Zou and Quanquan Gu. An Improved Analysis of Training Over-
parameterized Deep Neural Networks. In Advances in Neural Information
Processing Systems, pages 2055–2064, 2019.

[165] Difan Zou, Philip M Long, and Quanquan Gu. On the Global Convergence
of Training Deep Linear ResNets. 8th International Conference on Learning
Representations (ICLR), 2020.

145

http://papers.nips.cc/paper/6879-mean-field-residual-networks-on-the-edge-of-chaos.pdf
http://papers.nips.cc/paper/6879-mean-field-residual-networks-on-the-edge-of-chaos.pdf
https://arxiv.org/abs/2010.02501
https://arxiv.org/abs/2010.02501
https://dl.acm.org/doi/epdf/10.1145/3446776
https://arxiv.org/pdf/1903.07120.pdf
https://arxiv.org/pdf/1903.07120.pdf
https://proceedings.neurips.cc/paper/2019/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf
https://openreview.net/pdf?id=HJxEhREKDH
https://openreview.net/pdf?id=HJxEhREKDH

Appendix A

Hyperparameters

We provide in Table A.1 the training hyperparameters used in our numerical exper-
iments. In Table A.2, we give a short description of each hyperparameter. For the
convolutional architecture, we also use a momentum of 0.9, a weight decay of 0.0005
and a cosine annealing learning rate scheduler [103].

Table A.1: Training hyperparameters.

Dataset Layers N B η Lmin Lmax Tmax Nepochs ϵ

Synthetic Fully-connected 1,024 32 0.01 3 10,321 160 5 0.01
MNIST Fully-connected 60,000 50 0.01 3 942 12,000 10 0.01

CIFAR-10 Convolutional 60,000 128 0.1 8 121 93,800 200 None

Table A.2: Description of the values in Table A.1. Note that Tmax =
⌈
N
B

⌉
Nepochs.

Parameter Description
N number of training samples
B minibatch size
η learning rate

Lmin smallest network depth
Lmax largest network depth
Tmax max number of SGD updates
Nepochs max number of epochs

ϵ early stopping value

146

Appendix B

Technical results of Chapter 4

B.1 Gradient of the loss function with respect to
parameters

Let x, y ∈ Rd and α(L) ∈ RL×d×d. We want to compute the gradient of ℓ(y, ŷ(x, α(L)))

with respect to the network parameters {α(L)
k : k = 1, . . . , L}. Fix 1 ≤ k ≤ L and

1 ≤ m,n ≤ d. We first observe that

∂ℓ

∂α
(L)
k,mn

(
y, ŷ(x, α(L))

)
= ∇ŷ ℓ

(
y, ŷ

(
x, α(L)

))⊤ ∂h(L)L

∂h
(L)
k

∂h
(L)
k

∂α
(L)
k,mn

.

By induction, we obtain

M
(L)
k :=

∂h
(L)
L

∂h
(L)
k

=
L∏

j=k+1

∂h
(L)
j

∂h
(L)
j−1

=
L∏

j=k+1

(
Id + δL

∂

∂h
(L)
j−1

σd

(
α
(L)
j h

(L)
j−1

))

=
L∏

j=k+1

(
Id + δLdiag

(
∇σd

(
α
(L)
j h

(L)
j−1

))
α
(L)
j

)
. (B.1)

We also have
∂h

(L)
k

∂α
(L)
k,mn

= δLσ
′
((
α
(L)
k h

(L)
k−1

)
m

)
h
(L)
k−1,nem ∈ Rd.

Denote σ̇(L)
k,m := σ′

((
α
(L)
k h

(L)
k−1

)
m

)
. Regrouping everything, we get

∂ℓ

∂α
(L)
k,mn

= δL h
(L)
k−1,n σ̇

(L)
k,m∇ŷ ℓ

(
y, ŷ

(
x, α(L)

))⊤
M

(L)
k em. (B.2)

147

B.2 Boundedness of hidden states and Jacobians

This section contains two useful results for our analysis.

Lemma B.1. Let α(L) ∈ RL×d×d and cA > 0 such that L ≥ 5cA and∥∥α(L)
∥∥
F,∞ = max

k=1,...,L

∥∥∥α(L)
k

∥∥∥
F
≤ cAL

−1/2.

Then, under Assumption 4.1 (i)–(ii), we have that for all x ∈ Rd and for every
k = 1, . . . , L,

∥x∥2 e−2cA ≤
∥∥∥hx, (L)k

∥∥∥
2
≤ ∥x∥2 e1.1cA and

∥∥∥Mx, (L)
k em

∥∥∥
2
≤ ecA .

Note that we did not try to optimize the constants in front of the bounds, and one
can easily sharpen them if needed.

Proof. We follow the same lines as [4]. Fix L ≥ 5cA. In the proof, we omit the explicit
dependence in L. First, note that we can write the logarithm of the norm of the
hidden state as follows:

log ∥hk∥ = log ∥x∥+ 1

2

k∑
j=1

log
∥hj∥2

∥hj−1∥2

= log ∥x∥+ 1

2

k∑
j=1

log

1 +
2δL

∥hj−1∥2
〈
hj−1, σ(αjhj−1)

〉
+ δ2L

∥σ(αjhj−1)∥2

∥hj−1∥2︸ ︷︷ ︸
=:∆j

 .

We can bound ∆j further:

∆j ≤ 2δL ∥αj∥F + δ2L ∥αj∥2F
≤ 2cAL

−1 + c2AL
−2 ≤ 11

5
cAL

−1. (B.3)

The first inequality holds by Cauchy-Schwartz and Assumption 4.1 (ii), the second by
hypothesis, and the third by Assumption 4.1 (i). Thus, we conclude the proof of the
upper bound by noting that log(1 + z) ≤ z for all z > −1.
For the lower bound, first observe that Cauchy-Schwartz yields

∆j ≥ −2δL ∥αj∥F ≥ −2cAL−1.

148

From (B.3), we also have |∆j| ≤ 11
25
< 1

2
, so we can use the fact that log(1+z) ≥ z−z2

for all |z| < 1
2

to deduce that

log ∥hk∥ ≥ log ∥x∥+ 1

2

k∑
j=1

(
∆j −∆2

j

)
≥ log ∥x∥ − cA −

121

25
c2AL

−1 ≥ log ∥x∥ − 2cA,

which concludes the proof for the lower bound on the hidden states.
For the upper bound on the Jacobians, we apply Lemma D.1 repeatedly on Mk to get

log ∥Mkem∥2 ≤ log ∥em∥2 +
L∑

j=k+1

log ∥Id + δLdiag (∇σd (αjhj−1))αj∥2

≤
L∑

j=k+1

δL ∥diag (∇σd (αjhj−1))αj∥2 ≤
L∑

j=k+1

δL ∥αj∥F ≤ cA,

where we use ∥·∥2 ≤ ∥·∥F and Assumption 4.1 (ii) in the third inequality.

We deduce directly an upper bound on the loss function JL that does not depend on
L.

Corollary B.2. Under the same hypotheses as Lemma B.1, we have

JL
(
α(L)

)
≤ 1 + e2.2cA .

Proof. By definition of the loss function and using Lemma B.1, we have

JL
(
α(L)

)
=

1

2N

N∑
i=1

∥∥yi − ŷL (xi, α(L)
)∥∥2

2

≤ 1

2N

N∑
i=1

2 ∥yi∥2 + 2
∥∥∥hxi, (L)

L

∥∥∥2
2
≤ 1 + e2.2cA .

B.3 Upper bounds on the gradient and Hessian of
the loss function

Lemma B.3. Let α(L) ∈ RL×d×d and cA > 0 such that L ≥ 5cA and
∥∥α(L)

∥∥
F,∞ ≤

cAL
−1/2. Then, under Assumption 4.1 (i)–(ii), for k = 1, . . . L, it holds that∥∥∇αk

JL
(
α(L)

)∥∥2
F
≤ 2de4.2cAL−1JL

(
α(L)

)
.

149

Proof. Fix L ≥ 5cA. In the proof, we omit the explicit dependence in L. We first use
Cauchy-Schwartz and (B.2) to bound the Frobenius norm.

∥∇αk
JL(α)∥2F =

d∑
m,n=1

(
∂JL
∂αk,mn

(α)

)2

≤
d∑

m,n=1

1

N

N∑
i=1

(
∂ℓ

∂αk,mn

(yi, ŷ(xi, α))

)2

≤
d∑

m,n=1

δ2L
N

N∑
i=1

(
hxi
k−1,n

)2 ∥∇ŷ ℓ (yi, ŷ(xi, α))∥22 ∥Mxi
k em∥22

=
2L−1

N

N∑
i=1

∥∥hxi
k−1

∥∥2
2
ℓ(yi, ŷ(xi, α)) ∥Mxi

k ∥2F

≤ 2de4.2cAL−1JL(α),

where we use the fact that 2ℓ(y, ŷ) = ∥∇ŷ ℓ (y, ŷ)∥22 and Lemma B.1 in the last
inequality.

Finally, we derive an upper bound on the spectral norm of the Hessian of the loss
function.

