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SUMMARY

Medical management of HIV infection requires an understanding of the relationship between viral
genetic sequences and viral susceptibility to antiretroviral drugs. Because of the high dimensionality
of the data on viral genotype, traditional statistical methods are not well suited for investigating this
relationship. We develop non-parametric methods speci�cally for the setting where high-dimensional
data provides a basis for predicting a low-dimensional response variable. Our non-recursive methods
proceed in three stages: (i) build models, in a forward-stepwise manner, that predict phenotype response
from genotype sequence; (ii) identify speci�c patterns of amino acid sequence that are most in�uential
in predicting phenotype, and (iii) identify combinations of codons that have either a concordant or a
discordant association in the occurrence of a mutation. The methods are applied to a data set provided
by the Virco Group that contains protease genome sequences and IC50 measurements on a drug from
the protease inhibitor class, amprenavir, for 2747 patient samples. From these methods, we were able to
identify eight codons from the protease region of the HIV genome that predict resistance to amprenavir,
and to determine pairs of codons that tend either to occur together or to preclude the occurrence of the
other member of the pair. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background and signi�cance

Currently, there are 16 drugs approved for treatment of HIV infection in four di�erent drug
classes. Viral populations infecting patients under antiretroviral pressure can rapidly develop
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resistance to drugs in the patients’ treatment regimens. In addition, because of the high degree
of cross-resistance to drugs within classes, infecting viruses may develop resistance to drugs
other than those to which they have been exposed. Because active drugs from at least two
classes are required for suppression of HIV infection, it is vitally important to determine the
susceptibility to di�erent drugs of infecting viruses before choosing a drug regimen. When
only one drug in a patient’s regimen is active, the virus is likely to develop resistance to that
drug and others of its class, reducing the patient’s future treatment options.
Available treatments target regions in the HIV genome that code for reverse transcriptase

(RT) and protease enzymes. The genetic code for each enzyme consists of a sequence of
amino acids. At each position, or codon, in the amino acid sequence, one of 20 amino
acids is present. The RT and protease regions of the HIV genome consist of amino acid
sequences of length 494 and 99, respectively. For HIV of the clade or strain most prevalent
in the United States and Europe, there is a sequence that virologists believe characterizes
the most common genotype of virus infecting treatment-naive patients; this is referred to as
the consensus wildtype sequence. When the amino acid present at a codon di�ers from the
corresponding wildtype amino acid, then the sequence is regarded as mutant at that codon.
Resistance arises, at least in part, from the development of mutations at di�erent codons in
the genotype.
One approach to predicting drug susceptibility makes use of genetic sequences of HIV

obtained from plasma; in recent years, the cost of obtaining such sequences has dropped
to the level where they can be used in routine clinical patient management. Prediction of
susceptibility poses methodologic challenges, however, because of the high dimensionality of
the available genetic information. For example, when studying susceptibility to drugs that
target the protease enzyme, known as protease inhibitors, the protease sequence is the basis
for prediction. With 99 codons in the sequence, there are 99 covariates for prediction, each
one being a nominal categorical variable with 20 possible levels.
Some current methods for handling such high-dimensional data are recursive partitioning

[1], bump-hunting [2] and neural networks [3]. In particular, recursive partition [4] and neural
networks have been shown to be useful techniques for relating HIV genotype to phenotype.
A recent exposition of recursive partitioning and bump-hunting methods to peptide-binding
data is given in Segal et al. [5]. Since the predictor variables we consider are nominal (amino
acid), the multivariate adaptive regression spline (MARS) [6] extension of regression trees
cannot be used in this setting.
Recently, for the case when comparing two groups (for example, malignant and normal)

with respect to the occurrence rate of a mutation at a single codon, Mutter et al. [7] have
devised a permutational testing scheme to obtain the overall nominal signi�cance level against
which the two-sample tests, calculated at each codon, are to be compared. This method thus
protects the rate of falsely judging there to be a signi�cant group di�erence with respect to
the occurrence of a mutation at a single codon when making simultaneous inference across
all codons.
In this paper, we develop non-parametric methods for investigating the relationship between

a high-dimensional predictor variable, genotype sequence, and a low-dimensional response
variable, phenotype. In the HIV setting, phenotype can be measured by either an in vitro
drug susceptibility assay or in vivo by the amount of viral RNA in plasma. Although these
methods are applicable to either measure, we focus here on the former. The most frequently
used in vitro drug susceptibility assay is one that estimates the amount of drug required to

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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reduce the replication rate of the virus by 50 per cent, the so-called 50 per cent inhibitory
concentration, denoted IC50. The new methods we propose are especially well suited for (i)
identifying speci�c patterns of amino acids that are associated with increased or decreased
susceptibility compared to wildtype and (ii) investigating the complex interactions that exist
between di�erent codons in the occurrence of a mutation. These methods allow us to explore
interactions in the e�ects of codons in a way that may be more transparent than approaches
making use of neural networks.

