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1. Introduction
16

Hypothesis tests arising from Cox’s proportional hazards mddek(1972) are often 17
used to compare randomized treatment groups with respect to the distribution of a fail-
ure time outcome. Some of these tests adjust for covariates that may be predictive of
outcome, while others, and most notably, the log-rank test, do not. In addition to adjest-
ing for any imbalances that may arise between treatment groups, covariate-adjusteeltest
may enjoy greater efficiency than that of the log-rank té€stats et al. (1985)emon- 22
strated the gain in efficiency of covariate-adjusted tests relative to the log-rank test whiien
the working proportional hazards model is properly speciftédd (1991 )provided as- 24
ymptotic relative efficiency formulae of the log-rank test to the optimal score test that
arises from a properly specified model for covariates when the effect of treatment is reul-
tiplicative on the survival time hazard functidragakos and Schoenfeld (19&tudied 27
the effects of various types of model misspecification on the power of tests basedson
Cox’s model. 29

An important consideration in the application of these tests is their validity when
the underlying proportional hazards working model is misspecified. Recent work bas
shown that the impact of model misspecification on the validity of resulting tests hinges
on whether the distribution of the potential censoring time either (i) is conditionaly
independent of treatment group given covariates or conditionally independent of ®o-
variates given treatment group, or (ii) depends on both treatment group and covariates.
In the first case, resulting test statistics have an asymptotic normal distribution veith
mean zero under the null hypothesis and that consistent variance estimates are readily
obtainable (se&ong and Slud, 1997 and DiRienzo and Lagakos, 2D0Ohathe sec- 38
ond case, the asymptotic mean of the test statistic is not necessarily equal to zero sader
the null hypothesis when the proportional hazards working model is misspecified4dn
such cases, the bias of tests can be large, as was demonsti@ateginzo and Lagakos 41
(2001a, 2001h) 42

In this chapter we summarize the properties of hypothesis tests derived from pso-
portional hazards regression models. We introduce notation and define uncorrecteds4sta-
tistics in Section 2 In Section 3we describe conditions necessary for the asymptotig

1
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validity of these test statistics, and also discuss efficiency considerations and effects of
model misspecification on the power of uncorrected test statistics. We describe a ¢lass
of corrected test statistics for use when censoring depends on both treatment group and
covariates inSection 4 and also examine estimation procedures and the efficiency“of
such bias-corrected tests. We provide some recommendations for the use of thesestests
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in Section 5 and give MATLAB code for the computation of the various test statistics
in Appendix A 7
8
9
. . 10
2. Notation and statistics u
12
Let the continuous random variatifedenote time from randomization to failure and letis
C denote a potential censoring time. Assume that we obsEfve min(7, C) and the 14
indicators = 1(T < C) of whetherT is observed{ = 1) or right-censored(= 0). Let 15

the binary random variabl€ denote treatment group and tdenote a; x 1 vector of 16

bounded baseline covariates. Throughout this paper we assume that censoring actsmon-

informatively, that is,T L C | (X, W), and also thak | W, as is the case in most ran-1s
domized clinical trials. The true conditional hazard function¥ &ndC given(X, W) 19
are denoted by (¢ | X, W) andkc(t | X, W), respectively, and are not necessarily of ao
proportional hazards form. The observed data is assumed to consish@épendent 21
and identically distributed realizations 6f'*, §, X, Z*), denoted(T}*, 6;, X;, Z}") for 22
i=1,...,n, whereZ* is ap x 1 vector whose components are bounded functions &f
W_ 24

The null hypothesis of interest 8p: X L T | W; that is, that the failure time distri- 25
bution does not depend on treatment group, under which we will derioteX, W) by 26

k(t| W). Consider tests oflg that are based on statistics of the form 27
28

12 il ey »

n~Y2U, = Z/ n~Y2G, (1) Xi — £} dN; (1), @) 5

i=170 31

where 32

33
34
35
36
Yi(t) = L(T;* > t), Ni(t) =& 1(T;* <t) andy,(-) is a nonrandom bounded functions?
whose form is known but whose parameters can be estimated from the data. Thesco-
variatesZ; are some bounded function &f", i = 1,...,n. The bounded predictable 39
processG, (-) is also assumed to be nonrandom, converging uniformly in probability
to a bounded functioi; (-). It may be the case that one would want to consider times
dependent covariates, for example an external ancillary covariate précesfdisch 42
and Prentice, 1980, p. 1pAlthough results hold when the componentsigfandz; 43
are uniformly bounded and predictable functions of time, for ease of notation we omly
consider fixed covariates. 45

