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Abstract

Time series arise often in environmental monitoring settings, which typically involve measuring
processes repeatedly over time. In many such applications, observations are irregularly spaced and,
additionally, are not distributed normally. We describe the technical details justfying a simple,
robust approach for estimating regression parameters and a first-order autocorrelation parameter
in a time series where the observations are irregularly spaced. Estimates are obtained from an
estimating equation constructed as a linear combination of estimated innovation errors, suitably
robustified by symmetric and possibly bounded functions. Under MCAR assumption and mild
regularity conditions, the proposed estimating equation yields consistent and asymptotically normal
estimates. Technical details are developed using the theory of mixingales described by Davidson
(1994) and standard Z-estimation theory as described by van der Vaart (1998). In particular, the
sequence of estimating function components can be shown to be an ergodic L1 mixingale to which
a weak law of large numbers and a central limit theorem apply. Lipschitz conditions ensure the
functional convergence required to complete the proof.
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1 Introduction

Time series arise often in environmental monitoring settings, which typically involve mea-

suring processes repeatedly over time and/or space. Although the time series regression

literature is vast, beginning with Durbin (1960), much of the development has occurred

in the econometrics literature, where regular time series data are the norm. In the envi-

ronmetric setting, the expense and difficulty of collecting data often leads to irregularity

in the observed time series. In addition, outliers or heavy tailed distributions can occur.

See, for example, Houseman et al. (2004). Time series in the environmental setting have

been addressed by authors such as Brumback et al. (2000), who proposed a transitional

regression model for Poisson outcomes. However, the paper did not address unequal

spacing in the time series, and it addressed outliers primarily through overdispersion of

the Poisson outcome. Robust methods for time series have been proposed by numerous

authors, such as Denby & Martin (1979) and McDougall (1994). However, they have not

addressed unequally spaced time series in a regression setting. On the other hand, Omori

(2003) recently extended the methods of Zeger (1988) for unequally spaced observations;

both of these papers are focused, however, on count data and the estimating equations

are motivated by a Poisson assumption. Unlike Denby & Martin (1979) and McDougall

(1994), they do not specifically address bounded-influence estimation.

This article provides theoretical details of a simple, robust approach for estimating

regression parameters and a positive first-order autocorrelation parameter for a time

series where the spacings between observations are unequal. In our approach, which is

similar in spirit to Denby & Martin (1979), we construct a method-of-moments estimator

(Mátyás, 1999), or Z-estimator (van der Vaart, 1998). The major technical references
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are Davidson (1994) and van der Vaart (1998). These will be referred to throughout the

text simply as Davidson and Van der Vaart, respectively.

2 Robust Estimation for a Univariate First-Order Autoregres-

sive Time Series

We now describe a simple robust estimating-equations approach to estimating regres-

sion coefficients and autocorrelation parameter in a first-order autoregressive time series.

We first state several assumptions about our model, present some definitions, and then

proceed to state two theorems. The theorems are proved in the Appendix.

Our first assumption describes a univariate first-order autoregressive time series re-

gression model.

Assumption 1. Let Y = {..., Y−1, Y0, Y1, Y2, ...} be a sequence of univariate random vari-

ables from symmetric distributions having constant variance, and let X = {..., X−1, X0,

X1, X2, ...} be a corresponding sequence of p-dimensional covariate vectors. Assume

that E(Yj|Xj) = X ′jβ for each j ∈ J = {...,−1, 0, 1, 2, ...}, and the process Yj −

X ′jβ is stationary. The outcomes follow a first-order autoregressive process, wherein

E(Yj|Xj, Yj−1, Xj−1) = X ′jβ + ρ(Yj−1 −X ′j−1β) for each j ∈ J ; in addition,

Yj = X ′jβ + ρ(Yj−1 −X ′j−1β) + Uj, (1)

where 0 < ρ < 1, and Uj is symmetric, independent of Yj−1 − X ′j−1β, has expectation

zero, and has variance τ 2.

