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Abstract—Monitoring various internal parameters 

plays a core role in ensuring the safety of lithium-ion 

batteries in power supply applications. It also influences 

the sustainability effect and online state of charge predic-

tion. An improved multiple feature-electrochemical 

thermal coupling modeling method is proposed consid-

ering low-temperature performance degradation for the 

complete characteristic expression of multi-dimensional 

information. This is to obtain the parameter influence 

mechanism with a multi-variable coupling relationship. 

An optimized decoupled deviation strategy is constructed 

for accurate state of charge prediction with real-time 

correction of time-varying current and temperature ef-

fects. The innovative decoupling method is combined with 

the functional relationships of state of charge and 

open-circuit voltage to capture energy management ef-

fectively. Then, an adaptive equivalent-prediction model 

is constructed using the state-space equation and iterative 

feedback correction, making the proposed model adaptive 

to fractional calculation. The maximum state of charge 

estimation errors of the proposed method are 4.57% and 

0.223% under the Beijing bus dynamic stress test and 

dynamic stress test conditions, respectively. The improved 

multiple feature-electrochemical thermal coupling mod-

eling realizes the effective correction of the current and 

temperature variations with noise influencing coefficient, 

and provides an efficient state of charge prediction 

method adaptive to complex conditions. 

Index Terms—Adaptive inner state characterization, 

lithium-ion batteries, low-temperature automatic- 

guided-vehicle, multiple feature-electrochemical thermal 

coupling modeling, real-time coefficient correction. 

 

 
_____________________________________ 

Received: October 16, 2023 

Accepted: January 19, 2024 

Published Online: May 1, 2024 

Shunli Wang (corresponding author) is with the School of 

Electric Power, Inner Mongolia University of Technology, Inner 

Mongolia 010051, China; with the School of Information Engi-

neering, Southwest University of Science and Technology, 

Mianyang 621010, China (e-mail: wangshunli@swust.edu.cn). 

DOI: 10.23919/PCMP.2023.000257 

Ⅰ.   INTRODUCTION 

ithium-ion batteries are the preferred energy storage 

system because of their high-power density and 

recyclability advantages [1]. Rational application can 

contribute to battery life extension, thereby saving re-

sources and reducing the costs of unnecessary losses 

[2][4]. In addition, service life is closely related to the 

battery status and the relationship needs to be obtained 

for a reliable power supply. The state of charge (SOC) 

value reflects the remaining capacity status of batteries, 

and when the SOC value is estimated accurately, the 

battery system is managed with a known remaining 

capacity, providing an effective way to achieve the 

optimal performance of the batteries [5][7]. Therefore, 

accurate real-time SOC prediction can provide signifi-

cant assistance in battery management. 

SOC not only provides reference for battery endur-

ance, but also plays a key role in the battery manage-

ment system (BMS). The accurate prediction of SOC 

can be used for the calculation and correction of state of 

health (SOH), state of energy (SOE) and state of power 

(SOP). However, SOC cannot be observed directly and 

needs to be estimated through observable variables such 

as voltage, current, and temperature [8][10]. Thus, 

how to establish the nonlinear mapping relationship 

between observable variables and SOC is a key problem 

that must be solved. The traditional methods for esti-

mating SOC include open-circuit voltage (OCV), Am-

pere-hour (AH) integration, and electrochemical im-

pedance spectroscopy (EIS) [11]. The open-circuit 

voltage method requires the battery to remain stationary 

for a long time to obtain the OCV-SOC curve, which is 

not suitable for online measurement [12],[13]. The 

Ampere-hour integration method achieves SOC pre-

diction through current integration, but requires high 

accuracy in sampling [14][16]. Electrochemical im-

pedance spectroscopy uses battery impedance for SOC 

prediction. This requires the battery to be in a stationary 

L 
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state during the measurement process, making it diffi-

cult to implement on site [17]. With the development of 

new technologies, at present, the commonly used SOC 

estimation methods include model-based methods and 

data-driven methods [18][21]. Among them, da-

ta-driven methods require a large number of test sam-

ples and time costs, and therefore, the SOC estimation 

method based on the combination of model and filter 

observer has become a research hotspot. 

Highly accurate SOC estimation relies on an accurate 

battery model and expression of internal parameters. 

The battery has a complicated internal structure with 

various internal factors such as temperature, resistance, 

and electrochemical concentration [22], [23]. Therefore, 

establishing high-precision battery models and adaptive 

internal parameter identification strategies are the key to 

accurately estimating the internal state of batteries [24], 

[25]. As battery modelling research continues to progress, 

researchers have conducted multi-dimensional research 

and exploration based on the resistance-capacitance (RC) 

model of batteries, which to a certain extent enables the 

characterization and dynamic description of the internal 

polarization effects of the batteries, as shown in Table I. 

TABLE I 

THE CONTENTS OF BATTERY MODELS THAT HAVE BEEN STUDIED 

BY RESEARCHERS 

Researcher Research contents 

Mesbahi et al. [26]. 

A dynamic model of Li-ion batteries incor-

porating electrothermal and ageing aspects is 

proposed for electric vehicle applications. 

Barai et al. [27]. 

It is proposed that the accuracy of the esti-

mation of the internal resistance of a battery 

is closely related to the time scale of the 

measurement technique used. 

Fridholm et al. [28]. 

An RLS method to estimate the ohmic in-

ternal resistance and an adaptive Kalman 

filter to estimate the time constants of the 

dynamic effects is proposed. 

Feng et al. [29]. 

