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Abstract

In biomedical research there is often interest in describing covariate distributions given
different survival groups. This is not immediately available due to censoring. In this paper we
develop an empirical estimate of the conditional covariate distribution under the proportional
hazards regression model. We show that it converges weakly to a Gaussian process and
provide its variance estimate. We then apply kernel smoothing to obtain an estimate of the
corresponding density function. The density estimate is consistent and has the same rate of
convergence as the classical kernel density estimator. We have developed an R package to
implement our methodology, which is demonstrated through the Mayo Clinic primary biliary

cirrhosis data.

Note: The figures in this paper are also available in color.
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1 Introduction

Recently with the advancement of biomedicine, there has been an increasing number of long-
term survivors in some of the disease areas such as cancer. In the organizations we work
in, clinicians are often interested in describing patient characteristics according to different
survival groups. For example, in many types of cancer five years is considered long-term
with regard to survival, we are then interested describing the covariate distribution among
long-term survivors versus short-term survivors. Our work in this paper was motivated
by collaborative projects such as predicting long-term survival in chemonaive patients with
advanced non-small cell lung cancer treated by standard chemotherapy, using the Eastern
Cooperative Oncology Group database (not yet published). Such knowledge can potentially
help clinical decision making if we can predict a patient’s survival based on the characteristics
at study entry. Although regression models are almost always used to directly identify
important prognostic factors, graphics is often more conducive for clinicians to examine and
to understand how the covariate distributions vary for different groups of survivors. This
type of covariate analysis is commonly done in studies with categorical outcomes. But in
studies where the categorization of the outcome is based on time to event, the conditional
covariate distributions are not immediately available when there is censoring. In this paper
we study both the empirical and smooth estimates of the conditional covariate distribution
given survival for this purpose.

Xu and O’Quigley (2000) developed an estimate of survival probabilities given any range
of the covariates under the proportional hazards regression model (Cox, 1972). As an in-
termediate step they derived an empirical estimate of the covariate distribution given any
fixed survival time. Here we will further develop the estimator, both to show that the esti-

mated distribution function converges weakly to a Gaussian process and to give its estimated

http://biostats.bepress.com/harvardbiostat/paper11



variance. In addition, we apply kernel smoothing to obtain the density function when the
covariate is continuous. We show that the estimated density is consistent and has the same
convergence rate as for the classical kernel density estimate.

The rest of the paper is organized as following. In the next section we present both the
empirical estimate of the conditional covariate distribution and the smooth estimate of the
corresponding density. Asymptotic results are given for both estimators. We illustrate the
application of our estimators in Section 3, using the Mayo Clinic primary biliary cirrhosis
data set. Section 4 contains some further discussion. Proofs of the asymptotic results as well

as some details about the software are given in the appendix.

2 Estimating the conditional distribution of Z given T

In a survival study with n subjects, let Ti,T5,...,T,, be the potential failure times, and
C1,Cy, ..., C, be the potential censoring times for the individuals i = 1,2,...,n. Let X; =
min(7;, C;), and 6; = I(T; < C;). Define also Y;(t) = I(X; > t). It is assumed that the failure
time of each subject is related to its covariates, or explanatory variables, Z;, 1 = 1,2, ..., n.
We assume (7;,C;, Z;), i = 1,2,...,n, to be a random sample from the joint distribution of
(T,C,Z). The proportional hazards model (Cox, 1972) postulates a simplified form for the
relationship between the hazard function A(-) for a subject at time ¢ and the observed value

of the covariate Z as

A(t1Z) = Xo(t) exp{B'Z}, (1)

where A\g(t) is a fixed ‘baseline’ hazard function, and [ is the unknown log relative risk
parameter. Generally in model (1) the covariate Z is a p X 1 vector. Statistical inference
on (3 is traditionally carried out through maximizing the partial likelihood, and we denote

B the maximum partial likelihood estimate of [.
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2.1 Empirical estimate

Although the Cox model specifies the distribution of 7' given the covariates, we have at
any fixed time ¢ two different conditional distributions of Z on 7' that are relevant. One is
conditioning on 7" > t, which can be interpreted as the covariate distribution among all the
subjects that are alive at time ¢, and can be readily estimated by the empirical distribution
of Z in the risk set at time ¢ if the censoring is independent of 7" and Z. The independent
censoring assumption is often satisfied in randomized controlled clinical trials, such as in the
applications that we are interested in, and is often satisfied in prognostic factors studies.
Extensions to conditional independent censoring is described in the last section. Another
conditional distribution of Z is that given T" = t. Under the assumption that 7" has a
continuous distribution we usually observe only one failure at a time and it is difficult to
estimate this latter conditional distribution based on a single observation, or a few in the
case of ties. We can, however, obtain a consistent estimate by leaning on the model.