Et)=Y Y,-(r)wzj)Xj/Z Yi (¥ (Z)),

j=1 =1
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The effects of misspecifying Cox’s regression model 3

Statistics of the form ir{1) arise as the numerator of partial likelihood score tests of
a = 0 based on working proportional hazards modelxfer X, W) that take the form 2

expla X))y (B; Zi)h(1). (2

The working model?2) is misspecified when it is not equivalentidr | X, W), in

which case the parameters 8, andi(-) have no simple interpretation. The stat|st|
n~Y2y, should then generally be viewed simply as statistic from which tesﬁoof
may be derived.

Popular choices fo6G(-) and v (-) areG,(r) =1 and ¥ (8 Z;) = exp(B ' Z;), re-
sulting iny,, (Z;) = exp( ' Z;), whereg is the restricted maximum partial I|keI|hood
estimator of8 obtained by fitting the model withk = 0 (Cox, 1972). Here the prob—
ability limit of v, (Z) is ex8" Z), where is the probability limit of 8 (Lin and
Wei, 1989). Note tha = g when the model (2) is properly specified. Another spemaﬁ
case of(1) is the class of weighted log-rank statisti€3ok and Oakes, 1984, p. 124) H
wherey (8; Z;) = ¥, (Z;) = 1, and where the most commonly used choicedgt.) is
the identity function, yielding the ordinary log-rank test. In genegdlg; Z) can also
depend on, so long as it is uniformly bounded.

GIU'|-J>(A)

9

17

18

19

20

3. Conditionsfor valid tests o
22

Suppose that eithef L X | W or C L W | X. Then the test statistie=1/?U, has an 3
asymptotic normal distribution with mean 0 undég, regardless of whether or not the »4
model(2) is misspecifiedDiRienzo and Lagakos, 200)L&urthermore, when either of 25
these conditions hold, consistent estimates of the variance'&tU, are easily derived, 2
yielding asymptotically valid inference whether or not the relationship betweand 27
(X, W) is properly specified. 28
The conditionC L X | W is usually satisfied in a randomized clinical trial wherg
the only form of censoring is administrative or end-of-study censoring; that is, @hero
represents the time from enrollment of a subject into the study until the time the data

are analyzed. However, when censoring can arise from premature study discontinuation

or loss-to-follow-up, it is well known that this condition may not hold. The conditioes
C 1L W | X holds when there is a dependency of censoring on treatment group which

does depend on the covariates. To provide some insight into why either of these candi-

tions are necessary for valid inference, note that at baseline (that isywh@) the dis- 36
tribution of W is independent oX because of randomization; when eitier. X | W 37
orC 1L W | X holds andHj is true, it is implied thatX L W | Y () =1,¢ > 0, whichis 3s
necessary fon~1/2U, to have mean 0 asymptotically. For a proof of these results, see

Appendix A of DiRienzo and Lagakos (2001a@)Kong and Sluq1997). 40
We now provide test statistics for use when eitet X | WorC L W | X holds. It 4
follows from Kong and Slud (199 7that underHo, n~1/2U, can be expressed as a2
43

n
I’lil/zUn =n71/22 Qi +0,(), "

i=1
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where
0; =/0 (X — nOYAN () — p(O)Yi (1) (B: Z2) ).

w)=E{Y")y(B: Z)X}/E{Y )y (B; Z)},

p(t) = E{Y )kt | W}/E{Y 0y (B Z)}.

It is easily verified (cfKong and Slud, 199@r usingLemmas 1 and 2 in DiRienzo
and Lagakos, 200)dhat underHp, Q; has mean Owhed L X |W orC 1L W | X.
This implies that:~1/2U, is asymptotically normal with mean zero and variance equaﬁ
to the variance of);. As shown inKong and Slud (1997)a consistent estimate of the*
variance of:=1/2U,, is '

1o, ~ =
- Z(Ql - Q)za 15
et

where 17

QiZ/oo{Xi—)_((t)}{dNi(t)— L0y p; ) dﬁ(t)}, 19
0 Y YiOv(B: Z))

© 00 N o o B~ W N P

X0=Y Y,»(r)xl-/i i), 2
i=1 i=1

N(t)=Y_y Ni(t) andQ = (1/n) Y}, 0.

