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Abstract

Scientific corpora serve as the backbone for advancements in Natural Language
Processing (NLP) tasks within the biomedical domain. However, current methods for
corpus creation often rely solely on PubMed abstracts and Open Access (OA) publica-
tions on PubMed Central (PMC). This approach overlooks the amount of information
contained within the full text of scientific articles not available in these two services.
Furthermore, existing tools for UMLS named entities recognition, such as MetaMap,
can be computationally slow, hindering large-scale analysis. This work addresses these
limitations by introducing a novel tools and resources specifically designed to enhance
NLP tasks, especially UMLS and Phenotype NER, in the biomedical field.

First, | present Cadmus, the first fully automated pipeline for scientific corpus creation
that goes beyond PubMed abstracts and leverages the full text of OA and non-OA
publications. Cadmus utilizes a combination of APls, web scraping and text processing
techniques to create comprehensive scientific corpora. Our analysis demonstrates that
Cadmus corpus creation provides a significant increase in the number of identified
entities (representing 64.9% of the total available UMLS entities on our DDG2P

dataset) compared to prior methods.

Second, | introduce ParallelPyMetaMap, a Python implementation of MetaMap. Par-
allelPyMetaMap offers full access to MetaMap's robust named entity recognition cap-
abilities while incorporating a multiprocessing approach. This approach significantly
accelerates processing times, allowing researchers to analyze larger datasets in a more

efficient manner.

Third, | present the Autism Spectrum Disorder (ASD) Corpus, the first fully auto-
mated, full-text biomedical corpus. The ASD corpus is constructed by employing
Cadmus to gather full-text articles related to ASD, encompassing both OA and non-
OA publications. This corpus represents a valuable resource for researchers focused on
ASD, providing a comprehensive collection of full-text articles for in-depth analysis.
Our ASD corpus captures a significant portion of relevant publications (82.64% out
of 72,058) for ASD research.



Finally, | introduce a novel Phenotype Named Entity Recognition (NER) model spe-
cifically optimized for identifying phenotypic entities within biomedical text. Our
Phenotype NER model is trained on a large-scale silver standard dataset and incorpor-
ates optimized pre-processing strategies. When compared to current state-of-the-art
methods on three Human expert annotated datasets, our model outperforms existing
approaches on two out of three datasets, demonstrating its effectiveness in identifying

phenotypic entities.

In conclusion, this work presents a comprehensive suite of tools and resources that
significantly enhance NLP capabilities in the biomedical domain. Cadmus with its
corpus creation and the Phenotype NER model demonstrably improve the identifica-
tion of entities and phenotypes, while ParallelPyMetaMap accelerates UMLS named
entity recognition. The ASD Corpus offers a valuable collection of full-text articles
for researchers focused on Autism Spectrum Disorder. These advancements offer an

alternative to existing methods that have been used and reused over the years.



Lay Summary

My research focuses on making it easier for scientists to find and understand scientific
research. We know that scientific research is often published in different places, and
it can be hard to find everything we need in one place. That is why | have created
a way to collect all the scientific research publications in one place, so we can easily
find what we are looking for. It is like a big library where we can find all the books

we need in one place.

| am also using a special computer program called machine learning to help analyze all
the research. It is like a super smart computer that can read through all the research
and help us understand it better. Specifically, | am using a type of machine learning
called BERT, which is like a super smart computer that can read through all the
research and understand it like a human would. It can even tell us what is important

and what is not.

BERT is a powerful tool that can help us analyze large amounts of text, like scientific
research papers. It can identify important keywords and phrases, and it can even
summarize the main points of a paper for us. This can save everyone a lot of time

and effort because we do not have to read through every single paper ourselves.

One aspect of my research involves training a BERT model to extract phenotype
terms from scientific texts. Phenotype terms are the characteristics or traits of an
organism that can be observed, such as size, shape, color, or behavior. By using
BERT to extract these terms, we can create a database of phenotype terms that
scientists can use to better understand the characteristics of different organisms. This
can be especially helpful in fields like genetics, where understanding the relationship

between genes and phenotypes is crucial.

However, just like how you might need to try different ways to find what works
best for you, | am trying different ways of using BERT to see what works best. |
am experimenting with different settings and parameters to see how well BERT can

perform, and | am comparing the results to see which approach works best.

So, in summary, my research is about using BERT and machine learning to make
it easier for scientists to find and understand scientific research, including training a

BERT model to extract phenotype terms.
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Glossary

Application Programming Interface (API) allows different software applications
to communicate and interact with each other. It can be used to request and exchange

information, making it easier to integrate from one application into another.

Annotation refers to the process of adding metadata or labels to text data to provide
additional information or context. Annotated data sets serve as training data for
machine learning models, enabling them to learn patterns and make predictions or
classifications in text-based applications.

Benchmarking refers to the process of evaluating and comparing the performance

of different models, pipelines, or systems against established datasets.

Corpus refers to a large and structured collection of text that is used for the training
and testing of models and algorithms. Corpora can be specialized for specific domains

and serve as valuable resources.
Entity refers to a distinct concept of interest that is identifiable within a dataset.

F1 score is a metric that combines precision and recall into a single value, providing
a balanced assessment of a model’s performance. It is the harmonic mean of precision

and recall, calculated as 2 * ((precision * recall)/(precision + recall)).

Fine-tuning refers to the process of adjusting a pre-trained model on a specific task

or dataset.

FTP (File Transfer Protocol) allows users to send and receive files across a network

using standardized commands, making it a fundamental tool for file exchange.

Gold standard is considered the highest level of annotation quality, aiming for human-
level accuracy and precision. It involves annotations created by expert annotators who
adhere to strict guidelines, resulting in highly reliable labeled data. While gold stand-

ards provide the highest accuracy, they are resource-intensive and time-consuming.

Grid search is a hyperparameter tuning technique where a predefined set of hyper-
parameter values is systematically tested to find the combination that provides the

best model performance.
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Hyperparameter is a configuration setting external to the model that is not learned

from the training data but is set before the training process begins.

Language Model is a type of model designed to understand and generate human

language.

Layer refers to a component of a neural network. Neural networks are organized into
layers, each responsible for specific computations. The input layer receives the initial

data, hidden layers process information and the output layer produces the final result.

Metadata refers to additional information or descriptors that provide context and

details about the data being used.

Model, in the context of Natural Language Processing, is a computer program that

learns from data to understand and process human language.
N-grams refer to continuous sequences of n items extracted from a given text.

Ontology refers to a structured representation of knowledge that defines relationships

and categories within a specific domain.

Open Access refers to the practice of making research papers, datasets, and other

resources freely available to the public, without restrictions on access or use.

Out of Vocabulary (OOV) refers to words or tokens that are not present in the

vocabulary or training data of a model.

Parsing, in the context of automated content extraction from research articles, refers
to the systematic analysis of a document to identify and isolate specific pieces of

information crucial for data retrieval.

Precision is a metric that measures the accuracy of positive predictions made by a
model. It is calculated as the ratio of true positive predictions to the sum of true

positives and false positives.

Recall is a metric that measures the ability of a model to correctly identify all relevant
instances of a particular class. It is calculated as the ratio of true positive predictions

to the sum of true positives and false negatives.
Repository refers to centralized storage or a collection of datasets, code, and models.

Request refers to a specific communication made by a client to a server. This request
includes information about the desired file, its location, and any necessary parameters

or API keys for authentication.
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Silver standard represents an imperfect but cost-effective and resource-efficient
compromise in annotation quality. It involves computationally generated annotations
that may be less precise than a "gold standard,” but they are still useful. The trade-
off with silver standards is that they are easier, less costly, and faster to create,
making them practical in situations where achieving human-level accuracy, as in a

gold standard, is not feasible or efficient.

Supervised learning means that the algorithm learns from input-output pairs, where

the correct output (label) is provided for each input.

Token refers to a unit of text that has been extracted or processed for analysis.
Tokens can be words, subwords, or characters, depending on the tokenization method

used.

Tokenization involves breaking down a piece of text into individual units, making it

easier for models to understand and process language.

Training refers to the process of teaching a model by exposing it to a dataset.
During training, the model learns patterns and relationships in the data, adjusting its

parameters to make predictions or perform tasks accurately.