We also assume an open but bounded parameter space, which is plausible in most

practical settings.

3
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Assumption 2. Assume that σ > 0 is a known scale parameter and that the parameter

θ = (β′, ρ)′ ranges over Θ, a convex open subset of a compact set of Rp+1. In particular,

there is an ε > 0 such that ε < ρ < 1−ε and σ > ε; these conditions ensure that the AR-1

process described in Assumption 1 is well-behaved on the boundary of Θ. We denote

θ0 = (β′0, ρ
′
0) and σ0 as the true values of the parameters.

We also assume regularity conditions for the covariate process {Xj} and the mecha-

nism which gives rise to the “gaps” in the time series. In essence, we require the missing

data mechanism {∆j} to be missing completely at random (MCAR) in the sense of Lit-

tle & Rubin (1987). We also assume sufficiently fast mixing that a weak law of large

numbers and a central limit theorem apply. Theoretical details would be somewhat sim-

plified if we assume stationarity. However, we would like to address the more general

case in which X ′jβ contains terms for seasonal adjustment. It turns out that a sufficient

condition for our methodology is that the expected values of the individual estimating

function components converge to a constant for every θ ∈ Θ. This holds true in the more

general situation where we assume periodic stationarity in the sense described as follows.

Assumption 3. Let Vj = (X ′j,∆j, Kj)
′ and let {Vj} be an ergodic process (in the sense

of Davidson, Section 13.4, pages 199-203), independent of the innovation process {Uj},

such that ∆j is Bernoulli, Kj = (Kj−1 + 1)(1 − ∆j−1) + ∆j−1 is bounded, and {Xj} is

bounded and L2 integrable. Moreover, assume that {Vj} is periodically stationary in that

there is an integerQ such that {VnQ+q} is stationary and ergodic for all q ∈ {0, 1, ..., Q−1}

and all integers n. Finally, assume that {VnQ+q} is α-mixing or φ-mixing of size a > 1

(in the sense of Davidson, Section 14.1, pages 209-211). For convenience, let {Vh} denote

the corresponding adapted filtration.

4
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Here, ∆j is interpreted as an indicator of whether the outcome was observed or not

and Kj is the gap between observed observations. Since we are interested in the behavior

of Y conditional on {Vj}, the dependence of {Vj} need be only sufficiently structured to

support the technical details of the proofs. In particular, ergodicity is not required for

consistency, only for asymptotic normality. This will make sense because the estimating

equations defined below will essentially condition out the information in {Vh}. However,

the distribution of the estimator depends upon the specific realization {Vj}.

Next, we impose conditions on our robustifying functions and the distribution of the

random portion of the time series.

Assumption 4. The functions λ(·) and ω(·) are odd and have bounded and continuous

first derivatives. In addition, λ(·) and ω(·) have continuous second derivatives or, more

generally, the derivatives λ̇(·) and ω̇(·) satisfy Lipschitz conditions on Θ. In either case,

there is a constant A such that |λ̇(θ)− λ̇(θ̃)| < A|θ− θ̃| for all θ, θ̃ ∈ Θ, and similarly for

ω̇(·).

Assumption 4 is probably stronger than necessary, as we remark following the state-

ment of Theorem 2. The next assumption is necessary for the application of a central

limit theorem.

Assumption 5. Either λ(·) and ω(·) are bounded or Uj possesses a fourth moment.

Finally, we define the components of our proposed estimating function.

Definition 1. Let Hj be the σ-field generated by {(Uh, Vh)}h<j and let {Hj} be the

corresponding filtration, referred to as the history.

5
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Definition 2. Let

ξ(ρ, k) =

(
k−1∑
l=0

ρ2l

)1/2

=

(
1− ρ2k

1− ρ2

)1/2

.