Lemma B.4. Let α(L) ∈ RL×d×d and cA > 0 such that L ≥ 5cA and
∥∥α(L)

∥∥
F,∞ ≤

cAL
−1/2. Then, under Assumption 4.1 (i)–(ii), we have∥∥∇2

αJL
(
α(L)

)∥∥
2
≤ 5de4.3cA .

Proof. Fix L ≥ 5cA. In the proof, we omit the explicit dependence in L. We use
first-order information (B.2) to compute the second-order derivatives. Straightforward
but lengthy computations show that

∇2
αJL

(
α(L)

)
= Hpsd +H + H̃ + O

(
L−1/2

)
,

where Hpsd, H, H̃ ∈ RLd2×Ld2 are given by the following formulae:

Hpsd =
1

N

N∑
i=1

Hxi
psd H =

1

N

N∑
i=1

Hxi H̃ =
1

N

N∑
i=1

H̃xi ,

where(
Hxi

psd

)
(k,mn) (k′,m′n′)

= δ2Lh
xi
k−1,nh

xi

k′−1,n′σ̇k,xi,mσ̇k′,xi,m′ (Mxi
k em)

⊤ (Mxi

k′ em′)

Hxi

(k,mn) (k′,m′n′) = δLh
xi
k−1,nh

xi

k−1,n′σ̈k,xi,m (ŷ(xi, α)− yi)⊤Mxi
k em1m=m′1k=k′

H̃xi

(k,mn) (k′,m′n′) = δ2Lh
xi
k−1,nσ̇k,xi,mσ̇k,xi,m′ (ŷ(xi, α)− yi)⊤Mxi

k,−k′em1m′=n′1k<k′ .

150

Here, Mxi

k,−k′ is defined as the same product of matrices asMxi
k in (B.1), but without the

term j = k′. By the same reasoning as in Lemma B.1, we still have
∥∥Mxi

k,−k′em
∥∥
2
≤ ecA .

We readily see that for each i there exists Qi such that Hxi
psd = Q⊤

i Qi, so Hpsd is
positive semi-definite. The trace of Hpsd is straightforward to compute.

tr (Hpsd) =
1

N

N∑
i=1

tr
(
Hxi

psd

)
=
δ2L
N

N∑
i=1

∑
k,m,n

∣∣hxi
k−1,n

∣∣2 (σ̇k,xi,m)
2 ∥Mxi

k em∥22 .

=
1

N

N∑
i=1

L−1

L∑
k=1

∥∥hxi
k−1

∥∥2
2
∥Mxi

k ∥2F .

We deduce that by Lemma B.1 that tr (Hpsd) ≤ d2e4.2cA .
The upper bound on the Frobenius norm of H and H̃ is no harder.

∥Hxi∥2F ≤
L∑

k=1

d∑
m=1

δ2L
∥∥hxi

k−1

∥∥4
2
ℓ(yi, ŷ(xi, α)) ∥Mxi

k em∥22 ≤ de6.4cAℓ(yi, ŷ(xi, α)),∥∥∥H̃xi

∥∥∥2
F
≤
∑
k ̸=k′

δ4L
∥∥hxi

k−1

∥∥2
2
ℓ(yi, ŷ(xi, α))d

2e2cA ≤ d2e4.2cAℓ(yi, ŷ(xi, α)).

Hence, ∥H∥F ≤
√
2de3.2cAJL(α)

1/2 and ∥H̃∥F ≤
√
2de2.1cAJL(α)

1/2. Using Corollary
B.2 and wrapping both terms together, we get∥∥∇2

αJ
(
α(L)

)∥∥
2
≤ ∥Hpsd∥2 + ∥H∥2 + ∥H̃∥2 + O(L−1/2)

≤ tr(Hpsd)
1/2 + ∥H∥F + ∥H̃∥F + O(L−1/2)

≤ 5de4.3cA .

B.4 Lower bounds on loss gradients

This section contains a supporting result for the proof of Lemma 4.3.

Lemma B.5. Let α(L) ∈ RL×d×d. Under Assumption 4.1 (i)–(ii), we have, for
k = 1, . . . , L− 1,

∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

=
δL
N

N∑
i=1

hxi
k−1,n (σ̇k,xi,m − σ̇k+1,xi,m)∇ŷ ℓ (yi, ŷ(xi, α))

⊤Mxi
k+1em

+
δ2L
N

N∑
i=1

∇ŷ ℓ (yi, ŷ(xi, α))
⊤Mxi

k+1ξ
xi, (L)
k,mn ,

151

where ξx, (L)k,mn ∈ Rd satisfies∥∥∥ξx, (L)k,mn

∥∥∥2
2
≤ 2

(
hxk−1,n

)2 ∥αk+1 − αk∥2F + 2 ∥αk,n∥42
∥∥hxk−1

∥∥4
2
.

Proof. We use the gradient computation (B.2) and the definition (B.1) to get

∂JL
∂αk,mn

(
α(L)

)
=
δL
N

N∑
i=1

hxi
k−1,nσ̇k,xi,m∇ŷ ℓ

(
yi, ŷ(xi, α

(L))
)⊤
Mxi

k em,

∂JL
∂αk+1,mn

(
α(L)

)
=
δL
N

N∑
i=1

(
hxi
k−1,n + δLσk,xi,n

)
σ̇k+1,xi,m∇ŷ ℓ

(
yi, ŷ(xi, α

(L))
)⊤
Mxi

k+1em.

We use the identity Mxi
k =Mxi

k+1

(
Id+δLdiag (σ̇k+1,xi

)αk+1

)
and we take the difference

of the two equations above to get

∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

=
δL
N

N∑
i=1

hxi
k−1,n (σ̇k,xi,m − σ̇k+1,xi,m)∇ŷ ℓ (yi, ŷ(xi, α))

⊤Mxi
k+1em

+
δ2L
N

N∑
i=1

∇ŷ ℓ (yi, ŷ(xi, α))
⊤Mxi

k+1ξ
xi, (L)
k,mn ,

where∥∥∥ξx, (L)k,mn

∥∥∥2
2
≤ 2

(
hxk−1,n

)2 ∥αk+1 − αk∥2F + 2 (σ̇k+1,x,m)
2 (σ (αkh

x
k−1

)
n
−
(
αkh

x
k−1

)
n

)2
≤ 2

(
hxk−1,n

)2 ∥αk+1 − αk∥2F + 2 ∥αk,n∥42
∥∥hxk−1

∥∥4
2
.

We use the fact that |σ(z)− z| ≤ z2 by Assumption 4.1 (i).

B.5 Weight norms and loss function under gradient
descent

This section contains the proof of Lemmas 4.4 and 4.5.

Proof of Lemma 4.4 Fix L ∈ N∗. In the proof, we omit the explicit dependence in
L. We use the identity 1

2
(A2−B2) = B(A−B) + 1

2
(A−B)2 and the gradient descent

update rule to first compute

fk,m(α̃)− fk,m(α) = −LηL
d∑

n=1

αk,mn
∂JL
∂αk,mn

(α)︸ ︷︷ ︸
=:S1(α)

+
Lη2L
2

d∑
n=1

(
∂JL
∂αk,mn

)2

(α)︸ ︷︷ ︸
=:S2(α)

. (B.4)

152

Recall that the gradient of the loss ℓ with respect to the parameter αk,mn at sample
(x, y) is given by (B.2), so that we can compute

∂JL
∂αk,mn

(α) =
δL
N

N∑
i=1

hxi
k−1,n(α) σ̇k,xi,m(α)∇ŷ ℓ (yi, ŷ (xi, α))

⊤Mxi
k (α) em.

Recall also from (4.9) that

Gx,y
k (α) · em =

∂ℓ(y, ·)
∂hk

(ŷ(x, α)) em = ∇ŷ ℓ (y, ŷ(x, α))
⊤Mx

k (α) em.

We focus on the square of first order term S1,m(α) defined above. We have

S1(α)
2 =

L2δ2Lη
2
L

N2

(
d∑

n=1

αk,mn

N∑
i=1

hxi
k−1,n(α) σ̇k,xi,m(α)G

xi,yi
k (α) · em

)2

≤ L2δ2Lη
2
L

d∑
n=1

α2
k,mn

d∑
n=1

(
1

N

N∑
i=1

hxi
k−1,n(α) σ̇k,xi,m(α)G

xi,yi
k (α) · em

)2

≤ 2Lδ2Lη
2
Lfk,m(α)

d∑
n=1

1

N

N∑
i=1

(
hxi
k−1,n(α) σ̇k,xi,m(α)G

xi,yi
k (α) · em

)2
≤ 2η2Lfk,m(α)

1

N

N∑
i=1

∥∥hxi
k−1(α)

∥∥2
2
∥Gxi,yi

k (α)∥2∞ .

We used twice the Cauchy-Schwarz inequality and Assumption 4.1 (i)-(ii). Define now

rk(α) := ηL

(
1

N

N∑
i=1

∥∥hxi
k−1(α)

∥∥2
2
∥Gxi,yi

k (α)∥2∞

)1/2

.

By similar estimations, we also upper bound the second-order term: S2(α) ≤ 1
2
rk(α)

2.
Equation (B.4) then yields to

fk,m(α̃) ≤ fk,m(α) + |S1(α)|+ S2(α)

≤ fk,m(α) +
√
2rk(α)fk,m(α)

1/2 +
1

2
rk(α)

2 =

(
fk,m(α)

1/2 +
1√
2
rk(α)

)2

.