Trigger refers to specific words or a list of words that prompt a model or system to

perform a particular action or make a prediction.

Unsupervised learning means that the algorithm explores the data’s inherent pat-

terns and structures, aiming to find relationships or groupings without labels.

Web scraping involves automated requests made by a script to extract data from
websites. These requests are initiated to retrieve specific information from web pages,

such as text, hyperlinks, or structured data.
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Chapter 1

Introduction

1.1 Natural Language Processing

Natural Language Processing (NLP) is at the intersection of linguistics, computer
science, and artificial intelligence, with the objective of translating the human language
for computational analysis. At its core, NLP endeavours to empower machines with
the ability to understand, interpret, and generate human language, ultimately helping

computers understand human language as well as we do.

Starting with word embeddings Collobert and Weston (2008), where words are rep-
resented as vectors, | unravel the profound impact of this innovation on NLP's
capabilities. This approach not only laid the groundwork for enhanced language
understanding but also set the stage for Named Entity Recognition (NER), a critical
task within NLP that involves identifying and classifying entities (such as names of

people, organizations, and locations) in text.

The integration of statistical methods, motivated by n-gram models Shannon (1948),
showcased the power of large datasets in creating probabilistic language models.
These statistical approaches not only advanced general language processing tasks but
also contributed significantly to refining NER algorithms, enhancing their accuracy
and efficiency. The narrative of NLP's evolution gains momentum with the rise
of neural networks, a development that significantly impacted NER methodologies.
Recurrent Neural Networks (RNNs) Graves, Jaitly, and rahman Mohamed (2013)
and Convolutional Neural Networks (CNNs) Kalchbrenner, Grefenstette, and Blunsom
(2014) emerged as state-of-the-art methods for language processing, revolutionizing
sequence analysis and feature extraction. This phase showcased the fusion of ma-
chine learning principles with neural network architectures to unlock unprecedented
linguistic insights, crucial for NER. NLP reaches its peak with the introduction of
transformer Vaswani et al. (2017) models. BERT Devlin, Chang, Lee, and Toutanova
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(2019) and GPT Radford and Narasimhan (2018) harnessed attention mechanisms
to dynamically capture contextual information. The impact echoed across language
modeling, sentiment analysis, and question answering, transforming the landscape
of NER by providing models with a heightened contextual understanding of named

entities.

From the multilingual prowess of translating services driven by word embeddings, to
the sentiment analyses used for market research, NLP found its place in various do-
mains. NER, in particular, finds applications in information retrieval, data mining, and
knowledge extraction, showcasing its utility in unlocking insights from vast volumes

of unstructured text.

1.1.1 The Transformer architecture

Introduced in Vaswani et al. (2017) the Transformer model revolutionized NLP. At its
core, the Transformer relies on a mechanism called "self-attention” to process input
sequences, such as sentences or paragraphs. Unlike traditional sequential models,
the Transformer processes all elements of an input sequence simultaneously, allowing
for parallelization and improved efficiency. This self-attention mechanism enables the
model to weigh the importance of different words in a sentence concerning each
other, capturing complex dependencies and relationships. The architecture consists of
an encoder and a decoder, each comprising multiple layers. The encoder processes the
input sequence, while the decoder generates the output sequence. Each layer within
the encoder and decoder contains two main sub-components: multi-head self-attention
and position-wise feedforward networks. The encoder transforms the input sequence
into a series of contextualized representations, effectively encoding the information
in a way that the model can use to understand the relationships and nuances within
the input data. The decoder uses the contextualized representation created by the
encoder to generate the output sequence step by step. It attends to different parts of
the input sequence as needed, ensuring that the generated output maintains coherence

and context with the input data.

In the multi-head self-attention mechanism, the input sequence is transformed into
different representations by attending to different parts of the sequence simultan-
eously. This allows the model to capture both local and global dependencies within

the input data. The attention scores are computed through a learned set of parameters,
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enabling the model to adapt to different patterns in the data. The Transformer
architecture improved training efficiency and better performance on various NLP tasks.
The self-attention mechanism allows the Transformer to excel in capturing long-range

dependencies and contextual information.

1.1.2 Bidirectional Encoder Representations from Transformers

The Bidirectional Encoder Representations from Transformers (BERT) Devlin et al.
(2019) architecture has emerged as a groundbreaking model in natural language
processing, significantly advancing the capabilities of language understanding and
representation. BERT set new benchmarks in tasks such as question answering,

sentiment analysis, and named entity recognition.

BERT operates on the Transformer architecture, which allows for parallelized pro-
cessing of input sequences, bringing notable efficiency improvements. What distin-
guishes BERT from previous models is its bidirectional context awareness. Unlike tra-
ditional models that read text sequentially, BERT processes the entire input sequence
in both forward and backward directions, capturing contextual information from all
surrounding words. The power of BERT lies in its pre-training on large corpora using
unsupervised learning. During pre-training, the model learns to predict missing words
in a sentence by considering both the left and right context. This process exposes
BERT to a vast amount of diverse linguistic patterns and nuances, enabling it to

develop a rich understanding of language semantics.

BERT's pre-training involves a Masked Language Model (MLM) objective. Random
words in a sentence are masked, and the model is tasked with predicting these masked
words using the surrounding context. This bidirectional approach ensures that the
model comprehensively learns contextual relationships, making it adept at capturing
intricate dependencies within the data. BERT utilizes embeddings to convert words
into vectors with rich semantic representations. Positional embeddings are incorpor-
ated to retain the order of words in a sentence, allowing BERT to understand not

only the meaning of individual words but also their contextual significance.

Following pre-training, BERT can be fine-tuned on smaller, task-specific datasets for
a variety of NLP applications. During fine-tuning, task-specific layers are added, and
the entire model is adjusted to perform well on the targeted task. This adaptability
has contributed to BERT's success across a range of applications without the need

for extensive task-specific architecture modifications.
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1.2 Biomedical Natural Language Processing

Biomedical Natural Language Processing (BioNLP) stands as a distinct and special-
ized subfield within the broader landscape of Natural Language Processing (NLP).
While both NLP and BioNLP share the common goal of equipping machines with the
ability to comprehend and process human language, BioNLP focuses specifically on the
challenges and difficulties presented by biomedical texts. In contrast to conventional
NLP, where the focus spans a wide array of domains and applications, BioNLP narrows
its scope to address the unique language patterns prevalent in biomedical literature.
Biomedical texts, including scientific articles, case reports, and other documents,
often contain highly specialized terminology, domain-specific entities, and intricate

relationships that necessitate specialized language processing techniques.

A key distinction lies in the applications that each field emphasizes. NLP, in its
general sense, encompasses a broad range of applications such as language translation,
sentiment analysis, and chatbots. On the other hand, BioNLP places a particular
emphasis on tasks like Named Entity Recognition (BioNER), Named Entity Normal-
ization, and Relation extraction, where the goal is to identify, categorize, and link
entities specific to the biomedical domain, such as genes, proteins, diseases, and
chemicals. The evolution of BioNLP reflects the field's commitment to addressing
the unique challenges posed by biomedical language, leading to the development of
tailored methodologies and models like BioBERT J. Lee et al. (2019) or SciBERT
Beltagy, Lo, and Cohan (2019), BERT-based models re-trained with a substantial
amount of biomedical data. As BioNLP continues to advance, it not only contributes
to the overarching goals of NLP but also plays a crucial role in advancing biomedical
research, drug discovery, and precision medicine by unlocking valuable insights from

the specialized language of biomedical literature.

