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The Effects of Misspecifying Cox’s Regression Model on
Randomized Treatment Group Comparisons

A.G. DiRienzo and S.W. Lagakos

1. Introduction

Hypothesis tests arising from Cox’s proportional hazards model (Cox, 1972) are often
used to compare randomized treatment groups with respect to the distribution of a fail-
ure time outcome. Some of these tests adjust for covariates that may be predictive of
outcome, while others, and most notably, the log-rank test, do not. In addition to adjust-
ing for any imbalances that may arise between treatment groups, covariate-adjusted test
may enjoy greater efficiency than that of the log-rank test.Tsiats et al. (1985)demon-
strated the gain in efficiency of covariate-adjusted tests relative to the log-rank test when
the working proportional hazards model is properly specified.Slud (1991)provided as-
ymptotic relative efficiency formulae of the log-rank test to the optimal score test that
arises from a properly specified model for covariates when the effect of treatment is mul-
tiplicative on the survival time hazard function.Lagakos and Schoenfeld (1984)studied
the effects of various types of model misspecification on the power of tests based on
Cox’s model.

An important consideration in the application of these tests is their validity when
the underlying proportional hazards working model is misspecified. Recent work has
shown that the impact of model misspecification on the validity of resulting tests hinges
on whether the distribution of the potential censoring time either (i) is conditionally
independent of treatment group given covariates or conditionally independent of co-
variates given treatment group, or (ii) depends on both treatment group and covariates.
In the first case, resulting test statistics have an asymptotic normal distribution with
mean zero under the null hypothesis and that consistent variance estimates are readily
obtainable (seeKong and Slud, 1997 and DiRienzo and Lagakos, 2001a). In the sec-
ond case, the asymptotic mean of the test statistic is not necessarily equal to zero under
the null hypothesis when the proportional hazards working model is misspecified. In
such cases, the bias of tests can be large, as was demonstrated inDiRienzo and Lagakos
(2001a, 2001b).

In this chapter we summarize the properties of hypothesis tests derived from pro-
portional hazards regression models. We introduce notation and define uncorrected sta-
tistics in Section 2. In Section 3we describe conditions necessary for the asymptotic
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validity of these test statistics, and also discuss efficiency considerations and effects of
model misspecification on the power of uncorrected test statistics. We describe a class
of corrected test statistics for use when censoring depends on both treatment group and
covariates inSection 4, and also examine estimation procedures and the efficiency of
such bias-corrected tests. We provide some recommendations for the use of these tests
in Section 5, and give MATLAB code for the computation of the various test statistics
in Appendix A.

2. Notation and statistics

Let the continuous random variableT denote time from randomization to failure and let
C denote a potential censoring time. Assume that we observeT ∗ = min(T ,C) and the
indicatorδ = 1(T � C) of whetherT is observed (δ = 1) or right-censored (δ = 0). Let
the binary random variableX denote treatment group and letW denote aq×1 vector of
bounded baseline covariates. Throughout this paper we assume that censoring acts non-
informatively, that is,T ⊥ C | (X,W), and also thatX ⊥W , as is the case in most ran-
domized clinical trials. The true conditional hazard functions ofT andC given(X,W)
are denoted byκ(t |X,W) andκC(t |X,W), respectively, and are not necessarily of a
proportional hazards form. The observed data is assumed to consist ofn independent
and identically distributed realizations of(T ∗, δ,X,Z∗), denoted(T ∗

i , δi,Xi,Z
∗
i ) for

i = 1, . . . , n, whereZ∗ is ap × 1 vector whose components are bounded functions of
W .

The null hypothesis of interest isH0: X ⊥ T |W ; that is, that the failure time distri-
bution does not depend on treatment group, under which we will denoteκ(t |X,W) by
κ(t |W). Consider tests ofH0 that are based on statistics of the form

(1)n−1/2Un =
n∑
i=1

∫ ∞

0
n−1/2Gn(t)

{
Xi − En(t)