Denote

_ Yi(t)exp(8'Z)
O = S Y0 exp(8Z)

(2)

Then the product of the m;(, X;)’s over the observed failure times gives the partial likelihood.
Xu and 0’Quigley (2000) showed that for any fixed time ¢, {m;(3,t)}?_, provides a consistent
estimate of the conditional distribution of Z given T" = ¢ under model (1). More precisely,

we have
ﬁ@mzpwédeﬂZ.Z m;i(B,1)- (3)

When Z is multi-dimensional, ‘Z < 2’ in the above means component-wise less than or equal

to. In practice, we might be more interested in estimating the covariate distribution given
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a<T <b, where 0 <a < b< oco. In this case we have

P(z|)aF ()
0 F

Fzla<T <b) = : (4)

where F'(-) is a consistent estimate of the marginal distribution function of T', such as the

Kaplan-Meier (1958) estimate under the independent censoring assumption.

Theorem 1 /n{F(-|t) — F(-|t)}, where F(-|t) is defined in (3), converges weakly to a zero-
mean Gaussian process, whose variance and covariance can be estimated as given in Appendix

A.

Theorem 2 /n{F(:la < T < b) — F(:la < T < b)}, where F(-la < T < b) is defined in
(4), converges weakly to a zero-mean Gaussian process, whose variance and covariance can

be estimated as given in Appendiz A.

When Z is discrete, suppose that z is one of the mass points. Then

j=1 Y;(t) exp(ﬁ”Z]—){(ZJ_ = z) .
?:1 Y;(t) exp(8'Z;)

pelt) = P(Z =T =1) =
Similar to (4) we also have

P(Z=za<T<b)= Lﬂﬁlél

F(b) )

Results similar to the above theorems hold for (5) and (6); see appendix.

2.2 Kernel smooth estimate

When Z is continuous, formula (3) gives F(z|t), an estimate of F(z|t), which can be rather
jagged as it has jumps at distinct Z;’s. In general F (+|t) gets rougher as t gets larger because
the risk set becomes smaller; see Figure 1 (a).

It is hard to perceive the data structure via the plot of F (+|t). Even if the covariate data

has stochastic ordering given the ordered survival times, the conditional distributions are

5
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not intuitive and hard to illustrate to medical researchers. In contrast, densities are usually
much more informative visually.

The density function of P(Z < 2|T =t) is

— f(ol) — exp(B'z)hy(2)
ft(z) = f( |t) fexp(ﬂ’U)ht(U) du’

where hy(z) is the conditional density of Z given T' > t (Xu and O’Quigley, 2000). Hence

to estimate f;(z), we need only to estimate h;(z). The conditional cumulative distribution
function corresponding to h;(z) can be consistently estimated by >, <, Y;(t)/ X7 Y;(t), the
empirical distribution of the covariates in the risk set at time ¢. Therefore one way to obtain
a smoothed estimate of f;(z) is to use a kernel density estimator for h;(2).

In classic one-dimensional kernel density estimation (cf. Fan and Gijbels, 1996) we have

n observations, Zy, Zs, ..., Z,. A kernel density estimate is defined as:

flo) = K (555, 1)

i=1
where K is a unimodal density function and b is a positive number. In the smoothing liter-
ature, K is known as the kernel function and b is a smoothing parameter called bandwidth.
Bandwidth b controls the amount of smoothing by weighting the Z;’s for the estimation of
the density at z. If K has a compact support, b also controls how many Z;’s around z to be
included in the estimation of f(z). Although K does not need to be a function with compact
support, certain regularity conditions need to be imposed on the tails of K so that remote
points from z have a nearly diminished effect on f(z).