For convenience, denote ξ(ρ,∞) = (1 − ρ2)−1/2. In addition, reparametrize τ 2 as α2σ2

for some known α2; thus, σ2 is a scale parameter that has a linear relationship with the

variance of Uj.

Note that E[Yj −X ′jβ0 − ρk0(Yj−k −X ′j−kβ0)|Xj, Yj−k, Xj−k] = 0 and Var[Yj −X ′jβ0 −

ρk0(Yj−k −X ′j−kβ0)|Xj, Yj−k, Xj−k] = ξ(ρ0, k)2τ 2, and that the marginal variance of Yj is

ξ(ρ0,∞)2τ 2. These facts are useful in constructing zero-mean residuals that have variance

suitably uniform for bounded influence estimation.

Definition 3. Let Nn =
∑n

j=1 ∆j,

ψj(θ) = λ

(
Yj −Xjβ − ρKj(Yj−Kj −Xj−Kjβ)

ξ(ρ, ki)σ

) Xj − ρKjXj−Kj

Kjρ
Kj−1ω[(Yj−Kj −Xj−Kjβ)/ξ(ρ,∞)σ]

 ,
and Ψn(θ) = N−1

n

∑n
j=1 ∆jψj(θ).

By the comment after Definition 2, it is easy to see that the arguments to the ro-

bustifying functions λ(·) and ω(·) have stable variance and their tails are consequently

downweighted uniformly. The specific form of the functions ψj(θ) is motivated by dif-

ferentiating the arguments to λ(·) in the manner suggested by Wedderburn (1974), and

robustifying potentially heavy-tailed coefficients as suggested by Denby & Martin (1979).

The main theorems of this paper concern the asymptotic behavior of the estimator θ̂n

obtained by solving Ψn(θ) = 0. In summary, θ̂n enjoys the usual attractive asymptotic

properties, as described below.

Theorem 1 (Consistency). If θ̂n solves Ψn(θ) = 0 then θ̂n
P→ θ0.

6
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Theorem 2 (Asymptotic Normality). If for all θ in a neighborhood of θ0, Ψn(θ)

converges in probability to a continuous function with nonsingular derivative, and if θ̂n

solves Ψn(θ) = 0, then there is a matrix Ω such that N
1/2
n Ω−1/2(θ̂n − θ0)

L→ N(0, I).

The proofs of Theorems 1 and 2 appear in the Appendix. The proof of Theorem 2 of

suggests an estimator of Ω, which we propose formally as another theorem.

Theorem 3 (Variance Estimation). Let

Ω̂n = Ψ̇n(θ̂n)−1

(
N−1/2
n

n∑
j=1

∆jψj(θ̂n)ψj(θ̂n)′

)
Ψ̇n(θ̂n)−T ,

where Ψ̇n(θ) is the first derivative matrix of Ψn(θ). Provided the conditions of Theorem

2 hold, Ω̂n is a consistent estimator of Ω.

Theorems 2 and 3 require that the estimating function converges to a deterministic

function that has a continuous first derivative near θ0, a condition that is difficult to

verify in general since it depends on the behavior of X . However, in practical settings

the existence of such a limit can usually be assumed.

Results can be extended to include the variance estimating function Ψ
(s)
n ,

ψ
(s)
j (θ) =

(
Yj −X ′jβ − ρKj(Yj−Kj −Xj−Kjβ)

ξ(ρ,Kj)

)2

− α2σ2,

provided Uj is bounded in L4+δ for some δ > 0. This slightly stronger condition is needed

to ensure that ψ
(s)
i (θ)2 obeys a central limit theorem.