}
dNi(t),

where

En(t)=
n∑
j=1

Yj (t)ψn(Zj )Xj

/ n∑
j=1

Yj (t)ψn(Zj ),

Yi(t) = 1(T ∗
i � t), Ni(t) = δi1(T ∗

i � t) andψn(·) is a nonrandom bounded function
whose form is known but whose parameters can be estimated from the data. The co-
variatesZi are some bounded function ofZ∗

i , i = 1, . . . , n. The bounded predictable
processGn(·) is also assumed to be nonrandom, converging uniformly in probability
to a bounded functionG(·). It may be the case that one would want to consider time-
dependent covariates, for example an external ancillary covariate process (Kalbfleisch
and Prentice, 1980, p. 123). Although results hold when the components ofWi andZi
are uniformly bounded and predictable functions of time, for ease of notation we only
consider fixed covariates.

http://biostats.bepress.com/harvardbiostat/paper3
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Statistics of the form in(1) arise as the numerator of partial likelihood score tests of
α = 0 based on working proportional hazards models forκ(t |X, W) that take the form

(2)exp(αXi)ψ(β;Zi)h(t).
The working model(2) is misspecified when it is not equivalent toκ(t | X, W), in

which case the parametersα, β , andh(·) have no simple interpretation. The statistic
n−1/2Un should then generally be viewed simply as statistic from which tests ofH0
may be derived.

Popular choices forG(·) andψ(·) areGn(t) = 1 and ψ(β;Zi) = exp(β
Zi), re-
sulting inψn(Zi)= exp(β̂
Zi), whereβ̂ is the restricted maximum partial likelihood
estimator ofβ obtained by fitting the model withα = 0 (Cox, 1972). Here the prob-
ability limit of ψn(Z) is exp(β̃
Z), whereβ̃ is the probability limit of β̂ (Lin and
Wei, 1989). Note that̃β = β when the model (2) is properly specified. Another special
case of(1) is the class of weighted log-rank statistics (Cox and Oakes, 1984, p. 124),
whereψ(β;Zi)=ψn(Zi)= 1, and where the most commonly used choice forGn(·) is
the identity function, yielding the ordinary log-rank test. In general,ψ(β;Z) can also
depend ont , so long as it is uniformly bounded.

3. Conditions for valid tests

Suppose that eitherC ⊥ X |W or C ⊥W | X. Then the test statisticn−1/2Un has an
asymptotic normal distribution with mean 0 underH0, regardless of whether or not the
model(2) is misspecified (DiRienzo and Lagakos, 2001a). Furthermore, when either of
these conditions hold, consistent estimates of the variance ofn−1/2Un are easily derived,
yielding asymptotically valid inference whether or not the relationship betweenT and
(X,W) is properly specified.

The conditionC ⊥ X | W is usually satisfied in a randomized clinical trial when
the only form of censoring is administrative or end-of-study censoring; that is, whenC

represents the time from enrollment of a subject into the study until the time the data
are analyzed. However, when censoring can arise from premature study discontinuation
or loss-to-follow-up, it is well known that this condition may not hold. The condition
C ⊥W |X holds when there is a dependency of censoring on treatment group which
does depend on the covariates. To provide some insight into why either of these condi-
tions are necessary for valid inference, note that at baseline (that is, whent = 0), the dis-
tribution ofW is independent ofX because of randomization; when eitherC ⊥X |W
orC ⊥W |X holds andH0 is true, it is implied thatX⊥W | Y (t)= 1, t > 0, which is
necessary forn−1/2Un to have mean 0 asymptotically. For a proof of these results, see
Appendix A of DiRienzo and Lagakos (2001a)or Kong and Slud(1997).

We now provide test statistics for use when eitherC ⊥X |W orC ⊥W |X holds. It
follows fromKong and Slud (1997)that underH0, n−1/2Un can be expressed as

n−1/2Un = n−1/2
n∑
i=1

Qi + op(1),

Hosted by The Berkeley Electronic Press
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where

Qi =
∫ ∞

0

{
Xi −µ(t)

}{
dNi(t)− ρ(t)Yi(t)ψ(β̃;Zi)dt

}
,

µ(t)=E
{
Y (t)ψ

(
β̃;Z)

X
}
/E

{
Y (t)ψ

(
β̃;Z)}

,

ρ(t)=E
{
Y (t)κ(t |W)}/E{

Y (t)ψ
(
β̃;Z)}

.

