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Abstract: Subcarrier Index Modulation is an OFDM variant that provides superior power and
bandwidth efficiency. In this paper, we present a novel, double-sided pulse interval modulation
(DS-PIM)-based SIM OFDM technique. The proposed technique exploits the variable symbol size
of DPIM to provide a variable sub-block size and enable dynamic assignment of subcarriers rather
than the fixed size of conventional SIM OFDM. In comparison with conventional Subcarrier Index-
Modulated OFDM (SIM-OFDM), the proposed approach shows a 12.5% reduction in bandwidth
usage for a 2-bit index word. On average, 3.5 subcarriers are employed by the proposed technique
per sub-block, in comparison with 4 subcarriers for the conventional technique. The proposed
technique provides a superior spectral efficiency compared with conventional SIM-OFDM, even for
higher-order modulation.

Keywords: Subcarrier Index Modulation; Orthogonal Frequency Division Multiplexing; LiFi; visible
light communication

1. Introduction

The term LiFi was first coined by Prof. Harald Haas in one of his TED talks, in 2011.
The technique has since, attracted a lot of research interest and is maturing very fast. The
idea behind LiFi is to take advantage of the vast deployment of LED lights for illumination,
and to use them to carry data, simultaneously. LiFi proposes fast modulation of LEDs to
ensure that the flicker is undetectable to the naked eye, providing both illumination and
communication at the same time. The advantages of LiFi range from higher security and
larger bandwidth to better power efficiency [1]. Despite the benefits, LiFi comes with its
own set of challenges such as flicker mitigation, dimming control, ambient light interference,
and the low switching speed of typical LEDs used for illumination [2]. Some of these
challenges have prompted research to switch from single-carrier to multicarrier modulation.

Orthogonal Frequency Division Multiplexing (OFDM) is a well-known digital com-
munication technique and has been around for many years. It has found great use in
visible light communication (VLC) [3]. OFDM provides a superior bandwidth performance,
along with good flicker mitigation properties. Since a low-cost implementation is desired,
intensity modulation and direct detection (IM/DD) are our techniques of choice, meaning
the modulated signals should be non-negative and real-valued [4]. Several OFDM variants
have been proposed to satisfy these constraints [5–9] such as pulse amplitude-modulated
digital multi-tone (PAM-DMT), asymmetrically clipped optical OFDM (ACO-OFDM), DC-
biased optical OFDM (DCO-OFDM), Unipolar OFDM and Flip OFDM. To ensure the
signals are real-valued, Hermitian symmetry is used on the subcarriers. A DC bias may be
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imposed on the signals to make them non-negative. Alternate arrangements in the time
and frequency domain, are used on signals to ensure non-negativity without the need
for DC bias in [5–9]. These arrangements, however, result in a loss of spectral efficiency.
Hybrid approaches [10–13], such as asymmetrically clipped DC-biased optical OFDM
(ADO-OFDM), hybrid ACO-OFDM, layered ACO-OFDM (LACO-OFDM) and enhanced
U-OFDM have been proposed to overcome this loss of spectral efficiency. A detailed dis-
cussion of index modulation techniques is presented in [14], where time domain, space
domain and frequency domain index modulation were discussed in detail. Transmitter
and receiver models and a detailed error rate analysis for each approach is presented in
detail [14]. The authors in [15] discuss the implementation of Index Modulation (IM) in
OFDM systems and present their views on the future research direction in this field. The
spectral and power efficiencies of DCO-OFDM have been investigated in [16]. The authors
have proposed a multilevel mercury-water filling power allocation scheme to improve the
spectral efficiency, while a Dinkelback-type power allocation scheme has been proposed to
improve the energy efficiency [16].