A 3D electrochemical-thermal model which 

predict the voltage and temperature re-

sponses of the battery with or without inter-

nal short circuit (ISC) is built to simulate 

various ISC scenarios inside a large format 

lithium ion battery. 

Bruch et al. [30]. 

A novel approach to extract the equivalent 

circuit model parameter from a pulse test is 

proposed. 

Fenner et al. [31]. 
A battery voltage model called 4-KiVM is 

proposed for variable operating conditions. 

Ruan et al. [9]. 

A novel electrochemical model-based quan-

titative analysis method of performance 

decrease and fast-charging limitation for 

LIBs at low temperatures is proposed. 

High-precision battery state evaluation depends on 
the high-precision model and internal parameters. Bat-
tery modeling under low-temperature conditions is 
challenging and the following key steps need to be taken: 
first, a description of the interaction and coupling rela-
tionship between model parameters should be con-
ducted. The model parameters of ohmic and polariza-

tion resistance, and polarization capacitance need to be 
measured indirectly by experiment, as their mathemat-
ical descriptions can only be realized by external pa-
rameters such as voltage, current, and temperature 

[32],[33]. However, most existing studies do not con-
sider the influence of the coupling relationship between 
the parameters on the modeling accuracy. Secondly, the 
influence correction of the low-temperature environ-
mental disturbance should be performed on the model 

[34],[35]. Because of the low-temperature influence, 
the external measurement parameters contain multiple 
uncertain noise information [36], [37]. Thus, how to 
suppress the noise interference in complex scenes and 
how to quickly build a reliable mathematical equation 
need to be established urgently. Thirdly, note that the 
inconsistency of multi-time-scale model parameter 
identification results between polarization impedances 

is significant [38][42].  
The time-domain equivalent circuit modeling method 

has high accuracy by identifying model parameters 
through limited dynamic conditions, and the time-domain 
parameter matching techniques may have the adaptability 
problem of varying conditions. Short-time scale state 
parameter estimation, such as SOC, SOE, and SOP, plays 
an important supporting role in improving the evaluation 
results of battery performance and long-timescale RUL 

prediction accuracy [43][45]. Compared with easily 
measured parameters such as voltage, current, and 
temperature, these state parameters that can effectively 
characterize the battery characteristics are difficult to 
estimate accurately [46]. Therefore a large number of 
state parameter estimation models have been con-

structed [47][49], including the extended Kalman filter 
(EKF), particle filter (PF), and neural network (NN). 
Among them, the Kalman filter and its improved algo-
rithms, including the unscented Kalman (UKF), adap-
tive Kalman (AKF), and dual Kalman filters (DKF), are 
widely used in battery state estimation because of their 
strong robustness and anti-interference ability. 

The EKF-based method is introduced for its strong 
adaptability characteristics. It is constructed with the 
variational Bayesian approximation for SOC prediction 
with the modeling parameters [50], [51]. The sampling 
frequency influences the optimization effect, and a 
modeling accuracy is proposed to validate the capacity 
prediction accuracy for an in-loop testing method [52], 
whereas the incremental capacity is analyzed with a 
differential voltage description of the SOC and capacity 
co-prediction [53]. The calculation formulas are formed 
for the current collection method with the aging condi-
tion and current rates, which have cumulative effects on 
the long-term integration and prediction results. Thus, 
the prediction error continues to expand over a long 
sampling time, causing the estimated value to deviate 
from the actual value variation, resulting in an error 
degree that increases monotonically [54], [55]. The 
online parameter identification and SOC prediction are 
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investigated by equivalent modeling and altering the 
decoupled least-squares method to establish an im-

proved model-based adaptive filter [56],[57]. OCV 
characterization is realized for various temperature 
levels of the forthcoming energy management of the 
battery system [58], and with the variation relationship 
of OCV versus SOC, the SOC inferred through the 
OCV-SOC table and identified parameters are input into 
the AEKF-based iterative calculation procedure to re-
alize online capacity estimation. 

To overcome the limitations of the traditional EKF 

method for SOC prediction, an improved multiple fea-

ture-electrochemical thermal coupling (MF-ETC) 

modeling and improved decoupled corrected devia-

tion-extended Kalman filtering (DD-EKF) methods are 

proposed in this paper by considering the time-varying 

current and temperature influences. The main contribu-

tions of this paper are: 

1) An improved multiple feature-electrochemical 

thermal coupling model is constructed. By exploring the 

dynamic characterization of multi-parameter coupling 

and functional relationships in battery models, a strat-

egy to separate the internal characteristic impedance of 

batteries into short-term voltage changes caused by 

charge transfer and long-term voltage changes caused 

by diffusion effects is proposed. 

2) An adaptive asynchronous parameter identifica-

tion strategy is proposed for low-temperature environ-

ments. By separating and characterizing the lumped 

characteristic model parameters at different time scales, 

the prediction accuracy is improved across a wide range 

with real-time feedback correction. 

3) A real-time estimation strategy of battery SOC 

based on decoupled deviation-extended Kalman filter-

ing is proposed. Improved modeling equations are es-

tablished for the SOC prediction using the Gaussian 

trinomial function, which is adaptive to the 

time-varying factors and can reduce the cumulative 

error caused by current in the traditional calculation 

formula. Online parameter identification and SOC pre-

diction are investigated by equivalent modeling and 

altering the decoupled least-squares method to establish 

an improved model-based adaptive filter. 

