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Original Article

IntroductIon

According to the World Health Organization, there have 
been over 240 million confirmed coronavirus disease 
2019 (COVID-19) cases and 4.8 million deaths worldwide as 
of October 19, 2021. The person-to-person transmission and 
serious consequences, including pneumonia and death, have 
emerged as the enormous threats to human health.[1,2] Many 
countries	and	regions	still	suffer	from	the	pandemic,	which	
imposes	 a	 significant	 and	 continuing	public	 health	 burden.	
Clinical and public health resources have been stretched, and 
the resulting shortage of medical resources has inevitably 
affected	the	outcomes	of	COVID‑19	treatment.	Moreover,	the	
high prevalence of severe cases has caused great pressure on 
medical services due to the shortage of intensive care resources.

Early	 and	 accurate	 identification	 of	 severe	COVID‑19	 and	
timely treatment is the key in reducing the fatality rate.[3,4] Many 

potential factors are related to the prognosis of COVID-19, 
including age, biochemical parameters,[5-11] comorbidities,[12-14] 
and diet.[15]	Artificial	intelligence	(AI)	approaches	have	been	
deployed to build the prognostic models using laboratory and 
clinical parameters to assist in clinical decision-making.[16] 
For instance, Yan et al.	used	the	XGBoost	decision	tree	model	
to determine the blood laboratory test parameters to predict 
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survival rates with 97% accuracy.[17] Using similar laboratory 
data, Wang et al. developed a multivariate logistic regression 
model for prognosis, with a high predictive ability of 93% 
accuracy.[18]	Liu	et al.	 investigated	the	prognostic	effects	of	
blood and biochemical laboratory test parameters on severe 
COVID-19 and its adverse clinical outcomes.[3]	 Shang	
et al.	 found	 that	 the	neutrophil‑to‑lymphocyte	 ratio	 (NLR),	
C‑reactive	 protein	 (CRP),	 and	 platelets	 could	 be	 used	 to	
effectively	assess	 the	 severity	of	COVID‑19,	among	which	
NLR	was	 the	 best	 predictor	 of	 severe	 COVID‑19.[19] In 
addition, He et al.  investigated the role of tumor biomarkers for 
lung cancer as the predictive indicators for clinical outcomes 
in COVID-19 patients and found that the concentrations 
of carcinoembryonic antigen CYFRA21-1 and squamous 
cell carcinoma antigen could accurately predict the clinical 
outcomes.[20]	 Furthermore,	Zhang	 et al. showed that male 
sex,	 comorbidity,	 lymphopenia,	 and	 elevated	CRP	 levels	
were the independent risk factors for poor prognosis in 
COVID‑19	patients,	 facilitating	 the	early	 identification	and	
stratification	of	high‑risk	COVID‑19	patients.[21]

Machine learning often requires data preprocessing and 
cleaning	to	configure	the	data	to	fit	within	a	specific	model.[22] 
Despite the development of diagnostic and prognostic models 
for COVID-19, few have been externally validated, and their 
reported performances are often optimistic and incorporate 
high rates of bias, causing concerns about their real-world 
clinical use.[23] Developing a universal prediction model in the 
context of limited selected data lacks feasibility, particularly in 
applying it across countries or clinical settings for new diseases 
such	as	COVID‑19.	One	effective	method	 is	 to	 incorporate	
the human intelligence into a decision or prediction model, 
potentially making the prediction model generalizable for new 
cases when empirical knowledge is employed.

In this study, we validated two COVID-19 prognosis prediction 
models, a decision tree[17] and a logistic regression,[18] 
using	 the	 new,	 real‑world	 clinical	 data	 of	 944	 confirmed	
COVID-19 patients derived from three hospitals in Wuhan, 
China. We evaluated their limitations in the clinical application 
as	well	as	the	factors	affecting	prediction	errors.

We	processed	the	first	occurrence	data	(the	first	clinical	test	
result after admission) and last occurrence data (the last clinical 
test result before discharge or in-hospital death) of patient cases 
and	evaluated	the	influence	of	the	two	features	on	prognosis.