1.3 Motivation

The creation of a robust biomedical full-text data retrieval tool aims to answer the
need for the creation of in-domain biomedical corpora as mentioned in Wang et al.
(2020). Previously, researchers were relying solely on Open Access PMC and PubMed
abstracts, which limited the scope of their search. The creation of a robust biomedical
full-text data retrieval tool provides a more comprehensive collection of scientific

literature by expanding the search to include a broader range of databases and
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sources. This will enable researchers to access a larger pool of relevant studies, thereby
improving the quality and accuracy of their research. Additionally, the tool streamlines
the process of collecting and organizing scientific literature, saving researchers time
and effort that would otherwise be spent searching and manually curating collections.
This effort is imperative as it contributes to the availability of high-quality datasets,
fostering advancements in natural language processing techniques specifically tailored
for biomedical research. The importance of in-domain corpora cannot be overstated,
as it directly impacts the performance of machine learning models, ultimately influ-
encing the quality of outcomes in biomedical applications for a specific condition.
The improvement of current silver standard annotation tools for BioNER is equally
essential. Given the intricate language structures and specialized terminologies within
biomedical texts, enhancing the accuracy of BioNER methodologies is vital for ensur-
ing the reliability of annotated biomedical corpora. Accurate annotations serve as the
foundation for training and evaluating machine learning models, playing a pivotal role
in the development of advanced tools that contribute to the broader understanding

of complex biological and medical information.

The silver standard in BioNLP has emerged as a vital tool in the field of natural
language processing, particularly in the biomedical domain. While the gold standard
has long been considered the ultimate benchmark for NLP tasks, the silver standard
offers several advantages, especially in terms of access and curation. Unlike the gold
standard, which requires manually annotated datasets that are time-consuming and
expensive to create, the silver standard utilizes automatically generated datasets that
are more readily available and cost-effective. Additionally, the silver standard allows
for more diverse and inclusive training data, as it can incorporate a broader range
of sources and languages. Furthermore, the silver standard enables more efficient
and scalable curation processes, as it can be automated and crowdsourced. With the
help of active learning and transfer learning methods, the silver standard can achieve
performance close to the gold standard while addressing the challenges of data scarcity
and bias. Therefore, the silver standard represents a significant step forward in making

NLP more accessible, efficient, and inclusive in the biomedical domain.

The generation and analysis of Autism Spectrum Disorder (ASD) and phenotype
corpora hold profound importance due to the rising prevalence of neurodevelopmental
disorders Mayada Elsabbagh (2012). ASD is a complex neurological disorder that
affects communication, social interaction, and behaviour. It is characterized by a

range of symptoms, including difficulty with verbal and nonverbal communication,
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social interactions, and repetitive behaviours. The complexity of ASD lies in its het-
erogeneity, with various subtypes and comorbidities, making it challenging to diagnose
and treat. One of the critical NLP challenges in ASD research is identifying and
extracting relevant information from vast amounts of biomedical literature. Named
entity recognition is a crucial step in this process, as it identifies and categorises
relevant entities, such as genes, proteins, drugs, and diseases. However, current NER
tools are limited in their ability to extract biomedical entities, especially when it comes
to phenotypes. Phenotypes are essential in understanding the clinical presentation and
progression of ASD. They can include behavioural symptoms, physiological character-
istics, and imaging descriptions. Developing an NER tool that can accurately extract
phenotypes from biomedical literature would enable researchers to identify patterns
and relationships that could lead to better diagnostic tools and therapeutic strategies.
Moreover, a NER tool that can extract phenotypes would facilitate the integration
of data from diverse sources, including clinical trials, genomic studies, and imaging
datasets. This integration could lead to a better understanding of the underlying
mechanisms of ASD and personalized treatment approaches. Developing a NER tool
that can accurately extract biomedical entities, including phenotypes, is crucial for
advancing ASD research and improving patient outcomes. By using recent advances
in natural language processing, we can create a valuable resource for researchers and

clinicians working in the field.

The study of different pre-processing methods to improve re-trained BERT-based
Devlin et al. (2019) models is crucial for enhancing the performance of language
models in the biomedical domain. Effective pre-processing methods are fundamental
to extracting meaningful patterns and relationships from biomedical text, thereby
optimizing the capabilities of state-of-the-art language models. This step is important
for ensuring that machine learning models can robustly handle the difficulties of bio-
medical language, promoting advancements in information extraction and knowledge
discovery. Finally, the assessment of the impact of silver standard re-trained BERT-
based models on human-annotated data is paramount for validating the practical
relevance of computational advancements in BioNLP. The synergy between computa-
tional tools and human expertise is essential for achieving the highest level of accuracy
and relevance in biomedical applications. Understanding how these models perform in
real-world scenarios ensures that the developed methodologies have tangible benefits
for researchers, clinicians, and other stakeholders involved in biomedical research and

healthcare.
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1.4 Aims

The primary aim of this research is to develop a pipeline for document retrieval that

offers a substitution technique to the current methods, providing access to a more
diverse biomedical literature and avoiding bias. This is achieved by leveraging and
connecting a range of APIs that do not solely rely on PubMed abstracts or Open

Access PMC, which only represent a subset of the available biomedical literature.

In addition, | aim to investigate the reliability of using MetaMap on a large-scale
corpus and evaluate the performance of a BERT-based model trained on HPO entities
extracted by MetaMap. This aim seeks to determine whether this approach can

produce a model that is on par or better than current state-of-the-art (SOTA) models.

Furthermore, | will create a novel ASD corpus and conduct a preliminary exploration
of the embedded information. This is critical due to the complexity of ASD and its

association with a wide range of biomedical categories.

| will also explore different pre-processing techniques for BERT-based models and
quantify the effects of various factors on their performance. This aim seeks to identify

the optimal pre-processing steps for BERT-based models in the biomedical domain.

Finally, | will evaluate the impact of a corpus domain on the generability of a model
for a given category. This aim will be achieved by comparing the performance of
BERT-based models trained on a general phenotype corpus versus an ASD corpus,

providing insights into the domain-specific requirements for effective NER.

Overall, | aim to develop a comprehensive pipeline for document retrieval, evaluate
the reliability and performance of BERT-based models trained on a large-scale corpus
annotated by MetaMap, and explore the optimal pre-processing techniques for BERT-
based models to perform Phenotype Named Entity Recognition.

1.5 Outline

In Chapter 2, | navigate the biomedical corpus landscape for Named Entity Recognition
(NER). | start with an introduction of gold-standard biomedical NER data spanning
different biomedical categories. Then | continue by presenting the raw biomedical text
corpora currently available (PubMed abstracts and PubMed Central Open Access).

Finally, | mention existing silver-standard tools for BioNER. This introduction is



1.5. Outline 8

followed by the presentation of Cadmus Campbell, Lain, and Simpson (2023), a
novel method for the automatic retrieval of biomedical text corpora. To show the
similarities and differences between PubMed abstracts, PubMed Central Open Access
Maloney, Sequeira, Kelly, Orris, and Beck (2017), and Cadmus, | do a comparative
analysis that provides insights into the volume of biomedical information embedded in
each method. The journey continues with the implementation of ParallelPyMetaMap
Lain and Simpson (2021), my Python library for UMLS-entity extraction Bodenreider
(2004), explaining the capabilities and features available in it. | finish with a discussion

on the limitations and future prospects within this chapter.

In Chapter 3, | first introduce unsupervised (Latent Dirichlet Allocation David M. Blei
(2003)), semi-supervised (Corex Ryan J. Gallagher (2017)), and supervised (BERTopic
Grootendorst (2022)) methods for topic modeling. Second, | present the concept of
biomedical ontologies and especially focus on the Medical Subject Headings (MeSH)
NLM (2008) and Human Phenotype Ontology (HPO) Robinson et al. (2008). Then
using Cadmus and ParallelPyMetaMap presented in Chapter 2, | cover the search
strategy employed to generate the first large-scale ASD corpus, before showing the
results of the metadata and textual analyses. Finally, using the ASD corpus, | employ
topic modeling methods to identify latent topics present in the corpus. It is followed
by the creation of two distinct phenotype corpora, with a focus on Human Phenotype
Ontology (HPO) Robinson et al. (2008). To end this chapter, | talk about the

limitations and lay the groundwork for future avenues of investigation.