As suggested by the results in Denby & Martin (1979) for regular time series with

mean zero, it should, in principle, be possible to extend Theorem 2 to the case where

λ(·) and ω(·) are simply continuous, provided some additional regularity conditions are

assumed. One approach might be to approximate Ψn(θ) by its expectation, or by twice-

differentiable functions that closely approximate Ψn(θ). Since our interest is primarily

7
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from an applied perspective, we have not fully investigated these approaches.
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Appendix

In this appendix we shall prove Theorems 1, 2, and 3. Proofs follow from the mixingale

law or large numbers (Davidson, Theorem 19.11, page 302) and a central limit theorem

for ergodic mixingale (Davidson, Theorem 24.5, page 385). Of course, in order to make

use of the theorems it is first necessary to prove that the estimating functions of Definition

3 form ergodic mixingales. We accomplish this indirectly by proving first that they form

a sequence that is near-epoch dependent on the sequence {Vj}. We review the relevant

definitions as formulated by Davidson (Chapters 16 and 17). First, we repeat Davidson’s

definition of the concept of an Lp mixingale for p ≥ 1.

Definition 4. Let (Ω,F , P ) be a probability space, let {Ft} be an increasing sequence

of σ-subfields of F , and let Xt be integrable random variables on Ft. The sequence of

pairs {Xt,Ft}∞−∞, is called an Lp mixingale with respect to a sequence of non-negative

constants {ct}∞−∞ if there exists a sequence of non-negative constants {ζt}∞0 such that

9
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ζm → 0 as m→∞ and

‖E(Xt|Ft−m)‖p ≤ ctζm (Davidson, Condition 16.1)

‖E(Xt|Ft+m)‖p ≤ ctζm (Davidson, Condition 16.2)

hold for all t and all m ≥ 0. If ζm = O(m−s) for s > r, then the sequence is said to be

of size −r.

Associated with the mixingale concept is the idea of near-epoch dependence.

Definition 5. Let p > 0. For a stochastic sequence {Aj}+∞
−∞, possibly vector valued,

on a probability space (Ω,F , P ), let F j+mj−m = σ(Aj−m, ..., Aj+m) such that {F j+mj−m}∞m=0 is

an increasing sequence of σ-fields. If a sequence of integrable random variables {Qj}+∞
−∞

satisfies

‖Qj − E(Qj|F j+mj−m )‖p ≤ djνm (2)

where νm → 0 and {dj}+∞
−∞ is a sequence of positive constants, Qj will be said to be near-

epoch dependent in Lp-norm (Lp-NED) on {Aj}+∞
−∞. If νm = O(m−s) for s > r, then the

dependence is said to be of size −r. It will be convenient to note when there is an M

such that νm = 0 for all m > M , in which case we will say that {Qj} is M-dependent

with respect to {Aj}.

We try the reader’s patience with another definition, which will pay off in notational

convenience:

Definition 6. Define the scaled residuals Rj and Sj as

Rj =
Yj −X ′jβ − ρKj(Yj−Kj −X ′j−Kjβ)

ξ(ρ,Kj)σ
,

10
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Sj =
Yj −X ′jβ
ξ(ρ,∞)σ

.

We are now in a position to state and prove several lemmas. Lemmas 1 and 2 are

technical lemmas needed to prove Lemma 3, which establishes the mixingale property

required for a law of large numbers and a central limit theorem to apply.

Lemma 1. Fix θ ∈ Θ. Let {Wj} be a bounded process, independent of the innovations

{Uj}, and L1-NED on {Vj}. Moreover, assume that {Wj} is M -dependent with respect

to {Vj}. Then {Wjλ(Rj)− E[Wjλ(Rj)],Hj} is an L1 mixingale of size -1 with respect to

a bounded sequence of constants {cj}.

Proof. Fix j, k, and h < j. Simple algebraic manipulation shows that

Zj+k(β)− ρkZj(β) =

j+k−h∑
l=0

ρl0Uj+k−l −
j−h∑
l=0

ρkρl0Uj−l + (ρkXj −Xj+k)
′(β − β0) +

ρj+k−h−1
0 Zh−1(β0)− ρkρj−h−1

0 Zh−1(β0),

where Zl(β) = Yl −X ′lβ. Let Ck = (ρk0 − ρk)ξ(ρ, k)−1σ−1,

Ũhjk = ξ(ρ, k)−1σ−1

[
j+k−h∑
l=0

ρl0Uj+k−l −
j−h∑
l=0

ρkρl0Uj−l

]
,

and

X̃jk = ξ(ρ, k)−1σ−1(ρkXj −Xj+k)
′(β − β0).