□

Proof of Lemma 4.5 Fix L ∈ N∗. In the proof, we omit the explicit dependence in
L. Define gk,m (α) := 1

2
L2 ∥αk+1,m − αk,m∥22 so that gk =

∑d
m=1 gk,m. We also omit the

dependence in α when it is clear. We use the identity 1
2
(A2−B2) = B(A−B)+ 1

2
(A−B)2

153

and the gradient descent update rule to first compute

gk,m(α̃)− gk,m(α) = L2ηL

d∑
n=1

(αk+1,mn − αk,mn)

(
∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

)
(α)︸ ︷︷ ︸

=:S1,m(α)

+
L2η2L
2

d∑
n=1

(
∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

)2

(α)︸ ︷︷ ︸
=:S2,m(α)

.

Next, we use Lemma B.5 to estimate the difference of gradients with respect to weights
in neighbouring layers. We also use the fact that L ≥ 5cA and

∥∥α(L)
∥∥
F,∞ ≤ cAL

−1/2

to apply Lemma B.1. Recall the definition of G in (4.9).

∂JL
∂αk,mn

− ∂JL
∂αk+1,mn

=
δL
N

N∑
i=1

hxi
k−1,n (σ̇k,xi,m − σ̇k+1,xi,m)G

xi,yi
k+1 · em

+
δ2L
N

N∑
i=1

∇ŷ ℓ (yi, ŷ(xi, α))
⊤Mxi

k+1ξ
xi, (L)
k,mn ,

where ξx, (L)k,mn ∈ Rd satisfies

d∑
n=1

∥∥∥ξx, (L)k,mn

∥∥∥2
2
≤ 4c2Ae

2.2cAL−1. (B.5)

We focus on the first order term S1,m(α) defined above. We have

S1,m(α) =
ηLδLL

2

N

N∑
i=1

Gxi,yi
k+1 · em (σ̇k,xi,m − σ̇k+1,xi,m)

d∑
n=1

(αk+1,mn − αk,mn)h
xi
k−1,n

+
ηLδ

2
LL

2

N

N∑
i=1

∇ŷ ℓ (yi, ŷ(xi, α))
⊤Mxi

k+1

d∑
n=1

(αk+1,mn − αk,mn) ξ
xi
k,mn.

Now, as σ′ is 1−Lipschitz, we can write

|S1,m(α)| ≤
ηLδLL

2

N

N∑
i=1

∥∥Gxi,yi
k+1,

∥∥
∞

∣∣(αk+1 − αk)h
xi
k−1

∣∣
m
|αkhk−1 − αk+1hk|m

+ ηLδ
2
LL

2

[
2

N

N∑
i=1

ℓ (yi, ŷ(xi, α))
∥∥Mxi

k+1

∥∥2
2
∥αk+1,m − αk,m∥22

d∑
n=1

∥∥ξxi
k,mn

∥∥2
2

]1/2
.

154

We now use the fact that L ≥ 5cA and
∥∥α(L)

∥∥
F,∞ ≤ cAL

−1/2 to apply Lemma B.1 on
the second term and deduce that

|S1,m(α)| ≤
ηLδLL

2

N

N∑
i=1

∥∥Gxi,yi
k+1

∥∥
∞

∣∣(αk+1 − αk)h
xi
k−1

∣∣2
m

+
ηLδLL

2

N

N∑
i=1

∥∥Gxi,yi
k+1

∥∥
∞

∣∣(αk+1 − αk)h
xi
k−1

∣∣
m

∣∣αk+1

(
hxi
k − hxi

k−1

)∣∣
m

+ 2ecAηL

(
d∑

n=1

∥∥ξxi
k,mn

∥∥2
2

)1/2

gk,m(α)
1/2JL(α)

1/2.

We apply Cauchy-Schwarz to the first and second term and equation (B.5) to the
third term to get

|S1,m(α)| ≤ 2ηLL
−1/2 1

N

N∑
i=1

∥∥hxi
k−1

∥∥2
2

∥∥Gxi,yi
k+1

∥∥
∞ gk,m(α)

+ ηLδLL
2

[
1

N

N∑
i=1

∥∥Gxi,yi
k+1

∥∥2
∞ ∥αk+1,m − αk,m∥22

∥∥hxi
k−1

∥∥2
2
∥αk+1,m∥22 δ2L ∥σk,xi

∥22

]1/2
+ 4cAe

2.1cAηLL
−1/2gk,m(α)

1/2JL(α)
1/2.

We now use Lemma B.1 and the identity Gxi,yi
k+1 =Mxi

k+1 (ŷ(xi, α)− yi) to estimate the
second term in the RHS:

|S1,m(α)| ≤ 2ηLL
−1/2 1

N

N∑
i=1

∥∥hxi
k−1

∥∥2
2

∥∥Gxi,yi
k+1

∥∥
∞ gk,m(α)

+ 2c2Ae
3.2cAηLL

−1gk,m(α)
1/2JL(α)

1/2 + 4cAe
2.1cAηLL

−1/2gk,m(α)
1/2JL(α)

1/2.

Thus,

|S1,m(α)| ≤ 2ηLL
−1/2 1

N

N∑
i=1

∥∥hxi
k−1

∥∥2
2

∥∥Gxi,yi
k+1

∥∥
∞ gk,m(α)

+ 2cAe
2.1cAηL

(
cAe

1.1cAL−1 + 2L−1/2
)
gk,m(α)

1/2JL(α)
1/2.

Define

rk(α) := ηL
1

N

N∑
i=1

∥∥hxi
k−1

∥∥2
2

∥∥Gxi,yi
k+1

∥∥
∞

Ek,m(L, d, α) := cAe
2.1cAηL

(
cAe

1.1cAL−1 + 2L−1/2
)
gk,m(α)

1/2JL(α)
1/2.

We then have |S1,m(α)| ≤ 2L−1/2gk,m(α)rk(α) + 2Ek,m(L, d, α). We use similar tech-
niques to derive the upper bound S2,m(α) ≤ L−1gk,m(α)rk(α)

2 + O(Ek,m(L, d, α)).

155

Hence, we deduce the following recurrence relation.

gk,m(α̃) ≤ gk,m(α)+|S1,m(α)|+S2,m(α) ≤ gk,m(α)
(
1 + L−1/2rk(α)

)2
+O (Ek,m(L, d, α)) .

Summing over m = 1, . . . , d and using Cauchy-Schwarz on the Ek,m terms, we get

gk(α̃) ≤ gk(α)
(
1 + L−1/2rk(α)

)2
+ O (Ek(L, d, α)) ,

where

Ek(L, d, α) := cAe
2.1cAηL

(
cAe

1.1cAL−1 + 2L−1/2
)
gk(α)

1/2JL(α)
1/2. (B.6)

□

B.6 Supporting lemma for Theorem 4.6

Lemma B.6. Let α(L)(0) ∈ RL×d×d be any weight initialization. Define recursively
α(L)(t+ 1) = α(L)(t)− ηL(t)∇αJL

(
α(L)(t)

)
for t = 0, . . . , T − 1. Assume that for all

t = 0, . . . , T − 1, there exist cA(t), c(t), c(t) > 0 such that

(i) L ≥ 5maxt<T cA(t),

(ii)
∥∥α(L)(t)

∥∥
F,∞ ≤ cA(t)L

−1/2, and

(iii)
∥∥∇α(L)JL

(
α(L)(t)

)∥∥2
F
≥ c(t)JL

(
α(L)(t)

)
− c(t)L−1.

Then, under Assumption 4.1 (i)–(ii), if the learning rates satisfy:

ηL(t) < min

(
1

2
cA(t)e

−3.2cA(t),
1

10
c(t)d−1e−8.5cA(t)

)
,

we have, for each t = 0, . . . , T :

JL
(
α(L)(t)

)
≤ exp

(
−1

2

t−1∑
t′=0

c(t′)ηL(t
′)

)
JL
(
α(L)(0)

)
+ L−1

t−1∑
t′=0

c(t′)ηL(t
′). (B.7)

Proof. Fix L ≥ 5maxt<T cA(t). We omit the explicit dependence in L. Fix t ∈ [0, T).
We first view α(t), ∇αJL(α(t)) ∈ RL×d×d as vectors in the Euclidean space RLd2 , and
we get by hypothesis and by Lemma B.3 that

∥vec(α(t))∥2 = ∥α(t)∥F =

(
L∑

k=1

∥αk(t)∥2F

)1/2

≤ cA(t),

c(t)JL(α(t))− c(t)L−1 = ∥∇αJL(α(t))∥2F ≤ 2e4.2cA(t)JL(α(t)).

156

We want to use Lemma D.3 with p = Ld2, R = cA, x0 = α(t) and x = α(t) −
ηL(t)∇αJL(α(t)). For this, we need to check two assumptions. The first is an upper
bound on the spectral norm of the Hessian of JL, which we get from Lemma B.4.

H∞(t) = sup
∥α′∥F≤ cA(t)

∥∥∇2JL(α
′)
∥∥
2
≤ 5de4.3cA(t).