Thus, Jgrowded thatC L X | W or that C L W | X, the test statisticU,,/
VIOi(0i — 0)?} is asymptotically standard normal unddp whenC L X | W
or C L W | X, regardless of whether the working mod2) is properly specified. The
motivation for replacing(r) with X (r) above is thaju(r) = E{X | Y (r) = 1} underHy
whenC L X | W or C L W | X. We note that for the special case of the log-rank test’
use of the model-based variance estimatordf2U, also results in a valid asymptotic o
test, and appears to usually provide nominal finite-sample type | error®{Bé&nzo 2

and Lagakos, 200)aso that use of a robust variance estimator is not needed. 33

34
35
36
Lagakos and Schoenfeld (198#yestigated the effects of various types of misspeca?
fication of the working mode{2) on the power of:~1/2U,. When covariates have a 38
multiplicative effect on the true hazakdr | X, W), butthe ratioc(r | X =1, W)/k (| 30
X =0, W), is non-constant but either greater or less than one faralD, i.e., the 40
hazards do not cross, there is often only a small loss in power. One exception to this
when the ratioc(z | X =1, W)/« (t | X =0, W) departs from one only after the ma- 42

3.1. Efficiency considerations

S

jority of failures have occurred; in this case, the loss in power can be great. In contrast,

whentheratioc(r | X =1, W)/« (¢t | X =0, W) crosses one, the loss in power is ofter#4
substantial. 45
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The effects of misspecifying Cox’s regression model 5

Suppose that the effect of covariates in the true mede| X, W) is not multiplica-
tive, thatisthe ratixc(r | X =1, W)/k(t | X =0, W) is a function of W, but that the
interaction is qualitative, in the sense thdt | X =1, W)/« (¢t | X =0, W) is either
greater or less than one for aMf. In this case, the loss in the powerrﬁfl/zUn is not
in general large unless the discrepancy in the rafio X =1, W)/«(t | X =0, W)

a A W N P

between levels oW is substantial, especially if larger ratios tend to occur within levels

of W that are less prevalent.
More generally, the loss in power of /20U, can be large when a componentitf

7
8

that has a strong effect on the hazard'd$ either omitted or mismodeled in such a way?
that the direction of its effect is not maintained. Further details on all of these situatiéhs

can be found inLagakos and Schoenfeld (198#4)organ (1986)provides a correction
to Lagakos and Schoenfeld’s (198dgymptotic relative efficiency formula of the log-
rank test to the score test arising from a properly specified model for covariates.

11
12

Bee

alsoLagakos (1988)who derived asymptotic relative efficiency formulae in the onel4

sample problem when evaluating the effect of a misspecified form of a time-dependent

covariate.

4. Biascorrection

When the distribution of the censoring variable depends on both treatment group
covariates, that is when the conditiofisL. X | W andC L W | X both fail to hold, the
statisticn ~1/2U, in general has a non-zero asymptotic mean uterOne exception
is when the mode{2) is equal tox (z | X, W), i.e., the working proportional hazards
model is properly specifiediRienzo and Lagakos (2001a, 200drgsent simulation
results which demonstrate that the bias of tests based 83U, can be severe when
in this setting and the working proportional hazards model is misspecified.

In an attempt to correct for this biaBjRienzo and Lagakos (2001pjesent a class
of tests that are asymptotically standard normal uriteregardless of the joint distri-
bution betweerC and (X, W), provided that either the conditional distribution Bf
given (X, W) or the conditional distribution of' given (X, W) is properly modeled.
Consequently, these tests are more robust than those arising:frb&U, when the
working model is misspecified, and do not appear to lose much efficiency when
working model is correctly specified and bias correction is unnecessary.