SIM-OFDM has been proposed in [17], where each subcarrier is turned ON or OFF,
carrying one bit of information, while the individual subcarriers are modulated by con-
ventional modulation techniques. This provides better energy efficiency by turning some
of the subcarriers OFF, while extra bits are also carried by the indices of the activated
(ON) subcarriers. Enhanced SIM-OFDM proposed in [18] pairs two subcarriers together,
and only one subcarrier is ON. This further improves power efficiency, but the number
of bits transmitted through the indices are reduced by half, providing a poorer spectral
efficiency. OFDM with index modulation (OFDM-IM) is proposed in [19], where subcar-
riers are divided into subgroups and then index modulation is performed within each
subgroup. The technique has a much-improved power efficiency; however, the number of
inactive subcarriers means wastage of bandwidth. It has also been shown that OFDM-IM
outperforms the conventional OFDM with low spectral efficiency only. When higher-order
modulations are used to achieve higher spectral efficiency, the performance of OFDM-IM
in terms of spectral efficiency is even worse than conventional OFDM [20]. Apart from
these SIM-OFDM has also been combined with multiple-input multiple-output (MIMO)
systems [21,22], providing considerable performance improvement. A dual-mode index
modulation-aided OFDM (DM-OFDM) has been proposed in [23,24]. Here, all subcarriers
are utilized to transmit information. The subcarriers are divided into two subgroups, each
modulated by two different constellation modes. It has been experimentally demonstrated
that SIM-OFDM with digital pre-equalization achieves a much-improved BER compared
to classical OFDM [25]. In [26], a variant of SIM OFDM is presented where information is
carried in the location of the null subcarrier rather than the active subcarrier location. This
approach results in a lower computational complexity. In ref. [27] the authors present a
type of SIM OFDM called, time-domain sample index modulation (TIM) to provide efficient
dimming control over a wide brightness range, while maintaining a high signal-to-noise
ratio (SNR) performance and a high transmission rate. The authors call their approach,
indexed dimming (iDim). The results are validated through a hardware implementation
on FPGA. A dual-indexing method is presented in [28]. Here, each group is split into sub-
groups, and only the selected subgroups are activated using the first set of index bits, and
then, subcarriers are selected from the activated subgroups using a second set of index bits.
The approach has been reported as showing an improved spectral efficiency (SE). A combi-
nation of spread spectrum (SS) and SIM-OFDM has been proposed in [29], which enables
transmission across three signal domains. SS-SIM-OFDM is shown in [29] to provide better
BER performance than conventional OFDM compared to a Rayleigh fading channel. After
a comprehensive review of the existing literature on index modulation (IM), the authors
of [30] conclude that further research is needed to combine IM with other approaches in
order to improve its spectral efficiency. The authors have presented a differential index
modulation technique in [31], enabling a variable sub-block size. The authors present an
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improved spectral efficiency as an advantage over conventional SIM-OFDM, however no
results have been presented to quantify this advantage.

The focus of previous work on SIM OFDM has been focused on sub-block sizes.
This limits spectral efficiency and compromises flexibility. This paper presents a novel
SIM OFDM approach with a variable sub-block size. The proposed scheme provides a
superior bandwidth efficiency compared with conventional SIM OFDM techniques, even
for higher-order modulation of the subcarriers.

The novel contributions of this research include:

• A novel variant of SIM OFDM that enables the use of variable sub-block size and a
dynamic subcarrier assignment instead of a fixed one.

• An improved bandwidth efficiency has been reported, while maintaining a BER
performance close to that of conventional SIM OFDM.

• Improved bandwidth efficiency for high order modulation of the subcarriers. This is a
concern for conventional SIM OFDM.

2. Principle of Subcarrier Index Modulation OFDM (SIM OFDM)

Subcarrier Index-Modulated OFDM (SIM-OFDM) is a relatively recent addition to the
family of OFDM variants [14,15]. In SIM-OFDM, the information is not only modulated
onto the subcarrier, but is also carried by the index of the active subcarriers. It provides a
tradeoff between spectral efficiency and power efficiency by changing the number of active
subcarriers. Figure 1 shows a conventional SIM OFDM transmitter. The data bit stream
is divided into P parallel substeams and the total available subcarriers are also divided
into P subgroups of size n. The splitter could be simple Time Division Demultiplexer
that separates even and odd bits. Each substeam goes to a subgroup creator, where it is
further split into two streams. One of these (B1) goes to the index selector and is used
to select the subcarriers that are turned on in a particular subgroup. The second stream
(B2) is modulated onto the selected subcarriers using conventional modulation techniques
(e.g., QAM). The same process happens for each subgroup.
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Figure 2 shows a closer view of individual sub-block creator. The available subcarriers
are divided into several subgroups. The input stream of bits for each subgroup, is split into
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two substeams. One substeam (B2) is modulated conventionally (e.g., QAM), while the
other (B1) is used for index selection.
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Table 1 shows examples of SIM-OFDM implementation, where S1, S2, and S3 are the
activated subcarriers corresponding to the index bit.