Based on our insights, we provided research ideas for the 
improvement and application of AI predictive models.

mAterIAls And methods

Dataset and its preprocessing
Electronic	medical	records	of	944	COVID‑19	patients	admitted	
to three hospitals in Wuhan, China between November 25, 
2019, and March 18, 2020, were retrieved. According to 
the diagnosis and treatment protocol for novel coronavirus 
pneumonia (trial version 7),[24] patients were initially divided 

into two groups on admission: severe and nonsevere. Of the 
cases, 865 recovered from COVID-19 within an average of 
20.62 days and were discharged from the hospital, while the 
remaining 79 died within an average of 13.54 days [Table 1].

The raw data consisted of 138 variables or features including 
the blood test parameters and clinical information of the 
patients, with most patients having multiple blood samples 
collected during their hospital stay. Clinically, predicting 
patient prognosis as early as possible is vital in making 
appropriate clinical decisions in a timely manner, and using 
data collected at admission for treatment and effective 
management of resources in the hospital is particularly crucial. 
Across the dataset, some data were missing and 94 variables 
with	>25%	missing	values	were	excluded.	Missing	values	of	
the remaining 44 features were imputed using the predictive 
mean-matched average values. The data processing steps are 
summarized in Figure 1.

Prediction models
We applied two representative approaches to COVID-19 
prediction: (1) A decision tree and (2) logistic regression 
models. Decision trees are commonly used for the 

Table 1: The clinical characteristics of our 
data  (944  cases)

Characteristics Overall
Age	(years),	mean	(SD) 56.82 (15.6)
Gender,	n (%)

Male 489 (51.8)
Female 455 (48.2)

Severity,	n (%)
Severe	group 188 (19.9)
Nonsevere group 756 (80.1)

Outcomes, n (%)
Survival 865 (91.6)
Death 79 (8.4)

Hospital	stay	(days),	mean	(SD)
All 20.03 (9.2)
Survival 20.62 (9.0)
Death 13.54 (9.3)

Number of people in each hospital, n (survival/death)
Hospital 1 318 (265/53)
Hospital 2 377 (366/11)
Hospital 3 249 (234/15)

Comorbidities, n (%)
Hypertension 267 (28.3)
Diabetes 133 (14.1)
Coronary heart disease 72 (7.6)
Stroke 43 (4.6)
Gastritis 34 (3.6)
Chronic bronchitis 33 (3.5)
Hyperlipidemia 33 (3.5)
Heart disease 25 (2.6)
Anemia 23 (2.4)
Arrhythmia 21 (2.2)

SD:	Standard	deviation
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classification.[25] The most appreciated advantage of the 
decision‑tree	model	 is	 its	 interpretability,	which	 offers	 a	
visible decision path for each new input case. The decision 
tree	model	is	used	to	find	an	optimal	feature	and	an	optimal	
candidate value that divides the dataset into two sub-datasets 
according to the optimal candidate value. A decision tree was 
generated	by	repeating	the	above	operations	until	the	specified	
conditions	 were	 met.	 XGBoost	 is	 a	 high‑performance	
machine learning algorithm for decision tree induction that 
has	 been	widely	 used	 in	 the	medical	 field	 as	 a	 recursive	
tree-based decision model.[13,17]

The logistic regression algorithm is a type of machine 
learning classification algorithm that is considered a 
generalized	linear	regression	model	for	classification.[26] This 
algorithm	has	been	used	in	many	fields,	such	as	economic	
forecasting and medical diagnosis. For independent 
variables	 X	 (x1, x2., xi) and dependent binary variable 
Y (1 = death, 0 = control), logistic regression describes their 
relationship (expressed as the h function), which can be used 
to	predict	Y,	and	the	thetas	are	estimated	coefficients	(log	
odds ratios) (formulas 1 and 2).

( ) T-

1( = 1) = = 
1+ x

P Y h x
e

θ θ  (1)

0 1 1 2 2 i i= + + +…+ ,T x x x xθ θ θ θ θ  (2)

Evaluation
The performance of the prediction models was evaluated by 
assessing	classification	accuracy,	precision,	recall,	F1	scores,	

area under the receiver operating characteristic curve area 
under curve (AUC), and survival analysis. The formulae are 
as follows:

i
i

i i

TP
Precision =

TP + FP
 (3)

i
i

i i

TP
Recall =

TP + FN  (4)

1 i i
i

i i

2* Precision * Recall
F =

Precision + Recall
 (5)

TP+TNAccuracy =
TP+TN + FP+ FN

 (6)

The AUC value is a probability value indicating the reliability 
of the prediction model. When the value of AUC increases 
to 1, the prediction model has a more reliable prediction 
performance.	 Survival	 analysis	 was	 used	 to	 investigate	
the	distribution	of	 survival	 time	under	 different	 factors.	To	
further quantify the power of the prognosis models, we used 
the	Kaplan‑Meier	 (KM)	method	 to	 estimate	 the	 survival	
probability from the observed survival time for each prognosis 
prediction model in our study.