It is easily verified (cf.Kong and Slud, 1997or usingLemmas 1 and 2 in DiRienzo
and Lagakos, 2001a) that underH0, Qi has mean 0 whenC ⊥ X |W or C ⊥W | X.
This implies thatn−1/2Un is asymptotically normal with mean zero and variance equal
to the variance ofQi . As shown inKong and Slud (1997), a consistent estimate of the
variance ofn−1/2Un is

1

n

n∑
i=1

(
Q̂i − �Q )2

,

where

Q̂i =
∫ ∞

0

{
Xi − �X(t)}{dNi(t)− Yi(t)ψ(β̂;Zi)∑n

j=1Yj (t)ψ(β̂;Zj)
d�N(t)

}
,

�X(t)=
n∑
i=1

Yi(t)Xi

/ n∑
i=1

Yi(t),

�N(t)= ∑n
i=1Ni(t) and �Q= (1/n)

∑n
i=1 Q̂i .

Thus, provided thatC ⊥ X | W or that C ⊥ W | X, the test statisticUn/√{∑n
i=1(Q̂i − �Q)2} is asymptotically standard normal underH0 whenC ⊥ X | W

or C ⊥W | X, regardless of whether the working model(2) is properly specified. The
motivation for replacingµ(t) with �X(t) above is thatµ(t)=E{X | Y (t)= 1} underH0
whenC ⊥ X |W or C ⊥W | X. We note that for the special case of the log-rank test,
use of the model-based variance estimator ofn−1/2Un also results in a valid asymptotic
test, and appears to usually provide nominal finite-sample type I errors (seeDiRienzo
and Lagakos, 2001a), so that use of a robust variance estimator is not needed.

3.1. Efficiency considerations

Lagakos and Schoenfeld (1984)investigated the effects of various types of misspeci-
fication of the working model(2) on the power ofn−1/2Un. When covariates have a
multiplicative effect on the true hazardκ(t |X, W), but the ratioκ(t |X = 1, W)/κ(t |
X = 0, W), is non-constant but either greater or less than one for allt > 0, i.e., the
hazards do not cross, there is often only a small loss in power. One exception to this is
when the ratioκ(t | X = 1, W)/κ(t | X = 0, W) departs from one only after the ma-
jority of failures have occurred; in this case, the loss in power can be great. In contrast,
when the ratioκ(t |X = 1, W)/κ(t |X = 0, W) crosses one, the loss in power is often
substantial.

http://biostats.bepress.com/harvardbiostat/paper3
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Suppose that the effect of covariates in the true modelκ(t |X, W) is not multiplica-
tive, that is the ratioκ(t |X = 1, W)/κ(t | X = 0, W) is a function ofW , but that the
interaction is qualitative, in the sense thatκ(t | X = 1, W)/κ(t | X = 0, W) is either
greater or less than one for allW . In this case, the loss in the power ofn−1/2Un is not
in general large unless the discrepancy in the ratioκ(t | X = 1, W)/κ(t | X = 0, W)
between levels ofW is substantial, especially if larger ratios tend to occur within levels
ofW that are less prevalent.

More generally, the loss in power ofn−1/2Un can be large when a component ofW
that has a strong effect on the hazard ofT is either omitted or mismodeled in such a way
that the direction of its effect is not maintained. Further details on all of these situations
can be found inLagakos and Schoenfeld (1984). Morgan (1986)provides a correction
to Lagakos and Schoenfeld’s (1984)asymptotic relative efficiency formula of the log-
rank test to the score test arising from a properly specified model for covariates. See
alsoLagakos (1988), who derived asymptotic relative efficiency formulae in the one-
sample problem when evaluating the effect of a misspecified form of a time-dependent
covariate.

4. Bias correction

When the distribution of the censoring variable depends on both treatment group and
covariates, that is when the conditionsC ⊥X |W andC ⊥W |X both fail to hold, the
statisticn−1/2Un in general has a non-zero asymptotic mean underH0. One exception
is when the model(2) is equal toκ(t | X, W), i.e., the working proportional hazards
model is properly specified.DiRienzo and Lagakos (2001a, 2001b)present simulation
results which demonstrate that the bias of tests based onn−1/2Un can be severe when
in this setting and the working proportional hazards model is misspecified.

In an attempt to correct for this bias,DiRienzo and Lagakos (2001b)present a class
of tests that are asymptotically standard normal underH0 regardless of the joint distri-
bution betweenC and(X, W), provided that either the conditional distribution ofT
given(X, W) or the conditional distribution ofC given (X, W) is properly modeled.
Consequently, these tests are more robust than those arising fromn−1/2Un when the
working model is misspecified, and do not appear to lose much efficiency when the
working model is correctly specified and bias correction is unnecessary.