The second is an upper bound on the norm of x− x0 = −ηL(t)∇αJL(α(t)), which we
get from Lemma B.3.

ηL(t) ∥∇αJL(α(t))∥2 ≤
√
2ηL(t)e

2.1cA(t)JL(α(t))
1/2

≤
√
2ηL(t)e

2.1cA(t)
(
1 + e2.2cA(t)

)1/2
≤ 2ηL(t)e

3.2cA(t) ≤ cA(t),

where the second inequality comes from Corollary B.2 and the third inequality from
the fact that (1 + z)1/2 ≤ (2z)1/2 for z ≥ 1. Hence, we can apply Lemma D.3 and
deduce that

JL (α(t+ 1)) = JL

(
α(t)− ηL(t)∇αJL(α(t))

)
− JL(α(t))

≤ JL (α(t))− ηL(t) ∥∇αJL(α(t))∥2F +
1

2
H∞(t)ηL(t)

2 ∥∇αJL(α(t))∥22
≤
(
1− c(t)ηL(t) + 5dηL(t)

2e8.5cA(t)
)
JL (α(t)) + c(t)ηL(t)L

−1.

To finish the proof, we apply Lemma D.4 (i) with

uL(t) := c(t)ηL(t)− 5dηL(t)
2e8.5cA(t) ≥ 1

2
c(t)ηL(t) > 0,

and the fact that 1− x ≤ e−x. Hence,

JL(α(T)) ≤ exp

(
−

T−1∑
t=0

uL(t)

)
JL(α(0)) + L−1

T−1∑
t=0

c(t)ηL(t)

≤ exp

(
−1

2

T−1∑
t=0

c(t)ηL(t)

)
JL(α(0)) + L−1

T−1∑
t=0

c(t)ηL(t).

157

Appendix C

Technical results of Chapter 5

C.1 Properties of path-homogeneous functions

Lemma C.1. Let F (µ) = L
(∫

Θ
Φ(θ)dµ(θ)

)
+
∫
Θ
V (θ)dµ(θ). Assume that Φ and V

are (α, k)-homogeneous. Then

min
µ∈M+(Θ)

F (µ) = min
µ∈P(Θ)

F (µ)

Proof. It suffices to show that for every non-negative measure µ ∈ M+(Θ), there
exists a corresponding probability measure ν ∈ P(Θ) that has the same functional
value F (µ) = F (ν).
Let M := µ(Θ) > 0 be the mass of the parameter set Θ and define a mapping
T : Θ → Θ as T (θ) = Mα/k ⊙ θ. We define ν := T# (µ/M) to be the pushforward
measure of µ by T . Then the following holds

ν(Θ) =

∫
Θ

dT#(µ/M) =
1

M

∫
Θ

dµ = 1,

Moreover, as Φ is (α, k)-homogeneous,∫
Θ

Φ(θ)dµ(θ) =
1

M

∫
Θ

(
M1/k

)k
Φ(θ)dµ(θ) (C.1)

=
1

M

∫
Θ

Φ (T (θ)) dµ(θ) (C.2)

=

∫
Θ

Φ(θ)dν(θ), (C.3)

where in the first line we divide and multiply by M , in the second line we use the
(α, k)-homogeneity of Φ with λ :=M1/k, and in the last line we use the definition of a
pushforward measure by T . The same analysis applies mutatis mutandis for V .

158

We continue by describing geometric properties of path-homogeneous functions that are
necessary to prove the convergence results. Let f : Rd → U be an (α, k)−homogeneous
function for which we define the following ellipse

E :=
{
x ∈ Rd : ∥x∥A = 1

}
, (C.4)

where ∥ ·∥A denotes the Mahalanobis norm ∥x∥A =
√
xTAx and A is a diagonal matrix

whose entries are Ai,i = αi.
For a fixed x ∈ Rd\ {0}, we define the path px : R>0 → Rd by px(λ) := λα ⊙ x so that

f (px(λ)) = f(λα ⊙ x) = λkf(x). (C.5)

Along px, f becomes a monomial of degree k in λ, with scaling coefficient f(x).
Define a projection onto the ellipse πE : Rd\ {0} → E along the curves (px)x∈E. The
following lemma ensures that this is well-defined in the sense that for any x ∈ Rd\ {0},
there is a unique point ξ ∈ E on the ellipse such that x is on pξ (R>0) := {pξ (λ) : λ > 0}.

Lemma C.2. The paths {pξ : ξ ∈ E} form a disjoint union of the space⊔
ξ∈E

pξ (R>0) = Rd\ {0} (C.6)

and each path intersects the ellipse exactly at one point

∀ξ ∈ E : E ∩ pξ (R>0) = {ξ} . (C.7)

Proof. Let ξ1, ξ2 ∈ E with ξ1 ̸= ξ2. We first show that pξ1 (R>0) ∩ pξ2 (R>0) = ∅.
Suppose that x ∈ Rd is in the intersection of the two paths, then there must exist
λ1, λ2 > 0 such that x = λα1 ⊙ ξ1 = λα2 ⊙ ξ2.
Clearly, if λ1 = λ2 then ξ1 = ξ2 which is a contradiction. Therefore, consider the case
where λ1 ̸= λ2 and assume without loss of generality that λ1 > λ2. We then have the
following relation ξ2 = (λ1/λ2)

α ⊙ ξ1 and we deduce that

1 = ∥ξ2∥2A =
d∑

i=1

αi(ξ2)
2
i =

d∑
i=1

αi

(
λ1
λ2

)2αi

(ξ1)
2
i >

d∑
i=1

αi(ξ1)
2
i = ∥ξ1∥2A = 1, (C.8)

which results into a contradiction. Hence, the paths for ξ1 ̸= ξ2 do not intersect, i.e.
pξ1 (R>0) ∩ pξ2 (R>0) = ∅.
We proceed to prove that the paths cover the whole of Rd\ {0}. Let x ∈ Rd\ {0} be
an arbitrary point for which we show that it lies on a path pξ0 . Define the following
function g : R>0 → R

g(λ) :=
d∑

i=1

αiλ
−2αix2i . (C.9)

159

Figure C.1: Illustration of the case α = (1, 2). The ellipse is Eα =
{
x ∈ R2 : x2

1 + 2x2
2 = 1

}
. The

paths λ ∈ R>0 7→ pξi(λ) ∈ R2 are displayed in red for two distinct points ξ1, ξ2 ∈ Eα on the ellipse.
The outer normal unit vector of the ellipse Eα at ξ1 is denoted by n⃗ξ1 . The tangential component of
the gradient at ξ1 of an (α, k)−homogeneous f is denoted ιξ1(∇tf(ξ1)) and lies in the linear space
spanned by the tangent line of the ellipse Eα at ξ1.

The function g is continuous and has two limits, limλ→+∞ g(λ) = 0 and limλ↓0 g(λ) =

+∞, therefore by the intermediate value theorem there must exist λ0 > 0 such that
g(λ0) = 1. Let ξ0 = λ−α

0 ⊙x which by the definition of g must be a point on the ellipse
ξ0 ∈ E and x = pξ0(λ0). This can be done for any x ∈ Rd\ {0} which proves that the
paths cover the whole set Rd\ {0}.
Finally, let ξ ∈ E. We show that if there exists λ > 0 such that pξ(λ) ∈ E, then λ = 1.
To that end, consider the function g̃ : R>0 → R defined by g̃(λ) :=

∑d
i=1 αiλ

2αiξ2i . We
have that pξ(λ) ∈ E ⇐⇒ g̃(λ) = 1. But g̃ is an increasing function, so λ = 1 is the
unique solution to g̃(λ) = 1.

For x ∈ Rd\ {0}, we can thus uniquely write x = λ(x)α ⊙ πE(x). We prove that λ(·)
grows at a sublinear rate.

Corollary C.3. Let λ : Rd\ {0} → R>0 such that x 7→ λ(x) is defined implicitly by
x = pπE(x)(λ(x)), where πE(x) ∈ E is the unique point on E such that x ∈ pπE(x) (R>0).
Then λ is well-defined and continuous. Furthermore, we have

λ(x) ≤ max(1, ∥x∥A), ∀x ∈ Rd\ {0} .

Proof. The first part is a direct consequence of the strict monotonicity of the function
g defined in the proof of Lemma C.2, using the inverse function theorem. For

160

the second part, observe that if λ(x) > 1, we have ∥x∥2A = ∥λ(x)α ⊙ πE(x)∥2A ≥
∥λ(x)1d ⊙ πE(x)∥2A = λ(x)2 as αi ≥ 1, ∀i = 1, . . . d.

We now have an adaptation of Euler’s homogeneous function theorem [135] for path-
homogeneous functions.

Remark C.4. If a function f ∈ C1
(
Rd\ {0} ,R

)
is (α, k)−homogeneous, then

∇f(x)TAx = kf(x), for each x ∈ Rd\ {0} and λ > 0. Indeed, by differentiating
the identity f(λα ⊙ x) = λkf(x) with respect to λ and evaluating at λ = 1 we get

∇f(x)⊤Ax =
d

dλ
f(λα ⊙ x)

∣∣
λ=1

=
d

dλ
λkf(x)

∣∣
λ=1

= kf(x).