Thus Rj = ŨhjKj + X̃jKj + ρj−h−1
0 CKjZh−1(β0). By Assumption 4 and the mean value

theorem,

Wjλ(Rj) = Wjλ(ŨhjKj + X̃jKj) + ρj−h−1
0 DhjWjCKjZh−1(β0), (3)

where Dhj is a bounded random variable. Define F j+mj−m as in Definition 5, with Aj =

(Uj, Vj). Since ŨhjKj , Wj and X̃jKj are M -dependent with respect to {Aj}, it follows

11
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that there is an m′ such that

Wjλ(ŨhjKj + X̃jKj)− E
[
Wjλ(ŨhjKj + X̃jKj)

∣∣∣F j−(j−h)
j+(j−h)

]
= 0 (4)

for h < j −m′. For all such h,

E
(
ρj−h−1

0 DhjWjCKjZh−1(β0)
∣∣∣F j−(j−h)

j+(j−h)

)
= E[Zh−1(β0)]E

(
ρj−h−1

0 DhjWjCKj

∣∣∣F j−(j−h)
j+(j−h)

)
= 0 (5)

and

‖ρj−h−1
0 DhjWjCKjZh−1(β0)‖1 ≤ ρj−h−1

0 ‖DhjWjCKj‖1‖Zh−1(β0)‖1. (6)

By (3) - (6),

∥∥∥Wjλ(Rj)− E
(
Wjλ(Rj)

∣∣∣F j−(j−h)
j+(j−h)

)∥∥∥
1
≤ ρj−h−1

0 ‖DhjWjCKj‖1‖Zh−1(β0)‖1,

which satisfies (2). Thus, {Wjλ(Rj) − E [Wjλ(Rj)]} is L1-NED on {Aj}. By Theorem

17.5 of Davidson (page 264), {Wjλ(Rj)− E[Wjλ(Rj)],Hj} is an L1 mixingale of size -1

with respect to a sequence of constants {cj}, where

cj ≤ max{‖Wjλ(Rj)‖1, ‖DhjWjCKj‖1‖Zh−1(β0)‖1}.

Smoothness conditions (Assumption 4) and moment conditions (Assumption 5) ensure

that {cj} is bounded.

Lemma 2. Fix θ ∈ Θ. Let {Wj} be a bounded process, independent of the innovations

{Uj}, and L1-NED on {Vj}. Moreover, assume that {Wj} is M -dependent with respect

to {Vj}. Then
(
{Wjω(Sj−Kj)λ(Rj)− E[Wjω(Sj−Kj)λ(Rj)]},Hj

)
is an L1 mixingale of

size -1 with respect to a bounded sequence of constants {cj}.
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Proof. As in the proof of Lemma 1, assume h < j and let

Sj = Ũ∗hj + X̃∗j + ρj−h−1
0 C∗KjZh−1(β0),

where Zl(β) = Yl − X ′lβ, C∗k = ρk−1ξ(ρ,∞)−1σ−1, Ũ∗hj = ξ(ρ,∞)−1σ−1
[∑j−h

l=0 ρ
l
0Uj−l

]
,

and X̃∗j = −ξ(ρ,∞)−1σ−1X ′j(β − β0). Also as in the proof of Lemma 1, ω(Sj) = ω(Ũ∗hj +

X̃∗j ) +D∗hjρ
j−h
0 C∗KjZh−1(β0), where D∗hj is a bounded random variable. Using techniques

similar to the proof of Lemma 1, it is straightforward to show that (2) is satisfied by the

individual components Wjλ(ŨhjKj+X̃jKj)ω(Ũ∗hj+X̃
∗
j ), Wjρ

j−h−1
0 DhjCKjZh−1(β0)ω(Ũ∗hj+

X̃∗j ), Wjλ(ŨhjKj+X̃jKj)D
∗
hjρ

j−h−1
0 C∗KjZh−1(β0), andWjρ

2(j−h−1)
0 DhjD

∗
hjCKjC

∗
Kj
Zh−1(β0)2.