1.2. Our analysis approach

In order to predict phenotype from genotype, we identify speci�c genotypic patterns that are
associated with increased or decreased drug susceptibility compared to the wildtype virus. The
number of possible amino acid values at each codon is not restricted by our method. However,
in the data we have analysed, we have found that considering all possible mutations equally
can reduce the predictor space at a minimal loss in explanatory power. The model-building
process is forward-stepwise and begins by identifying the best model among all those that
use as a predictor information from only a single codon; each model is judged based on
the proportion of variation of the response (phenotype) explained. Using the same criterion,
the next step is to identify the best model among all those models that use as predictors
information from two codons. The process proceeds until increases in the number of codons
in the model fails to produce a substantial increase in proportion of variation explained. For
example, this model building process would stop at K codons when the proportion of variation
explained by the best model that contains K + 1 codons (among all those models containing
K codons) is not substantially larger than that corresponding to the best model that contains
K codons (among all those models containing K codons). The measure of the proportion
of variation of the response variable explained is cross-validated adjusted R2. The models
are saturated in the sense that all possible interactions of codons, or predictor variables, are
simultaneously considered.
Our method of analysis is similar in spirit to bump-hunting, in that we seek subsets of

the covariate space within which the expected response is signi�cantly di�erent from the
expected response from the wildtype sequence. Note that bump-hunting seeks those subsets
of the covariate space with expected response signi�cantly di�erent from the overall expected
response. Such approaches di�er from recursive methods, in which future splitting of the data
is conditional on past splits. That is, the way in which the most predictive set of codons at
step K of our model building process is chosen in no way depends on the way that the most
predictive set of codons at step K − 1 is chosen.
Associated with the set of codons chosen as the best for prediction is a corresponding

set of possible patterns of mutations; each of these patterns has an associated e�ect in the
prediction model. Because the response variables and amino acid sequences are assumed
to be independent and identically distributed realizations across subjects, we can show that
under the null hypothesis of no association of mutation pattern with response, these e�ects
are statistically independent of one another and asymptotically standard normal. In order to
identify patterns of mutations that are associated with increased or decreased drug susceptibility
compared to the wildtype pattern, we develop a method for constructing con�dence bands for
standard normal probability plots; any e�ect observed to lie outside of the con�dence band is
signi�cantly associated with response at the desired type I error level.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000

Hosted by The Berkeley Electronic Press



UNCORRECTED P
ROOF

4 A. G. DIRIENZO

SIM1516

The interaction among codons in the occurrence of a mutation is of scienti�c interest, both to
aid in drug selection and to understand mechanisms of resistance. Methods have been proposed
that investigate the correlation between amino acid position variables [8]. The methods in
Bickel et al. [8] use a likelihood-ratio test for assessing the independence among codons
in the amino acid value and use permutation techniques for inference. We use a di�erent
approach to identify groups of codon=amino acid values, among those selected for having a
signi�cant association with phenotype, that tend to occur together either more commonly or
less commonly than would result from chance. We adapt the techniques described above, for
example, the construction a con�dence band for a normal probability plot, to identify these
groups of codon=amino acid combinations.
Our methods for these types of investigations di�er from those of Bickel et al. [8] in several

ways. The global inference procedures of Bickel et al. [8] are ad hoc and the associated
global type I error level is unknown; it is only known to be bounded for some subsets of
codon=amino acid pairs. As a result, these methods are likely to be conservative, that is,
not identify signi�cant associations when they exist. Furthermore, their general methodology
only handles codon=amino acid pairs, our methods handle any number of codon=amino acid
combinations. Bickel et al. [8] do develop speci�c methods to handle sets of three and four
codon=amino acid combinations, but these methods require parametric modelling. Finally,
whereas their methods ignore the correlation between di�erent codon=amino acid combinations,
our inference procedures take into account this correlation structure.
The paper is organized as follows. Section 2 presents notation and describes the model-

building process. Section 3 describes how a con�dence band for a normal probability plot can
be constructed. In Section 4, these methods are adapted to investigate the interdependencies
between codons. Section 5 presents an application of these results to a data set from Virco.
Finally, Section 6 presents some results from a simulation study.
The MATLAB code for execution of the methods proposed in this paper is available on

request from the authors.