In Chapter 4, | start with an introduction to Named Entity Recognition presenting
the Transformer Infrastructure Vaswani et al. (2017), BERT Devlin et al. (2019),
and GPT Radford and Narasimhan (2018). | then move my focus to Biomedical
Named Entity Recognition introducing the three best-known methods in the field:
BioBERT J. Lee et al. (2019), SciBERT Beltagy et al. (2019), and PubMedBERT
Gu et al. (2020). To end the introduction | present two Phenotype Named Entity
Recognition methods PhenoBERT Feng et al. (2022) and Phenotagger Luo et al.
(2020). The chapter then transitions into a series of experiments designed to refine
BERT-based Devlin et al. (2019) models using the data generated in Chapter 3
and curated using ParallelPyMetaMap presented in Chapter 2. These experiments
encompass data curation steps and the re-training of BERT-based models using silver
standard data are evaluated on gold standard phenotype-entity recognition datasets,
underscoring the potential of my work. Yet, | acknowledge the limitations and pave

the way for future enhancements.
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In chapter 5, the general discussion synthesizes the findings from biomedical corpora
generation, ASD research, and advancements in phenotype-entity recognition. As |

reflect on the aims outlined in the introduction.



Chapter 2

Navigating the Biomedical Corpus
Landscape for Named Entity

Recognition

2.1 Introduction

In the field of BioNLP, having access to a high-quality biomedical corpus is indispens-
able, yet acquiring such a resource proves to be a challenging task. Unlike general
NLP corpora, which are readily available, their biomedical counterparts remain quite
limited Huang and Lu (2016).

Data generation is an important component in NLP. It plays a crucial role in creating
vast amounts of training data for machine learning models, particularly for tasks
like named entity recognition, language translation, text summarization, and question
answering, among others. These tasks heavily rely on extensive data to train models
with precision by providing a lot of different examples present in different semantic
settings. Additionally, data generation can also be leveraged to produce synthetic data,
enhancing and diversifying existing datasets, and ultimately boosting the performance

and adaptability of the trained model.

The field of biomedicine is dynamic and ever-evolving, with approximately 4,000
new publications emerging on PubMed every day embedded with new biomedical
knowledge. A readily accessible, carefully curated biomedical corpus is a vital asset
for harnessing the potential of Al in decision-making processes. Nevertheless, ob-
taining the raw data required to train language models for biomedical NLP tasks
remains difficult. This work seeks to address this challenge by presenting two com-
mon methods in biomedical NLP and introducing our novel automated approach

for biomedical corpus generation. Through these methods, | create three distinct

10
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specialized biomedical corpora and analyze their differences and similarities. The first
approach involves collecting abstracts of biomedical research articles made available
directly from PubMed. The second solution uses the open-access (OA) full-text corpus
generated by PubMed Central (PMC) Maloney et al. (2017), offering a substantial yet
somewhat limited pool of published literature. Lastly, | introduce Cadmus Campbell
et al. (2023), a biomedical domain full-text retrieval tool. These approaches provide
valuable resources for advancing biomedical NLP and enhancing the accessibility of

biomedical data for research.

Human-specialized annotations are undeniably the gold standard when it comes to
annotation accuracy X. Li et al. (2021). However, they come with significant draw-
backs, primarily in terms of time and financial resources. The process of having human
experts annotate a large corpus of biomedical data can be laborious, result in a lack
of inter-annotator agreement, time-consuming, and costly, making it less scalable for
projects requiring extensive data annotation. To overcome these limitations, biomed-
ical annotation tools/systems based on extensive biomedical databases can be used
as valuable alternatives. These tools offer a trade-off between annotation accuracy
and resource efficiency, making them indispensable in the field of biomedical NLP.
In the upcoming sections, | will explore four resources that contribute to biomedical
NLP named entity recognition. These resources are the Unified Medical Language
System (UMLS) Bodenreider (2004), MetaMap Aronson (2001), cTAKES Savova et
al. (2010), and SciSpacy Neumann, King, Beltagy, and Ammar (2019). Additionally, |
will present my adaptation of MetaMap for the Python community called ParallelPy-
MetaMap Lain and Simpson (2021), which improves the accessibility and utilization
of MetaMap's capabilities within the Python ecosystem.

The text corpus produced by these methods combined with specialized annotation
tools like MetaMap, cTAKES, and SciSpacy serve as a valuable resource for research-
ers. Researchers can seamlessly generate silver standard training data, specifically
tailored for tasks in biomedical named entity recognition by generating the text corpus
of their interest and extracting the relevant entities. These resources enable researchers
to create, refine, and expand their datasets. Without having to train a model, this
could also be used to extract the knowledge embedded in the corpus that can be

passed on to methods like data visualization or knowledge graph.
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2.2 Background

In this background section, | look into the generation of specialized biomedical cor-

pora by presenting different resources available to collect and use in biomedical text
annotation. My primary focus is on abstracts sourced from PubMed and the open-
access collection from PubMed Central (PMC) Maloney et al. (2017), which provide a
solid foundation for my research. | have deliberately omitted Wikipedia data from this
background section, prioritizing the reliability, accuracy, and credibility of my choice
of data sources by excluding community-generated data where | can not verify the

reliability of the claim.

The nature and objectives of Natural Language Processing (NLP) are significantly
shaped by the source of data. ClinicalNLP, for instance, relies heavily on Electronic
Health Records (EHRs) datasets like MIMIC (Medical Information Mart for Intens-
ive Care) Johnson et al. (2016). In contrast, BioNLP places a distinct emphasis
on research articles, where critical insights, discoveries, and emerging trends in the

biomedical field are documented.

PubMed stands as the key search engine in the life sciences VishrawasGopalakrishnan
(2019), indexing an extensive repository of over 35 million records dedicated to
biomedical literature. As of 2021, the annual influx of new articles indexed on PubMed

had tripled in two decades, surpassing approximately 1,800,000 newly added articles.

Furthermore, the landscape of BioNLP models, whether using full-texts, Electronic
Health Records, or abstracts, has witnessed remarkable growth. By the final quarter
of 2022, 'Hugging Face' Julien Chaumond (2016) had indexed a collection of 899
biomedical models, each trained using textual data. Numerous biomedical domain-
adapted BERT Devlin et al. (2019) models have emerged, fine-tuned for specific
applications. One pioneering domain-adapted BioNLP model, BioBERT J. Lee et
al. (2019), was trained using abstracts from PubMed and the Open Access full-text
content of PMC Maloney et al. (2017).

The silver standard in NER refers to a level of accuracy or performance that is
considered good or excellent, but not the best. It is often used to describe a NER
model or system that is able to accurately identify and classify a high percentage of
named entities in a given text, but may not be able to detect all entities or distinguish
between entities of different types. The silver standard is often achieved through
machine annotation, where a computer algorithm is used to automatically identify

and classify named entities in a text. While machine annotation can be efficient and
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cost-effective, it may not always be accurate or reliable, as machines may not be able
to understand the context and nuances of human language in the same way that
humans can. The gold standard in NER, on the other hand, refers to the highest
level of accuracy or performance. It is often used to describe a NER model or system
that is able to accurately identify and classify all named entities in a given text, and
distinguish between entities of different types. The gold standard is often achieved
through human annotation, where a human expert manually reviews and annotates a
text to identify and classify all named entities. Human annotation is considered the
most accurate and reliable method for achieving the gold standard, as humans are
able to understand the context and nuances of human language and can make more
accurate judgments about the meaning and relevance of named entities. However,
human annotation can be time-consuming and expensive, which is why the silver

standard is often used as a compromise between accuracy and efficiency.

Below, | introduce some existing, widely used expert-annotated biomedical corpora,
including datasets like BC5CDR J. Li et al. (2016), BCACHEMD Krallinger et al.
(2015), BC2GM Smith et al. (2008), and others. These corpora play an important
role in training and evaluating NLP models for biomedical named entity recognition.
It's worth noting that most of these datasets focus on the same biomedical categories
(i.e. Disease, Drug/Chem., Gene/Protein, Species), which can make it challenging
to find a human-annotated dataset that precisely aligns with one’s specific research
interests. Consequently, comparing one’s novel method against another may prove
to be a complex task without a publicly available annotated dataset. In Section
4.4, | use GSC+ Lobo, Lamurias, and Couto (2017), ID-68 Feng et al. (2022), and
BioCreativeVIIl task 3 Islamaj et al. (2023) introduced later in that section.