Consider the generalization of(1) given by

(3)n−1/2U∗
n =

n∑
i=1

∫ ∞

0
n−1/2Gn(t)ϕ(t;Xi,Wi)

{
Xi − E∗

n(t)
}

dNi(t),

where

E∗
n(t)=

n∑
j=1

Y ∗
j (t)ψn(Zj )Xj

/ n∑
j=1

Y ∗
j (t)ψn(Zj ),

Y ∗
i (t)= Yi(t)ϕ(t;Xi,Wi),

Hosted by The Berkeley Electronic Press
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(4)

ϕ(t;Xi,Wi)= min
{

pr(C � t |Xi = 0, Wi),

pr(C � t |Xi = 1, Wi)
}
/pr(C � t |Xi, Wi),

for i = 1, . . . , n. Unlike the binary indicator variableY normally used in Cox’s model,
Y ∗
i (t) can assume any value in the unit interval. Also, note thatϕ(t;Xi, Wi) is only

defined whenZi =Wi , i = 1, . . . , n.
At each point in study time when a survival event occurs, this correction strives to

remove any imbalances between treatment groups in the distribution of covariates that
are caused solely by censoring. Mechanically, at study timet , the correction down-
weights,Y ∗

i (t) < 1, those subjects in the risk set whose risk of censoring is higher in
their opposite treatment group; those subjects whose risk of censoring is lower in their
opposite treatment group are unweighted,Y ∗

i (t) = Yi(t) = 1. To see this analytically,
note that underH0, the conditional expectation ofY ∗(t) given(X,W) is

ϕ(t;X, W)pr{Y (t)= 1 |X, W }
= ϕ(t;X, W)pr(C � t |X, W)pr(T � t |W)
= min

{
pr(C � t |X = 0, W),pr(C � t |X = 1, W)

}
pr(T � t |W),

which is independent ofX. The probability limit ofE∗
n(t) underH0 is thus

E{Y ∗(t)ψ(Z)X}
E{Y ∗(t)ψ(Z)} = E[Xψ(Z)E{Y ∗(t) |W }]

E[ψ(Z)E{Y ∗(t) |W }] = π,

whereπ =E(X).
As shown inDiRienzo and Lagakos (2001b), n−1/2U∗

n can be expressed underH0

as

n−1/2U∗
n = n−1/2

n∑
i=1

Ai + op(1),

where

Ai =
∫ ∞

0
G(t)ϕ(t;Xi,Wi)(Xi − π)

×
{

dNi(t)− Yi(t)ψ(Zi)E{Y ∗(t)κ(t |W)}
E{Y ∗(t)ψ(Z)} dt

}
,

and theAi are independent and identically distributed with mean zero.
A consistent estimator of the variance ofn−1/2U∗

n is

(5)Vn = 1

n

n∑
i=1

(
A
(n)
i − �A(n)

)2
,

where

http://biostats.bepress.com/harvardbiostat/paper3
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A
(n)
i =

∫ ∞

0
Gn(t)ϕ(t;Xi,Wi)

(
Xi − �X )

×
{

dNi(t)− Yi(t)ψn(Zi)∑n
j=1Y

∗
j (t)ψn(Zj )

n∑
j=1

ϕ(t;Xj,Wj )dNj(t)
}
,

�X is the mean of{X1, . . . ,Xn} and�A(n) is the mean of{A(n)1 , . . . ,A
(n)
n }. Hence, regard-

less of the joint distribution betweenC and(X, W), n−1/2U∗
n /

√
Vn asymptotically has

the standard normal distribution underH0 whether or not the working model is properly
specified. It follows that if the working model(2) is properly specified,n−1/2U∗

n /
√
Vn

is asymptotically standard normal underH0 regardless of whether pr(C � t |X, W) is
properly specified and of the dependency betweenC and(X,W).