2. MODEL AND NOTATION

The value of the amino acid at codon j=1; : : : ; J for individual i=1; : : : ; N is denoted by
Xij. Although our methods can accommodate information on the speci�c mutation (amino
acid) that occurs at each codon by transforming the genetic sequences to a vector of indicator
variables, for simplicity in the following discussion we consider only whether the amino acid
is wildtype or mutant for each codon. We use the notation Xij=0 if the amino acid is wildtype
at codon j and 1 otherwise. This simpli�cation of the data has been observed to result in a
negligible loss in explanatory power in the data that we have analysed, that is, distinguishing
between di�erent mutations has not been observed to add much predictability. The scalar
response variable, or phenotype, is denoted Yi, i=1; : : : ; N . We assume that the N responses
and associated sequences, (Yi; {Xij : j=1; : : : ; J}), i=1; : : : ; N , are independent and identically
distributed.
Our approach conducts analyses in a forward-selection manner. We start with simple models

and build them in a stepwise manner as described above. Let J denote the number of codons
under consideration; for the protease region, J =99. The goal is to �nd a subset of the J
codons containing K codons, K�J , that capture most of the predictive information available.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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For an arbitrary value of K , our algorithm �rst selects those M =
( J
K

)
possible combinations

of K codons. Each of the M combinations is a possible reduction in the predictor space from
J to K .
We consider a �xed value of K and suppress the dependence of notation on K below.

There are L=2K possible patterns of the sequence {Xij : j∈ Sm}, where Sm is the set of K
codons under consideration, m=1; : : : ; M . Each {Xij : j∈ Sm} equals one of the L possible K-
vectors. Let Iim‘ equal 1 if the sequence for individual i, {Xij : j∈ Sm}, is equal to the ‘th
sequence, ‘=1; : : : ; L, and 0 otherwise. Thus

∑
‘ Iim‘=1. Let nm‘=

∑
i Iim‘ denote the number

of individuals in the ‘th cluster for set Sm. The mean value of the response for the ‘th cluster
in set Sm is �Ym‘=(1=nm‘)

∑N
i=1 Iim‘Yi. The predictive model for the mth combination of K

codons is

Yi= �Ym1 +
L∑
‘=1
Iim‘( �Ym‘ − �Ym1) + ”im (1)

where E(”im)=0, �Ym1 = (1=nm1)
∑N

i=1 Iim1Yi and without loss of generality we take ‘=1 to
denote the pattern with K zeros (all wildtype).
The �t of the model can be assessed by cross-validated adjusted R2, denoted �R2, where

�R2m=1−
{
N∑
i=1
”̃2im=(N − 1− L)

}/{
N∑
i=1
(Yi − �Y )2=(N − 1)

}

m=1; : : : ; M; where ”̃im is ”im calculated using �Ym‘ calculated without subject i. An �R2m can
be calculated for each of the M sets of K codons and the combination Sm0 corresponding to
maxm{ �R2m}= �R2m0 is selected as the best combination of K codons.
Starting with K =1, a value �R2Km0 and corresponding set of K codons, SKm0 can be calculated,

this is repeated for K =2; 3; : : : . The value of K for which �R2Km0 remains relatively unchanged
is selected as an optimal K =K0, with corresponding codon set SK0m0 . In the next section we
propose methods that validly identify sequences whose predicted responses di�er from that of
the wildtype sequence.

3. CONFIDENCE BAND FOR NORMAL PROBABILITY PLOT

Given an optimal choice of K , K0, with an optimal choice of codons, SK0m0 , it is of interest to
study the L=2K0−1 deviations {( �Y‘− �Y1) : ‘=2; : : : ; L}, with the set of codons �xed at SK0m0 .
We suppress dependence of notation on m=1; : : : ; M , and now write �Ym‘ ≡ �Y‘; ‘=1; : : : ; L.
The distributions of both �Y‘ and �Y1 are approximately normal for n‘ and n1 su�ciently large;
in this case, the distribution of the e�ects {( �Y‘ − �Y1) : ‘=2; : : : ; L} are also approximately
normal. The null hypothesis we test is that the e�ects, properly standardized, constitute a
sample of independent observations from a standard normal distribution. In order to test this
hypothesis in a valid way, we develop a con�dence band for a normal probability plot; any
observation that lies outside of this region is deemed to depart signi�cantly from a standard
normal distribution at the desired type I error level.
Formally, the hypotheses we test are H0‘ : E( �Y‘ − �Y1)=0; and the joint null hypothe-

sis H0 =
⋂
‘ H0‘, ‘=2; : : : ; L. As a basis for such a test, consider U‘=( �Y‘ − �Y1)=�̂‘. The