The remaining sections of this paper are organized as 

follows: In Section Ⅱ, the mathematical analysis is 

conducted to establish the improved MF-ETC modeling 

method with high-precision advantages. In Section Ⅱ.A, 

impedance elements are introduced to improve predic-

tion accuracy. Then, the improved DD-EKF prediction 

method is described in detail in Section Ⅱ.B, which is 

then introduced into the iterative calculation in Section 

Ⅱ.C. In Section Ⅲ, the experimental test results are 

given. The testing platform is designed in Section Ⅲ.A 

with detailed model parameter identification. The sen-

sitivity of each parameter is analyzed in detail in Section 

Ⅲ.B. Subsequently, the complex experimental analysis 

is described in Sections Ⅲ.C and Ⅲ.D with the 

noise-influencing coefficient correction (NICC), Bei-

jing bus dynamic stress test (BBDST), and dynamic 

stress test (DST) conditions. The accuracy and robust-

ness of the proposed methods are verified under the 

NICC and complex conditions. Section Ⅳ is the con-

clusion, which analyzes the research achievements and 

some related future research perspectives. 

Highlights: 

1) Electrochemical-thermal-coupling modeling for 

multi-dimensional factor extraction. 

2) Parameter influence characterization with a mul-

ti-variable coupling relationship. 

3) Decoupled corrected deviation-extended Kalman 

filtering for adaptive calculation. 

4) Optimized battery state of charge prediction with 

real-time fractional feedback correction. 

5) Complex BBDST and DST condition tests with a 

max error of 4.57% and 0.223%. 

Ⅱ.   MATHEMATICAL ANALYSIS 

A. Multi-parameter Coupling and Dynamic Numerical 

Characterization of Functional Relationship 

In this subsection, the change law of key parameters 
is obtained by a multi-condition simulation together 
with the mapping relationship. The optimization 
mechanism of feature extraction is revealed, and the 
mathematical representation of the multi-parameter 
coupling relationship in the carrier transport process is 
explored with accuracy verification. Based on the nu-
merical characterization of the complex condition in-
fluence, the cooperative transport mechanism of carriers 
between electrode materials is investigated as well as 
the output parameters and various characteristics of the 
batteries. The main factors influencing output perfor-
mance are extracted together with their logical rela-
tionship, obtaining the variation law of the model pa-
rameters under the influence of different conditions. 
The mathematical descriptions and characteristic pa-
rameter identification process are designed for the var-
iation law of core factors with various characteristics 
together with the variation law of model parameters. 

To solve the problem of multi-parameter coupling 
and functional relationship characterization, the re-
search mechanism is constructed from physical phe-
nomena for the essential feature information extraction 
and mathematical description. Three research aspects 
are carried out, including the carrier cooperation 
mechanism between positive-negative electrodes and 
electrolytes, feature information extraction and behav-
ior description under complex low-temperature condi-
tions, and the changing law characterization of core 
factors affecting low-temperature characteristics. The 
carrier coordination mechanism is conducted between 
the positive and negative electrodes, and electrolytes 
based on dynamic modeling. The internal mechanism of 
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lithium-ion batteries is analyzed to clarify their dynamic 
characteristics in low-temperature conditions. The co-
operative carrier transport mechanism is obtained be-
tween electrode materials by considering the decisive 
role of temperature in the carrier transport process. That 
process is described as: 1) The solid-phase diffusion in 
the cathode material lattice is investigated. 2) The 
charge transfer of lithium ions is analyzed through the 
cathode-electrolyte interface. 3) The solvation process 
occurs when lithium ions enter the electrolyte. 4) Liquid 
phase migration takes place for solvated clusters. 5) The 
desolvation of lithium ions occurs at the negative elec-
trode-electrolyte interface. 6) The lithium ions pass 
through the negative SEI layer. 7) The solid-phase dif-
fusion of lithium ions between anode material layers. 
The influence of low-temperature conditions on the 
carrier transport process in each step is considered, es-
pecially the significant attenuation of low-temperature 
dynamic performance. 

The difficulty of improving low-temperature battery 

performance is to accurately judge the speed-limiting 

link in the carrier transport process. This is used to carry 

out multi-component and multi-strategy collaborative 

optimization together with the physical essence. 

Through element doping and heterogeneous interface 

construction, the transmission path of lithium ions in 
electrode materials is widened. After that, the diffusion 
rate in the solid-state electrode is accelerated. High 

conductivity components are added to construct a fast 
coordinated ion transport channel to accelerate the 
charge transport process of electrolytes in complex 
structures. The multi-component electrode material is 
used to express the interface characteristics, and a local 
potential field is constructed to reduce the interface 
reaction barrier and accelerate the interface mass 
transfer in the load transfer process. By interface regu-
lation, the side reactions are restrained. Consequently, 
loss of battery capacity is avoided with safety insurance. 
The effects of different optimization strategies are an-
alyzed on the key behavior characteristics of batteries in 
low-temperature conditions to identify the main influ-
ence process. 

In view of the random and dynamic characteristics of 

energy supply, the input and output characteristics in 

different working conditions are fully considered. Ex-

ternal characteristics are analyzed to obtain the change 

patterns of key parameters such as open circuit voltage, 

closed circuit voltage (CCV), current multiplication rate, 

SOC, ageing degree, internal resistance and temperature 

through experiment. By exploring the main influencing 

factors of output performance and their logical rela-

tionships, static and dynamic response functions are 

established to realize the feature extraction and behav-

ioral description of input and output data in different 

working conditions at extreme low temperatures, as 

shown in Fig. 1. 

 

Fig. 1.  Feature extraction and behavioral description under different working conditions at extreme low temperature. 

As shown in Fig. 1, based on experimental data and 

circuit methods, the carrier transport process is simu-

lated, and the relationship between aging effect, per-

formance attenuation, and characteristic parameters is 

analyzed to mathematically express the relationship 

between internal parameters and battery performance. 