As a consequence, the decomposition of the gradient of a (α, k)–homogenous function
at ξ ∈ E can be decomposed explicitly into its normal component orthogonal to E and
its tangential component belonging to TξE.

Remark C.5. For ξ ∈ E, we denote nξ the outer normal unit vector to E. As
E is a level set of x 7→ ∥x∥A, we directly have nξ = Aξ/ ∥Aξ∥2. Hence, if f is a
(α, k)–homogenous function, we have

∇f(ξ) = ∇nf(ξ)nξ + ιξ(∇tf
∣∣
E
(ξ)) =

kf(ξ)

∥Aξ∥2
nξ + ιξ(∇tf

∣∣
E
(ξ)), (C.10)

where we denote ∇n the directional derivative along the normal vector nξ, ∇t the
gradient expressed in an orthonormal basis of TξE and ιξ : TξE ↪→ span(nξ)

⊥ ⊂ Rd.
The second equality in (C.10) follows by Remark C.4.

C.2 Auxiliary results and proofs of Section 5.3

C.2.1 Bound on the variation of the subgradient

In the following section, let gµ be the restriction of F ′(µ) to the ellipse E

gµ = F ′(µ)
∣∣
E

(C.11)

and g̃µ : E 7→ R be defined as

g̃µ =

〈
dL

(∫
Θ

Φdµ

)
, Φ(ξ)

〉
(C.12)

so that for all ξ ∈ E, gµ(ξ) = g̃µ(ξ)+V (ξ). We establish a bound on the variations of g̃.

161

Lemma C.6 ([31, Lemma C.2.]). For all C0 > 0, there exists M > 0 such that for all
µ, ν ∈M(Θ) such that ∥h(µ)∥BL , ∥h(ν)∥BL < C0, it holds

∥g̃µ − g̃ν∥C1 ≤M
∥∥Φ∣∣

E

∥∥2
C1 · ∥h(µ)− h(ν)∥BL , (C.13)

where ∥ · ∥C1 denotes the C1 norm of a function defined as

∥ψ∥C1 := ∥ψ∥∞ + ∥∇ψ∥∞ for ψ : E→ R.

Also, ∥ · ∥BL denotes the bounded Lipschitz norm of a measure on E defined as

∥ν∥BL := sup

{∫
E

ψdν
∣∣∣ψ : E→ R, Lip(ψ) ≤ 1, ∥ψ∥∞ ≤ 1

}
for ν ∈M+(E),

where Lip(ψ) is the smallest Lipschitz constant of ψ.

C.2.2 Proof of Proposition 5.11

Let η∗ := minξ∈E gµ(ξ) < 0 be the minimum that is attained on the compact set E

and must be lower bounded η∗ > −∞. By Morse-Sard lemma [1] and the fact that
Φ is smooth, there exists a regular value −η ∈]η∗, η∗/2] of gµ, where η > 0. Let
K := g−1

µ (]−∞,−η]) ⊂ E be the (−η)-sublevel set of the regular value, and construct
the subset P := π−1

E (K) ⊂ Θ. As ∥h(µ)− h(µt0)∥BL < ϵ, µt0(P) > 0 for ϵ > 0 small
enough.
By the regular value theorem, the boundary ∂K of K is a differentiable orientable
compact submanifold of E of codimension 1. By definition of K and the regular value
theorem, there exists β > 0 such that

∀ξ ∈ ∂K : ∇gµ(ξ) · nξ > β > 0, (C.14)

where nξ is the unit normal vector to ∂K pointing outwards. Let t1 ∈ [t0,∞] the first
time such that ∥h(µt1)− h(µ)∥BL ≥ ϵ. The triangle inequality implies that h(µt)(E)

is uniformly bounded from above for t < t1.
For the sake of contradiction, suppose that t1 =∞. Without loss of generality, we let
t0 = 0. Consider now the flow X : R+ ×Θ→ Θ defined for all u ∈ Θ

X0(u) = u and ∂tXt(u) = −∇F ′(µt)(Xt(u)), (C.15)

which by [5, Lemma 8.1.4] is well-posed and unique. Notice also that µt can be thought
of as the pushforward measure of µ0 by Xt, that is µt = (Xt)#µ0.

162

For u0 ∈ P , define (ut)t≥0 := (Xt(u0))t≥0 ⊂ Θ. We first establish that if

0 < ϵ < min
(
β,
η

2

)
·
(
2M

∥∥Φ∣∣
E

∥∥2
C1

)−1

, (C.16)

then (ut)t∈[0,t1] ⊂ P . To do this it suffices to show that if ut ∈ ∂P = π−1
E (∂K), the

gradient flow pushes ut back inside P . Formulated on K ⊂ E, it suffices to show
that if ξ = πE(ut) ∈ ∂K, then the angle between the gradient field −∇gµt(ξ) and the
unit normal vector to ∂K pointing outwards nξ is bigger than π

2
. This is an easy

consequence of Lemma C.6:

−∇gµt(ξ) · nξ = −∇gµ(ξ) · nξ + (∇gµ(ξ)−∇gµt(ξ)) · nξ

≤ −∇gµ(ξ) · nξ + ∥gµ − gµt∥C1

= −∇gµ(ξ) · nξ + ∥g̃µ − g̃µt∥C1

≤ −β + β/2 = −β/2,

where the first inequality holds by Cauchy-Schwarz and by the definition of ∥ · ∥C1 , the
second inequality holds by (C.14) and (C.16) with Lemma C.6. Hence (ut)t∈[0,t1] ⊂ P .
From (C.16) and by definition of K, we also deduce that for all ξ ∈ K,

gµt(ξ) = gµ(ξ) + (gµt(ξ)− gµ(ξ)) ≤ −η/2. (C.17)

We now look at the evolution of ∥ut∥A in time t, where A is the diagonal matrix with
entries Ai,i = αi. As F ′(µt) is (α, k)−homogeneous we have that

d

dt
∥ut∥2A = 2 ⟨∂tut, Aut⟩

= 2 ⟨−∇F ′(µt)(ut), Aut⟩
= −2kF ′(µt)(ut)

= −2kλ(ut)kgµt(πE(ut))

≥ kηλ(ut)
k, (C.18)

where the third equality follows from Remark C.4 and the inequality follows from
(C.17) as πE(ut) ∈ K. We readily see that t 7→ ∥ut∥A is increasing. Now, choose c0 > 0

such that for U0 := {u ∈ P : ∥u∥A > c0},

µ0 (U0) > 1/2 · µ0(P).

As 0 ̸∈ P , c0 > 0 always exists and is finite. Note that for u ∈ Θ, if λ(u) ≤ 1, then, as
αi ≥ 1 and πE(u) ∈ E,

∥u∥2A =
d∑

i=1

αiu
2
i =

d∑
i=1

αiλ(u)
2αiπE(u)

2
i ≤ λ(u)2. (C.19)

163

Case 1: If λ(u0) ≤ 1 and u0 ∈ U0, we deduce that ut ∈ U0 for all t ≥ 0, and by (C.18)
and (C.19), we have for all t > 0 such that λ(ut) ≤ 1,

d

dt
∥ut∥2A ≥ kη ∥ut∥kA ≥ kηck0.

Hence, by integrating the above inequality with respect to t, we deduce that

inf {t > 0: ∥ut∥A ≥ 1} =: T0 <
(
kηck0

)−1
.

Case 2: On the other hand, if λ(u0) > 1 and u0 ∈ U0, then ∥u0∥A > 1 as well, so
∥ut∥A > 1 as t 7→ ∥ut∥A is increasing, so λ(ut) > 1 as well. Therefore, by (C.18),

d

dt
∥ut∥2A ≥ kη · λ(ut)k ≥ kη.

Integrating with respect to t yields ∥ut∥2A ≥ ∥u0∥
2
A + kηt. Now, we deduce that

similarly to (C.19), we have

∥ut∥2A =
d∑

i=1

αi(ut)
2
i =

d∑
i=1

αiλ(ut)
2αiπE(ut)

2
i ≤ λ(ut)

2·maxi αi .

Hence, for p := k
maxi αi

> 1, we get

λ(ut)
k ≥ ∥ut∥pA ≥

(
∥u0∥2A + kηt

)p/2
.

Finally, we estimate the mass of K under the measure h(µt). First note that by
definition of h and by definition of ut,

h(µt)(K) =

∫
Θ

λ(u)k 1 (πE(u) ∈ K) dµt(u)

=

∫
Θ

λ(ut)
k
1 (πE(ut) ∈ K) dµ0(u0)

≥
∫
P

λ(ut)
kdµ0(u0)

where the last inequality follows from P being stable under Xt. Now, for t > T0,

h(µt)(K) ≥
∫

u0∈U0
λ(u0)>1

λ(ut)
kdµ0(u0) +

∫
u0∈U0
λ(u0)≤1

λ(ut)
kdµ0(u0)

≥
∫

u0∈U0
λ(u0)>1

(
∥u0∥2A + kηt

)p/2
dµ0(u0) +

∫
u0∈U0
λ(u0)≤1

(
∥uT0∥2A + kη(t− T0)

)p/2
dµ0(u0)

≥ 1

2
(1 + kη(t− T0))p/2 µ0(P),

164

where the first inequality holds as U0 ⊂ P , the second one holds by Case 1 and Case 2,
and the third one holds as µ0 (U0) > 1/2 ·µ0(P), ∥uT0∥A = 1 in Case 1, and ∥u0∥A > 1

in Case 2.
As a consequence of the above lower bound, the mass of K under the measure
h(µt) blows up to infinity as t → ∞, as µ0(P) > 0. This is a contradiction to
∥h(µ)− h(µt)∥BL < ϵ. Thus, t1 is finite, completing the proof.