{U‘ : ‘=2; : : : ; L} are asymptotically independent N(0; 1) random variables under H0, since

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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�̂2‘=(1=n‘ + 1=n1) ˆvar(Yi); where ˆvar denotes sample variance, is a consistent estimate of the
variance of ( �Y‘ − �Y1) under H0, ‘=2; : : : ; L. The independence under H0 follows because
the subsets of individuals in group ‘1 and ‘2 are disjoint (‘1 �= ‘2). In order to identify
departures from H0 while maintaining the overall type I error rate, we use the following
procedure. Let U(‘) denote the ‘th order statistic and z‘ the corresponding percentile from
a N(0; 1) distribution, that is, P{N(0; 1)¡z‘}=(‘ − 0:5)=(L − 1), where we have used the
continuity correction 0:5=(L − 1). De�ne the deviation D‘=U(‘) − z‘. Under the null hy-
pothesis, we obtain through simulation the value cL(�) that satis�es P{sup |D‘|¿cL(�)}= �.
Thus those D‘ with |D‘|¿cL(�) are signi�cant departures from H0 at level �. At each of
many, say B, iterations, the simulation procedure generates L − 1 independent observations
from a standard normal distribution and calculates the supremum of the L − 1 correspond-
ing values of |D‘|; cL(�) is taken as the (1 − �)100th percentile of the B corresponding
supremums.
We now provide a brief step-by-step summary of this methodology:

1. Represent amino acid values as indicator variables, for example, 0 if amino acid equals
consensus, 1 otherwise. Multiple indictor variables may be used for a given codon to
represent the presence of speci�c mutations.

2. Identify the one codon associated with the greatest cross-validated adjusted R-squared
( �R2) for prediction of response.

3. According to the �R2 criterion, successively add codons to the model, including in model
all possible interactions among codons. This process stops at K codons when the (K+1)th
codon is not associated with a signi�cant improvement in �R2.

4. Determine the number, L, of unique genotype patterns arising from these K codons (for
example, unique K-vectors of 0’s and 1’s) in which there are at least �ve observations.

5. Simulate B independent sets of L− 1 independent realizations from a N(0; 1). For each
of the B sets order the L− 1 observations and calculate the absolute di�erence between
each ordered realization and z‘, the corresponding percentile from a N(0; 1). For each
of the B data sets, �nd the maximum of these absolute di�erences and �nd cL(�), the
100(1− �)th percentile of these B maximums.

6. In the data set of interest, order the L− 1 standardized mean responses, obtaining U(‘),
and �nd D‘=U(‘) − z‘, ‘=2; : : : ; L. Patterns signi�cantly associated with an e�ect on
response at the global � signi�cance level are those with |D‘|¿cL(�).

4. SUBMODELS: INVESTIGATING INDEPENDENCE

Once an association is made between a set of genotype patterns and response, we want
to investigate the relationship among important codon=amino acid pairs. For example, do
codon=amino acid pairs occur independently of one another or are their occurrences correlated.
Given a choice of K , there are M possible sets of K codons and for each set there are

L=2K possible sequences. Fix K and a set of codons, Sm; the dependence of notation on K
and m will be suppressed. The probability of the occurrence of the ‘th sequence is denoted
by p‘ and is consistently estimated by p̂‘= n‘=N . If the K values of {Xij : j∈ Sm} occur
independently of one another, then each of the L sequences {x‘j}j∈Sm ; where x‘j=0 or 1,
occurs with probability p0‘=

∏
j∈Sm P(Xij= x‘j). We wish to test the joint null hypothesis

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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H (m)
0 =

⋂
‘ H0‘ where H0‘ :p‘=p

0
‘, that the joint probability of each sequence is equal to the

product of the marginal probabilities at each codon.
For N su�ciently large, under H0‘, p̂‘