Consider the generalization ¢f) given by

-l / Y26, (0 X, Wi {Xi — £ (1)} dNi (), 3)
210
where
ExO = YV OW(Z)X; [ DY O (Z)),
=T j=1

Y () =Yi)et; Xi, Wi),
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@(t; Xi, Wi) =min{pr(C > 1| X; =0, W)),
priC>1| Xi =1, Wo)}/pr(C >1| X;, W), (4)

fori =1,...,n. Unlike the binary indicator variablg normally used in Cox’s model,
Y (¢) can assume any value in the unit interval. Also, note @@t X;, W;) is only
definedwherZ; = W;,i =1, ...,n.

o o A W N P

At each point in study time when a survival event occurs, this correction strives’to

remove any imbalances between treatment groups in the distribution of covariates®hat

are caused solely by censoring. Mechanically, at study tijrtee correction down-

weights, Y;*(¢) < 1, those subjects in the risk set whose risk of censoring is higher’th

9

their opposite treatment group; those subjects whose risk of censoring is lower in tHeir

opposite treatment group are unweight&d(r) = Y;(r) = 1. To see this analytically,
note that undety, the conditional expectation af*(¢) given (X, W) is

pt; X, WypY (1) =1 X, W}
=t X, W)pr(C 21| X, W)pi(T =t | W)
=min{pr(C>1|X =0, W),pr(C>1|X=1 W)}prT =1 | W),
which is independent af . The probability limit of£’(r) underHy is thus

E{Y*()y(Z2)X} _ E[XY(Z)E{Y* (1) | W}] o
E{Y*()y(2)} E[Y(Z)E{Y*(t) | W}] ’
whererr = E(X).

As shown inDiRienzo and Lagakos (2001,0)~Y2U* can be expressed undip
as

n
n~Y2yr =p=1/2 Z Ai +0,(D),
i=1

where

A= /Ooc(rxo(r; X, W (X — )
0

) {dNi(t) Yy (zn B O W) dr},

E{Y*()y(2)}

and theA; are independent and identically distributed with mean zero.
A consistent estimator of the variancerof'/2U is

n

1 —
Vn:;Z(Al(n)_A(n))% )

i=1

where
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m_ [T 1
" _
A; =/0 Gu(Do(t: Xi, W) (Xi — X)) )
3
Yi ()Y (Zi) 4
x $dN; () — @(t; Xj, W;)dN;(1)

: Y Y 0Ya(Z; )Z J 5
6
X is the mean of X1, ..., X,} andA®™ is the mean of A\, ..., A{”}. Hence, regard- 7

less of the joint distribution betweenand(X, W), n*l/zU,j/\/V,, asymptotically has 8
the standard normal distribution undég whether or not the working model is properly®
specified. It follows that if the working mode®) is properly specifiedy YU/ /V,, 10
is asymptotically standard normal undés regardless of whether@@ >¢ | X, W)is 1

properly specified and of the dependency betw€emd (X, W). 12
In practice,p(-) will often be unknown. Let(z; X;, W;) denote an estimator of 13
o(t; X;, W;). One would then calculate 14

15
16
17
18

z ZZAw Gn()P(t; Xi, W,’){X,- _@‘(I)}dN,-(t)
i=1

instead of(3) and 19
00 20
Zf.’”:/ Gn()P(t; Xi, Wi)(Xi — X ) 21
0 22
Yi () Yn(Zi) } 2
dnN; (1) — t; X, Wi dN;(t
X{ R 1Y*(r)wn(2>z P W iy j‘;

instead ofA(”) in (5), WhereY*(t) =Y ()o; Xi, W), andé‘*( ) is obtained by sub—
stituting Y*( ) fory () in&;(-),i=1,...,n. Denote this variance estimate bfy
Some methods for estimating(z; X W) are given inDiRienzo and Lagakos ,4
(2001b). These include the nonparametric regression methddsitfague and Utikal
(1990) as well a€ox’s (1972)proportional hazards regression models. If the covariatgs
are discrete with relatively few levels, then a stratified, left-continuous Kaplan—Meijgr
estimator Kaplan and Meier, 1998f censoring can be calculated for each treatmen}

28

group within each level of the covariate space. "

For example, an estimate for(z; X, W) can be obtained via the stratified propor-,
tional hazards model fotrc (¢ | X, W), %
2P @) exp(y ® 26, 7