Experimental setting
Evaluating the performance of applying existing models 
on our data
To evaluate the performance and identify the problems in 
using prediction models in the diagnosis and treatment of 
COVID‑19,	we	first	 tested	 the	performance	of	models	by	
Yan et al. and Wang et al., which used a decision tree and 
logistic regression model, respectively, on our three hospital 
datasets.[17,18] Undoubtedly, the use of the last appearance 
data had an improved prediction performance compared to 
the	use	of	the	first	appearance	data.	However,	regardless	of	
the improved performance, the last appearance data, which 
were often shortly before discharge or death, had limited 
clinical use. The ability to accurately predict in-hospital 
mortality in patients at the time of admission could improve 
clinical and operational decision-making and outcomes.[27] 
Therefore,	we	chose	the	value	of	the	first	occurrence	of	each	
feature to test the performance of the Yan et al. and Wang 
et al. models.

Evaluating the performance of the models retrained by 
our across‑hospital data
To evaluate the performance of applying the machine 
learning algorithms to our new data, we randomly divided 
our across-hospital data (n = 944) into training (n = 472) and 
testing (n = 472) sets. The training set (including 433 survival 
and 39 death cases) was used to retrain the decision tree and 
logistic regression model, and the test set was used to test 
these models.

Evaluating the performance of the integrated model
We considered combining the multiple models and features to 
improve the usability of the model. The decision tree model 

Figure 1: Summary of data processing: Step 1, raw data includes 944 
confirmed COVID‑19 patients with multiple blood samples and 138 
features. Step 2, select the value of the first occurrence of each feature. 
Step 3, select features that were missing no more than 25%. Step 4, fill in 
the remaining missing data with the average of each indicator in different 
prognostic outcomes. Step 5, processed data includes 944 confirmed 
COVID‑19 patients with first blood samples and 44 features. COVID‑19: 
Coronavirus disease 2019
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is widely used because of its good interpretability, which can 
easily obtain the characteristics of groups at high-risk of death. 
Therefore, we integrated the features in benchmark-dt on the 
basis	of	the	new‑dt	model	and	slightly	modified	the	threshold	
of the decision node to obtain a new model. We then tested 
our test set on the integrated model. The entire experimental 
setting is presented in Figure 2.

results

Poor generalizability of the prediction model
The benchmark-dt model consisted of lactate dehydrogenase 
(LDH),	lymphocytes	(%),	and	high‑sensitivity	CRP	(hs‑CRP),	
while the benchmark-lr model contained neutrophils, 
lymphocytes,	 platelets	 and	 Interleukin‑2	 receptor	 (IL‑2R).	
The	new	dt	model	had	two	features	(LDH	and	Urea).	The	new	
model	involved	three	features:	(1)	LDH,	(2)	lymphocytes	(%),	
and	(3)	hs‑CRP.

To further illustrate this, the actual performance of the 
benchmark-dt model regarding our data on the 944 cases is 
detailed in Table 2. An overall accuracy of 94.7% (precision 
of 99% for survival prediction and 62% for mortality 
prediction) was achieved using the last occurrence data. 
However,	for	the	first	occurrence	data,	an	overall	prediction	
accuracy of 83.6% was achieved (with 99% precision 

for survival prediction and 32% precision for mortality 
prediction). The number of incorrectly predicted cases using 
the	 last	 occurrence	data	 and	 the	first	 occurrence	data	was	
50 and 155, respectively [Table 3], in which the majority 
of mis-predicted patients (38/50) using the last occurrence 
data	were	also	mis‑predicted	using	the	first	occurrence	data.	
Because the data were imbalanced, we chose the weighted 
average instead of the macro average to calculate the “Both” 
performance.