Table 1. Subcarrier selection for a 2-bit index data word on B1 using conventional SIM OFDM.

2-Active Subcarriers 3-Active Subcarriers

Index Bits (B1) Indices Sub-Blocks Indices Sub-Blocks

00 1,2 S1,S2,0,0 1,2,3 S1,S2,S3,0

01 2,3 0,S1,S2,0 1,3,4 S1,0,S2,S3

10 3,4 0,0,S1,S2 1,2,4 S1, S2,0,S3

11 1,4 S1,0,0,S2 2,3,4 0,S1,S2,S3

At the receiver end, the incoming OFDM signal is divided into groups of subcarriers
of size n. B1 is obtained from the locations of the ON subcarriers. B2 is then obtained by
demodulating those subcarriers, and thus the data stream is reconstructed. A functional
block diagram of SIM OFDM receiver is given in Figure 3.
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3. System Model and Proposed Technique

In digital pulse interval modulation (DPIM), data is encoded as a number of discrete
time intervals. The symbol length is variable and is determined by the data that is to be
modulated. A guard interval may be introduced in order to avoid two adjacent pulses
occurring, where the time interval is zero. Table 2 shows a DPIM-modulated signal
in comparison with a PPM-modulated signal. The DPIM-modulated signal S(t) can be
represented by Equation (1) as [32].

s(t) =

{
Ps, nTc ≤ t < (n + 1)Tc

0, (n + 1)Tc ≤ t < (n + k + 1)Tc
(1)

where Tc is the bit duration, while n = 0, 1, 2, 3, . . . and k = 0, 1, 2, 3, . . .

Table 2. Modulation Data Frame PPM, DPIM.

Data Frame PPM DPIM

000 1000 1

001 0100 10

010 0010 100

011 0001 1000

A major advantage of DPIM is high spectral efficiency when compared with PPM
due to a variable symbol size. Only the longest symbol has a length equal to a PPM
symbol, which can be seen from Table 2. The 2-bit data word and the corresponding
DPIM-modulated waveforms are shown in Figure 4a,b, respectively.
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DS-PIM-Based SIM OFDM

We propose a novel variant of SIM OFDM for visible light communication. Instead of
the fixed sub-block size of conventional SIM OFDM, the proposed approach suggests the
implementation of variable block size, using a double-sided PIM (DS-PIM) to modulate
B1 before subcarrier selection, thereby improving bandwidth utilization. In the proposed
modification, the DPIM symbol shown in Table 2 shall have an added 1 at the end of the
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symbol as well, ensuring that two subcarriers per sub-block are always turned on. Table 3
shows the DPIM and DS-PIM symbols for two-bit data.

Table 3. Modulation data frame for data, DPIM and DS-PIM.

Data DPIM DS-PIM

00 1 11

01 10 101

10 100 1001

11 1000 10001

The DS-PIM symbol is then used for carrier selection out of a total 5 available sub-
blocks from 5 subcarriers, instead of the 4 used for conventional SIM OFDM. The block
diagram of the SIM OFDM sub-block creator, based on the proposed approach, is presented
in Figure 5.
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The use of DS-PIM ensures that all 5 subcarriers are not always occupied and may
dynamically be assigned to the next sub-block. The ending 1 serves a secondary purpose
of indicating the last subcarrier needed by the current sub-block, marking the end of the
sub-block and enabling the dynamic assignment of subcarriers. Table 4 shows the possible
sub-block sizes for the proposed scheme. The unoccupied subcarriers are represented by F
in Table 4 and may be assigned to the next sub-block.