In practice,ϕ(·) will often be unknown. Letϕ̂(t;Xi, Wi) denote an estimator of
ϕ(t;Xi,Wi). One would then calculate

Û∗
n =

n∑
i=1

∫ ∞

0
Gn(t)ϕ̂(t;Xi,Wi)

{
Xi − Ê∗

n(t)
}

dNi(t)

instead of(3) and

Â
(n)
i =

∫ ∞

0
Gn(t)ϕ̂(t;Xi,Wi)

(
Xi − �X )

×
{

dNi(t)− Yi(t)ψn(Zi)∑n
j=1 Ŷ

∗
j (t)ψn(Zj)

n∑
j=1

ϕ̂(t;Xj,Wj )dNj(t)
}

instead ofA(n)i in (5), whereŶ ∗
i (t)= Yi(t)ϕ̂(t;Xi, Wi), andÊ∗

n (·) is obtained by sub-
stituting Ŷ ∗

i (·) for Y ∗
i (·) in E∗

n(·), i = 1, . . . , n. Denote this variance estimate bŷVn.
Some methods for estimatingϕ(t;X,W) are given inDiRienzo and Lagakos

(2001b). These include the nonparametric regression methods ofMcKeague and Utikal
(1990) as well asCox’s (1972)proportional hazards regression models. If the covariates
are discrete with relatively few levels, then a stratified, left-continuous Kaplan–Meier
estimator (Kaplan and Meier, 1958) of censoring can be calculated for each treatment
group within each level of the covariate space.

For example, an estimate forϕ(t;X,W) can be obtained via the stratified propor-
tional hazards model forκC(t |X, W),

λ(X)(t)exp
(
γ (X)ZC

)
,

whereZCi is some bounded function ofZ∗
i , i = 1, . . . , n. The maximum partial-

likelihood estimator,γ̂ (X)t , and theBreslow (1972, 1974)estimator of the baseline cu-
mulative hazard function of censoring,̂((X)(t), may then be calculated within each
treatment group at each censoring time, using data accumulated before that time, and
the continuous estimator

p̂r
(
Ci � t |Xi, ZCi

) = exp
{−(̂(Xi)(t)exp

(
γ̂
(Xi)
t ZCi

)}

Hosted by The Berkeley Electronic Press
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obtained by linear interpolation between censoring times of(̂
(Xi)
i (t). Here estimation

was stratified onX, but stratification may additionally be based on any covariate that
might possibly have a strong interaction with treatment.

When ϕ(t;X,W) is estimated using a semiparametric or nonparametric model,
ϕ̂(t;Xi,Wi) contains estimates of an infinite dimensional parameter, for which case
a consistent estimate of the variance ofn−1/2Û∗

n would not necessarily be given bŷVn.
However, given the choice for an estimate ofϕ(t;X,W), if it can be shown that̂U∗

n is
asymptotically linear, then the nonparametric bootstrap estimate of variance ofÛ∗

n will
be consistent (Gill, 1989). DiRienzo and Lagakos (2001b)have shown via simulation
that when using a semiparametric proportional hazards model to calculateϕ̂(t;Xi,Wi),
the variance estimatêVn appears to be adequate.

For any given data set, there is no guarantee that it will be possible to specify and
estimateϕ(·) well enough to make the correction for a misspecified model forT reli-
able. It is thus of utmost importance to check and validate the fit of both the model for
censoring and survival. Some well known techniques for checking the appropriateness
of proportional hazards regression models are given inLin et al. (1993) and Klein and
Moeschberger (1997).

A related consideration in the use of bias-adjusted tests are the relative efficiencies.
When the working proportional hazards model(2) is properly specified, i.e., equal to
κ(t |X, W), then the uncorrected, fully model-based test ofH0 is asymptotically valid
regardless of the dependency betweenC and(X,W). In this situation, it is of interest
to examine the relative efficiency of the corrected test to that of the uncorrected test and
determine if there are situations for which unnecessary use of the corrected test could
lead to loss in power.

DiRienzo and Lagakos (2001b)provide formulae for the asymptotic mean and vari-
ance ofn−1/2Ûn andn−1/2Û∗

n under the contiguous alternativeHn: α = c/
√
n, for

some constantc, when the true hazard forT is given by

κ(t |Xi, Wi)= exp(αXi)ψ(β,Wi)h(t).

That is, the working proportional hazards model is properly specified and calculation of
a corrected test is unnecessary since the uncorrected, fully model-based test ofH0 is as-
ymptotically valid. In their accompanying simulations, the empirical relative efficiency
of the corrected test to that of the uncorrected test appears to almost always be close to
one.