It follows that {Wjω(Sj−Kj)λ(Rj)− E[Wjω(Sj−Kj)λ(Rj)]} is L1-NED on {Aj}, and the

proof is completed by an application of Theorem 17.5 of Davidson (page 264).

Lemma 3. The process {∆jψj(θ)−E[∆jψj(θ)]}j together withHj forms an L1 mixingale

of size -1 with respect to a bounded sequence of constants {cj}.

Proof. The statement follows easily from Lemmas 1 and 2.

Lemmas 5 and 6 assert pointwise and global (respectively) convergence of the esti-

mating functions. However, first we must prove a technical lemma, Lemma 4, in order

to relax stationarity assumptions to the weaker requirement of periodic stationarity.

Lemma 4. Fix θ ∈ Θ.Then

N−1
n

n∑
j=1

E[∆jλ(Rj)(Xj − ρXj−Kj)]

and and

N−1
n

n∑
j=1

E[∆jKjρ
Kjω(Sj)λ(Rj)]

converge to constants.
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Proof. Let Wj = ∆jλ(Rj)(Xj − ρXj−Kj). The distribution of Wj is periodic in the sense

of Assumption 3; consequently, let µq = E(WQl+q). It follows that for each q = 0, ..., Q−1,

n−1
∑n

l=1 E(WQl+q) = µq. Let [a] denote the integer portion of a and a%Q the modulus

of a over Q. Then as n→∞,

n−1

n∑
j=1

E(Qj) = n−1

[n/Q]∑
l=1

Q−1∑
q=0

E(WQl+q) + n−1

n%Q∑
q=0

E(WQl+q)

=
[n/Q]

Q[n/Q] + n%Q

Q−1∑
q=0

[n/Q]−1

[n/Q]∑
l=1

E(WQl+q) + n−1

n%Q∑
q=0

E(WQl+q)

→ Q−1

Q−1∑
q=0

µq + 0 = µ,

where µ = Q−1
∑Q−1

q=0 µq. By Assumption 3, for each q ∈ {0, ..., Q− 1}, there is a πq such

that n−1
∑n

m=1 ∆mQ+q
P→ πq; consequently, n−1Nn

P→ Q−1
∑Q−1

q=0 πq ≡ π̄. It follows that

N−1
n

∑n
j=1 E(Wj) = (n−1Nn)−1n−1

∑n
j=1 E(Wj)

P→ π̄−1µ. A similar proof establishes the

result for N−1
n

∑n
j=1 E[∆jKjρ

Kjω(Sj)λ(Rj)].

Lemma 5. Fix θ ∈ Θ. Then there is a constant Ψ(θ) such that N−1
n

∑n
j=1 ∆jψj(θ)

P→

Ψ(θ).

Proof. As in the proof of Lemma 4, there is a constant π0 such that n−1Nn
P→ π0 > 0.

It follows that nN−1
n

P→ π−1
0 , thus ‖nN−1

n ‖1 <∞. Therefore, ‖nN−1
n ∆ψj(θ)‖1 <∞, and

there is a constant C such that ‖N−1
n ∆ψj(θ)− E[N−1

n ∆ψj(θ)]‖1 ≤ n−1C for all j.