Table 4. Subcarrier selection for a 2-bit index data word on B1, using the proposed scheme.

Index Bits DS-PIM Subcarriers

00 11 S1,S2,F,F,F

01 101 S1,0,S2,F,F

10 1001 S1,0,0,S2,F

11 10001 S1,0,0,0,S2

A total of 105 bits (8 × 104 on B2 and 2 × 104 on B1) were modulated using DS-PIM-
SIM OFDM. The average sub-block size was calculated to be 3.5 instead of 4. This translates
to 12.5% less bandwidth usage.

Figure 6 shows all 4 possible locations of ON subcarriers for a 2-bit index word. In a
5-subcarrier block, there is only 1 possible instance when all 5 subcarriers are in use.
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4. Error Performance Analysis

There are three types of errors that can occur in a DPIM pulse train, these being erasure,
false detection and wrong slot error. Erasure occurs when a bit is erased due to attenuation
and the received signal falls below the threshold. False detection is the case when a 1 is
wrongly detected in place of a zero due to the signal exceeding the threshold due to noise.
A wrong slot is when a pulse occupies the wrong time slot due to dispersion. In DPIM,
the effect of an error spills over into the next symbol, unlike PPM, where the effect of an
error is restricted to the specific symbol. An erasure causes two symbols to merge into one,
while a false detection causes a symbol to split into two [32]. The error performance of
DPIM is similar to differential PPM (DPPM), the difference being that the wrong slot error
is restricted, only to the next symbol, and does not go beyond that used in DPPM [33].

The expression for the probability of error in a DPIM symbol is given by Equation (2)
as [32]

PeDPIM =
1
4

(
2er f c

(
(1− ∝)

√
CNR

2

)
+ (2M − 1) er f c

(
∝

√
CNR

2

)
+ er f c

((
∝ −e−(

Ts
Ti )

2
)√

CNR
2

))
(2)

where ∝ is the threshold, M is the modulation order, while Ts and Ti represent the slot
duration and received pulse width, respectively. CNR in Equation (2) stands for carrier-to-
noise ratio and may be given by,

C
N

=
Eb
No

Fb
B

(3)

where Fb is the bit rate, C is the total carrier power, N is the total noise power and B is
the bandwidth.

The three terms in Equation (2) represent the erasure, false detection and wrong slot
error. Alternately, Equation (2) may be rewritten as Equation (4) [33]

Pes = Pe +
Pw

2
+

Lavg − 1
2

Pf (4)

where Pe is the probability of erasure, Pw is the probability of wrong slot detection, Pf is
the probability of false alarm and Lavg is the average symbol length. Unlike in the case of
conventional DPIM, the end of a DS-PIM symbol is also marked with a 1 (Table 3), making
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the wrong slot error less likely. This effect is negligible, especially at higher values of CNR.
The error rate of mDPIM may be obtained by rewriting Equation (4) as Equation (5).

Pes mDPIM = Pe +
Lavg − 1

2
Pf (5)

where this results in a symbol error rate (SER) that is significantly lower than that of
conventional DPIM and close to that of PPM.

Equation (6) gives the probability of two adjoint events.

P
(

A
⋃

B
)
= P(A) + P(B)– P(A∩ B) (6)

where P(A) and P(B) represent the probability of the occurrence of event A and B, respec-
tively. P(A∩ B) in Equation (6) is the probability of both A and B occurring simultaneously.
The probability of error in a SIM OFDM symbol is the adjoint probability of error in the
index symbol and the probability of error in modulation symbol. This can be shown
modifying Equation (6) to obtain Equation (7).

PeTotal = (PeModulation + Peindex)− ((PeModulation)(Peindex)) (7)

The probability of error in a DS-PIM-SIM OFDM symbol can be given by Equation (8)

PsmDPIM−SIM OFDM = (PeQAM + PemDPIM)− ((PeQAM)(PemDPIM)) (8)

where PeQAM is the symbol error probability in a QAM symbol, while PemDPIM is the
probability of error in a DS-PIM symbol.

Probability of symbol error in a QAM symbol has been discussed in detail, and an
expression has been derived in [34].