Since we want to smooth h,(z), the covariate density function conditional on 7' > ¢, the

sample size is Y 7 Y;(¢) instead of n in (7). We shall define the kernel estimate analogously,

-~ 1 L z—Zi>. (8)

hulz) = W;mt)ff( ;
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Therefore, the conditional density f;(2) is estimated by

GBzTLt(Z)
[ eBehy(u) du’

f5(2) 9)

where B is the maximum partial likelihood estimate. If K is chosen to be the normal kernel,

i.e. density of N(0,1), (9) becomes

7o) = exp(Bz) 7 K{(2 — Z:) b} Yi(t)
tp bexp{(bB3)%/2} 37 exp(BZ;)Y;(t)

Let R(K) = [ K?(s)ds and 0% = [ K(s)s®ds, where K(-) is the kernel used to estimate

(10)

f(z|t). The following theorem summarizes the asymptotic property of ft 5(2) defined in (9).

Theorem 3

Fi5(2) = fi(2) = a1b® + —2= + 0o(B) + 0y

b ), (11)

1
Vnb
where

#2062 (b (2) — B2hy(2))

a = 2 [ eBrhy(u) du (12)
B ef? hi(2)R(K)\ "
2 = [ eBehy(u) du ( Cp ) (13)

and C, = P(C > t)P(T > t), provided that the following hold:

1. kernel K is a symmetric density function with

R(K) < and 0 < 0% < 00; (14)
2. h§2) < 00,
3. b— 0 and nb — oo,

4. censoring C is independent of T and Z;

7
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5. regularity conditions such that \/ﬁ(ﬁ — B) converges in distribution to normal with

mean 0 and finite variance;
6. covariate Z is bounded.

Remark : By Theorem 3, we know that ft ﬁ(z) is consistent and that the best attainable

4/5 in mean squared errors, as for the classic kernel density

rate for convergence is still n~
estimate. Note that the asymptotic variance of f; 5 (z) for a given t has an inverse relationship
with the constant C, = P(C > t)P(T > t), which tells us that the variance of the estimate
is large when ¢ is large, namely, when the risk set is small.

Definition (8) generalizes in a straightforward way to multiple dimensions in the case of

continuous covariates:

~ 1

e R0 1 (357 1o

where Z; = (Z1, ..., Zp)', 2 = (#1,...,%p)" and b; is the bandwidth for the j-th dimension.
Note that the same univariate kernel is used in each dimension. We also note that in practice
the application of high dimensional estimator will be very limited, as discussed later. For
p =2, if K is the density of N(0,1), (9) becomes

exp(8'2) ©1 Ki(zl - Zi12/b1}K{(z2 - Zig)/fb} Yi(?)
biby exp[{(b151)2 + (b22)2} /2] X7 exp(B' Z;)Yi(t)

fip2) = (16)

where B = (51, Bg)' . Formulae can also be easily extended to covariates of mixed types; we
shall not pursue this further here.
The smoothed conditional density of Z given a < T < b is

Jo Fip(D)AE(t)  Sycian Fi5()AF(t)
F(b) — F(a) F(b) — F(a)

, (17)

where Aﬁ’(tk)’s are jumps at t;’s if F" is the Kaplan-Meier estimator.
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3 Application and Software

We shall demonstrate our methodology using the data set of a trial in primary biliary cirrhosis
(PBC) of the liver from Mayo Clinic. The PBC data set is described and analyzed in Fleming
and Harrington (1991). This is a double-blinded randomized trial comparing D-penicillamine
with placebo. There are a total of 418 patients in the data set, with 161 deaths. It turned
out that the treatment had a negligible effect on prognosis, so that the two arms may
be combined for study of the natural history of the disease. Detailed analysis in Fleming
and Harrington (1991) identified several important prognostic factors. Here for illustration
purposes we consider four of them: age, log(albumin), edema and log(bilirubin). Normal
kernels are used below for the estimation of conditional densities.