□

C.2.3 Bound on the evolution of gradient flow functionals

Lemma C.7. Let ψ ∈ C1(Θ,R) such that there exists C > 0 satisfying ∥∇ψ(u)∥2 ≤
Cψ(u) for all u ∈ Θ and

∫
Θ
ψdµ0 <∞. Then∫

Θ

ψ(u)dµt(u) ≤ 2

∫
Θ

ψ(u)dµ0(u) +
C

2
F (µ0)

Proof. Define g(t) :=
∫
Θ
ψ(u)dµt(u). From the (distributional) continuity equation

(5.8) (see [5, Equation 8.1.4]), we have

d

dt
g(t) =

∫
Θ

∇ψ(u)⊤vt(u)dµt(u)

Further, Cauchy-Schwary inequality and the hypothesis yields

d

dt
g(t) ≤

(∫
Θ

∥∇ψ(u)∥2 dµt(u)

)1/2(∫
Θ

∥vt(u)∥2 dµt(u)

)1/2

≤ C1/2g(t)1/2
(
− d

dt
F (µt)

)1/2

.

The last inequality is due to the conservation of energy for the Wasserstein gradient
flow [5, Theorem 11.2.1.]. Therefore,

d

dt
g(t)1/2 =

1

2
g(t)−1/2 d

dt
g(t) ≤ 1

2
C1/2

(
− d

dt
F (µt)

)1/2

By integrating and Jensen’s inequality, we deduce

g(t) =

(
g(0)1/2 +

∫ t

0

d

ds
g(s)1/2

)2

≤ 2g(0) +
C

2
(F (µ0)− F (µt)) ≤ 2g(0) +

C

2
F (µ0).

165

C.3 Proofs of Section 5.4

We prove in the section some of the intermediary results needed to derive the general-
ization bound for the Wasserstein gradient flow.

C.3.1 Proof of Lemma 5.20

An equivalent formulation of (5.29) is
d

dt

∫
Sd−1

ψ(ξ)dρt =

∫
Sd−1

[
Dξψ ◦ vSt (ξ)− 2ψ(ξ)F ′(M0ρt)(ξ)

]
dρt(ξ), ∀ψ ∈ C∞(Sd−1),

in the sense of distributions in (0, T). It corresponds to the choice φ(t, x) = η(t)ψ(x)

in (5.9), with η ∈ C∞
c (0, T). The equivalence comes from the integration part formula,

and the fact that the linear span of seperable functions φ is dense in C∞
c ((0, T)×Sd−1).

Fix any ψ ∈ C∞(Sd−1). We first compute the time-derivative of ρt =M−1
0 h(µt) using

the definition of h and the continuity equation (5.8).
d

dt

∫
Sd−1

ψ(ξ)dρt(ξ) =M−1
0

d

dt

∫
Θ

∥u∥2 ψ(π(u))dµt(u)

=M−1
0

∫
Θ

〈
∥u∥2∇ψ(π(u)) + ψ(π(u))∇(∥u∥2), vt(u)

〉
dµt(u),

(C.20)

where vt = −∇F ′(µt) is the tangent vector field of µt and π(u) = ∥u∥−1 u is the
projection onto the d−dimensional sphere Sd−1. Its derivative is given by ∇π(u) =
∥u∥−1 Id − ∥u∥−3 uu⊤, so that

∇ψ(π(u)) = Dπ(u)ψ ◦ ∇π(u).

Therefore, we get

⟨∇ψ(π(u)), vt(u)⟩ = Dπ(u)ψ ◦ ∇π(u) ◦ vt(u)
= Dπ(u)ψ ◦ ι−1

π(u)

(
∥u∥−1 vt(u)− ∥u∥−3 uu⊤vt(u)

)
= Dπ(u)ψ ◦ ι−1

π(u)

(
vt(π(u)) + 2F ′(µt)(π(u))π(u)

)
(C.21)

as vt is 1–homogeneous. Recall that ι−1
ξ : span(nξ)

⊥ ↪→ TξS
d−1 is the embedding from

the set of vectors in Rd orthogonal to the normal vector nξ to the sphere Sd−1 at point
ξ to the tangent space of Sd−1 at ξ. Now, for any ξ ∈ Sd−1, we get

vSt (ξ) = −DξF
′
Sd−1(M0ρt) = −Dξ

(〈
dL

(∫
Θ

Φdh(µt)

)
, Φ
∣∣
Sd−1

〉
+ V

∣∣
Sd−1

)
=
〈
dL

(∫
Θ

Φdh(µt)

)
, −DξΦ

∣∣
Sd−1

〉
−DξV

∣∣
Sd−1

= ι−1
ξ

(
−∇F ′(µt)(ξ) + 2F ′(µt)(ξ)ξ

)
166

The last equality holds by Remark C.5, and F ′
Sd−1(h(µ)) = F ′(µ)(ξ)

∣∣
Sd−1 . Therefore,

using (C.21), we get

⟨∇ψ(π(u)), vt(u)⟩ = Dπ(u)ψ ◦ vSt (π(u)).

Plugging the last equality into (C.20), we deduce

d

dt

∫
Sd−1

ψ(ξ)dρt(ξ) =M−1
0

∫
Θ

[
∥u∥2Dπ(u)ψ ◦ vSt (π(u)) + 2ψ(π(u))u⊤vt(u)

]
dµt(u)

=M−1
0

∫
Θ

∥u∥2
[
Dπ(u)ψ ◦ vSt (π(u))− 2ψ(π(u))F ′(µt)(π(u))

]
dµt(u)

=M−1
0

∫
Sd−1

[
Dξψ ◦ vSt (ξ)− 2ψ(ξ)F ′(µt)(ξ)

]
dh(µt)(ξ)

=

∫
Sd−1

[
Dξψ ◦ vSt (ξ)− 2ψ(ξ)F ′(M0ρt)(ξ)

]
dρt(ξ), (C.22)

which proves (5.29) and the fact that vSt is the tangent vector field of ρt. It remains
to prove that ρt ∈ P2(S

d−1). First, ρ0(Sd−1) =M−1
0 h(µ0)(S

d−1) = 1, and for ψ ≡ 1 in
(C.22), we get

d

dt
ρt(S

d−1) = −2
∫
Sd−1

F ′(M0ρt)(ξ)dρt(ξ) = 0

by definition of the linear functional derivative (5.5). Hence, ρt(Sd−1) = 1 for all t ≥ 0.
The finite second moment of ρt comes from the fact that µt ∈ P2(Θ).
As noticed in [101, 57], the solution of the distributional PDE (5.29) is the gradient
flow of the functional FSd−1 with respect to the Hellinger-Kantorovich metric (also
called the Wasserstein-Fisher-Rao metric), i.e. ∂tρt = −∇KFRFSd−1(M0ρt). It can
be decomposed into two orthogonal components, −div(vSt ρt) ∈ TρtW2(S

d−1), and
2F ′(M0ρt)ρt ∈ TρtM+

FR(S
d−1), where M+

FR(S
d−1) is the space of positive measures on

Sd−1 induced by the Fisher-Rao metric. Therefore, vSt is a tangent vector field to ρt
with respect to W2.

□

C.3.2 Proof of Lemma 5.21

By [5, Proposition 8.4.6] adapted to complete Riemannian manifolds, we have that for
L1-a.e. t ≥ 0, the unique optimal transport map between mj

t and mj
t+h is given, up to

first order in h ≥ 0, by the exponential map along the tangent vector field vjt . That
means,

lim
h→0

W2

(
mj

t+h, exp
j, h
mj

t

)
|h| = 0,

167

where expj, h : M →M is defined by expj, h(p) = expp(hv
j
t (p)). As a consequence, we

know that

lim
h→0

W 2
2

(
exp1, h

m1
t , exp

2, h
m2

t

)
−W 2

2 (m
1
t ,m

2
t)

h
. (C.23)

exists and is equal to d
dt
W 2

2 (m
1
t ,m

2
t). Let τt ∈ Γo(m

1
t ,m

2
t) be any optimal transport

plan between m1
t and m2

t . We can thus construct the transport plan

ζt,h :=
(
exp1, h ◦ π1, exp2, h ◦ π2

)
#
τt ∈ Γ

(
exp1, h

m1
t , exp

2, h
m2

t

)
to find an upper bound to (C.23) as follows:

W 2
2

(
exp1, h

m1
t , exp

2, h
m2

t

)
≤
∫
M2

dM(p1, p2)
2dζt,h(p1, p2)

=

∫
M2

dM
(
expp1(hv

1
t (p1)), expp2(hv

2
t (p2))

)2
dτt(p1, p2).