Moreover, | will continue by presenting raw biomedical corpora, focusing on PubMed
abstracts and the Open Access content from PMC Maloney et al. (2017). These two
sources act as a foundation for the development and evaluation of many NLP models
in the biomedical field. In addition to these resources, | introduce the first large-
scale domain-specific full-text corpus, CORD19 Wang et al. (2020), which became
a valuable asset in biomedical research during the early days of COVID-19. Its large
collection of research articles, preprints, and scholarly literature provides an extensive

source of data for various NLP applications.
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Finally, to bridge the gap between human-annotated corpora and raw biomedical
corpora, annotation tools designed to create silver standard annotations are needed.
These tools are cost-effective and efficient offering an alternative to expert-annotation
cost, time, and the risk of low inter-annotator agreement. | focus on MetaMap
Aronson (2001), cTAKES Savova et al. (2010), and ScispaCy Neumann et al. (2019).

2.2.1 Human-Annotated biomedical Named Entity Recogni-

tion Corpus

This section presents ten essential test datasets, with annotations made by experts,
that are used for training and testing NER models in biomedical named entity recog-
nition. They're crucial resources for researchers and developers working on biomedical
NER models.

NCBI Disease

The NCBI Disease Corpus Dogan and Lu (2012) was developed for disease name
recognition and concept normalization. The corpus consists of 793 PubMed abstracts
that have been manually annotated with disease mentions and their corresponding
concepts in Medical Subject Headings (MeSH) NLM (2008) or Online Mendelian
Inheritance in Man (OMIM) Amberger, Bocchini, Schiettecatte, Scott, and Hamosh
(2014). The corpus is split into training, development, and test sets, and is publicly
available to the community. It can be used to train and test disease name recognition
and concept normalization systems, and to develop new methods for extracting and
analyzing information about diseases from biomedical literature. Since the test is the
same for every member of the community benchmarking is made possible. The NCBI
Disease Corpus contains 6,892 disease mentions, which are mapped to 790 unique

disease concepts.

BC5CDR

The BC5CDR corpus J. Li et al. (2016) contains 1,500 PubMed abstracts that have
been manually annotated with chemical entities and disease entities and the relations
between them. The BC5CDR PubMed abstracts were selected based on their relevance
to chemical-disease relation extraction, their length, and their quality. In the context

of NER, this corpus can be used to identify diseases and chemicals. It contains a
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wide variety of entities that new NER systems are able to generalize to new data.
According to the initial paper J. Li et al. (2016), they identified 12,850 mentioned
diseases mapped to 2,920 unique diseases after resolving synonyms, and there are

15,935 mentioned chemicals that mapped to 2,144 unique chemicals.

BC4CHEMD

The BCACHEMD corpus Krallinger et al. (2015) contains 10,000 PubMed abstracts
that have been manually annotated with chemicals/drugs. The corpus is composed
of a wide variety of chemical /drug entities, including both common and rare entities.
The abstracts were selected randomly suggesting that no rules were developed to find
a set of PubMed abstracts relevant to chemical /drug. In the end, the corpus contains

84,355 chemical /drug entities mapping to 19,805 unique chemical/drug entities.

BC2GM

The BioCreative |l Gene Mention Recognition task Smith et al. (2008) aimed to
identify gene mentions in biomedical text. The task organizers added 5,000 new
sentences from an existing dataset used in a previous challenge. In total, the corpus
is composed of 20,000 sentences for which 24,583 genes were annotated spanning

multi-species.

JNLPBA

The JNLPBA dataset Collier and Kim (2004) is composed of 2,404 abstracts, identi-
fied through a controlled search on MEDLINE using the MeSH terms "human,’ 'blood
cells,” and 'transcription factors.” These abstracts were human-annotated to identify
various elements, including proteins, DNA, RNA, cell types, and cell lines. The dataset
was further divided into two subsets. The training set with 2,000 abstracts, featuring
a total of 51,301 mentions across all the categories mentioned above. Meanwhile,
the test set is made from the remaining 404 abstracts and includes a total of 8,662

mentions for evaluation purposes.
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LINNAEUS

The LINNAEUS corpus Gerner, Nenadic, and Bergman (2010) consists of 100 full-
text documents from the OA PMC document set which were randomly selected. All
mentions of species terms were manually annotated and normalized to the NCBI
taxonomy IDs of the intended species by human experts. The corpus contains 4,077

mentions of species as reported in J. Lee et al. (2019).

Species-800

The Species-800 corpus Pafilis et al. (2013) is composed of 800 abstracts published in
2011 or 2012 from journals selected to represent eight taxonomic groups: protistology,
entomology, virology, bacteriology, zoology, mycology, botany, and medicine. Each
category is represented by 100 abstracts of more than 500 characters. After human
annotations, 3,708 mentions of species were identified, mapping to 1,503 unique

species names representing 718 unique species.

GSC+

The GSC+ dataset Lobo et al. (2017) is formed of 228 abstracts cited by the Online
Mendelian Inheritance in Man (OMIM) database Amberger et al. (2014) to cover
44 complex dysmorphology syndromes analyzed in a previous Human Phenotype
Ontology (HPO) Robinson et al. (2008) study. The focus of the annotators was to
identify and link phenotype descriptions to their corresponding HPO identifiers. The
228 abstracts resulted in 1,933 annotations covering 460 unique concepts in HPO
related to 77 OMIM disorders.

ID-68

The ID-68 dataset consists of 68 medical clinical notes from patients with intellectual
disability anonymized and made public by Feng et al. (2022) where phenotypic de-
scriptions were described. This dataset was annotated by the authors of PhenoBERT
Feng et al. (2022) to offer an alternative to the only named entity recognition gold
standard phenotype corpus at the time. They follow the same annotation procedure as
employed by the GSC+ dataset Lobo et al. (2017) extracting the phenotype terms and
linking them to their corresponding HPO identifiers. The set counts 866 annotations

of which 578 are unique mapping to 437 HPO identifiers.
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BioCreativeVIIl task 3

The BioCreativeVIll task 3 dataset Islamaj et al. (2023) consists of 3,136 organ system
observations extracted from de-identified dysmorphology physical examinations of
1,652 pediatric patients evaluated at the Children’s Hospital of Philadelphia. From
these 3,136 clinical notes, 2,170 are publicly available. The authors provided 1,716
de-identified observations for training and 454 de-identified observations for testing.
The BioCreativeVIIl task 3 dataset like GSC+ Lobo et al. (2017) and ID-68 Feng et
al. (2022) focused on phenotypic mentions and mapping them to their HPO identifiers
Robinson et al. (2008). The training set contains 2,562 phenotype mentions mapped
to 707 unique HPO identifiers while the test set is composed of 685 phenotype entities
linked to 358 unique HPO identifiers.

2.2.2 Raw Biomedical Text Corpora

In this section, | introduce one of the two components required for generating gold or
silver standard data: the textual component also known as a corpus. Focusing only on
biomedical research articles, | first introduce two widely used techniques for creating
a biomedical corpus before presenting the only publicly large-scale domain-specific

biomedical corpus that | am aware of as well as mentioned in Wang et al. (2020).

PubMed Abstract

In the field of BioNLP, many renowned language models (J. Lee et al. (2019),
Beltagy et al. (2019), Gu et al. (2020)) are retrained using abstracts obtained from
PubMed. Access to PubMed's extensive data is facilitated through its two FTP
portals, where researchers can request the necessary data. PubMed maintains and
updates its database, reflecting daily and annual changes, including new additions
and revisions to existing records. Each year, on the 1st of January, PubMed generates
XML files that contain 30,000 entries at a time until all records within the database
have been processed. Additionally, PubMed releases daily updates, providing new
entries and modifications to existing records that were accepted on the previous day.
This regular data update process ensures that BioNLP researchers have access to the

most up-to-date information for their language model training.
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As of early January 2023, there are approximately 1,200 XML files, collectively rep-
resenting 35 million records. Each XML file typically contains a maximum of 30,000
records, where the metadata ( https://dtd.nlm.nih.gov/publishing/tag-library /2.1 /n-
58c0.html) and, when available, the abstract is provided.

Downloading all 1,200 files and extracting the contained information is a laborious
task. | developed an automated solution using Python, which is now available for
others to use Lain and Simpson (2022b). This automation relies on Python libraries
such as 'wget' from the base package of Python and 'BeautifulSoup’ Richardson
(2014).