Although we obtained high performance (accuracy of 97%) 
in the original dataset, the benchmark-dt model achieved low 
performance in our across-hospital data (accuracy of 94.7% in 
the	 last	occurrence	records	and	83.6%	in	 the	first	occurrence	
records). Unsurprisingly, using the latest measurements may yield 
a higher accuracy in predicting an outcome. To further investigate 
the reason for the decrease in performance of the benchmark-dt 
model,	we	compared	the	difference	in	data	distributions	between	
the training data used in benchmark-dt and our study. We found 
that	 there	were	 significant	differences	 in	LDH,	 lymphocytes,	
and	hs‑CRP	 levels	 (P < 0.0001) that were employed in the 
decision tree model, which might explain the low performance 
of benchmark-dt and validate our new data. In addition, with 
similar validation steps, the benchmark-lr model (with 90.74% 
sensitivity	and	94.44%	specificity)	achieved	an	overall	prediction	

Figure 2: The experimental setting. Step 1, 944 confirmed COVID‑19 patients with blood samples (features first appeared). Steps 2 and 3, use our total 
data 944 to verify the existing two models (the decision tree and the logistic regression models). Step 4, analyze the data distribution of Yan et al. and 
ours, then compared the differences. Step 5, divide our processed data into training and test sets based on a ratio of 1:1. Step 6, use two models as our 
two benchmarks and retrain two new models with our training set. Step 7, integrate the two decision tree models. COVID‑19: Coronavirus disease 2019

D
ow

nloaded from
 http://journals.lw

w
.com

/w
tcm

 by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 07/03/2024



Chang, et al.� Validation�and�refinement�of�models�for�COVID‑19�prognosis�prediction

World�J�Tradit�Chin�Med�|�Volume�9�|�Issue�2�|�April‑June�2023 195

accuracy of 87.5% (97% precision on survival and 38% on 
mortality) [Table 4]	for	the	first	occurrence	data	of	the	944	cases.

The clinical utility of predictive models for decision-making 
may	vary	 greatly	 as	 they	 are	 likely	 to	 perform	differently	
across centers, settings, and time,[28] as well as requiring 
“external	 validation”	 on	 different	 datasets.[29] Our external 
validations of the two benchmark models showed a particularly 
low precision (<50%) for mortality predictions, which 
might partially be due to the high mortality ratio (46.4% in 
benchmark-dt and 50% in benchmark-lr) incorporated in 
the original datasets. This indicates that a derived dataset 
with a natural ratio of mortality, where the mortality ratio 
is	comparable	to	the	actual	conditions	of	a	specific	disease,	
would be important for model construction and generalization.

Improved performance with retraining on new data
To investigate the potential for performance improvement of 
AI models on new datasets, we retrained the two proposed 
models	on	our	new	data	using	first	occurrence	 features	with	
a 50:50 split of training (472 cases) and test (472 cases) 
sets [Table 5 and Figure 3]. Among the four models, the 
benchmark-dt model achieved the highest recall of 88% for 
mortality prediction, but the lowest precision of 34% for mortality 
prediction (472 cases), indicating that the benchmark-dt model 
was more likely to predict death. By retraining the benchmark-dt 
model on our training set, the prediction accuracy of the new-dt 
model increased from 84.3% to 93.2% in our test set. This result 
indicated that retraining a prediction model using new data can 
greatly improve the applicability of the model.[23]

By retraining the benchmark-lr model on our training set, 
the precision of new-lr for mortality prediction increased 
from 38% to 74%. Additionally, the recall and F1-scores for 
survival prediction increased to 99% and 97%, respectively. 
The new-lr model achieved the highest performance among 
the four models, with 93.9% and 91% of accuracy and AUC, 
respectively.

Survival	analysis	using	the	KM	method	indicated	significantly	
consistent improvement from the benchmark model to the 
retrained models [P	 =	 4.67E‑34	 vs.	 8.91E‑24	 for	 decision	
tree	(DT)	and	2.55E‑38	vs.	5.19E‑20	for		logistic	regression	
(LR),	Figure 4].	 In	 particular,	 the	 difference	 in	 the	 new‑lr	
model	was	 the	most	 significant,	with	 a	 log‑rank	 test	 value	
of	2.55E‑38.	A	comparison	of	 the	four	 log‑rank	 test	 results	
revealed that the retrained models, new-dt, and new-lr, had 
a	 greater	 difference	 between	 the	 predicted	 survival	 group	
and the predicted death group than the benchmark models, 
benchmark-dt, and benchmark-lr.