Clearly nC−1N−1
n ∆ψj(θ) is uniformly integrable. Also,

∑n
j=1 Cn

−1 = C < ∞ and∑n
j=1 C

2n−2 = n−1C2 → 0 as n→∞. By the mixingale law of large numbers (Davidson,

Theorem 19.11, page 302),

N−1
n

n∑
j=1

∆jψj(θ)− E

[
N−1
n

n∑
j=1

∆jψj(θ)

]
P→ 0

The conclusion follows from Lemma 4.
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Lemma 6. supθ∈Θ |N−1
n

∑n
j=1 ∆jψj(θ)−Ψ(θ)| P→ 0

Proof. The functions λ(·) and ω(·) possess continuous first derivatives, so for any θ, θ̃ ∈ Θ,∣∣∣∣∣N−1
n

n∑
j=1

∆jψj(θ)−N−1
n

n∑
j=1

∆jψj(θ̃)

∣∣∣∣∣ =

∣∣∣∣∣N−1
n

n∑
j=1

∆j[ψj(θ)− ψj(θ̃)]

∣∣∣∣∣
=

∣∣∣∣∣N−1
n

n∑
j=1

∆jψ̇(θ̄)(θ − θ̃)

∣∣∣∣∣
≤

∥∥∥∥∥N−1
n

n∑
j=1

∆jψ̇(θ̄)

∥∥∥∥∥
1

|θ − θ̃|

≤

∥∥∥∥∥N−1
n

n∑
j=1

∆j

∥∥∥∥∥
1

D|θ − θ̃|

= D|θ − θ̃|,

where θ̄ lies between θ and θ̃, and D is an upper bound of the matrix norms ‖ψ̇(θ̄)‖1

as θ̄ ranges over the compact closure of Θ. By Theorem 21.10 of Davidson (page 339),

the collection of functions
{
N−1
n

∑n
j=1 ∆jψj(θ)

}
is stochastically equicontinuous. The

result follows from Lemma 5 of this technical report and Theorem 21.9 of Davidson

(page 337).

We are now in a position to address the major theorems of this paper. First, we state

and prove Lemma 7, which asserts the kernel inspiration for the estimating equation:

that the estimation function components are independent and have expectation zero

when evaluated at θ0.

Lemma 7. Evaluated at the true parameter values, E(ψj) = 0 and E(ψhψ
′
j) = 0 for all

j 6= h.

Proof. Evaluated at the true parameter values, each residual Rj is symmetric with ex-

pectation zero. Since λ(·) is odd, iterated expectation (conditioning on X and Hj)

15
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demonstrates that E(ψj) = 0. Assume without loss of generality that h < j, so that ψh

is a constant with respect to Hj. Then

E(ψhψ
′
j) = E[E(ψhψ

′
j|Hj)] = E[ψhE(ψ′j|Hj)] = E[ψh · 0] = 0.

Proof of Theorem 1. The result follows from Lemmas 6, 7, and Theorem 5.9 of van der

Vaart (1998, page 46).

Proof of Theorem 2. Let ψ̇j(θ) be the continuous first derivative matrix of ψj(θ), and let

D̄n(θ) = N−1
n

∑n
j=1 ∆jψ̇j(θ). Then for θ, θ̃ ∈ Θ

|D̄n(θ)− D̄n(θ̃)| ≤ N−1
n

n∑
j=1

|ψ̇j(θ)− ψ̇j(θ̃)|

≤ N−1
n A|θ − θ̃|

= Op(1)|θ − θ̃|,

by Assumption 4, the Lipschitz conditions on λ̇(·) and ω̇(·). By Davidson (Theorem 21.10,

page 339), the collection of functions {D̄n(θ)− D̄n(θ0)} is stochastically equicontinuous.

Consequently, |D̄n(θ̂n) − D̄n(θ0)| P→ 0 by Theorem 1 of this technical report, Davidson

(Theorem 21.9, page 337), and van der Vaart (Theorem 5.9, page 46).