38
where ZC is some bounded function of*, i = 1,...,n. The maximum partial- 39

likelihood estimatory ™, and theBreslow (1972, 1974@stimator of the baseline cu- *°
mulative hazard functlon of censoring,X)(r), may then be calculated within each**
treatment group at each censoring time, using data accumulated before that time%and

the continuous estimator 43
44

pr(Ci > 11X, ZE) = exp| =A™ (1) exp(7, X" ZE) ) 45
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obtained by linear interpolation between censoring time§§5‘f)(t). Here estimation 1
was stratified orX, but stratification may additionally be based on any covariate that
might possibly have a strong interaction with treatment. 3
When ¢(t; X, W) is estimated using a semiparametric or nonparametric model,
@(t; X;, W;) contains estimates of an infinite dimensional parameter, for which case
a consistent estimate of the variance:of/ 2(7,*; would not necessarily be given @ 6
However, given the choice for an estimateydf; X, W), if it can be shown thaf/j; is 7
asymptotically linear, then the nonparametric bootstrap estimate of varia@eﬂll 8
be consistentGill, 1989). DiRienzo and Lagakos (2001have shown via simulation ¢
that when using a semiparametric proportional hazards model to cal¢glage;, w;), 10
the variance estimate, appears to be adequate. 11
For any given data set, there is ho guarantee that it will be possible to specify and
estimatep(-) well enough to make the correction for a misspecified modeffoeli- 13
able. It is thus of utmost importance to check and validate the fit of both the model for
censoring and survival. Some well known techniques for checking the appropriatengss
of proportional hazards regression models are givdrriret al. (1993) and Klein and 16
Moeschberger (1997) 17
A related consideration in the use of bias-adjusted tests are the relative efficienctes.
When the working proportional hazards mog2) is properly specified, i.e., equal to 19
k(t | X, W), then the uncorrected, fully model-based tesHgfis asymptotically valid 20
regardless of the dependency betwéeand (X, W). In this situation, it is of interest 21
to examine the relative efficiency of the corrected test to that of the uncorrected testaand
determine if there are situations for which unnecessary use of the corrected test could
lead to loss in power. 24
DiRienzo and Lagakos (2001pjovide formulae for the asymptotic mean and varizs
ance ofn Y20, andn~2U* under the contiguous alternativé,: « = c/./n, for 2
some constant, when the true hazard f@t is given by 27
28
k(] Xi, Wi) =explaXi)y (B, Wih(1). 29
That is, the working proportional hazards model is properly specified and calculatioff
a corrected test is unnecessary since the uncorrected, fully model-baseHg &t ab- 3!
ymptotically valid. In their accompanying simulations, the empirical relative efficienéy
of the corrected test to that of the uncorrected test appears to almost always be clo¥e to
one. 34
Other choices for the functional form @f(-) may be of interest; one example is35
o; X,W)=1/pr(C >t | X, W). However, using simulationg)iRienzo and La- 36
gakos (2001bhave found that this choice far(-) can be much less efficient than the3”
choice(4). They present an efficacy formula for the corrected test; this may be usedégto

compare the efficiencies of tests using different choicesgfor. 39
40

41
5. Discussion 42
43
Given the wide use of statistical tests based on Cox’s regression model, especialty in
medical applications, and considering the importance of decisions that are reached #fom

http://biostats.bepress.com/harvardbiostat/paper3



© 00 N o o B~ W N P

A D DB DD D WWWWWW W W WWN N DNDNDNDNDNDDNDNDND NN R R R R R R R R R
a A W N P O © © N O OO & W N P O © 0 N O 0 » W N P O © 0N O g b W N B O

hs23 v.2003/09/19 Prn:2/10/2003; 13:08 F:hs23022.tex; VTEX/ML p. 9
aid: 23022 pii: S0169-7161(03)23022-4 docsubty: REV