Other choices for the functional form ofϕ(·) may be of interest; one example is
ϕ(t;X,W) = 1/pr(C � t | X, W). However, using simulations,DiRienzo and La-
gakos (2001b)have found that this choice forϕ(·) can be much less efficient than the
choice(4). They present an efficacy formula for the corrected test; this may be used to
compare the efficiencies of tests using different choices forϕ(·).

5. Discussion

Given the wide use of statistical tests based on Cox’s regression model, especially in
medical applications, and considering the importance of decisions that are reached from

http://biostats.bepress.com/harvardbiostat/paper3
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these analyses, an understanding of their robustness to misspecification of the model is
important. Misspecification can occur in many forms, including omitted or mismodelled
covariates, the omission of treatment by covariate interactions, or a violation of the un-
derlying proportionality assumption. While goodness-of-fit methods can be applied to
check model fit (cf.Klein and Moeschberger, 1997), their failure to signal misspecifica-
tion is no assurance that this is the case and, furthermore, their subjective and post-hoc
nature can be problematic when a new treatment is being assessed, e.g., in clinical tri-
als the standard practice is to precisely prespecify how treatment comparisons will be
made. This chapter has argued that a fundamental question in assessing such robustness
is whether treatment group and the censoring variable are conditionally independent
given the underlying covariates, or whether the underlying covariates associated with
survival are conditionally independent of the censoring variable, given treatment group.
When either of these conditions apply, then statistical tests arising from fitting a propor-
tional hazards model, including the popular log-rank test, maintain their validity under
misspecification of the model-relating treatment and these covariates to the hazard func-
tion for survival. That is, when either condition holds, the resulting test statistic, when
standardized by a robust variance estimator, has a distribution under the null hypothe-
sis of no treatment effect that is asymptotically standard normal, regardless of whether
or not the model is correctly specified. For the special case of the log-rank test, use of
the model-based variance estimator to standardize the score statistic arising from the
assumed model also leads to the desired asymptotic behavior under the null hypothesis.
Thus, establishment of either of these conditions ensures that the size, or Type I error,
associated with such tests is not distorted as a result of model misspecification. More-
over, one or both of the conditions can in practice often either be checked empirically
or concluded to hold based on the analyst’s knowledge of the circumstances that lead to
censored observations.

When neither condition holds, that is, when either treatment or the underlying co-
variate is not conditionally independent of time to censoring, then tests based on fitting
a proportional hazards model can be asymptotically biased under the null hypothesis.
Since in practice the significance levels used to evaluate these tests invariably resort to
their presumed asymptotic normality, the size of such tests can be seriously biased when
the working proportional hazards model is misspecified. To avoid or minimize such bi-
ases, a class of bias-corrected tests can readily be adapted. These tests require knowl-
edge or estimation ofφ(t;X,W), a function of the conditional distribution of censoring.
Based on asymptotic considerations and simulations, the corrected test works well in a
variety of settings, even when the estimated form ofφ(t;X,W) is only approximately
correct. That is, misspecification of the functionφ(t;X,W) appears to be far less crit-
ical for the bias-corrected test than does the misspecification of the underlying hazard
model for the uncorrected test. Furthermore, use of a bias-corrected test when one is
unnecessary – that is, when the working proportional hazards model happens to be cor-
rectly specified – does not appear to result in much loss in efficiency. Thus, when there
is any suspicion that the key conditions for robustness may be violated, use of the bias-
adjusted tests instead of or as a complement to standard methods is advised. To facilitate
the computation for the adjusted tests,Appendix Agives MATLAB code for these and
uncorrected tests.
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Appendix A: MATLAB code for computing statistical tests

We provide below MATLAB code for calculating the uncorrected and corrected score
tests presented in this paper. The version of MATLAB used is 5.3.1 (R11.1) along with
the Statistics (Version 2.2, R11) and Optimization (Version 2.0, R11) toolboxes.

The uncorrected test is calculated using the model-based variance estimator, which
is consistent when the working proportional hazards model forκ(t | X, W) is prop-
erly specified or when the log-rank test is used as the uncorrected test. The cor-
rected test is calculated withGn(t) = 1 and using a stratified (by treatment group)
proportional hazards model for the conditional distribution ofC given (X,W) with
ψn(Z) = exp(β̂
Z), whereβ̂ the restricted maximum partial likelihood estimate of
β underH0. We note, however, that the code can be modified to accommodate other
choices for these functions as well as for more covariates that are used below to illus-
trate the methods.