Under a proportional hazards model, the relative risk of death for age (in years) is 1.04
(p-value < 0.0001). That is, an additional year in age is associated with 4% increase in the
relative risk. Figure 1 (b) shows that as years of survival increase, the distribution of age
shifts towards younger. Figure 1 (c¢) shows the age distributions for patients who survived
less than 5 years versus those who survived greater than 5 years. Figure 1 (d) shows that the
age distributions for those who survived less than 2 years and those who survived between
2 and 5 years are, however, similar. Figure 1 (b) also shows that age distributions are
quite different between the longest survival group and the rest. These seem to indicate that
age might have a bigger impact in distinguishing long versus short term survivors, than in
different groups of short term survivors.

In a similar way Figure 2 shows that longer survivors tend to have higher albumin levels
(in gm/dl, on the log-scale), with relative risk 0.0082 (p-value < 0.0001). This is consistent
with the fact that lower than normal levels of albumin in blood indicates dysfunction of

liver. Notice that the distributions of log(albumin) appear nearly equally distinct for different
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Figure 1: Age distribution conditional on survival time, bandwidth b =5 for (b)-(d).
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groups of survivors as shown in the figures.
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log(albumin) log(albumin)
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Figure 2: Log(albumin) distribution conditional on survival time, bandwidth b = 0.08.

The variable edema has three levels: 1) no edema and no diuretic therapy for edema,
2) edema present for which no diuretic therapy was given, or edema resolved with diuretic
therapy, and 3) edema despite diuretic therapy. The relative risks are 10.3 between levels 3
and 1 and 2.54 between levels 2 and 1 (p-value < 0.0001). Figure 3 shows shifts in proportions
of the three categories as survival increases, indicating the adverse association of severity of
edema and survival.

Figure 4 shows the clear inverse relationship between bilirubin levels (in mg/dl, on the
log-scale) and survival. The relative risk here is 2.69 (p-value < 0.0001).

Finally Figure 5 shows the contours of the joint distributions of log(albumin) and log(bilirubin)
at survival times 1 year (a) and 5 years (b). The mode of the joint density at 5 years has
moved towards the lower right corner as compared to 1 year, indicating higher albumin as

well as lower bilirubin among longer survivors. Notice that the same trend was observed in

11
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Figure 3: Edema distribution conditional on survival time.
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Figure 4: Log(bilirubin) distribution conditional on survival time, bandwidth b = 0.5.
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the univariate estimates. Here we also see that the conditional distribution of covariates at
a later time has smaller spread than that at an earlier time point, which appears consistent
with the known fact that the population at risk becomes more homogeneous over time. The

same was also observed in the univariate estimates.

log(bilirubin)
log(bilirubin)

0.0 0.0

log(albumin) log(albumin)

(a) T=1 (year) (b) T=5 (years)

Figure 5: Joint distribution of Log(albumin) and Log(bilirubin) conditional on survival time,
bandwidth b = (0.08,0.5).

The above analysis was done using an R package SurvCov that we have developed, avail-
able from http://biowww.dfci.harvard.edu/~ ziaochun. The PBC data set is given as an ex-
ample contained in the package. Bandwidths for the estimation of the conditional densities

are chosen through ‘trial and error’; see Appendix C for more details.

4 Discussion

We have considered estimating covariate distributions given survival, which was motivated

by our applied work. We studied the asymptotic properties of the estimators and have

13
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developed software to implement the estimates. In the illustrations we did not plot the
pointwise confidence intervals of the estimated curves, since they are often of less interest
in exploratory analyses; but they certainly are available following the asymptotic results.
The model we have considered is the most commonly used Cox proportional hazards model.
However, as shown in Xu and O’Quigley (2000) their Theorem 1 also applies to other types
of multiplicative hazards models, such as the time-varying regression effects 5(¢) model (Xu
and Adak, 2002). The methods of this paper can then be applied to these other types of
models if needed.

In the above we have assumed that C is independent of 7" and Z. While this is often
satisfied in randomized controlled clinical trials and prognostic factors studies where the
methods developed here are likely to be used, under the Cox model we sometimes relax the
assumption to conditional independence of C and T given Z. In this latter case following Xu
and O’Quigley (2000) if we can discretize Z into a finite number of categories, the conditional
distribution of Z given T' = t is f(z|t) = exp(8'2)S(t|2)g9(2)/ > exp(8's)S(t|s)g(s), where
the summation is over the categories of Z, S(t|z) is the conditional survival probability given
z and g(z) is the probability of category z. We can estimate S(t|z) by either the subgroup
Kaplan-Meier estimate within the category of value z or the predicted survival probabilities
under the Cox model, and estimate the marginal failure time distribution F'(-) in (4) and (6)
by the weighted Kaplan-Meier estimate of Murray and Tsiatis (1996). For density estimate
in this case we then smooth the marginal distribution g(-) of Z.