By differentiation of ψj(θ) and application of Lemmas 1 and 2, it is straightforward

(but tedious) to show that {∆jψ̇j(θ) − E[∆jψ̇j(θ)],Hj} is an L1 mixingale. Thus, the

mixingale law of large numbers (Davidson, Theorem 19.11, page 302) implies that there

is a function Ψ̇(θ) such that N−1
n

∑n
j=1 ∆jψ̇j(θ)

P→ Ψ̇(θ). The uniform continuity of the

functions Ψ̇(θ) over Θ ensures that Ψ̇(θ0) is in fact the first derivative of Ψ(θ0), which by

16
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assumption is nonsingular in a neighborhood of θ0. Now,

0 = Ψ̇(θ0)−1

n∑
j=1

∆jψj(θ̂n) =
n∑
j=1

∆jΨ̇(θ0)−1ψj(θ0) +
n∑
j=1

∆jΨ̇(θ0)−1ψ̇j(θ̄)(θ̂n − θ0),

where θ̄ lies between θ̂n and θ0. Thus,

N1/2
n (θ̂n − θ0) = −N−1/2

n

[
N−1
n

n∑
j=1

∆jΨ̇(θ0)−1ψ̇j(θ̄)

]−1 n∑
j=1

∆jΨ̇(θ0)−1ψj(θ0)

= −N−1/2
n Ξn

n∑
j=1

∆jΨ̇(θ0)−1ψj(θ0),

where Ξn converges in probability to the identity matrix. The moment conditions of

Assumption 5 ensure that

lim sup
n→∞

N−1/2
n E

[
n∑
j=1

∆jΨ̇(θ0)−1ψj(θ0)

]
<∞.

The sequence {∆jΨ(θ0)−1ψ̇j(θ)} is ergodic, since it involves functions of terms of an

ergodic sequence and an independent (therefore ergodic) sequence. By Lemma 3, the

sequence is also an L1 mixingale of size -1. A central limit theorem for stationary ergodic

mixingales (Davidson, Theorem 24.5, page 385), applied to linear functions of each of

the finite number of stationary subsequences, combined with the Cramer-Wold Theorem

(Davidson, Theorem 25.5, page 405), proves that

N−1/2
n

n∑
j=1

∆jΨ̇(θ0)−1ψj(θ0)
L→ N(0,Ω),

where Ω = Ψ̇(θ0)−1Σ0Ψ̇(θ0)−T and Σ0 is the limiting variance of N
−1/2
n

∑n
j=1 ∆jψj(θ0).

From an application of the standard Slutzky theorem, N
1/2
n (θ̂n − θ0)

L→ N(0,Ω).

Proof of Theorem 3. Following the notation in the proof of Theorem 2, it is necessary

only to show that Σ0 is consistently estimated by

Σ̂n = N−1/2
n

n∑
j=1

∆jψj(θ̂n)ψj(θ̂n)′.

17
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Conditional on Hj, ψj(θ0) is independent of ψh(θ0) for h < j. (See Lemma 7.) Conse-

quently, if

Σn(θ) ≡ N−1/2
n

n∑
j=1

∆jψj(θ)ψj(θ)
′,

then Σn(θ0)
P→ Σ0. An approach similar to that used to prove consistency of θ̂n can be

used to show that in fact Σ̂n = Σn(θ̂n)
P→ Σ0. We review the approach by sketching the

proof.

Using an approach similar to the proofs of Lemmas 1, 2, 3, a mixingale property can be

shown to apply to the terms ∆jψj(θ)ψj(θ)
′. Via Theorem 21.10 of Davidson, Assumption

4 can be used to demonstrate the stochastic equicontinuity necessary for an application

of Theorem 21.9 of Davidson, by which we conclude that supθ∈Θ ‖Σn(θ)−Σ(θ)‖ P→ 0 for

some continuous matrix function Σ(θ) such that Σ(θ0) = Σ0. Combining Theorem 1 of

this paper and Theorem 5.9 of van der Vaart prove the necessary result.
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