The observed data consists of the fiven× 1 column vectorsT0, d, x, Z1, Z2, where
T0 corresponds to{T ∗

i }, d to {δi}, x to {Xi}, Z1 is the first component of{Z∗
i }, say

{Z1i} andZ2 the second, say{Z2i}, i = 1, . . . , n. Suppose that one wanted to adjust for
the covariatesI (Z1 < 0),Z2

2 in the model forT , and calculate a corrected test using
a proportional hazards model forC that was conditional onX, |Z1|−1/2,Z2. Then the
MATLAB call would be

[un1,cor1] = SC(T0,d,x, [(Z1< 0), (Z2.(̂2))],
[((abs(Z1)).(̂− .5)),Z2]);

where the output 1× 2 row vectorun1 consists of the uncorrected score statistic and
score test, similarly,cor1 consists of the corrected score statistic and score test.

The code for the functionSC.m and the two functions it calls,rPLgh.m and
BRES.m is given by:

function [un, cor] = SC(TT, dd, xx, Z1, Z2)
% computes uncorrected *un* and corrected *cor* score statistics

and tests
% *TT* is the column vector of N possibly right-censored event

times
% there are assumed to be no TIES in *TT*
% *dd* is the column vector of N indicators I(T<=C)
% *xx* is the column vector of N treatment group indicators
% *Z1* is the N x p matrix of covariates for *T*
% *Z2* is the N x p matrix of covariates for *C*
%---------------------------------------------------------------

http://biostats.bepress.com/harvardbiostat/paper3
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% first get the restricted MPLE for T
%---------------------------------------------------------------
global T d x Z;
T=TT; d=dd; x=xx; Z=Z1;
N = length(T);
p = size(Z,2);

th = zeros(1,p);
options = optimset(’GradObj’,’on’,’Display’,’off’);
rmple = fsolve(’rPLgh’,th,options);

clear global
%---------------------------------------------------------------
% calculate the MPLE and Breslow estimate of the baseline
% cumulative hazard of censoring within each treatment group
%---------------------------------------------------------------
global T d Z;
T=TT(xx==0); d=1-dd(xx==0); Z=Z2(xx==0,:);
N = length(T);
p = size(Z,2);

th = zeros(1,p);
options = optimset(’GradObj’,’on’,’Display’,’off’);
mple0 = fsolve(’rPLgh’,th,options);
[L0w,c0] = BRES(T,d,Z,mple0);
clear global
%---------------------------------------------------------------
global T d Z;
T=TT(xx==1); d=1-dd(xx==1); Z=Z2(xx==1,:);
N = length(T);
p = size(Z,2);

th = zeros(1,p);
options = optimset(’GradObj’,’on’,’Display’,’off’);
mple1 = fsolve(’rPLgh’,th,options);
[L1w, c1] = BRES(T,d,Z,mple1);
clear global
%---------------------------------------------------------------
T = TT; d = dd; x = xx; Z = Z1;
p = size(Z,2);
I = zeros((p+1),(p+1));
U = 0; Ur = 0;
Ts = T.*d;
N = length(T);
K = sum(d);

eBz = exp((Z*(rmple’))’);
Xb = mean(x);
wr = zeros(N,1); Wr = zeros(N,1);

temp0 = 0; dN = 0; YseM = zeros(N,1);
%---------------------------------------------------------------
% calculate the baseline cumulative hazards at each observed
% failure time for each treatment group by linear interpolation
%---------------------------------------------------------------
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L0 = interp1(c0,L0w, min(max(c0),T));
L1 = interp1(c1,L1w, min(max(c1),T));
%---------------------------------------------------------------
% test statistic
%---------------------------------------------------------------
for mm=1:N
if (Ts(mm)>0)

Y = (T>=Ts(mm));
Y0 = Y.*(1-x);
Y1 = Y.*x;

%---------------------------------------------------------------
%treatment-specific Survival functions of censoring
%---------------------------------------------------------------