The inequality holds by definition of the Wasserstein distance. Now, for each v ∈ TpM ,
we have

dM(expp(hv), p
′)2 = dM(p, p′)2 − 2h

〈
γ̇p, p′(0), v

〉
+ O(h2)

Therefore, as we can take γp′,p(s) = γp, p′(1− s), we deduce

W 2
2

(
exp1, h

m1
t , exp

2, h
m2

t

)
≤ W 2

2

(
m1

t , m
2
t

)
+ 2h

∫
M2

(〈
γ̇p1,p2(1), v

2
t (p2)

〉
−
〈
γ̇p1,p2(0), v

1
t (p1)

〉)
dτt(p1, p2) + O(h2).

We finish the proof of (5.30) by rearranging the terms and using (C.23). To prove the
second part, notice first that

∥γ̇p1,p2(1)− γ̇p1,p2(0)∥ =
∥∥∥∥∫ 1

0

γ̈p1,p2(s)ds

∥∥∥∥ ≤ dM(p1, p2)
2.

Hence, using ∥γ̇p1,p2(0)∥ = dM (p1, p2) and the fact that τt is an optimal transport plan
between m1

t and m2
t , we deduce

d

dt
W 2

2

(
m1

t ,m
2
t

)
≤ 2

∫
M2

[
dM(p1, p2)

2
∥∥v2t ∥∥∞ + dM(p1, p2)

∥∥v1t (p2)− v2t (p1)∥∥] dτt(p1, p2)
≤ 2

∥∥v2t ∥∥∞W 2
2

(
m1

t ,m
2
t

)
+ 2

∫
M2

dM(p1, p2)
(
Lip1

tdM(p1, p2) +
∥∥v1t − v2t ∥∥∞) dτt(p1, p2).

We conclude by Jensen inequality.

□

168

Appendix D

Auxiliary results

Lemma D.1. For any A ∈ Rm×n and B ∈ Rn×p, we have

∥AB∥F ≤ ∥A∥2 ∥B∥F .

Proof. Let B = [b1, . . . , bp] the columns of B. Then ∥B∥2F =
∑p

i=1 ∥bi∥
2
2. We use the

fact that the spectral norm is compatible with the Euclidian norm to deduce

∥AB∥2F =

p∑
i=1

∥Abi∥22 ≤
p∑

i=1

∥A∥22 ∥bi∥
2
2 = ∥A∥

2
2 ∥B∥

2
F .

Lemma D.2. Let x ∈ Rd and {Ak : k = 1, . . . , L} ⊂ Rd×d such that maxk ∥Ak∥2 < 1.
Then ∥∥∥∥∥

[
L∏

k=1

(Id + Ak)

]
x

∥∥∥∥∥
2

≥ ∥x∥2
L∏

k=1

(1− ∥Ak∥2).

Proof. First observe that for A,B ∈ Rd×d and x ∈ Rd, we have ∥ABx∥2 ≥
σmin(A) ∥Bx∥2, where σmin(A) is the smallest singular value of A. This is easy to see,
as σmin(A)

2 is the smallest eigenvalue of A⊤A, so

∥ABx∥22 = (Bx)⊤A⊤A(Bx) ≥ σmin(A)
2 ∥Bx∥22 .

Observe also that for all A ∈ Rd×d with ∥A∥2 < 1, we have σmin(Id+A) ≥ 1−∥A∥2 > 0.
Indeed, there exists v ∈ Rd such that ∥v∥2 = 1 and v⊤(Id + A)v = σmin(Id + A)2.
Hence,

σmin(Id + A) =
(
1 + v⊤Av

)1/2 ≥ (1− ∥A∥2)
1/2 ≥ 1− ∥A∥2 .

Combining these two facts, we deduce that∥∥∥∥∥
[

L∏
k=1

(Id + Ak)

]
x

∥∥∥∥∥
2

≥ ∥x∥2
L∏

k=1

σmin(Id + Ak) ≥ ∥x∥2
L∏

k=1

(1− ∥Ak∥2).

169

Lemma D.3. Let f ∈ C2(Rp) satisfying sup∥x∥2<R ∥∇2f(x)∥2 ≤ H∞ for some
H∞, R > 0. Then, for all x ∈ Rp such that ∥x− x0∥2 < R,∣∣∣f(x)− f(x0)− ⟨∇xf(x), x− x0⟩

∣∣∣ ≤ H∞

2
∥x− x0∥22 .

Proof. We apply the fundamental theorem of calculus for line integrals between x0

and x:

f(x)− f(x0) =
∫ 1

0

〈
∇xf(x0 + t(x− x0)), x− x0

〉
dt.

Hence, by Cauchy-Schwartz inequality and by hypothesis,∣∣∣f(x)− f(x0)− 〈∇xf(x0), x− x0
〉∣∣∣ ≤ ∫ 1

0

∥∇xf(x0 + t(x− x0))−∇xf(x0)∥2 ∥x− x0∥2 dt

≤
∫ 1

0

H∞ ∥t(x− x0)∥2 ∥x− x0∥2 dt

=
H∞

2
∥x− x0∥22 .

Lemma D.4 (Discrete Grönwall inequalities). Let (un)n∈N, (vn)n∈N, (wn)n∈N ⊂ R>0.
Then

(i) If en+1 ≤ unen + vn for each n ≥ 0, then

en ≤
(

n−1∏
n′=0

un′

)
e0 +

n−1∑
n′=0

(
n−1∏

n′′=n′+1

un′′

)
vn′ .

(ii) If g0 > 0 and 0 < gn+1 ≤ ungn + wng
1/2
n , then

g1/2n ≤
(

n−1∏
n′=0

u1/2n

)
g
1/2
0 +

1

2

n−1∑
n′=0

(
n−1∏

n′′=n′+1

u
1/2
n′′

)
wn′

u
1/2
n′

.

The first inequality is well-known, but we give proofs for both, for the sake of
completeness.

Proof. To prove (i), we start by defining ẽn =
(∏n−1

n′=0 un′
)−1

en. Then,

ẽn+1 − ẽn =

(
n∏

n′=0

un′

)−1

(en+1 − unen) ≤
(

n∏
n′=0

un′

)−1

vn.

170

Hence, summing over n, we get

en =

(
n−1∏
n′=0

un′

)
ẽn ≤

(
n−1∏
n′=0

un′

)e0 + n−1∑
n′=0

(
n′∏

n′′=0

un′′

)−1

vn′


=

(
n−1∏
n′=0

un′

)
e0 +

n−1∑
n′=0

(
n−1∏

n′′=n′+1

un′′

)
vn′ .

To prove (ii), we simply complete the square: ungn + wng
1/2
n ≤ un

(
g
1/2
n + wn

2un

)2
.

Hence,
g
1/2
n+1 ≤ u1/2n g1/2n +

wn

2u
1/2
n

.

We can thus apply part (i) to en = g
1/2
n to deduce the result.

Lemma D.5 (Continuous Grönwall inequality). Let u, v : R+ → R two integrable
functions satisfying v(t) ≥ 0 and v(t)+u(t)

∫∞
t
v(r)dr ≥ 0 for each t ≥ 0. Let g : R+ →

R+ be a differentiable function that satisfy g(0) = 0 and d
dt
g(t)2 ≤ 2u(t)g(t)2+2v(t)g(t)

for each t ≥ 0. Then

g(t) ≤ exp

(∫ t

0

u(s)ds

)∫ t

0

v(s)ds.

Proof. The condition is equivalent to

g(t)

(
d

dt
g(t)− u(t)g(t)− v(t)

)
≤ 0. (D.1)

Define U := {t : g(t) > 0}. As g is continuous, U is open with respect to the standard
topology on R+. Therefore, there exists an < bn, n ∈ N such that the intervals
In = (an, bn) are disjoint, and U =

⋃∞
n=0 In. We deduce that if t ̸∈ U , then g(t) = 0 by

positivity of g. If t ∈ U , then there exists n ∈ N such that an < t < bn. Now, for each
s ∈ In, g(s) > 0, so by (D.1), d

dt
g(s) ≤ u(s)g(s) + v(s). Hence, G : In → R defined by

G(s) = exp
(
−
∫ s

an
u(r)dr

)
g(s) satisfy

d

ds
G(s) = exp

(
−
∫ s

an

u(r)dr

)(
d

ds
g(s)− u(s)g(s)

)
≤ exp

(
−
∫ s

an

u(r)dr

)
v(s) ≤ v(s)

Therefore, G(s) ≤ G(an) +
∫ s

an
v(r)dr. By continuity of g and because g(0) = 0, we

have g(an) = 0 and thus

g(s) ≤ exp

(∫ s

an

u(r)dr

)∫ s

an

v(r)dr =: Cs(an) (D.2)

171

Finally, we prove that for each s ≥ 0, the function Cs : [0, s]→ R defined in (D.2) is
decreasing. Indeed,

d

dt
Cs(t) = − exp

(∫ s

t

u(r)dr

)(
v(t) + u(t)

∫ s

t

v(r)dr

)
.

Now, if u(t) ≥ 0, v(t) + u(t)
∫ s

t
v(r)dr ≥ 0. Otherwise, u(t) < 0 and v(t) +

u(t)
∫ s

t
v(r)dr ≥ v(t) + u(t)

∫∞
t
v(r)dr ≥ 0 by hypothesis. Hence, d

dt
Cs(t) ≤ 0 and Cs

is decreasing, for each s ≥ 0. From (D.2), we deduce

g(s) ≤ Cs(an) ≤ Cs(0) = exp

(∫ s

0

u(r)dr

)∫ s

0

v(r)dr.