Finally although there is no apparent mathematical difficulties in applying our methodol-
ogy to multiple dimensions, the use of the estimates and their graphical displays are limited
beyond two dimensions for the purposes of this paper. Aside from the curse of dimension-
ality, finding a graphical display so that the details of the densities are not obscured by

the dimensionality is in itself a challenge. On the other hand, the trend as well as other

14
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characteristics observable in the univariate conditional distributions appear quite adequate

for practical applications in our opinion.

Appendix

A Asymptotics of the empirical estimates

1. Estimator F(z|t)

Under the usual regularity and continuity conditions for the proportional hazards model
Andersen and Gill (1982), it is straightforward to show that F'(z|t) is a consistent estimate
of F(z|t). We now show that F(z|t) is asymptotically equivalent to a sum of i.i.d. random
variables. Note that 3 — 8 = I=1(3)U(8), where {3 is on the line segment between 3 and the
‘true’ B under model (1), and U(-) and I(-) are the score function and the negative second
derivative of the log partial likelihood, respectively. In the following A is also on the line

segment between B and 3. We have

VnE(z|t) = /nFs(z|t) +v/n(B - BY (5|)\5

n V2T Y() exp(B2,)[(Z; < 2) Y;()2; exp(3'Z,)1(Z, < )
s YQenrz) VO m[ > Y, () exp(B2;)
YY) exp(8'Z)1(Z; < 2) - ZY;(H)Z; eXP(B'Zj)]
3 Y,(t) exp(FZ,)
B(1y

= n /2 Z { (t)exp(B'Z; )(Z; < z) — Iy U](ﬂ)} + 0p(1),

where A(t) = {so(8,8)} ™", B(t) = E{Y (1) Z exp(8'Z)1(Z < 2)} /5o, t)~E{Y (t) exp(8'Z) [(Z <
2)}s1(8,)/50(B,£)2, s0(B,) = E{Y (£)exp(8'Z)}, 51(8,t) = E{Y (£)Z exp(8'Z)}, Iy is the
expected information for 8 under the Cox model, and U;(8) = [{Z;—s1(8,t)/s0(8,) }dM; (%)
with M;(T) = I(T; < t,T; < C;) — Y;(t) exp(8'Z;)Ao(t) and Aq(t) = [ Mo(s)ds (Andersen

15
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and Gill, 1982).

Therefore \/n{F(:|t) — F(-|t)} converges weakly to a Gaussian process, whose variance
and covariance can be estimated by the sample variance and covariance of the above i.i.d
random variables, with 8, A, B, U; and I, replaced by their sample-based estimates B , fl,
B, (/J\] and fo, respectively.

Similar result holds for p(z|t) with ‘< 2’ in the above replaced by ‘=2’.

2. Estimator F(z|la <T < b)

The asymptotic calculation for Fi(zla < T < b) is a bit more complex. First we have
VaF(zla < T < b) = /nFs(zla < T < b) + v/n(B — B)0F(zla < T < b)/08|;, where B is
on the line segment between [3’ and 8. We can show that the second term is asymptotically
equivalent to a sum of i.i.d. random variables like in the above. For the first term, although
using the central limit theorem of Stute (1995) for Kaplan-Meier integrals we can still write
it as sum of i.i.d. random variables, variance estimation following that is not straightforward
since it involves functions of the unknown censoring distribution. Here we will use the
empirical influence function instead. This approach was used in Reid and Crépeau (1985)
and G. Knafl in an unpublished dissertation at the Northwestern University, as well as
in Xu and Harrington (2001). The idea is to express the estimate as a functional of the
empirical distribution of the data, and the true parameter as the same functional of the
true distribution, and then find the Gateaux derivative of this functional. Let H,(z,d, z)
be the empirical distribution function of the triples (X;,d;, Z;), ¢ = 1,...,n, i.e. putting
mass n ! on each triple. Let H(z,d, z) be the corresponding joint distribution function of
(X,0,7). We also use H(z,z) for the joint marginal distribution function of (X, 7), H(x)
for the marginal distribution function of X, and H,(z, 2) and H,(z) for the corresponding
empirical distribution functions.