Evolution of integrated models bring practical results
We integrated the lymphocyte (%) node of benchmark-dt 
into new-dt and incorporated more features, which may help 
discover more high-risk groups [Figure 5].	However,	the	first	

Table 3: Comparison of the number of wrong predicted 
cases using the last occurrence data and the first 
occurrence data

Data record used Survival Death All
Last	occurrence	data 44 6 50
First occurrence data 145 10 155
Intersection 33 5 38

Table 4: Performance of the benchmark‑lr based on our 
first occurrence data

Outcome Precision Recall F1 score Support Accuracy
Survival 0.97 0.90 0.93 865 0.875
Death 0.38 0.65 0.46 79
Both 0.92 0.88 0.89 944

Table 2: Performance of  the  benchmark‑dt model  on  our  new data  (944  cases)

Data record used Outcome Precision Recall F1 score Support Accuracy
Last	occurrence	data Survival 0.99 0.95 0.97 865 0.947

Death 0.62 0.92 0.74 79
Both 0.96 0.95 0.95 944

First occurrence data Survival 0.99 0.83 0.90 865 0.836
Death 0.32 0.87 0.47 79
Both 0.93 0.83 0.86 944

Figure 3: ROC curves of different prediction models. Receiver 
operating characteristic analysis shows the performance of the four 
models (benchmark‑dt, benchmark‑lr, new‑dt, and new‑lr). benchmark‑dt 
has the lowest AUC of 89% and new‑lr has the highest AUC of 91%. ROC: 
Receiver operating characteristic, AUC: Area under curve
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type of high-risk population in the new-dt had the lowest 
number	of	deaths.	When	LDH	was	<481	U/L,	only	a	small	
number of patients (19/442) died in the training set. When we 
made a more detailed division, the number of mis-predicted 

patients was reduced in the training set but increased in the 
test set, indicating that the stability of the branch was not high. 
To increase the stability of the model, we designated patients 
with	LDH	<481	U/L	as	those	that	survived.	Although	this	may	

Table 5:  The  test  performance of  five  coronavirus  disease 2019 prognosis models  on  first  occurrence data

Model Outcome Precision Recall F1‑score Support Accuracy AUC
Benchmark-dta Survival 0.99 0.84 0.91 432 0.843 0.89

Death 0.34 0.88 0.49 40
Both 0.93 0.84 0.87 472

Benchmark-lrb Survival 0.97 0.90 0.93 432 0.879 0.86
Death 0.38 0.65 0.48 40
Both 0.92 0.88 0.89 472

New-dtc Survival 0.95 0.97 0.96 432 0.932 0.85
Death 0.62 0.50 0.56 40
Both 0.92 0.93 0.93 472

New-lrd Survival 0.95 0.99 0.97 432 0.939 0.91
Death 0.74 0.42 0.54 40
Both 0.93 0.94 0.93 472

Integrated model Survival 0.98 0.96 0.97 432 0.943
Death 0.70 0.58 0.63 40
Both 0.96 0.93 0.94 472

aDecision tree model of Yan et al., bLogistic	regression	model	of	Wang	et al., cDecision tree model of our study, dLogistic	regression	model	of	our	study.	
AUC: Area under the curve

Figure 4: Survival analysis curves of four models. (a), Survival analysis curve of benchmark‑dt (log‑rank test of 8.91E‑24). (b), Survival analysis 
curves of benchmark‑lr (log‑rank test of 5.19E‑20). (c), Survival analysis curve of new‑dt (log‑rank test of 4.67E‑34). (d), Survival analysis curves  
of new‑lr (log‑rank test of 2.55E‑38). Each survival analysis chart consists of two survival curves according to the predicted outcomes, namely the 
predicted survival group and the predicted death group. The solid blue line is the predicted survival group, and the light blue band represents the 95% 
confidence interval. While the orange solid line is the predicted death group, and the light orange band represents the 95% confidence interval
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have reduced the predictive performance of the model for death 
patients, the accuracy and stability of the model for the entire 
dataset were enhanced.

In performing on our test data, the integrated model achieved 
the highest F1-scores for survival prediction and mortality 
prediction, at 97% and 63%, respectively [Table 5]. In 
addition, the prediction accuracy of our test set increased 
from the previous value of 93.2% to 94.3%. The number of 
mis-predicted patients in the integrated model and the previous 
four models on our training and test sets is presented in Table 6. 
The integrated model performed relatively well on both the 
training and test sets, with an optimal performance on the 
test set (a minimum number of mis-predicted patients of 27). 
Although new-dt had the best performance on the training 
set (minimum number of mis-predicted patients of 22), it was 
greatly reduced on the test set (32 mis-predicted patients), 
resulting	in	overfitting.	Based	on	performances	on	the	entire	
dataset, the integrated model demonstrated higher stability.