Lemma D.6. Let (Yt)t∈[0,T] ⊂ Rd×d be a continuous semimartingale that can be
decomposed as dYt = Atdt+ dMt, where A is a square-integrable adapted process, M
is a continuous square-integrable martingale with quadratic variation d

[
M,M⊤]

t
=

Qt dt, and sup0≤t≤T ∥Qt∥F < Q∞ < ∞, where Q∞ is a deterministic constant. Let
(Xt)t∈[0,T] ⊂ Rd×d be the unique solution to the linear matrix-valued SDE dXt = XtdYt,
with X0 being a deterministic non-zero matrix. Then, for each p > 1, there exists a
constant C ≡ C(p, d,Q∞, X0, T) such that

E

[
sup

t∈[0,T]

∥Xt∥pF

]
≤ C E

[
exp

(
2p

∫ T

0

|tr (As)| ds
)]1/2

.

Proof. We apply the multidimensional Ito formula and linearity of the trace operator
to first get

d ∥Xt∥2F = d tr(X⊤
t Xt) = tr

(
dX⊤

t Xt +X⊤
t dXt + d

[
X⊤, X

]
t

)
= tr

(
X⊤

t Xt

(
dYt + dY ⊤

t

)
+ d

[
X⊤, X

]
t

)

Now, by cyclic permutation invariance of the trace, we have

tr
(
d
[
X⊤, X

]
t

)
= tr

(
d
[
X,X⊤]

t

)
= tr

(
Xt d

[
Y, Y ⊤]

t
X⊤

t

)
= tr

(
X⊤

t Xt d
[
Y, Y ⊤]

t

)
= tr

(
X⊤

t XtQt dt
)
.

Therefore,
d ∥Xt∥2F = tr

(
X⊤

t Xt

(
At + A⊤

t +Qt

))
dt+ ∥Xt∥2F dNt, (D.3)

172

where

Nt := tr

(∫ t

0

X⊤
s Xs

∥Xs∥2F
(
dMs + dM⊤

s

))
(D.4)

is a martingale with quadratic variation given by

[N]t =
∑

i1,j1,i2,j2

∫ t

0

∥Xs∥−4
F

(
X⊤

s Xs

)
i1j1

(
X⊤

s Xs

)
i2j2

d
[
(M +M⊤)i1j1 , (M +M⊤)i2j2

]
s

By the Kunita-Watanabe inequality,

[N]t ≤
∑

i1,j1,i2,j2

(∫ t

0

∥Xs∥−4
F

(
X⊤

s Xs

)2
i1j1

d
[
(M +M⊤)i1j1

]
s

)1/2

·

(∫ t

0

∥Xs∥−4
F

(
X⊤

s Xs

)2
i2j2

d
[
(M +M⊤)i2j2

]
s

)1/2

=

(∑
i,j

(∫ t

0

∥Xs∥−4
F

(
X⊤

s Xs

)2
ij
d
[
(M +M⊤)ij

]
s

)1/2
)2

≤ d2
∑
i,j

∫ t

0

∥Xs∥−4
F

(
X⊤

s Xs

)2
ij
d
[
(M +M⊤)ij

]
s

≤ 4d2Q∞

∫ t

0

∥Xs∥−4
F

∥∥X⊤
s Xs

∥∥2
F
ds ≤ 4d2Q∞t. (D.5)

The second inequality follows from Cauchy-Schwarz. Now, by conditioning on ∥Xt∥F >
0 if necessary, we have by the Ito’s formula and (D.3)

d log ∥Xt∥2F = ∥Xt∥−2
F d ∥Xt∥2F −

1

2
∥Xt∥−4

F d
[
∥X∥2F

]
t

= ∥Xt∥−2
F tr

(
X⊤

t Xt

(
At + A⊤

t +Qt

))
dt+ dNt −

1

2
d [N]t .

Hence, by integrating and taking the exponential, we get

∥Xt∥2F = ∥X0∥2F exp

(∫ t

0

∥Xs∥−2
F tr

(
X⊤

s Xs

(
As + A⊤

s +Qs

))
ds

)
exp

(
Nt −

1

2
[N]t

)
≤ ∥X0∥2F exp

(∫ t

0

|tr (2As +Qs)| ds
)
E(N)t

≤ ∥X0∥2F exp (dQ∞T) exp

(
2

∫ t

0

|tr (As)| ds
)
E(N)t,

where E(N)t := exp
(
Nt − 1

2
[N]t

)
denotes the stochastic exponential of N . The first

inequality follows from tr (AB) ≤ |tr(A)| |tr(B)|. Therefore, for p > 1, by Cauchy-
Schwarz,

E

[
sup

t∈[0,T]

∥Xt∥pF

]
≤ ∥X0∥pF exp

(p
2
dQ∞T

)
E
[
exp

(
2p

∫ T

0

|tr (As)| ds
)]1/2

E

[
sup

t∈[0,T]

|E(N)t|p
]1/2

.

(D.6)

173

Now, as E [exp (1/2 [N]T)] ≤ exp (2d2Q∞T) < ∞, Novikov condition implies that
(E(N)t)t∈[0,T] is a (continuous) martingale. Therefore, by Doob’s inequality, we get

E

[
sup

t∈[0,T]

|E(N)t|p
]
≤
(

p

p− 1

)p

E [|E(N)T |p]

Finally, we use the definition of the stochastic exponential and Cauchy-Schwarz to
obtain

E [|E(N)T |p] = E
[
exp

(
pNT −

p

2
[N]T

)]
≤ E

[
exp

(
pNT − p2 [N]T

)
exp

(
2p2 − p

2
[N]T

)]
≤ E [E(2pN)T]

1/2 E
[
exp

(
(2p2 − p) [N]T

)]1/2
≤ exp

(
2(2p2 − p)d2Q∞T

)
.

We plug this last inequality into (D.6) to conclude the proof, with

C(p, d,Q∞, X0, T) :=

(
p ∥X0∥2F
p− 1

)p/2

exp
(
2p2d2Q∞T

)
.

174

	Introduction
	Learning theory framwework
	Approximation
	Optimization
	Generalization

	Asymptotics
	Width goes to infinity
	Depth goes to infinity
	Learning rate goes to zero

	Linear residual networks
	Recent work
	Problem formulation
	Description of the solutions
	Global convergence and scaling
	Existence of a scaling limit as the depth increases and connection to linear neural ODE
	Numerical examples

	Scaling properties of deep residual networks
	Introduction
	Scaling regimes
	Scaling regimes for trained network weights
	Smoothness of weights with respect to the layer

	Scaling behavior of trained weights: numerical experiments
	Methodology
	Results for fully-connected layers
	Results for convolutional networks
	Summary: three scaling regimes

	Deep network limit
	Scaling regime 1: ODE limit
	Scaling regime 2
	Link with numerical experiments
	Detailed proofs

	Asymptotic analysis of the backpropagation dynamics
	Backpropagation in supervised learning
	Backward equation for the Jacobian under Scaling regime 1
	Backward equation for the Jacobian under Scaling regime 2
	Proofs

	Convergence and implicit regularisation of gradient descent for deep residual networks
	Introduction
	Convergence and regularization properties of deep learning algorithms
	Contributions

	Residual networks
	Dynamics of weights and hidden states under gradient descent
	Bounds on the hidden states, their Jacobians, and the loss gradients
	Behaviour of weight norms along the gradient descent path
	Local convergence of gradient descent
	Scaling limit of trained weights

	Numerical experiments
	Identification of scaling behavior
	Rate of convergence
	Emergence of regularity of weights as a function of the layer index

	Conclusion

	Mean-field limit and global convergence of gradient descent for path-homogeneous models
	Introduction
	Outlook and contributions
	Related work
	Notation

	Path-homogeneity
	Definitions
	Path-homogeneous function
	Multi-layer ReLU networks

	Global convergence of Wasserstein gradient flow for path-homogeneous models
	Calculus on the space of measures
	Particle and Wasserstein gradient flow
	Convergence to the global minimum
	Global convergence for continuous-depth residual networks

	Generalization properties in the 2-homogeneous case
	Assumptions and definitions
	Preliminary analysis
	Generalization bound: main result

	Numerical experiments
	Particle complexity for convergence of multi-layer ReLU networks
	Convergence of the particle gradient flow of deep convolutional networks

	Bibliography
	Hyperparameters
	Technical results of Chapter 4
	Gradient of the loss function with respect to parameters
	Boundedness of hidden states and Jacobians
	Upper bounds on the gradient and Hessian of the loss function
	Lower bounds on loss gradients
	Weight norms and loss function under gradient descent
	Supporting lemma for Theorem 4.6

	Technical results of Chapter 5
	Properties of path-homogeneous functions
	Auxiliary results and proofs of Section 5.3
	Bound on the variation of the subgradient
	Proof of Proposition 5.11
	Bound on the evolution of gradient flow functionals

	Proofs of Section 5.4
	Proof of Lemma 5.20
	Proof of Lemma 5.21

	Auxiliary results