The numerator in Fﬂ(z|a < T < b) can be written >, (5iW(X,-)F(z|Xi)I(a < X; <),

16
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where W (X;) is the jump of the Kaplan-Meier curve at a failure time X;. When there are no
ties W (X;) = S(X;)/{1— Hn(X;)}, where S(-) is the Kaplan-Meier estimate of the marginal
survival function of T. In practice ties may be split randomly. Then (4) as a functional of
H, (and S) can be written

/5 z>weﬂz1z<z)dH( Z) S(x)

I(a <z < b)dH,(z,6,2)/{5(a) — S(b)}.

Jise €2dH,(2,2) 11— Hy(x)
(18)
The population parameter for the above is
eﬁ “I(z < z)dH(Z, z) S(z)
H — z'>:1: I < _
oH) = o e 1o (e @ <% SV dH(6.2)/15() ~ SO)
= Gl )/{S( )= SO} (19)
Following Reid (1981) S(z) = exp{— [y dF*(Z)/(1—H(Z)}, where F*(z) = P(X <z, = 1)
is the sub-distribution function for uncensored data. Denote 1{z,dp,20} the distribu-
tion function that puts unit mass at (x,do,20). Taking the limit of e '{g[(1 — ¢)H +
el{xg, b0, 20}] — g(H)} as € — 0 we obtain
0
IC(xg,00,20) — ¢ = &g[(l — €)H + €1{xo, 0o, 20}]
e=0
g;mm S,(a) — Sl(b)
= Imum gy 2T 20) P
s - 5@ " S@ s 20
where IC(z, 6, z) is the influence function, u = [ IC(z, 6, 2)dH (z,d, z), and
J53a0 € F1(2 < 20)dH(%,2)  S(o)
= —gRE L 2= 3 ~ - : I <
Joer i) Ja>a, €°7dH(Z, 2) 1 — H(z) (@<m<b)
+/ .1‘0 2> T < z)eﬁ 20 _ fiZz eﬂ’5[(§ < z)dH(%,Z%) " I(x > :B)eﬁlzo
z>z 66 de($, Z) fa’:Zz eﬂlde(ja 5) fiZz eﬂlde(ja 2)
dol(zo < ) eheo (%) H(z) —I(zg < x) S(z)
X — <
8= /0 1—H@)? 1— H(z) 1= H(p) @<z sb)dH@,0,2)
(50[(.730 < a) ahzo dFu(N)
S'(a) = S(a) |20 =% _ e
@ = 50|35 L )
50[(.%0 < b) bAzo dFu(:i') ]
S'b) = SOb)|-———F"+ — .
® = o555+ L e
17
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It follows then that \/n{F(zla < T < b) — F(z|la < T < b)} is asymptotically normal with

mean zero and variance that can be consistently estimated by

2": {EIC(z;,0i,2i) — p} + E )fAB() ﬁ’()

h S@-S0)] #)

S|+

.

where B, U; and I, are the same as for F(z|t), EIC() is the empirical influence function,

and
_ wm Pl L Sa) -5
EIC(zi,6iy2i) — p = S(a)—g(b) F(zla<T <) S(a)—é’(b) ) (22)
with
Gom = — | " B(a|t)dE(t) + 0B (Z:| X)W (X:)I(a < X; < b)
o N nI(X->X-Z<Z)exp(B’Zi)_A v
T W< X <) l S Yi(X;) exp(B' Z2) )
I > X; Jexp(BZ) | néI(Xi<X;) 5 né,
¥, Yi(X;) exp(B' Z)) > Yi(X;) Xi<(XinX;) {225 Ve (X0)}?
_n = Yi(X;) —nl(X; <X)H
> Yi(X;) ’
(g = S _n(SiI(Xi <a) no;
@) = 5) l S 2 {zm(xzm] ’