The first step of the automation involves politely requesting the files from PubMed
via 'https://ftp.ncbi.nim.nih.gov/pubmed/baseline/’ (housing publications from the
start of PubMed until January 1 of the current year) and 'https://ftp.ncbi.nIm.nih.gov
/pubmed /updatefiles/" (which contains modifications of previously accepted record
and new entries for the current year). Using the 'wget' library in combination with
'BeautifulSoup’ Richardson (2014) to identify the href tags in the FTP links, PubMed
sends multiple gz files containing an XML file with the records. Upon receiving this
file, the process extracts its contents and saves both the gz and the XML files in a
pre-defined directory. After all the files have been collected, the automation proceeds
to extract information from each XML file, employing 'BeautifulSoup’ Richardson
(2014). During this extraction process, the automation identifies and records the

following details:

° PMID

° Title

° Abstract
° Date

° Language

° Publication type
° MeSH terms

Instead of keeping the entire 30,000 records per file, the automation preserves the
PMID as an index. It stores the metadata in a designated metadata directory, while
the abstracts, when provided, are saved as individual text files within the abstracts

directory.
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PubMed Central open-access

PubMed Central (PMC) Maloney et al. (2017) is the largest repository of full-text
biomedical data. As of early 2023, PMC hosted an extensive archive of 8.6 million
articles. It's worth noting that not all of these publications are free from copyright
restrictions; approximately 58% or 4,996,760 articles can be used freely and are
provided through the APIs. In a manner similar to PubMed, PMC provides two FTP
links to facilitate data collection. Unlike PubMed, PMC follows a different update
schedule, with updates occurring every three months and daily updates for newly
indexed publications. PMC's content can be broadly categorized into three main types
of data:

. Journal and Publisher Program Deposit
° Author Manuscript Deposit

° Digitization Projects

Some publications featured in PMC are not indexed in PubMed. PubMed only started
indexing preprints in 2020 in its database as well as certain publication types like book

reviews are only available in PMC.

The process of collecting data from PMC shares similarities with the method described

in the previous section. However, several distinctions come into play:

- FTP links provided by PMC are categorized based on file format (e.g., txt, XML)
and license status (commercial, non-commercial, other). For research institutes, we

have authorization to access publications under all three license categories.

- When requesting files from PMC, they are provided in three components: the gz

file, metadata saved as a txt file, and metadata in XML format.

The gz file contains directories and txt files labelled with a unique PMCID.txt format.
These files contain extra data that necessitates additional processing steps to isolate
the publication’s content. After identification, my process preserves the content in a
predefined directory. In contrast to PubMed, the metadata files from PMC provide
different sets of information, including:

° Article File
° Article Citation

° Accession|D
° LastUpdated (YYYY-MM-DD HH:MM:SS)
° PMID

° License
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° Retracted

As for PubMed abstracts, | developed an automated solution using Python, publicly
available Lain and Simpson (2022a).

First biomedical large-scale full-text in-domain corpus: CORD19

CORD19 Wang et al. (2020) was created to facilitate the development of text mining
and information retrieval systems for COVID-19 research. In the initial paper Wang
et al. (2020), the authors describe the creation and first release of CORD19, a free
and open dataset of scientific literature on COVID-19. CORD19 was released by the
Allen Institute for Al (Al2), in collaboration with The White House Office of Science
and Technology Policy (OSTP), the National Library of Medicine (NLM), the Chan
Zuckerburg Initiative (CZI), Microsoft Research, Kaggle, and Georgetown University's
Center for Security and Emerging Technology (CSET).

The first release contained 28,000 papers, and the collection expanded to more
than 140,000 papers over the next few weeks. The corpus is composed of metadata
about publications related to COVID-19 as well as their full-text content when avail-
able. CORD19 integrates papers and preprints from the World Health Organization,
PubMed Central, PubMed, bioRxiv, medRxiv, and arXiv.

All the information collected is harmonized and deduplicated through Semantic Scholar
of Medicine (2023a) a service also provided by Al2. Due to the unique nature of
COVID-19 in recent history, incentives were put in place to make coronavirus-related
papers easily accessible through PMC under open-access license terms. Also, pub-
lishers such as Elsevier and Springer Nature, provided full-text coverage of relevant
papers directly to Al2 so they could be included in the CORD19 dataset.

Despite all the efforts put into creating such a corpus with as much information
as possible when the corpus reached 140,000 publications only about 50% of the
publications identified had full-text available with them. Monetary prizes were also
available for the use of this corpus which resulted in the understanding of COVID-19.
Jake Lever (2020) used the CORD19 dataset combined with information retrieval

techniques to create a dashboard that summarizes information related to COVID-19.
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2.2.3 Silver Standard annotation tools for Named Entity Re-
cognition

In this section, | will present the second component required for generating gold or
silver standard data: the labels. An entity is a categorization assigned to a specific
span of text in a document, indicating the type of named entity it represents, such
as disease, gene, species, phenotype, or other entities of interest. These labels rep-
resent structured information from unstructured textual data. | will first introduce
the Unified Medical Language System (UMLS) Bodenreider (2004), a collection of
various controlled vocabularies, curated by experts, and used in the field of biomedical
research. Then | will describe three software tools that used the UMLS to build their
biomedical NER strategy.

Unified Medical Language System (UMLS)

The UMLS Bodenreider (2004) was developed to overcome two significant barriers to
effective biomedical information retrieval of machine-readable information: normaliz-
ing the synonyms or different terminologies mentioning the same biomedical concept

and merging the information embedded in different databases and ontologies.

As of the UMLS 2023AA of Medicine (2023b) release the three UMLS Knowledge

Sources are composed of:

° The Metathesaurus, which contains over fifteen million biomedical names, mapped
to more than three million biomedical concepts from over a hundred source
vocabularies

° The semantic network, defines 127 semantic biomedical types mapped to 15
broad biomedical categories. Each concept presented in the Metathesaurus will
be allocated to one of these categories providing an extra layer of information
to the biomedical concept

° The SPECIALIST Lexicon & Lexical Tools, which provide lexical information

and programs for language processing

The UMLS is a multilingual resource, meaning it can be used in several languages,
when focusing only on the English information, the UMLS 2023AA release counts just

above ten million biomedical names from 105 source vocabularies.

The semantic network used by the UMLS can be used to contextualize the nature of

the concept. Here is an example of 4 categories from 2 different groups:
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. Group type: Anatomy, Semantic Type: Anatomical Structure

. Group type: Anatomy, Semantic Type: Body Part, Organ, or Organ Component
° Group type: Chemicals & Drugs, Semantic Type: Clinical Drug

. Group type: Chemicals & Drugs, Semantic Type: Pharmacologic Substance

The semantic network created by the UMLS is a useful resource to generate an-
notations of interest based on the biomedical semantic type by merging information

coming from different database sources.

The source vocabularies of the Metathesaurus represents electronic versions of various
thesauri, classifications, code sets, and lists of controlled terms used in patient care,
health services billing, public health statistics, indexing and cataloguing biomedical
literature, and/or basic, clinical, and health services research. The Human Phenotype
Ontology (HPO) Robinson et al. (2008), the International Classification of Diseases
and Related Health Problems Tenth Revision (ICD10) Gr (1988), DrugBank Wishart
et al. (2017), the Gene Ontology (GO) Consortium (2003), and the MeSH ontology
NLM (2008) are examples of source vocabularies used by the UMLS.

MetaMap

MetaMap Aronson (2001) is a software program implemented to find UMLS Boden-
reider (2004) concepts in biomedical free text. MetaMap was developed using Prolog,
and since its first release in 1994, it evolved into a sophisticated UMLS-based named
entity recognition tool. MetaMap offers numerous parameters allowing its user to be
more strict during the extraction process. Since MetaMap uses the UMLS as lookup
information Bodenreider (2004), it can annotate more than four million concepts for

various categories.

In order to annotate biomedical free text, MetaMap takes text as input, the first step

of MetaMap is a lexical /syntactic analysis composed of 4 elements:

° The first element splits the input text into smaller segments and tries to identify
any acronym or abbreviation present in the segment

° The second element is a part-of-speech tagging that involves assigning a specific
grammatical category (i.e. Noun, Verb), to each word in the previously identified
segment.