The charge transfer of lithium ions through the an-

ode/electrolyte interface, the Solvation process of lith-
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ium ions entering the electrolyte, the liquid phase mi-

gration of solvation clusters, and the desolvation of 

lithium ions at the cathode/electrolyte interface are 

characterized as load transfer resistance 1R   and double 

layer capacitance 1C . Modeling and characterizing the 

solid phase diffusion inside the positive electrode ma-

terial lattice, lithium ion diffusion through the negative 

SEI layer, and lithium ion solid phase diffusion between 

the negative electrode material layers as diffusion re-

sistance 2R  and diffusion capacitance 2C , it further 

achieves accurate description of input and output be-

havior characteristics under extreme low temperature 

and complex working conditions. The model is im-

proved by introducing the influence noise of complex 

working conditions, describing the functional relation-

ship between parameters and expression of the state 

equation. The mathematical description of the operating 

characteristics is obtained by considering the effects of 

capacity degradation and temperature, combined with 

the analysis of simulated operating conditions, and a 

dynamically adaptable state space description of the 

external characteristics of the battery is established as: 

t1 1

1 1 1

t2 2

2 2 2

L OC 0 1 2
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where iU  is equivalent polarization voltage; tI  is load 

current; 0R  is internal resistance of the battery; OCU  is 

open circuit voltage of the battery and LU  is terminal 

voltage. To eliminate the randomness trend contained in 
the data sequence, equation (1) is reduced and dis-
cretization by first-order reverse difference, and the 
discrete state space expression can be obtained as: 
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To further reduce computational complexity, a pa-

rameter matrix 1 2 3 4 5[ ]c c c c c  is introduced to 

simplify (2) as: 
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where the coefficients 1 2 3 4 5[ ]c c c c c  are the 

parameters that need to be identified in the discrete 

system. According to the bilinear variation of the sys-
tem, the relationship between discrete system parame-
ters and equivalent circuit model parameters is: 
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where 1 1 1R C  , and 2 2 2R C  . According to the sys-

tem discrete expression shown in (3), a multi-feature 

least squares expression for the battery external char-

acteristic model in the discrete domain can be con-

structed and parameter identification can be carried out. 

A real-time prediction model for multi-feature param-

eters can be established as: 
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where ˆ( )θ k  are the parameters to be identified for dis-

crete systems; ( )k  is a data vector in a discrete system; 

T ˆ( ) ( 1)k θ k   is the system observation value at the 

previous time; ( )kP  is the error covariance matrix of the 

system; ( )kY  is the system output multiple innovation 

matrix; and ( )kG  is the system real-time gain matrix. 

The difference between the calculated and actual ob-

served values of the system observations, as well as the 

system gain, are used to correct the final estimate. 

An accurate mathematical description is conducted 

for the main factor variation law that affects the char-

acteristics. The mathematical description procedure of 

the key-factor changing law is designed to reduce the 

characterization error caused by the multi-information 

combination treatment in the cooperative carrier 

transport processes. The characteristics of voltage, in-

ternal resistance, temperature, and self-discharge effect 

are also analyzed. The dynamic varying law is explored 
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for CCV towards the current magnification and tem-

perature variation. Then the mathematical description is 

obtained for the correlation between capacity attenua-

tion, internal resistance increase, and output character-

istics. The description mechanism is clarified for the 

battery charge-discharge processes to obtain the quan-
titative speed mismatch characterization of the chemical  

reaction processes. These processes include internal 

charge transfer, electric double-layer effect, and carrier 

diffusion in solid particles.  The multi-time-scale effect 

inside the battery is then described. The core factor 

variation law of characteristics is analyzed by designing 

an accurate mathematical description and parameter 

identification process, as shown in Fig. 2. 

 

Fig. 2.  Accurate description of mathematical characteristics and change process of key factors. 

In Fig. 2, the expression effect of characteristics 
caused by the change of various parameters is analyzed. 
Then, the characteristic parameters are modified and 
the combined structure is optimized accordingly. Based 
on the mechanism analysis and dynamic description, 
the strategy of structural optimization and state repre-
sentation is explored. This is used to improve the ac-
curacy of parameter identification and accelerate the 
convergence effect of the algorithm. The characteristics 
of low-temperature batteries can then be described by 
partial least squares, polynomial fitting, and other al-
gorithms. Subsequently, the innovative battery char-
acteristics in low-temperature conditions are used for 
the iterative calculation to complete the accurate ex-
pression of different characteristics. By exploring the 
multi-dimensional mechanism of the internal and ex-
ternal battery characteristics in low-temperature con-
ditions, the variation law of the key factors is obtained 
for describing the carrier transport process. 

B. Compound Modeling of Low-temperature and Im-

provement Strategy of State-space Equations 

A composite MF-ETC model is constructed by con-

sidering the mathematical description of dynamic 
characteristics. Combined with the state-space descrip-
tion, the accurate mathematical characteristics are ex-
pressed as well as the characteristic information ex-
traction. Consequently, the state-space expression is 

used as the basis for rapid performance evaluation for 

extremely low-temperature lithium-ion batteries. Based 

on the self-recovery effect analysis of the battery ca-

pacity, the available capacity evaluation process is op-

timized by considering the action mechanism of una-

vailable charge at low temperature. The mathematical 

simulation of the carrier transport process is realized by 

the circuit-oriented and electrochemical-electrothermal 

supplementary design. The composite modeling char-

acteristics are described for multi-time-scale conditions. 