√
N is approximately normal with mean p0‘ and

variance p0‘(1 − p0‘). Thus U‘= {N−1=2∑N
i=1(Ii‘ − p0‘)}=[

√{p0‘(1 − p0‘)}] is asymptotically
N(0; 1) under H0‘. De�ne Û‘ as U‘ except with p̂0‘=

∏
j∈Sm N

−1∑N
i=1 1(Xij= x‘j). Under

H0‘, Û‘ is also asymptotically N(0; 1) with the Û‘ independent across ‘ since the sets of
subjects in group ‘1 and ‘2 are disjoint (‘1 �= ‘2).
Suppose that K =2, that is, we are interested in all two-way associations. For a given

pair of codons (j1; j2), the L=4 possible combinations of sequences of amino acids are
(1; 1); (0; 0); (1; 0) and (0; 1). It is easily shown that it is su�cient to consider the one
concordant pair (1; 1) (or (0; 0)) and the one discordant pair (1; 0) (or (0; 1)). This is so
because if P(Xij1 =y |Xij2 = x)¿P(Xij1 =y) then P(Xij1 = 1−y |Xij2 = 1− x)¡P(Xij1 = 1−y),
x=0; 1, y=0; 1. Similarly, if P(Xij1 =y |Xij2 = x)=P(Xij1 =y) then P(Xij1 = 1− y |Xij2 = 1−
x)=P(Xij1 = 1 − y), x=0; 1, y=0; 1. Thus, to be more e�cient, we combine the two con-
cordant groups into one and the two discordant groups into one.
There are H =M ×L∗ statistics under scrutiny, L∗ from each of the M combinations of

K codons, where L∗ denotes the number of subsamples after combining concordant and dis-
cordant subsamples, L∗=2 for K =2. Let Û (h) denote the hth ordered statistic and zh the
corresponding percentile from a N(0; 1) distribution. Denote the deviation D̂h= Û (h) − zh and
obtain cH (�) using an analogous procedure to that outlined in the previous section; those D̂h
with |D̂h|¿cH (�) are signi�cant departures from H0 =

⋂
m H

(m)
0 at level �. Although for a

�xed sample of K codons, Sm, the L∗ statistics are independent under H
(m)
0 , the test statistics

are not necessarily independent across m=1; : : : ; M , as subsamples through m share subjects.
This procedure is approximately valid if the set of H statistics are approximately independent.
Alternatively, we can estimate the correlation structure of the set of H statistics through the
non-parametric bootstrap [9] and compensate for this correlation accordingly.
Suppose that �̂ is a consistent estimate of the H ×H correlation matrix of the H test

statistics. Let Û =(Û (1); : : : ; Û (H)) and de�ne Û ∗= Û �̂− 1
2 . Let Û ∗

(h) denote the hth ordered
statistic. Denote the deviation D̂∗

h = Û
∗
(h) − zh. Those D̂∗

h with |D̂∗
h |¿cH (�) are signi�cant

departures from H0 at level �.
Similar testing procedures may be constructed for studying three-way associations condi-

tional on signi�cant two-way associations, and so on.

5. APPLICATION

We apply the methods described above to a data set provided to us from the Virco Group,
consisting of sequences of the protease region (J =99) and log IC50 measurements for ampre-
navir, a drug of the protease inhibitor class, for N =2747 patient samples. At each codon we
code the value of the amino acid as 0 if wildtype and 1 otherwise; discriminating between
di�erent mutations does not signi�cantly add to the predictive power of the model.
In our analyses, the response variable Yi is the ith individual’s log IC50 measurement for

amprenavir. The choice for K0 satis�es the condition that the change in �R2 from K0 to K0+1 is
less than 0.01. For amprenavir, K0 = 8, the corresponding codons are (32; 46; 54; 71; 82; 84; 88;

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000

Hosted by The Berkeley Electronic Press



UNCORRECTED P
ROOF

8 A. G. DIRIENZO

SIM1516

Table I. Signi�cant e�ects for amprenavir.