° The input words are then compared to the lexical lookup, this can be used
to change abbreviations to their long form or normalize plural words to their

singular form
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. The last element of the first step uses the SPECIALIST minimal commitment
parser. It conducts a syntactic analysis of a text to identify phrases and their re-
spective lexical heads, providing a basic understanding of the text's grammatical

structure

Following the lexical /syntactic analysis, using a table lookup, MetaMap identifies all
variants, i.e. words or groups of words, present in the segment. Once the variants are
identified, MetaMap will identify potential candidates from the UMLS by matching
each variant to the UMLS vocabularies. The evaluation procedure used by the UMLS
is a linear combination of four linguistically inspired measures: centrality; variation;

coverage; and cohesiveness.

. Centrality: This assesses the significance of the linguistic head’s presence in
candidate words. If the head appears among the candidates the centrality
coefficient goes up.

° Variation: This factor measures the variety between text words and their cor-
responding candidate words. It quantifies how much the candidates differ from
the input text

° Coverage: It evaluates how much of the input text is covered in the mapping,
indicating completeness. It measures the extent to which the input text is
represented in the candidate words

. Coherence: Coherence looks at how connected or unified the mapping is. It

checks how many adjacent sections of the input text are included in the mapping

These measures are combined linearly, the coverage and cohesiveness measures are
given twice the weight emphasizing the importance of these two measures. The result
is then scaled to a value between 0 and 1000. Finally, the last component of MetaMap
will sort the result from the previous component from the highest to the lowest score

then the UMLS concepts matched are returned.

When measured against other methods based on UMLS lookup, MetaMap outper-
formed them on 5 out of 5 gold standard datasets Demner-Fushman, Rogers, and
Aronson (2017).

Since then, the creators of MetaMap introduced a more recent version known as
MetaMap Lite Demner-Fushman et al. (2017), which is written in Java. While it
operates faster, it provides only a limited set of parameter choices compared to the
original MetaMap. There was also an effort to make MetaMap accessible to the Python
community with PyMetaMap Rios (2019), but, like MetaMap Lite, not all parameters

are available in this version. As mentioned in the review paper Demner-Fushman
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et al. (2017), the word-sense disambiguation parameter is one of the parameters of
MetaMap not yet implemented in the newer version. This means that the results
are solely based on their textual overlap without contextualization being one of the

limitations of using other implementations rather than the initial MetaMap software.

Clinical Text Analysis and Knowledge Extraction System (cTAKES)

cTAKES Savova et al. (2010) is an open-source natural language processing system
for information extraction from biomedical free text. It was developed in Java and
rendered possible use in a cloud computing environment. Overall cTAKES is a pipeline
of components that combine rule-based and machine learning techniques. For the
scope of this section, my focus will be on the named entity recognition of cTAKES but
other functionalities are available. The pipeline is composed of five modules executed
in sequence and iteratively to map every identified candidate found in the input-free
text to the UMLS Bodenreider (2004).

The first module takes the biomedical textual input and performs sentence bound-
ary detection using OpenNLP's supervised ME sentence detector tool. This allows
cTAKES to identify the end of the sentences.

The second module tokenizes the segment of text identified in the previous modules
using a rule-based approach. The segment of text is split on space and punctuation,
then date, fraction, measurement, person title, range, roman numeral, and time token

are merged back together as one.

The third module is a normalizer which looks at a number of lexical properties. It maps
multiple mentions of the same word that do not have the same string representation

i.e. 'disease’ and 'diseases’.

The fourth module performs part-of-speech tagging on the normalized segment of
text by applying their supervised models inspired by the part-of-speech tagger of
OpenNLP’s module trained on clinical data.

Finally, the last component is cTAKES' named entity recognition implementation.
The NER method is based on a dictionary look-up algorithm within the noun phrase
obtained by the part-of-speech tagging. The dictionary was originally made from the
UMLS and was later enriched by adding terms from the Mayo-maintained list of terms
Savova et al. (2010). The NER method employed does not resolve ambiguity in case

more than one result is identified during the dictionary look-up.
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SciSpacy

SciSpacy Neumann et al. (2019) is a toolkit tailored for the biomedical field, offering
a range of NLP tools and resources. It is designed to handle the unique terminology
and language commonly found in scientific research articles, making it an essential

asset for processing biomedical articles.

One of the key components of SciSpacy is its collection of pre-trained models like
en_ner_bcbecdr_md or en_ner_jnlpba_md trained on some of the datasets mentioned
in Section 2.2.1. These models are trained on a vast amount of biomedical text data,
allowing them to understand and process the specialized language used in these fields
instead of using dictionary lookup. These models can maintain a focus on the specific

vocabulary and context found in scientific literature.

The SciSpacy pipeline is made of components trained using machine learning to return

their predictions. The pipeline is composed of the following components:

° Tokenization

° Part-of-Speech Tagging

° Dependency Parsing

° Named Entity Recognition

o (Optional) Entity Linking

Tokenization and Part-of-Speech Tagging were defined in Section 2.2.3. Dependency
Parsing determines the grammatical relationships between words in a sentence. It is
used to help the named entity recognition task by considering the structure of the text.
The next step of the pipeline is the named entity recognition component. The NER
model employs machine learning methods to identify the biomedical entities present
in the text. The model used by the authors Neumann et al. (2019) is composed of a
combination of word embedding and a convolutional neural network. Once identified,
SciSpacy allows the user to use the 'EntityLinker’ component to map the entities
extracted to one of the five vocabulary sources employed by SciSpacy. The vocabulary

sources accepted are:

o The UMLS database Bodenreider (2004)

o The MeSH ontology NLM (2008)

o The RxNorm ontology of Medicine (2019)

o The Gene Ontology Consortium (2003)

° The human Phenotype Ontology Robinson et al. (2008)
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If an entity extracted from the NER model is successfully linked to one of the identifiers
from the vocabulary source used by the 'EntityLinker’ then the extraction is returned

with its corresponding ontology identifier.

2.3 Cadmus: Automatic creation of biomedical text

corpora

Cadmus Campbell et al. (2023) is an open-source system developed in Python. It
serves as a solution for generating biomedical text corpora from full-text published
literature. The challenge of acquiring such datasets has long hindered methodological
advancements in BioNLP and limited our capacity to extract invaluable biomedical
knowledge from the biomedical published literature (Khalil, Ameen, and Zarnegar
(2021), Bari and Kusa (2022)).

Cadmus is the second attempt at the usage of domain-specific corpus for biomedical
research following CORD19 Wang et al. (2020). Nevertheless, it distinguishes itself by
introducing a level of generalization and automation that marks the first attempt at a
corpus generator tailored specifically for biomedical published literature. The Cadmus

system operates through three main steps:

. Query & meta-data collection
° Document retrieval
° Parsing & collation of the resulting text into a single data repository

This system, which is open-source and highly adaptable, is designed to retrieve open-
access (OA) articles and those from publishers accessible to users or their host
institutions. Cadmus is able to process documents of diverse formats, standardizing
their extracted content into plain text, and organizing article meta-data. It's important
to note that retrieval rates in Cadmus can vary depending on the nature of the query
and licensing status. Queries primarily consisting of newer papers tend to yield higher
retrieval rates, aligning with the ongoing efforts to promote Open Access (OA) in
recent years Jain (2012). Cadmus stands as an invaluable tool, simplifying access to
full-text literature articles and structuring them in a manner that facilitates knowledge

extraction through NLP and text-mining methodologies.
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Figure 2.1: Metadata collection pipeline from Cadmus.

2.3.1 Query & meta-data collection

The concept behind Cadmus was to construct a corpus retrieval system, utilizing
the same query structure as PubMed, but customized to meet specific research
requirements. Like PubMed, Cadmus initiates its operations with a search query. This
query is executed using the e-search tool from Entrez Direct Tao (2017), which queries
PubMed through an API provided by the National Library of Medicine (NIH). Lever-
aging the request library from the base package of Python, metadata is systematically
collected for each record. Crucial details such as PubMed ldentifier, PubMed Central
Identifier Maloney et al. (2017), and Digital Object Identifier (DOI) are extracted and
kept in a Pandas DataFrame. To enhance the retrieval, full-text URLs are collected by
employing the Crossref APl. A comprehensive overview of the extracted information

is presented in Figure 2.1.