Considering the low-temperature influence and the 

hysteretic OCV characteristics, the time-varying tem-

perature characteristics are integrated to realize the 

structural design and optimization of the mul-

ti-time-scale battery characteristic model. The influ-

encing factors are analyzed in different conditions, and a 

composite model framework is constructed. Combined 
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with the condition characterization analysis, the effect 
of each module is studied, and the combined structure is 
optimized by conducting various component combina-
tions. By distinguishing the different external battery 

characteristics under transient and steady-state condi-
tions, the influence of the multi-time-scale effect is 
eliminated, and a structural optimization is realized for 
the electrical characteristic model, as shown in Fig. 3. 

 

Fig. 3.  Structure design and optimization of the multi-time-scale characteristic model of lithium-ion batteries. 

In Fig. 3, the voltages at both ends of the module are 

fully represented by the voltage accumulation function 

in low-temperature conditions. The hysteresis function 

is represented by the voltages at both ends of the module 

in open circuit conditions. The impedance part includes 

ohmic, electrochemical polarization, and concentration 

polarization impedances. In the MF-ETC model, the 

ohmic impedance 0R  is mainly represented by the mi-

gration of lithium ions in the electrolyte, and is formed 

when electrons pass through the collector and electro-

lyte, so its volt-ampere characteristic relationship is 

represented by the transient voltage. The second-order 

RC network is used to describe the electrochemical and 

concentration polarization processes inside the battery, 

so its volt-ampere characteristic relationship is the slow 

change of voltage. For the charge transfer resistance 1R  

and electric double layer capacitance 1C  in the elec-

trochemical polarization impedance, they are mainly 

manifested in the solid-phase diffusion of the positive 

order lattice and the charge transfer at the electro-

lyteinterface. The diffusion resistance 2R  and diffusion 

capacitance 2C  in the concentration polarization im-

pedance mainly show the diffusion effect of lithium ions 

through the SEI film and interlayer solid particles. The 

dynamic cooperative characterization of the carrier 

transport process in the positive, negative, and electro-

lyte of the battery is realized by electrical characteristic 

modeling in low-temperature conditions. 

C. Adaptive Asynchronous Model Parameter Identifi-

cation Under Low-temperature Conditions 

Using the established characteristic model for the 
strong-applicability lithium-ion batteries, the mul-
ti-time-scale asynchronous parameter identification 
framework is designed. The adaptive model parameter 
online identification strategy is constructed. Based on 
the numerical characterization of the complex condition 
influence, the mathematical characterization is explored 
for the coupling relationship among multiple parameters. 
Consequently, the variation characteristics of output 
parameters in different conditions are fully considered. 
The variation law of the model parameters is obtained 
taking account of the influence of different current 
magnifications, pressure, aging, and temperature condi-
tions. At low temperature, the battery voltage response 
for variable current includes both fast response and slow 
change. In addition, the dynamic battery characteristics 
are distributed over a wide frequency range. Thus, the 
above problems greatly affect the accuracy of model 
parameter identification, and may even lead to oscilla-
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tion or divergence of identification results. In addition, 
as the structural complexity of the model increases, the 
identification of all parameters over the same time scale 
increases the amount of calculation and aggravates the  
difficulty of generation of the ill-conditioned matrix. 

Therefore, the framework structure of adaptive mul-
ti-time-scale asynchronous parameter identification is 
designed to effectively solve the poor robustness prob-
lem caused by the single-time-scale parameter identifi-
cation, as shown in Fig. 4. 

 

Fig. 4.  The framework structure of adaptive multi-timescale asynchronous parameter identification. 

As shown in Fig. 4, the full parameter identification 

accuracy is improved at different steps by constructing 

an adaptive asynchronous parameter identification 

strategy. It is realized by combining the forgetting factor 

recursive least squares (FFRLS) and EKF algorithms. 

This is also combined with the correction method af-

fected by the dual effects of time-varying hysteresis. The 

EKF algorithm is introduced to preprocess the model 

parameters at low frequencies. This is used to improve 

the model parameter identification strategy at different 

frequencies to efficiently characterize the carrier 

transport process and electric double layer effect in 

lithium-ion batteries. By analyzing the transmission 

mechanism of carriers in batteries, the long-time-scale 

starting conditions are designed into the adaptive asyn-

chronous identification strategy. Considering the un-

certainty of conditions and the multi-time-scale influ-

ence effect, the SOC change is taken as the judgment 

condition of long-time constant identification. Consid-

ering the changing magnitude and current direction, the 

starting time point of the designed algorithm is not lim-

ited by the fixed high-frequency identification condition 

of the FFRLS. Compared with the judgment condition 

of fixed large step size, this judgment method can make 

the asynchronous identification algorithm adapt to a 

variety of current conditions, thereby improving the 

parameter identification accuracy, reducing the com-

putational complexity, and improving the consistency 

of model parameter identification. 

D. Decoupled Deviation-extended Kalman Filtering 

For an accurate prediction-correction process, an 

improved DD-EKF prediction model is constructed in 

real-time conditions. This produces an accurate SOC 

prediction of lithium-ion batteries to avoid destructive 

emanating factors. An observation update is conducted 

with the iterative calculation. This is then used for the 

state variable prediction. The time and measurement 

update steps are realized when introduced into the iter-

ative SOC prediction and updating processes, providing 

an a priori sequence point prediction of the next time 

point. It is imposed on the state prediction procedure at 

the last time point. Consequently, the effective iterative 

calculation of the DD-EKF method is designed and 

realized, as shown in Fig. 5. 