The	 integrated	 model	 incorporated	 LDH,	 urea,	 and	
lymphocyte	 (%)	 levels	 as	 the	decision	 features.	LDH	 levels	
reflect	the	extent	of	various	pathophysiological	processes,[30] and 
elevated	LDH	levels	at	admission	are	an	independent	risk	factor	
in	the	severity	and	mortality	of	COVID‑19.	Therefore,	LDH	
may assist in the early evaluation of COVID-19.[31] In addition, 
severe COVID-19 patients had higher levels of urea and urine 
protein,	whereas	uric	acid	 levels	were	 lower,	 reflecting	poor	
kidney function.[32] Yan et al. also suggested that lymphocytes 
may serve as the potential therapeutic targets.[17] These studies 
indicate	 that	LDH,	urea,	 and	 lymphocyte	 (%)	 levels	 are	 the	
important risk factors in the severity and mortality of COVID-19.

Dynamic evaluation of the retrained model’s prediction 
bias
Notably, the number of mis-predicted patients with new-dt and 
new-lr had its own trend [Table 7]. The new-dt model predicted 

more survival patients as death patients, whereas the new-lr 
model tended to mis-predict death cases as survival cases 
better than the new-dt model. Thus, the new-dt model was 
more likely to predict death compared with the new-lr model.

The majority of cases misjudged by the new-dt model were in 
serious condition on admission, with poor physical conditions, 
abnormal blood sample indicators, and long hospital stays. 
However, with continuous treatment, the conditions of these 
patients	 significantly	 improved	 and	 they	were	 ultimately	
discharged. We further evaluated improvements in the 
continued use of the prediction model and found that the 
prognoses of several patients were mis-predicted when 
admitted to the hospital [Figure 6], demonstrating the impact 
of	 treatment	 on	 the	 patient’s	 final	 outcome	 as	well	 as	 the	
possibility of using models dynamically to improve the 
therapeutic outcomes.

dIscussIon

COVID-19 has put a massive strain on the clinical and public 
health resources. Critical decision-making and identifying 
patients at risk of developing severe disease are particularly 
important.[33] Clinical predictive models use patient data to 
determine the probability of a current disease condition and its 
outcomes,[23] and nontransferability of predictive models can 
cause	significant	concerns	and	misuse	in	clinical	practice.[16] To 
ensure the clinical utility of prediction models, it is vital that 
they are rigorously developed, validated, and evaluated.[34,35]

For clinical prediction tasks, particularly for prognoses, an 
interpretable AI model may improve clinical adoptability 
and feasibility.[36] Here, we used two classical interpretable 
models (a decision tree and a logistic regression) for COVID-19 
prognosis prediction. More than 50% of these models are 
logistic regression models, used to investigate concrete 
situations and potential solutions for model transfers to a new 
data setting. By utilizing a real-world, independent dataset and 
performing practical external validation experiments, our study 
highlighted	and	validated	two	well‑recognized	factors	affecting	
the transferability of prediction models. This may, in turn, help 
improve their usability in clinical practice. First, limited and 
nonrepresentative homogenous benchmark data that incorporate 
patient subgroups with obvious clinical characteristics or bias 
is one of the main factors that make proposed prediction 
models unfeasible in real-world clinical settings. For instance, 
the	significant	differences	of	key	laboratory	parameters,	such	

Table 6: Number of misjudged patients of different 
models in the training set and test set

Model Training set Test set
Benchmark-dt 81 74
Benchmark-lr 61 57
New-dt 22 32
New-lr 32 29
Integrated model 28 27