X32 X46 X54 X71 X82 X84 X88 X90 D‘ 10 �Y‘ 10 �Y‘ =10 �Y 1 n‘

0 1 0 0 0 0 1 0 −1:80 0.42 0.58 15
0 0 0 1 0 0 0 0 −1:64 0.64 0.87 82
0 0 0 1 0 0 1 0 −1:60 0.56 0.77 26
0 0 0 0 1 0 0 1 1.31 1.10 1.51 9
0 0 0 1 1 0 0 1 1.65 1.11 1.51 5
0 0 0 1 1 0 0 0 1.76 1.26 1.72 6
0 1 0 1 1 0 0 0 2.28 1.63 2.23 8
0 1 0 1 1 1 0 1 2.30 7.51 10.25 5
0 1 0 1 1 0 0 1 2.51 1.80 2.46 5
0 1 0 1 0 1 0 0 2.52 11.86 16.20 6
0 1 1 0 1 0 0 1 2.53 4.41 6.03 5
0 1 1 1 1 1 0 0 2.54 7.56 10.32 7
1 1 0 1 1 0 0 1 2.59 7.26 9.91 6
0 0 0 0 0 1 0 1 2.64 3.00 4.10 9
1 1 0 1 1 0 0 0 2.79 3.96 5.41 8
0 1 0 0 0 0 0 0 2.88 1.52 2.08 14
0 0 0 1 0 0 1 1 3.27 1.42 1.94 13
0 0 1 1 0 1 0 1 3.35 4.28 5.85 10
0 1 1 1 0 1 0 1 3.35 6.04 8.25 9
0 1 0 0 1 0 0 0 3.35 4.01 5.48 8
1 1 1 1 1 0 0 1 3.44 6.75 9.22 11
0 0 1 1 0 0 0 1 3.70 2.09 2.85 15
0 1 1 0 1 0 0 0 3.82 2.32 3.17 11
0 0 1 0 1 0 0 0 4.36 1.71 2.34 28
0 0 0 0 0 0 0 1 4.88 1.19 1.62 63
0 1 0 0 0 0 0 1 4.96 2.04 2.79 30
0 0 1 1 1 0 0 0 5.03 1.97 2.69 25
0 1 0 0 0 1 0 1 5.10 5.94 8.12 22
0 1 1 1 1 0 0 0 5.25 3.03 4.13 24
0 1 1 1 1 0 0 1 5.38 3.57 4.87 23
0 0 0 1 0 0 0 1 5.40 1.27 1.73 61
0 1 0 1 0 0 0 1 5.47 1.70 2.32 30
0 0 1 1 1 0 0 1 6.22 1.90 2.60 49
0 1 0 1 0 1 0 1 6.63 4.80 6.56 41
0 0 0 1 0 1 0 1 6.98 3.94 5.37 39

90) and the associated �R2 is approximately equal to 52 per cent. These codons have previously
been observed to be associated with resistance level to amprenavir [10, 11]. We �rst focus
on analysing the L=28 =256 clusters to identify the most predictive sequence patterns. Then
we investigate the working relationship between codons.
Out of the 256 possible clusters, 97 are not empty; we restrict attention to the L=40

clusters with cell counts of at least �ve. The value of the constant c40(0:05) is approximately
1.1. Table I displays those sequences with |D‘|¿c40(0:05). As shown in Table I, sequences
with a mutation at codon 88 are associated with increased sensitivity to amprenavir compared
to sequences that are wildtype at all eight codons, even if they also have mutations at 46
(generally associated with resistance) and at 71. Having the wildtype amino acid at 88, N ,
is associated with increased resistance to amprenavir as compared to the wildtype sequence.
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Figure 1. (a) Best �t regression tree, wildtype amino acid coded as 1, 2 otherwise, ‘c’ refers
to codon; each terminal node presents the mean log10 IC50 for that node (top number) and

node size (n). (b) Prediction error of regression tree �t.

Having mutation at two or more of (46; 54; 82; 84; 90) while being wildtype at 88 is strongly
associated with increased resistance. Should it be possible to identify a drug that induces a
mutation at 88 but preserves wildtype at 84, it might allow sustained sensitivity to amprenavir
when used in combination. The (leave-one-out) cross-validated prediction error and �R2 for this
model is 10.7 per cent and 42.3 per cent. The cut-o� of 2.5 is used to distinguish between
sensitive and resistant virus. Using this 2.5-fold cut-o� to distinguish between sensitive and
resistant samples, the (leave-one-out) cross-validated estimates of misclassi�cation are 7 per
cent of samples misclassi�ed as resistant and 9 per cent misclassi�ed as sensitive.
We also use recursive partitioning methods, with software provided by reference [12], to