In Fig. 5, the calculation procedure undergoes 

two-stage calculation steps suitable for both static and 

dynamic periods. The SOC prediction is investigated as 

it is involved in the calculation process. With more 

detailed records of the prediction results for each itera-

tion step, the Jacobian matrix is recalculated with the 

update step. The prediction method is performed itera-

tively with the correction and update being accumulated. 

Compared with other methods, the DD-EKF method is 
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simpler to apply in various conditions to obtain robust 

and accurate predictions. From the calculation, the SOC 

prediction is derived and prepared for the remaining 

energy determination. 

 

Fig. 5.  The flowchart of the decoupled corrected deviation-extended 

Kalman filtering method. 

E. Real-time Statistical Coefficient Correction 

The dual ‘unscented’ transformation strategy is in-

troduced to deal with nonlinear problems using a 

mathematical method whose fundamental principle is 

embedded in the iterative calculation process. The 

sampling points are obtained with the statistical char-

acteristics of state variables using a data sampling 

strategy. The data acquisition is then combined with the 

sampling strategy and symmetric prediction-correction 

procedure. The overall research process for real-time 

prediction of the battery SOC is shown in Fig. 6. 

As shown in Fig. 6, after obtaining the main param-

eters in the proposed MF-ETC model, the state-space 

equation is established with the relationship between 

voltage and current. The expectation and covariance are 

linearized during the state prediction process to obtain 

the observation equation, as: 

OC 0[ , ]t t t t pt ty h x I v U R I U +v              (6) 

where 1ty   is the observation variable at the time point 

1t  ; tx  is the state variable at the time point t ; tI  is 

the current at the time point t  that is used as the input 

parameter; tv  is the observation noise; OCU  is the OCV 

value; 0R  is the ohmic resistance; and ptU  is the elec-

trochemical polarization voltage at the time point 

t . The unscented transformation is a suitable method to 

deal with nonlinear problems by considering the rela-
tionship between voltage and current after obtaining the 
main parameters in the equivalent model. Subsequently, 

the matrices tA , tB , and tC  are obtained as: 
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where tA  is the state transition matrix at the time point 

t ; tB  is the control-input matrix at the time point t ; 

and tC  is the observation matrix at the time point t . 

 

Fig. 6.  Overall research flow chart of real-time prediction of 

battery SOC. 

The first step is state prediction, in which SOC pre-

diction is conducted using the state value at the last time 

point. The current and voltage parameters are easily 

measured directly in the real-time monitoring process. 

So the SOC prediction-correction process is investi-

gated and represented for the iterative calculation. The 

calculation procedure is combined with the battery 

characteristics, and the predicted value is obtained as: 

1
( )t t tt t

x x t I


 A B                        (8) 
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where ( 1 )x t t  is the state prediction value from the 

time point t  to the time point 1t  ; tA  is the coeffi-

cient for the state parameter matrix ( )tx  at the time 

point t ; and tB  is the control-input matrix for the input 

parameter tI  at the time point t . 

The covariance prediction is investigated in the sec-

ond step, where the precise value is obtained accord-

ingly. By linearizing the estimated parameters, an ac-

curate SOC prediction is achieved for lithium-ion bat-

teries, performed by the linear Kalman filtering method. 

The error covariance matrix in the prediction step is 

calculated during the time update step as: 
T

t t t t t

  P A P A                            (9) 

where 
1t t




P  is the error covariance matrix in the pre-

diction step at the time point t ; 
t


P  is the error covar-

iance matrix at the time point t ; and t  is the system 

noise at the time point t . Therefore, an a priori predic-

tion for the time point t  is investigated. The mathe-

matical model is established to be different from the 
value measured directly by the system because of the 
prediction process and measurement accuracy.  

A third step is then conducted to obtain the feedback 

coefficient using measured parameters. The Kalman 

gain in the iterative calculation procedure is obtained: 
T T 1( )t t t t t t t

   K P C C P C R                 (10) 

where tK  is the Kalman gain at the time point t ; and 

t


P  is the error covariance matrix at the time point t . 

The iterative SOC calculation scheme is designed to 

realize the state and matrix initialization. These three 

steps are recursively iterated, and the state prediction is 

updated continuously for the updated processing step. 

The parameters are initialized as 0≥  and 

0.2 1.0≤ ≤ . t  is used as an auxiliary scale factor 

and λ is introduced to describe the scaling parameter. 

The sampling points are used to reverse the original 

state that is transferred into the calculation process: 

( ), 0 2i iy f x i n  ～                     (11) 

where i  is the particle number, which varies from 0 to 

2n ; while iy  and ix  are the particle values after and 

before the transformation, respectively. The mean and 

covariance values of the state parameters are calculated 

by conducting the transformation, which is realized by 

real-time measurement. The sampling points are pre-

dicted by investigating the one-step calculation. Then, 

sigma sampling points are updated by upper equations 

for the SOC prediction. In the actual measurement 

process, the current is measured directly. The iterative 

SOC calculation is conducted with simple mathematical 

expressions as: 

100%; 100%t It

I

n In

Q Q
S S

Q Q
                (12) 

where S  is the SOC value; tQ  is the remaining capac-

ity; nQ  is the rated capacity; while IS  is the SOC value 

obtained corresponding to the current condition I , 

which is obtained by taking ItQ  as the remaining elec-

tric quantity and InQ  as the rated capacity correspond-

ing to the current condition I . For the continuous-time 

implementation process, a mathematical expression is 

obtained, as shown in the first part of (13), while the 

real-time implementation of the discrete-time SOC 

prediction is realized after the discretization processing 

method, as: 

1
0

( )
( ) (0) d

t
i i

n n n

n n

I t t
S t S t S S I

Q Q

 



       (13) 

where ( )S t  is the SOC value at the time point t  with 

the corresponding discretized version of 1nS  ; i  is the 

Coulombic efficiency for the current condition I ; and 

( )I t  is the current value at the time point t  with the 

corresponding discretized version nI . The discretized 

SOC prediction model is facilitated by the energy and 

safety controls of the battery system to realize the SOC 

prediction for a reliable application. 