5. Spectral Performance Analysis

The spectral efficiency of a SIM OFDM system can be computed using the total number
of bits carried by a sub-block at a given instance and the number of used subcarriers.
Equations (9) and (10) represent the spectral efficiency of an SIM OFDM system.

S.E =
Number o f bits per SIM OFDM symbol

Number o f Subcarriers per subblock
(9)

S.E =
C(n, k) + k log2M

n
(10)

where n is the block size and k represents the number of subcarriers that are turned on.
M is the modulation level of the quadrature amplitude modulation (QAM)-modulated
subcarriers. In Equation (10), C(n,K) represents the index bits (B1) being carried in a sub-
block, while k log2M represents the bits that are QAM-modulated onto the subcarriers (B2).
n, is the number of subcarriers in a given subgroup. In case of DS-PIM this is replaced by
the average number of subcarriers (navg).

S.E =
C(n, k) + k log2M

navg
(11)

6. Simulation Setup

In order to assess the performance of the proposed technique, Matlab simulations
have been conducted to compare the error performance as well as bandwidth efficiency of
conventional SIM OFDM and DS-PIM-SIM OFDM.

Figure 7 shows the simulation setup used to obtain SER vs CNR curve.
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At the transmitter end, two-bit streams are generated. One is modulated using a
DS-PIM modulator, while the other is modulated through a QAM modulator. IFFT is then
performed on the QAM-modulated bit stream. The resulting QAM symbols are assigned
specific indices within the subgroup, corresponding to the indices of 1’s in the DPIM
modulated symbol. The signal is then passed through an AWGN noise source.

At the receiver, DPIM symbol detection is achieved by comparing the magnitude of
the received signal with a threshold level. DPIM demodulation is then performed to extract
the original stream (B1). For the second bit stream (B2), FFT is performed on the symbol at
the detected indices and the resulting stream is later QAM-demodulated.

Table 5 contains some of the simulation parameters for the experiment.

Table 5. Parameters used for Matlab simulation.

1 Modulation Technique for B1 DS-PIM

2 Modulation Technique for B2 4-QAM

3 Active subcarriers per subgroup 2

4 Channel AWGN

5 Sub-block sizes for conventional 4.8 and 16 subcarriers

6 Maximum Sub-block sizes for DS-PIM SIM-OFDM 5.9 and 17 subcarriers

7. Results and Discussions

DS-PIM conventional SIM-OFDM exhibits good spectral efficiency for lower-order
modulation of B2. However, for higher-order modulation, the bits which were transmitted
through the subcarrier indices are not enough to compensate for the loss of subcarriers.
Table 6 shows how the contribution of carrier bits increases vs. index bits.



Electronics 2022, 11, 3579 10 of 14

Table 6. Distribution of bits between B1 and B2.

n = 4

M
Bits/s per
Sub-Block

(B1+B2)

Number of
Index Bits (B1)

Number of
Modulation

Bits (B2)

Potential Capacity
Lost Due to off

Subcarriers (bits/s)

4 6 2 4 4

8 8 2 6 6

16 10 2 8 8

Figure 8 shows the comparison between conventional and DS-PIM-SIM OFDM for
different sub-block sizes versus modulation level M of the modulation bit stream. In this
case, the number of active subcarriers are 2 (K = 2). The results show that the proposed
scheme gives a much superior bandwidth efficiency when compared with conventional
SIM OFDM, for a given sub-block size. Smaller sub-blocks have been shown to have a
much larger bandwidth efficiency.
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Figure 9 shows the effect of increasing the number of ON subcarriers on spectral
efficiency for both conventional and DS-PIM. It can be shown from Figure 9 that the
bandwidth efficiency improves when the number of ON subcarriers is higher. However,
the difference between spectral efficiencies of DS-PIM and conventional SIM OFDM is
much smaller, although the proposed scheme still has a noticeable edge over conventional
approaches, for larger sub-block sizes. The performance of the proposed approach suffers
when smaller sub-blocks are used in combination with a larger value of K. Using larger
values of K for a small sub-block however, is not practical since it takes away from the
basic advantage of SIM OFDM, which is to save power. Figures 8 and 9 are plotted using
Equations (10) and (11).
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(index word lengths of 2-bits, 3-bits and 4-bits) where K = 3.