analyse this data set. The default settings for this software are: a minimal terminal node
size of 7; splitting ends when the next split results in a change in R2 of less than 0.01;
and 10 per cent of data is left out for cross-validation. A plot of the resulting pruned cross-
validated tree and associated residuals are given in Figure 1. For this model, R2 = 46 per cent,
and the adjusted R2, as de�ned by this software, is 45 per cent. The corresponding overall
misclassi�cation rate is 17 per cent, with 4 per cent misclassi�ed as resistant and 13 per cent
misclassi�ed as sensitive. It is interesting to note that all of the codons we identify as being
important appear in this tree, but that the codons 88 and 71 did not appear. Because the
importance of mutations at 88 and 71 has previously been noted [10, 11], our method appears
to provide additional information to that provided by recursive partitioning.
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Figure 2. Normal probability plots of (a) responses and (b) estimated errors.

We next investigate the pairwise association between two codons in the occurrence of a
mutation. Signi�cant discordant associations are observed at the following codons: (88; 82);
(88; 84); (88; 90) and (46; 54). The negative correlation in the occurrence of mutation at codon
88 with mutations at 82, 84 and 90 may be the reason that wildtype at 88 is associated with
reduced susceptibility to amprenavir. Signi�cant concordant associations in the occurrence of
a mutation are observed at the pairs (10; 84); (32; 82); (46; 88) and (46; 71).
Assessment of the assumption of normally distributed errors is based on normal probability

plots of the residuals, that is, responses minus respective cluster means (Figure 2(b)). Except
for a few observations, the residuals show no obvious departure from normality and thus no
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transformation of the responses is required. The outliers appear to result from some errors in
the data, because there are a few observations with many major mutations but no elevation
in IC50, and this situation is biologically implausible. A normal probability of the responses
is shown in Figure 2(a); given the normality of the residuals, the heavy right tale in this plot
appears to result from departures from the null hypothesis.

6. SIMULATION STUDY

We investigate the performance of the proposed methodology in a simulation study. In this
simulation, we consider the independent variable, genetic sequence, to be �xed, and simulate
responses under several di�erent laws and under both the null and alternative hypotheses.
The choice for K is �xed at K =8 and the codons considered are (32; 46; 54; 71; 82; 84; 88;

90). We only include the 40 genetic clusters with �ve or more observations, and regard
the number of responses in each cluster, or cluster size, as �xed at the number observed
in the Virco data. Corresponding to each of these 40 genetic clusters is a cluster-speci�c
mean phenotype, which is used to simulate data under the alternative hypothesis. We �x
K =8 because this choice is not a property of our methodology per se, but depends rather
on the size and complexity of the particular data set at hand. Furthermore, we also consider
the set of codons as �xed, choosing the set that maximizes �R2. Fixing these quantities does
not require assumptions about the data generating process. On the other hand, identifying
genotype patterns that signi�cantly reduce or increase drug susceptibility relies on the central
limit theorem, whose applicability does depend on distribution of responses and on the cell
sizes; small cell sizes are particularly a problem when the underlying distribution of response
is far from normal.
For the distribution of response, we consider: (i) the uniform distribution on (−1; 1); (ii) the

exponential distribution with hazard equal to 1; (iii) the chi-square distribution with 5 degrees
of freedom; (iv) the t-distribution with 7 degrees of freedom; and (v) the standard normal
distribution. The uniform, exponential, chi-square and t responses are standardized by their
respective means and variances, as appropriate, so that all generated data have mean 0 and
variance 1. For the null hypothesis, and for each of the 40 genetic clusters, we independently
simulate from each of these �ve distributions a number of independent observations equal to
the speci�c cluster size. The simulated data are used to calculate 39 standardized e�ects, U‘,
‘=2; : : : ; 40, for each distribution; and the method of Section 3 is used to determine those
clusters whose |D‘| fall outside of the associated con�dence band for the normal probability
plot. This simulation was iterated independently 2000 times; the associated asymptotic 95 per
cent con�dence interval for a true coverage probability of 0.95 is (0:94; 0:96). For each of
the �ve laws for response, Table II provides the percentage of the 2000 iterations in which
no e�ects lay outside the con�dence band, which nominally is 95 per cent, as well as the
proportion in which one or two or more e�ects lay outside the con�dence band. With the
exception of the exponential law, the coverage percentages, for example, the percentages of
iterations in which no e�ects lay outside of the con�dence band, are all greater than 90 per
cent.
To simulate under the alternative hypothesis, responses are generated from each of the �ve

distributions as above for each genetic cluster; the corresponding observed cluster-speci�c
mean IC50 from the Virco data added to each observation. The purpose of this simulation
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Table II. Observed percentage of number of e�ects lying outside of con�dence band
at 5 per cent type I error level.