Ⅲ.  EXPERIMENTAL ANALYSIS AND DISCUSSION 

A. Experimental Test Platform Design and Construction 

The instruments comprise a charge-discharge tester, a 

temperature chamber, and other supporting experi-

mental equipment to provide an ambient condition. The 

experimental test platform is shown in Fig. 7. 

In Fig. 7, the experimental test platform is designed 

and embedded in an industrial personal computer (IPC) 

that is connected to the CT-4016-5V100A-NTFA 

charge-discharge tester via TCP/IP so that the signals of 

U/I/T are measured simultaneously. All test batteries are 

fixed in the chamber based on the time-varying tem-

perature and current variations. As the model parame-

ters vary with ambient temperature variations, the tests 

are conducted at an ambient temperature of 25℃. 

Meanwhile, the RPT test is conducted at temperatures 

of 0℃, 25℃, and 45℃ with a current rate of 0.3 C, 1 C, 

and 2 C. Then, the varying-temperature model param-

eters are further improved and applied in the iterative 

calculation process based on the complex condition 

requirements. 
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Fig. 7.  The experimental test platform for the varying current rate and temperature tests. 

B. Sensitivity Analysis 

Researchs has shown that the parameters of the 

equivalent circuit model are crucial for improving the 

accuracy and stability of lithium-ion battery state esti-

mation. All parameters in the equivalent circuit model 

are involved in the real-time update of SOC throughout 

the entire charging and discharging cycle, resulting in 

high computational costs. Therefore, it is necessary to 

conduct sensitivity analysis (SA) on model parameters 

to verify that model accuracy is improved without in-

creasing model complexity and model parameter di-

mensions. On the other hand, it is possible to reduce the 

identification frequency of less sensitive parameters in 

the model and update the high sensitivity parameters in 

real-time to optimize calculation time and complexity, 

and reduce redundant estimation calculations. 

The sensitivity of parameters is analyzed using the 

commonly used one-factor-at-a-time (OFAT) method. 

The basic idea of this method is to analyze the sensitiv-

ity of a certain parameter by changing the value of the 

parameter to an approximate normal value while re-

taining the values of other parameters, and then substi-

tuting these parameter values into the model to obtain 

the corresponding model error [59]. The parameter  

sensitivity is reflected by the fluctuation of model error, 

and the higher the RMSE, the greater the parameter 

sensitivity. The parameter sensitivity of the MF-ETC 

model established in this paper based on the OFAT 

method is shown in Fig. 8. 

 

Fig. 8.  Variation curve of model parameter sensitivity over the 

entire SOC range. 

Figure 8 shows the derivative of the sensitivity of 
each model parameter within the entire SOC range of 
the battery, dynamically reflecting the stability of pa-
rameter sensitivity. As can be seen, the sensitivity of the 
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battery ohmic internal resistance 0R  is the highest and 

increases slowly as the SOC increases. This is followed 

by 1R  and 2R , with 1R  being slightly more sensitive 

than 2R  in most cases. The weakest sensitivities are the 

time constants 1  and 2 , while 1  is more sensitive 

than 2 . The greatest variations in parameter sensitivity 

occur in the range of SOC＜20%, and are caused by the 
inability of the equivalent model to accurately charac-
terize the battery state at low SOC. When SOC＞20%, 
the area of parameter sensitivity change is stable. The 
parameter sensitivities are evaluated qualitatively ac-
cording to Fig. 8 and the results are summarized in 

Table Ⅱ. The asterisk (★) indicates the sensitivity of the 
parameter, with more asterisks representing higher 
sensitivity. 

TABLE Ⅱ 

SENSITIVITY ANALYSIS RESULTS OF MODEL PARAMETERS WITHIN 

THE ENTIRE SOC RANGE 

Parameter 
0R  1R  1  2R  2  

Sensitivity ★★★★★ ★★★★ ★★ ★★★ ★ 

It should be noted that sensitivity intensity is relative. 

It can be seen that the sensitivity of the RC loop in the 

MF-ETC model proposed in this paper is low. Thus, the 

identification frequency of these two parameters can be 

reduced to improve the accuracy of state estimation and 

reduce the computational cost, although they cannot be 

completely ignored. The reliability of the MF-ETC 

model adaptive asynchronous parameter identification 

method proposed in this paper has been verified. 

C.  Noise Influencing Coefficient Correction Effect 

In the experimental tests, the proposed DD-EKF 
method is introduced for SOC prediction and verified at 
0.5 C and 1.0 C constant-current (CC) discharging rates 
under high process and observation noise influences 
with the combined calculation equations. Based on the 
constructed MF-ETC model of lithium-ion batteries, the 
iterative calculation procedure is realized. The iterative 
DD-EKF method is expressed in the S-function to re-
alize an accurate SOC prediction. In the complex 
BBDST condition, the SOC prediction results are veri-
fied by the experimental results, and the prediction 
effect is shown in Fig. 9. 

In Fig. 9(a), the S1 curve is the actual SOC variation, 

and the S2 curve is the predicted SOC curve. The error 

results are analyzed in Fig. 9(b). From the experimental 

results, it can be observed that the maximum SOC pre-

diction error is 3.87%. In the first 10 minutes, the 

maximum error is less than the overall maximum error 

value, because of the low discharge at this point. 