Zl K(X’L) XIS(Xi/\b) {Zk Yk(Xl)}2

Si(b) = S(b) !—

Similarly we have the variance estimate of \/n{p(zla < T < b) —p(zla <T < b)} as in
the above with F replaced by p, ‘< 2’ replaced by ‘= 2’, and ‘Z; < Z; replaced by ‘Z; = Z;’.
The covariances of the limiting Gaussian processes in z can also be estimated by the sample

covariances of these i.i.d. random variables.
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B Asymptotics of the kernel estimate

Lemma 1 Let C, = P(C > t)P(T > t). Under the conditions in Theorem 3, the following

holds
. 12 Z—Zj : . 2 & 2 L
A:%;K(T)m)‘%ww o) o ) (23)
where
Qo = Cph(z), (24)
@ = ZHPE)0 (25)
Q% = C,h(z)R(K). (26)

The proof is similar to that in classic kernel density estimation; for example see Scott (1992).
By Chebyshev’s inequality, we have X = E(X)+ O,(1/Var(X)). The factor C}, comes from
the fact that if we let A; = K{(z — Z;)/b}Y;(?),

Z—U

B3 4) = %P(C’>t)/K( . >P(Z:u,T>t)du

= P(C>t)P(T > t) / K(s)ha(z — bs) ds.

We can then apply a Taylor expansion to h;(z — bs) and finish the proof in the same way as

in the classic setting. Similarly, we have

Lemma 2 Under the conditions in Theorem 3, the following holds

1@ s
B=[eads = 30 [k (P57)
nb 5 b

= Uy + Ui + 4o(b?) 4+ O,(n V/?), (27)

19

Hosted by The Berkeley Electronic Press



where

Up = C, / Puhy(w) du, (28)

2 .2
U, = % / b, () du. (29)

Proof Let u = (z— Z;)/b, B=n"1Y1Y;(t)e’% [ e K(u)du. By the conditions on K and
boundedness of Z,
E(B) = C’p/eﬁ“ht(u) du/ebﬂ“K(u) du
= Uy+ U1b2 + O(b2),

Var(B) < n 'E(Y;(t)e¥%) ( [ e rw) du)2

= n_lc'p/ew”ht(u) du (/ e K (u) du>2
= O(n).

The results in Lemmas 1 and 2 yield the following:

Lemma 3 Under the conditions in Theorem 3,

_ Qo (@1 QUi (@) L | o 172
A/B_UO+<UO U02>b -l—(UO)m—Fo(b)-l-op((nb) ) (30)

From Lemma 2 we have Var(B) = O(n™'). It can be easily shown that Cov(4, B) = O(n™1).
Use delta-method together with the results so far obtained and Lemma 3 follows.

Since f, 5(z) = €#*A/B, from Lemma 3 we have the following,

Fip(2) = fu(2) + c1b® + co/Vnb + o(b?) + 0,((nd)1/?),
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where

Pk (" () — B*hu(2))

“a = 2 [ ePrhy(u) du (81)
B eb? he(2)R(K)\ "
@ = [ ePrhy(u) du ( C, ) ' (32)

Lemma 4 Under the conditions in Theorem 3, and f3 € (B,ﬁ), we have

dfis(2) | » dfi(2)
B e

B g’
B—B = Op(n ). (34)

Proof: Omitted.

Since

dfis(2) 4

using the results in Lemmas in this section, we have proven Theorem 3.

F5(2) = fil2) = fupl(z) — ful2) +

C R package SurvCov

R (Thaka and Gentleman, 1996) is a language and environment for statistical computing and
graphics, and available as Free Software under the terms of the Free Software Foundation’s
GNU General Public License in source code form from http: //www.r-project.org. R can be
considered as a dialect of S, much code written for S runs unaltered under R.

After installing the package SurvCov and invoking R, for a demo type

R> 1library(SurvCov)
R> demo(PBC)

All examples will run.
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In our package SurvCov we did not implement an automatic selection of the optimal
bandwidth, the reason being that this package is a graphical tool to visually examine the
stochastic trend, if any, in the distributions of a covariate conditional on survival times or
intervals of survival time. The optimal bandwidths at different survival times are of the same
order n~ /5, with corresponding scaling constants. If we choose one bandwidth of the optimal
order at one time point (say, by using the results in Theorem 3), the conditional density
estimates using this bandwidth at other survival times are still asymptotically unbiased and

consistent.
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