Distribution Null hypothesis Alternative hypothesis

0 1 2+ 0 1–9 10–19 20–29 30–39

N(0; 1) 94.5 4.6 0.9 0 0 1.0 31.2 67.8
U(−1; 1) 96.3 3.4 0.3 0 0 0.9 33.9 65.2
exp(1) 83.3 12.0 4.7 0 0 2.1 30.4 67.5
�5 90.2 8.0 1.8 0 0 1.3 32.9 65.8
t7 92.0 7.1 0.9 0 0 0.8 31.7 67.5

is not to study power, but to provide a comparison among these �ve distributions with re-
spect to their rejection rates under an alternative hypothesis. In Table II, the distribution
of the number of e�ects lying outside of the con�dence band is shown for each distribu-
tion of response. There is little di�erence between the �ve laws in terms of these rejection
rates.
These simulations show a fair degree of robustness to distributions that depart grossly

from the normal, but in practice, transformation of non-normal response data can improve
the performance of the proposed tests. For example, as mentioned above, if observed data
are generated by model (1) with independent and identically distributed errors, assessment of
normality of the residuals can indicate whether transformations of the responses is necessary.
Of course, variance and degree of correlation of residuals within cells depend on the cell size,
ni. Therefore, if cell sizes are small, appropriate transformation of the ni correlated residuals
within a cell into n−1 uncorrelated residuals with equal variance across cells may be required
before assessing normality.
To examine the bene�ts of transformations in our simulation, we carry out transformations

of response data to produce residuals that are close to being normally distributed. For the
simulations based on the exponential law, a Box–Cox power transformation with �=1=4 of the
response data (calculated without knowledge that the responses are exponentially distributed)
yields nearly normally distributed residuals; the coverage percentages associated with this
transformed data are (94.5, 4.8, 0.7). Similarly, for the chi-square law, the associated Box–
Cox transformation is �=0:3 with corresponding coverage percentages of (94.4, 4.9, 0.7).
From the simulation, it appears that our method is fairly robust to some degree of non-
normality of responses, and that appropriate transformations can improve the performance of
our method when responses are highly non-normal.

7. DISCUSSION

The proposed methods allow a completely non-parametric investigation of the relationship
between patterns of mutations and phenotype; these methods assume no functional form for
this relationship. Therefore, for a �xed K , it is not guaranteed that all of the possible clusters
of genotype patterns will have enough data points to ensure reasonably accurate estimation
of means. As the number of clusters of interest increases, so does complexity, thereby com-
plicating interpretation of results. Because of these properties, our methods are particularly
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well suited for exploratory analyses, in which avoidance of in�uential structural assumptions
is essential.
The methods developed are appropriate for a high-dimensional setting where the data set

of interest has more observations than predictors. Even so, the central limit theorem may not
assure distributions su�ciently close to normality when clusters have only a small number
of responses. Therefore, it is important to assess normality of the responses, as discussed in
Section 6, and to consider appropriate transformations.
Although our method relies on cluster means to be normally distributed, it does have several

advantages. While our methods are computationally intensive compared to some tree-based
methods, they are much less intensive than neural network approaches. Another advantage
is the ease of calculating power to detect cluster e�ects of di�erent magnitudes for di�erent
values of K . These calculations help in interpretation of results, because they provide insight
into the amount of information required to support inference of given level of complexity.
Such calculations are essential for determining how large patient cohorts must be in order to
develop reliable clinical interpretations of HIV genotype. DiRienzo and DeGruttola [13] use
the methods developed in this paper to estimate the number of observations needed to detect
with adequate power moderate e�ects of genotype sequence on HIV-1 RNA response.
There exist limits of quanti�cation of the IC50 assay, resulting in possibly censored

measurements. One way to compensate for this possible censoring is to discretize the log10 IC50
values into the �nest partition that eliminates censoring. We could treat such responses as or-
dered categorical data and make use of a Wilcoxon test for comparison of clusters to wildtype.
Analyses would proceed as we described, but using normalized Wilcoxon statistics rather than
di�erences in means. Thus, the �exible approach we describe can be useful in a wide va-
riety of data settings and only requires that the test statistic used for group comparison is
asymptotically normal.
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