The bandwidth efficiency drops with the increasing sub-block size, as the number of
unused subcarriers becomes larger. However, even in case of large sub-blocks, the proposed
scheme has a superior bandwidth efficiency due to its variable block size.

Figure 10 shows a theoretical vs. simulated results for spectral efficiency of conven-
tional and DS-PIM-SIM OFDM at k = 2 and n = 4. The results show good agreement
between theoretical and simulated values.
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Figure 10. Theoretical vs. simulated results for spectral efficiency of conventional and DS-PIM-SIM OFDM.

Figure 11 presents a comparison between conventional SIM OFDM and the proposed
variant. For a small sub-block size of 4 subcarriers (5 for Proposed approach), the SER
performance is quite similar for the two approaches. However, as the sub-block size
increases, the conventional approach shows a slight improvement over the proposed
approach. This is due to the fact that in DPIM, error is not restricted to one symbol. The
effects of error spill over into the next symbol as well (wrong slot error). However, at higher
values of CNR, the difference between conventional and proposed approaches again starts
to decrease. As discussed in Section 5, this is due to the fact that wrong slot error becomes
less likely at higher values of CNR.
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Figure 11. CNR vs. SER of conventional and DS-PIM based SIM OFDM for index word lengths of
2–bits, 3–bits and 4–bits.

In Figures 8–11, the conv-2 and DS-PIM-2 stands for conventional and proposed approach,
respectively, for a 2-bit index word. Conv-3 and DS-PIM-3 represent the conventional and
proposed variants of SIM OFDM for 3-bit index word, while conv-4 and DS-PIM-4 stands for
conventional and proposed approach for a 4-bit index word, respectively.

8. Conclusions

SIM OFDM has been the focus of special interest for visible light communication sys-
tems in the recent literature due to its superior bandwidth and power efficiency. However,
for higher-order modulation of the modulation bit stream, SIM OFDM tends to lose its
advantage, since the subcarriers are carrying a lot more data and the index bits are not
enough to compensate for the loss of subcarriers due to index modulation.

The proposed scheme presents a novel approach to SIM-OFDM through variable
sub-block size, which enables a dynamic subcarrier assignment. This gives an improved
bandwidth efficiency as, for a 2-bit word on the index selection stream, the proposed
approach requires 12.5% less bandwidth, since the average number of occupied subcarriers
per sub-block are 3.5 instead of 4. Additionally, the bandwidth efficiency is much better
than that of conventional SIM OFDM for a higher-order modulation. The compromise in
terms of SER is also not very severe, as SER of the proposed approach is also very close to
that of conventional SIM OFDM, especially for higher values of CNR.
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Abbreviations

List of Abbreviations
Subcarrier Index Modulation OFDM SIM-OFDM
Visible Light Communication VLC
Light Fidelity LiFi
Intensity Modulation/Direct Detection IM/DD
Pulse Amplitude-Modulated Digital Multi-Tone PAM-DMT
Asymmetrically clipped Optical OFDM ACO-OFDM
DC-Biased Optical OFDM DCO-OFDM
Unipolar OFDM U-OFDM
Asymmetrically clipped DC-biased optical OFDM ADO-OFDM
Layered ACO-OFDM LACO-OFDM
OFDM with Index Modulation OFDM-IM
Multiple-Input Multiple-Output MIMO
Dual-Mode index modulation-aided OFDM DM-OFDM
time-domain sample index modulation TIM
indexed dimming iDim
Spectral Efficiency S.E
Carrier-to-Noise Ratio CNR
Signal-to-Noise Ration SNR
Spread Spectrum-aided SIM-OFDM SS-SIM-OFDM
Index Modulation IM
Bit Error Rate BER
Symbol Error Rate SER
Quadrature Amplitude Modulation QAM
Digital Pulse Interval Modulation DPIM
Double-sided Pulse Interval Modulation DS-PIM
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