Figure 5: Decision tree of model integration. The purple and green boxes 
represent the classification results of the model on our test set. NUM, the 
number of patients in a class; Death, the number of deaths in a class; 
Survival, the number of people discharged from hospital in a class
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as	LDH	(P	=	3.49E‑28),	 lymphocytes	 (P	=	4.32E‑24),	 and	
hs‑CRP	(P	=	6.22E‑19),	between	the	dataset	of	Yan	et al. and 
our	data	confirmed	this	idea.	In	addition,	this	may	explain	why	
the model parameters (i.e., the threshold of partitioning in the 
decision node for the DT model) of Yan’s prediction model 
could not be used directly for our data. Moreover, the high 
mortality rate in Yan et al.’s data indicated that their clinical 
data were mainly derived from severe COVID-19 cases, 
which does not represent the real situation of COVID-19 in 
China	and	worldwide.	Second,	prognosis	models	specifically	
require the capability of early predictions (e.g., 2 weeks earlier 
for risk prediction). The benchmark-dt model was mainly 
derived from the last occurrence data points, which were close 
in	time	to	the	final	outcomes	(i.e.,	deceased	or	discharged),	
and lacked usability in clinical practice as no therapies or 
treatments	that	affect	outcomes	could	be	utilized	in	as	narrow	
of a window. By incorporating empirical knowledge on the 
laboratory parameters found in COVID-19 literature, we 
proposed a manually tuned new DT model for COVID-19 
prognosis prediction with comparably high performance at 
94.3% accuracy and robustness with both training and test 
sets, where the average length of hospital stay is 20.03 days. 

This model also had early prediction capabilities, indicating the 
feasibility and importance of incorporating the latest evidence 
or background knowledge into an AI model to improve 
usability and performance. However, although laboratory 
parameters	(e.g.,	LDH)	have	acceptable	prediction	capabilities	
for prognosis, as demonstrated through the investigation of 
mis-predicted cases, a multi-model fusion system that includes 
factors such as patient characteristics (e.g. age, gender, 
and comorbidities) and clinical manifestations is needed to 
improve	COVID‑19	 predictions.	 Furthermore,	 differences	
in the data distributions across sites may lead to the need for 
training	models	for	different	patient	groups	(e.g.,	age‑based	or	
ethnicity-based).[37]	However,	as	there	may	not	be	sufficient	
data for each patient group to train multiple models, a new 
transfer learning would be useful in continuously adjusting 
and updating models based on new data.[38]

This study had several limitations. First, only two representative 
models	were	used,	and	the	integration	of	more	effective	models	
integration into a multi-model fusion system to support clinical 
decision making may be useful. A systematic framework for 
validating, comparing, improving, and updating prediction 

Figure 6: The variability of prediction power using data from different time points. The x‑axis represents the length of hospitalization in terms of days, 
and the y‑axis represents the PMP. For both decision tree and logistic regression models, the case is predicted as death when the PMP is higher than 
0.5, and otherwise predicted as survival. Results of four typical patients are presented. (a), deceased case in non‑severe group. (b), deceased case 
in severe group. Both models produce wrong predictions for the time points of 5th and 10th days and later correct when using data from 16th day. (c), 
survival case in non‑severe group. (d), survival case in severe group. Results indicate the im‑portance and difference of using data from different time 
points during hospitalization. PMP: Predicted mortality possibility
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Table 7: The number of mis‑predicted patients of new‑dt and new‑lr

The number of 
mispredicted patients

Mild group Severe group All

Survival Death All Survival Death All
new-dt 3 8 11 9 12 21 32
new-lr 2 9 11 4 14 18 29
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models should be developed further rather than the creation 
of new models.[16]

conclusIons

The use of AI predictive models to assist in diagnoses and 
treatment	decision‑making	has	been	effective	with	COVID‑19.	
However, an urgent need to validate prediction models that 
were trained using small data, to enable their applicability 
in	clinical	practice	remains.	Appropriate	and	effective	use	of	
these models may lead to preemptive treatment, prevention of 
severe outcomes, and improvements in prognoses.

In this study, we proposed new methods to improve the 
effectiveness	 of	 these	models.	Knowledge	 of	 the	 dataset	
characteristics used in the training of the model is vital, in 
order	to	understand	the	differences	in	the	training	data	from	that	
used	in	clinical	decision‑making.	In	addition,	effective	model	
fusion	 is	 beneficial	 in	 improving	model	 performance.	This	
study also provides research ideas regarding the application 
of AI predictive models to health management and early 
intervention, particularly for other chronic and emergent 
diseases in the future. There have been calls for sharing 
anonymized clinical data at the patient level,[16] which, along 
with	the	establishment	of	large	datasets,	would	greatly	benefit	
the continuous improvement of prediction models and lead to 
improvements in clinical treatments that save the lives.
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