The effects of misspecifying Cox’s regression model 9

these analyses, an understanding of their robustness to misspecification of the model is
important. Misspecification can occur in many forms, including omitted or mismodelled
covariates, the omission of treatment by covariate interactions, or a violation of the 1in-
derlying proportionality assumption. While goodness-of-fit methods can be applied to
check model fit (cfKlein and Moeschberger, 198 Their failure to signal misspecifica- s
tion is no assurance that this is the case and, furthermore, their subjective and post-hoc
nature can be problematic when a new treatment is being assessed, e.g., in clinical tri-
als the standard practice is to precisely prespecify how treatment comparisons will be
made. This chapter has argued that a fundamental question in assessing such robustness
is whether treatment group and the censoring variable are conditionally independent
given the underlying covariates, or whether the underlying covariates associated with
survival are conditionally independent of the censoring variable, given treatment groap.
When either of these conditions apply, then statistical tests arising from fitting a proper-
tional hazards model, including the popular log-rank test, maintain their validity under
misspecification of the model-relating treatment and these covariates to the hazard fync-
tion for survival. That is, when either condition holds, the resulting test statistic, when
standardized by a robust variance estimator, has a distribution under the null hypothe-
sis of no treatment effect that is asymptotically standard normal, regardless of whether
or not the model is correctly specified. For the special case of the log-rank test, use of
the model-based variance estimator to standardize the score statistic arising fromothe
assumed model also leads to the desired asymptotic behavior under the null hypotlzesis.
Thus, establishment of either of these conditions ensures that the size, or Type | exror,
associated with such tests is not distorted as a result of model misspecification. Msre-
over, one or both of the conditions can in practice often either be checked empirically
or concluded to hold based on the analyst’s knowledge of the circumstances that lead to
censored observations. 26
When neither condition holds, that is, when either treatment or the underlying eo-
variate is not conditionally independent of time to censoring, then tests based on fittihg
a proportional hazards model can be asymptotically biased under the null hypothesis.
Since in practice the significance levels used to evaluate these tests invariably resest to
their presumed asymptotic normality, the size of such tests can be seriously biased when
the working proportional hazards model is misspecified. To avoid or minimize such 4i-
ases, a class of bias-corrected tests can readily be adapted. These tests require kaowl-
edge or estimation af (z; X, W), a function of the conditional distribution of censoring.34
Based on asymptotic considerations and simulations, the corrected test works welln a
variety of settings, even when the estimated formp 6f X, W) is only approximately 3s
correct. That is, misspecification of the functigiy; X, W) appears to be far less crit- 37
ical for the bias-corrected test than does the misspecification of the underlying hazard
model for the uncorrected test. Furthermore, use of a bias-corrected test when oee is
unnecessary — that is, when the working proportional hazards model happens to bescor-
rectly specified — does not appear to result in much loss in efficiency. Thus, when there
is any suspicion that the key conditions for robustness may be violated, use of the bras-
adjusted tests instead of or as a complement to standard methods is advised. To facititate
the computation for the adjusted tesigpendix Agives MATLAB code for these and 44
uncorrected tests. 45
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Appendix A: MATLAB code for computing statistical tests 7
8
We provide below MATLAB code for calculating the uncorrected and corrected score
tests presented in this paper. The version of MATLAB used is 5.3.1 (R11.1) along with
the Statistics (Version 2.2, R11) and Optimization (Version 2.0, R11) toolboxes. 11
The uncorrected test is calculated using the model-based variance estimator, which
is consistent when the working proportional hazards modekfol X, W) is prop- 13
erly specified or when the log-rank test is used as the uncorrected test. The ¥or-
rected test is calculated witt,,(r) = 1 and using a stratified (by treatment group}s
proportional hazards model for the conditional distributionCofiven (X, W) with 16
Yo (Z) = exp(BTZ), wheref the restricted maximum partial likelihood estimate ofi
B under Hy. We note, however, that the code can be modified to accommodate otlter
choices for these functions as well as for more covariates that are used below to ilus-
trate the methods. 20
The observed data consists of the five 1 column vectordO0, d, x, Z1, Z2, where 21
TO corresponds tq7;*}, d to {;}, X to {X;}, Z1 is the first component ofZ}}, say 22
{Z1;} andZ2 the second, sa§Zy;},i =1, ..., n. Suppose that one wanted to adjust foe3
the covariated (Z1 < 0), Z% in the model forT', and calculate a corrected test using4
a proportional hazards model f6r that was conditional oX, | Z1|~%/2, Z,. Then the 25
MATLAB call would be 26