However, as the SOC decreases with increased dis-

charge, it can be observed that the error increases but 

remains stable for the entire prediction process. This 

result shows the robustness of the proposed DD-EKF 

method for SOC prediction. Compared with the SOC 

estimation results of the adaptive noise correction 

manual extended Kalman filtering proposed in [60] 

under the same conditions, the accuracy is improved by 

1.07%, indicating that the algorithm proposed in this 

paper has better adaptability under strong noise condi-

tions. However, the algorithm mentioned in [61] is 

applicable to a wider temperature range, while high 

temperature is not considered in this paper. 

 

 

Fig. 9.  SOC prediction effect with high noise effect under the 

BBDST condition. (a) SOC prediction curve for the BBDST 

condition. (b) Prediction error curve for the BBDST condition. 

D. Complex Prediction Verification for the BBDST and 

DST Conditions 

In complex conditions, the SOC prediction is inves-

tigated in both the BBDST and DST conditions to an-

alyze the adaptability of the proposed DD-EKF method 

and compare it with the ampere-hour integration 

method. The tests results are shown in Fig. 10. 
The variation of the input pulse power current varia-

tion is obtained in the BBDST condition, as shown in 
Fig. 10(a). Setting the initial SOC value to 0.75, the 
predicted SOC results are shown in Fig. 10(b), where S1 
is the reference SOC of the system and S2 is the SOC 
predicted using the proposed DD-EKF method. From 
the errors in Fig. 10(c), it can be seen that the algorithm 
can track the reference SOC value of the battery in a 
short period of time, verifying its strong tracking per-
formance. The method does not deviate from the initial 
phase and provides an accurate prediction compared 
with that in [61]. When the initial error is large, the 
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DD-EKF method is suitable for correcting the predicted 
error value. The robustness of the DD-EKF method for 
SOC prediction is further verified using the ampere-hour 
integration method in DST conditions. In Fig. 10(d), the 
input pulsed power current change predicted by SOC is 
obtained. The SOC prediction and its errors are shown in 
Figs. 10(e) and (f), respectively. In Fig. 10(e), S1 is the 
reference SOC value, S2 is the predicted value of the 
DD-EKF algorithm, and S3 is the SOC estimation result 
using ampere-hour integration. In Fig. 10(f), Err1 rep-
resents the estimation error of the DD-EKF, and Err2 
represents the estimation error of the ampere-hour inte-
gration. It can be seen that the SOC prediction value of 
the proposed DD-EKF method converges to the actual 
value in a short time with a maximum error of 0.223%, 
while the SOC predicted through the ampere-hour in-
tegration method has a maximum error of 1.112%, ver-
ifying the strong robustness and accuracy of the algo-
rithm. The maximum SOC prediction error values of the 
proposed DD-EKF method in BBDST and DST condi-
tions are 4.57% and 0.223% respectively. 

 

 

 

 

 

 
Fig. 10.  The pulse power input current variation and SOC pre-

dictions in complex conditions. (a) The input pulse power current 

variation under the BBDST condition. (b) Real-time SOC pre-

diction under the BBDST condition. (c) Prediction error under 

the BBDST condition. (d) The input pulse power current varia-

tion under the DST condition. (e) Real-time SOC prediction 

under the DST condition. (f) Prediction error under the DST 

condition. 

From the prediction results, it can be seen that the 
proposed MF-ETC modeling and DD-EKF methods 
have stronger robustness than the traditional methods 
described in [62]. The SOC prediction of the iterative 
calculation method shows good experimental results 
from the pulse current variation, in which overall pre-
diction error decreases and trends in the SOC prediction 
process of the small-scope fluctuation approach the 
actual value. The proposed methods overcome the ac-
cumulated error of the polarization effect. The proposed 
DD-EKF and MF-ETC modeling methods are applica-
ble to the transient charge-discharge effect characteri-
zation and internal effect description, providing a new 
perspective on functional SOC prediction for lithi-
um-ion batteries. 
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Ⅳ.   CONCLUSION 

SOC prediction is influenced by multiple internal 
parameters. In this paper, an improved multiple fea-
ture-electrochemical thermal coupling modelling 
method considering the frequency of parameter identi-
fication is proposed. It investigates the internal param-
eter inconsistencies of the battery, and is combined with 
an improved decoupled corrected deviation-extended 
Kalman filtering method for iterative SOC prediction 
and correction. The experimental results show that the 
maximum estimation error of SOC is only 3.87% under 
the influence of high process and observation noise. 
This indicates that the model correction coefficient is 
effective and can more accurately describe the high and 
low frequency dynamic characteristics of lithium-ion 
batteries than the traditional model, leading to more 
robust estimation results. The maximum SOC predic-
tion errors of the proposed method are 4.57% and 
0.223% in the BBDST and DST conditions, respec-
tively, indicating effective initial value correction of the 
current and temperature variations. When the initial 
SOC value deviates, it can quickly track the actual value 
of the system, indicating its advantages of high preci-
sion and rapid regression, while considering the polar-
ization effects and reducing the nonlinear effects. Ac-
curate SOC prediction is realized to provide an effective 
way for accurate battery system modeling that is adap-
tive to the rational distribution of the internal parame-
ters. The battery state prediction range is exceeded by 
reducing the divergence and linearization errors in 
complex conditions. It is noted that the method pro-
posed in this paper has only been validated with ex-
perimental tests so needs to be further explored for 
real-world vehicle working conditions, while the effect 
of a wide temperature range on battery condition esti-
mation also needs to be investigated. 
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