F0 = exp(-L0(mm)*exp(Z2*mple0’));
F1 = exp(-L1(mm)*exp(Z2*mple1’));
F0 = F0 + (F0==0).*eps;
F1 = F1 + (F1==0).*eps;

phi0r = ((min([F1’;F0’]))./F0’)’;
phi1r = ((min([F1’;F0’]))./F1’)’;
%---------------------------------------------------------------
% uncorrected test
%---------------------------------------------------------------
meBz = (eBz’.*Y)*ones(1,p+1);

s0 = (eBz*Y)/N;
s1 = (sum(meBz.*[x,Z]))/N;
s2 = ([x,Z]’*(meBz.*[x,Z]))/N;
vz = ((s2/s0) - ((s1/s0)’*(s1/s0)));
I = I + vz/N;
sc = ([x(mm),Z(mm,:)] - (s1/s0));
U = U + sc(1);

%---------------------------------------------------------------
% corrected test
%---------------------------------------------------------------

Y0n=Y0.*phi0r;
Y1n=Y1.*phi1r;
Ys = Y0n + Y1n;
YseM = [YseM, (eBz’.*Ys)];

meBz = (eBz’.*Ys)*ones(1,p+1);
s0 = (eBz*Ys)/N;

temp0 = [temp0, s0];
s1 = (sum(meBz.*[x,Z]))/N;
s2 = ([x,Z]’*(meBz.*[x,Z]))/N;
E = s1/s0;
Ur = Ur + ( Ys(mm)*(x(mm)-E(1)) );
dN = [dN, Ys(mm)];

wr(mm) = Ys(mm)*( x(mm) - Xb );
end

end
temp0(1)=[];
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dN(1)=[];
YseM(:,1)=[];
I = N*I;
%---------------------------------------------------------------
%calculate sample version of the iid terms (A)
%---------------------------------------------------------------
resr=sum((((x-Xb)*ones(1,K)).*(((YseM)./(ones(N,1)*temp0)).*
(ones(N,1)*(dN/N))))’);
Wr = wr - resr’;

%---------------------------------------------------------------
%model-based variance estimate of uncorrected test
%---------------------------------------------------------------
aa=I((2:p+1),(2:p+1));
iiI=inv(aa);
% iiI=aa\eye(size(aa)); may be more efficient
V = I(1,1)-(I(1,(2:p+1))*iiI*I((2:p+1),1));
%---------------------------------------------------------------
%variance estimate of corrected test
%---------------------------------------------------------------
Rrm = sum( (Wr-mean(Wr)).̂(2) );
un = [U, U/sqrt(V)];

cor = [Ur, Ur/sqrt(Rrm)];
%---------------------------------------------------------------
% NOTE: to calculate log-rank, set rmple=zeros(1,p) and
% V = I(1,1);
function [dL, ddL] = rPLgh(th)
% computes the gradient and Hessian of Cox’s partial likelihood

at *th*
% *th* is the (p+1) row vector of coefficients
% *T* is the column vector of N possibly right-censored event

times
% *d* is the column vector of N indicators I(T<=C)
% *Z* is the N-by-p matrix of baseline covariates
global T d Z;
N = length(T);
p = size(Z,2);
I = zeros(p,p);
U = zeros(1,p);

%---------------------------------------------------------------
% compute S0(th,t), S1(th,t) and S2(th,t) at each event time
Bz = Z*(th’);
eBz = exp(Bz’);
Ts = T.*d;
for n=1:N
if (Ts(n)>0)

Y = (T>=Ts(n));
meBz = (eBz’.*Y)*ones(1,p);

s0 = (eBz*Y)/N;
s1 = (sum(meBz.*Z))/N;
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s2 = (Z’*(meBz.*Z))/N;
vz = (s2/s0) - ((s1/s0)’*(s1/s0));
sc = Z(n,:) - (s1/s0);

U = U + sc;
I = I + vz;

end
end
dL = U’;
ddL = -I;
function [LL, tt] = BRES(T,d,z,b)
% computes Breslow’s estimate of baseline cumulative baseline

hazard fn
% *T* is the column vector of N possibly right-censored event

times
% *d* is the column vector of N indicators I(T<=C)
% assumes no ties in the data
% *z* is the N x p matrix of covariates
% *b* is the 1 x p vector of regression coefficients
Ts=T.*d;
Ts=Ts(Ts>0);
Ts=sort(Ts);
n=length(Ts);
L=1:n;
eb = exp(z*b’);
for mm=1:n
L(mm) = 1/sum( (T>=Ts(mm)).*eb );

end
tt=[0,Ts’];
LL=[0,cumsum(L)];
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