27

[unl,cor 1]=SC(TO0,d, X, [(Z1 < 0), (Z2.(2))], 28
29
30
where the output X 2 row vectorunl consists of the uncorrected score statistic angt
score test, similaricor 1 consists of the corrected score statistic and score test. 32
The code for the functiorsC. mand the two functions it calls; PLgh. mand 33

[((abs(Z1)).( - .5)), Z2]);

BRES. mis given by: 34
35
function [un, cor] = SC(TT, dd, xx, Z1, Z2) 36
% conput es uncorrected *un* and corrected *cor* score statistics 37
and tests 8
% *TT* is the colum vector of N possibly right-censored event 39
times 20

% there are assunmed to be no TIES in *TT*

% *dd* is the colum vector of N indicators |(T<=C) o

% *xx* is the colum vector of N treatnent group indicators
% *Z1* is the Nx p matrix of covariates for *T*

% *Z2* is the Nx p matrix of covariates for *C* 44
s I 45

42
43
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% first get the restricted MPLE for T

global T d x Z

T=TT; d=dd; x=xx; Z=71;
N = length(T);
p size(Zz, 2);

th = zeros(1,p);

options = optinset('GadObj’, on’, ' Display’, off’);
rmpl e = fsolve(’ rPLgh’,th, options);

cl ear gl obal

% cal cul ate the MPLE and Bresl ow estinmate of the baseline
% cunul ative hazard of censoring within each treatnent group

global T d zZ
T=TT(xx==0); d=1-dd(xx==0); Z=Z2(xx==0,:);
N = length(T);
p = size(Z 2);
th = zeros(1,p);
options = optinset('GadObj’, on’,’' Display’', off’);
mpl e0 = fsolve(’ rPLgh’,th, options);
[LOw, cO0] = BRES(T, d, Z, npl e0);
cl ear gl obal

global T d Z
T=TT(xx==1); d=1-dd(xx==1); Z=Z2(xx==1,:);
N = length(T);
p = size(ZzZ 2);
th = zeros(1,p);
options = optinset(’'GadObj’, on’,’ Display’,’ off’);
mpl el = fsolve(’' rPLgh’,th, options);
[Llw, c1] = BRES(T, d, Z, npl el);
cl ear gl obal

T=TT, d =dd; x = xx; Z = Z1;
p = size(Z 2);

I = zeros((p+1), (p+l));

U 0; U = 0;
Ts = T.*d;
N

K

= length(T);
= sun(d);
eBz = exp((Z*(rnple’))’);
Xb = nean(x);
w = zeros(N,1); W = zeros(N, 1);
temp0O = 0; dN = 0; YseM = zeros(N,1);

% cal cul ate the baseline cumul ati ve hazards at each observed

F:hs23022.tex; VTEX/ML p. 11
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% failure time for each treatment group by linear interpolation
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LO = interpl(cO, LOW, m n(max(c0),T));
L1 = interpl(cl, L1w, mn(max(cl),T));
0/0 __________________________________________
% test statistic
O = = = m e e e e e e e e e e e e e e e e e mmmme oo
for m¥1: N
if (Ts(nmm >0)
Y = (T>=Ts(m));
YO = Y.*(1-x);
Y1l = Y. *x;
O = = = m e e e e e e e e e e e e e e e e e memmea—n
%t r eat nent - speci fic Survival functions of
O = = = m e e e e e e e e e e e e e e e e e me e oo
FO = exp(-LO(mm) *exp(Z2*npl e0'));
F1 = exp(-L1(mm) *exp(Z2*nplel’));
FO = FO + (F0==0). *eps;
F1 = F1 + (F1==0). *eps;
phiOr = ((min([F1;F0']))./F0")";
philr = ((mMn([F1";FO']))./F1")";
O = = = s e e e e e e e e e e e e e e e e e mm e mn
% uncorrected test
O = = = m e e e e e e e e e e e e e e e e e e mmmme oo
meBz = (eBz'.*Y)*ones(1, p+l);
sO = (eBz*Y)/N,
sl = (sum(nmeBz.*[x,Z]))/N
s2 = ([x,2Z]"*(meBz. *[x,Z]))IN,
vz = ((s2/s0) - ((sl/s0)’'*(s1/s0)));
I =1 + vz/N,
sc = ([x(m),Z(m:)] - (s1/s0));
U= U+ sc(l);
O = = = m e e e e e e e e e e e e e e e e e e e e memn

YOn=YO. *phi Or;
Y1ln=Y1l. *phi 1r;
Ys = YOn + Yln;
YseM = [ YseM (eBz'.*Ys)];
meBz = (eBz'.*Ys)*ones(1, p+l);
sO = (eBz*Ys)/N;
tenp0 = [tenp0, sO];

sl = (sum(nmeBz.*[x,Z]))/N
s2 = ([x,2Z] *(meBz. *[x,Z]))/IN;
E = s1/s0;

U = U + ( Ys(mm)*(x(mm)-E(1)) );

dN = [dN, Ys(mm)];

w(mm) = Ys(m)*( x(m) - Xb );
end

end

tenpO(1)=[];

F:hs23022.tex; VTEX/ML p. 12
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dN(1) =[]; 1
YseM:, 1)=[]; 2
I = N*I; 3
D e e 4
%cal cul ate sanple version of the iid terms (A) 5
0/0 _______________________________________________________________
resr=sun( (((x-Xb)*ones(1,K)).*(((YseM./(ones(N, 1)*tenp0)).* j
(ones(N, 1) *(dN'N)))) ") ; .
W =w - resr’;
Y = = = = m m e e e e e e e e e e e e e e e e e e e e e e 9
%nodel - based vari ance estinate of uncorrected test 10
O = = = m m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e e 11
aa=l ((2: p+1), (2: p+l)); 12
iil=inv(aa); 13
% iil=aa\eye(size(aa)); may be nore efficient 14
V=1(1,1)-(1(1,(2:p+D))*iil*1((2:p+1),1)); 15
LKttt 16
%variance estimte of corrected test 17
= = = = = m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e memma—on
Rm= sun( (W-nean(W)).(2) ): 12
un = [U, Usqrt(V)];
cor = [Ur, U/sqrt(RmM]; 0
72 21
% NOTE: to cal cul ate | og-rank, set rnple=zeros(1,p) and 22
% V =1(1,1); 23
function [dL, ddL] = rPLgh(th) 24
% conputes the gradient and Hessian of Cox’s partial |ikelihood 25
at *th* 26
% *th* is the (p+1l) row vector of coefficients 27
% *T* is the colum vector of N possibly right-censored event 28
tines 2
% *d* is the colum vector of N indicators |(T<=0)
% *Z* is the NNby-p matrix of baseline covari ates %0
global T d Z i
N = I ength(T); 32
p = size(Z 2); 33
I = zeros(p, p); 34
U = zeros(1,p); 35
P - - - ccccoooo o - o e R 36
% conpute SO(th,t), S(th,t) and S2(th,t) at each event tine 37
Bz = Z*(th"); 38
eBz = exp(Bz'); 39
Ts = T.*d; 20
for n=1: N
if (Ts(n)>0) o
i = IE=T SN a2
meBz = (eBz’.*Y)*ones(1,p); 43
sO0 = (eBz*Y)/N, 44
sl = (sum(neBz.*Z2))/N; 45
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%]
N
1

(Z *(meBz.*2))/IN;
(s2/s0) - ((s1/s0)'*(sl1l/s0));

<
N
11

sc = Z(n,:) - (s1/s0);
U=U+ sc;
I =1 + vz;
end
end
dL = U ;
ddL = -1I;

function [LL, tt] = BRES(T,d, z, b)
% conmputes Breslow s estinmate of baseline cunul ative baseline

hazard fn
% *T* is the colum vector of N possibly right-censored event
times

% *d* is the colum vector of N indicators |(T<=C)
% assunes no ties in the data

% *z* is the Nx p matrix of covariates

% *b* is the 1 x p vector of regression coefficients
Ts=T. *d;

Ts=Ts(Ts>0);

Ts=sort(Ts);

n=l engt h(Ts);

L=1:n;

eb = exp(z*b’);

for mmel:n

L(m) = 1/ sum( (T>=Ts(nmm).*eb );

end

tt=[0,Ts'];

LL=[ O, cunsun(L)];
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