2.3.2 Document retrieval

Following the collection of metadata, Cadmus proceeds to retrieve the respective
documents using the record identifiers extracted earlier. Cadmus leverages each record

identifier in conjunction with the relevant services and APlIs, as shown in Figure 2.2.

Cadmus initiates the document retrieval process by attempting to access the pub-
lication from established repositories, following a specified order: Crossref, doi.org,
PubMed Central, and Europe PubMed Central. In the event of unsuccessful retrieval
from these sources, Cadmus proceeds to utilize any available publisher APIs before
resorting to requesting the document from the publisher's webpage. When a publica-
tion is successfully located and identified as a full-text document, Cadmus saves the

publication and meticulously extracts its content. During the development phase, |
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Figure 2.2: Document retrieval pipeline from Cadmus.

extracted and annotated approximately 10,000 papers to establish statistical rules
aimed at detecting if the content extracted is the full text. These rules rely on
parameters such as cosine similarity between the abstract obtained from PubMed and
the content extracted from the file, file size, and word counts to classify a document

as full-text only when it aligns with our predefined criteria.

Cadmus is fully compliant within the regulatory guidelines defined by UK legislation
pertaining to the use of APIs for research purposes UK (2021), of Scientific T& MP
(2013). With these guidelines in mind, we prioritize the use of services explicitly
designed for research purposes before resorting to web scraping as a last resort.
Furthermore, if a document is requested but cannot be found, | have implemented ad-
ditional steps to extract candidate links, enabling continued search for the document.

These steps, along with the expected formats and services, are outlined in Figure 2.2.

2.3.3 Parsing & result

Parsing represents the final phase of the process. Once a document is determined to
be full-text, Cadmus employs one of three distinct methods based on the available
format. If the document is in a tagged format such as HTML or XML, content
extraction is carried out using the Python library Beautiful Soup 4 Richardson (2014).
For PDF content, the extraction process utilizes the Tika Mattmann (2014) Apache
Python library, while content in TXT format is directly extracted. Irrespective of the
format, after extraction, the system proceeds to process the text, removing metadata,
references, and links. This process results in a cleaner plain text representation of the

article's full-text content. Additionally, | analyzed the out-of-vocabulary (OOV) terms
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Figure 2.3: Overall pipeline of the Cadmus system.

to compile a list of words to be removed during the parsing process like link artefacts,
tags, and special characters. OOV terms were identified using a large model trained
by SciSpacy Neumann et al. (2019), specializing in various biomedical data sources.
Any word found in the content but absent from the SciSpacy model is classified as an
OOQV term. | then sorted the OOV list based on occurrence frequency, enabling me

to curate the list and identify OOV artefacts originating from the parsing process.

2.3.4 Capabilities

The Cadmus system, presented in Figure 2.3, is equipped with a diverse set of

capabilities, meticulously designed to meet the demands of BioNLP researchers.

1) Adaptive retrieval: Cadmus automatically retrieves both open-access (OA) pub-
lications and non-OA articles, provided the necessary permissions are in place. This

approach ensures that the user can retrieve the resources available to them.

2) Comprehensive Document Processing: The system can process and extract content
from major document formats, including HTML, XML, PDF, and TXT. This allows

researchers to access the content of any retrieved publication regardless of format.

3) Dynamic Text-Corpus Generation: Cadmus facilitates dynamic text-corpus gen-
eration, allowing for updates to previous results and the addition of new terms into
existing searches. This adaptive feature ensures that the system can facilitate the shift
of research needs by only retrieving the result due to the new terms to the already

retrieved result.

4) Efficient Document Storage: Acknowledging the importance of storage efficiency,
Cadmus efficiently compresses all downloaded data. The system can store and read

zip files, offering users uncomplicated access to stored content.
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5) Robustness and Reliability: Cadmus has features that enable it to perform consist-

ently even in case of events such as server errors, power failures, and IP blocking.

6) Automated Full-Text Retrieval: Cadmus handles the full-text article retrieval pro-

cess, liberating researchers from this labour-intensive task.

7) Rich Knowledge Capture: Full-text article retrieval serves as the gateway to captur-
ing previously inaccessible in-depth knowledge embedded within published literature.
Cadmus extracts important metadata, including keywords from the authors and MeSH
terms that can be used by methods like knowledge graph, topic modeling, and,

document recommendation.

8) User-Parsing Flexibility: Cadmus provides users with the freedom to employ their
preferred parsing methods, such as AutoCorpus Hu, Sun, Rowlands, Beck, and Posma
(2021), by storing every format it finds. This approach allows researchers to generate

output that aligns with their specific research objectives and preferences.

Cadmus is a comprehensive tool developed to answer the dynamic and diverse needs
of the BioNLP research community. Whether it's efficient storage, robust document
retrieval, rich knowledge capture, or automation and flexibility, Cadmus offers re-
searchers the resources to perform text-mining and NLP tasks for their tailored

biomedical corpus of interest. Cadmus is publicly available Campbell et al. (2023).

2.4 Comparative analysis for general unlabeled bio-

medical corpora

In this section, | will compare the information that can be extracted using the methods
detailed in Section 2. To perform this analysis, | use the corpus generated for our
paper, Yates, Lain, Campbell, Simpson, and FitzPatrick (2021), and some of the
analysis methods employed in Campbell et al. (2023).

The corpus was generated by combining the PubMed search results for 120 gene
names and symbols taken from the Developmental Disorders Genotype-2-Phenotype
(DDG2P) dataset Yates et al. (2021) Thormann et al. (2019). Cadmus Campbell et

al. (2023) was executed on a server hosted at the University of Edinburgh making
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use of Elsevier and Wiley API keys for maximized retrieval rate. The search query for
genetic disorders was executed using the 120 gene names from DDG2P with 'gene
symbol[TI]" yielded a total of 204,043 journal articles, of which 173,786 (85.2%)

full-text documents were retrieved through the university’s subscription.

In comparison, PubMed provides 179,389 (87.9%) abstracts, an extra 5,603 (2.7%)
compared to what Cadmus retrieved using the University of Edinburgh's subscription.
Furthermore, with the assistance of metadata provided by PubMed (when available),
| identified that 16,149 (7.9%) publications were affiliated with journals for which the
University of Edinburgh did not hold a subscription. While Cadmus was unsuccessful
in extracting these due to not owning the right to access this information it identified

the candidate links for these publications.

Finally, only 44,264 (21.69%) publications were indexed in the API provided by PMC.
Given that PMC is one of the services employed by Cadmus, it's worth noting that

all the full texts from PMC are present within the Cadmus results.

2.4.1 Unlocking the biomedical embedded information of the

research literature

In my objective to identify data for training biomedical language models, | explored
three sources: PubMed abstract, PMC Open-Access set, and Cadmus. Each of these

sources offers advantages and limitations.

Access to embedded information

PubMed abstracts stand as a cornerstone in the training of biomedical language
models, primarily due to their wide accessibility. The accessibility they offer to the
biomedical domain is invaluable, providing a solution to one of the significant chal-

lenges faced when building language models, the data needed to train them.

One common misconception regarding PubMed is the belief that it provides abstracts
for all of its 35 million records. However, a closer examination reveals that not
all records include abstracts. To estimate the availability of abstracts, | conducted
a straightforward analysis, counting the occurrences of the 'abstract’ tag within
PubMed data. This analysis uncovered a total of 24,729,517 abstract tags (69.54%)
for 35,606,904 PMIDs.



2.4. Comparative analysis for general unlabeled biomedical corpora 32

While abstracts offer a valuable entry point into the biomedical domain, they remain
a succinct introduction, leaving behind a wealth of information embedded within the
full text.

PMC Maloney et al. (2017) offers full-text information as opposed to PubMed, yet it
indexes only approximately 14% of the number of publications available in PubMed.
This limitation raises concerns, particularly in the context of domain adaptation for
biomedical purposes. When one seeks to focus on a specific condition or disease,
there's no guarantee that PMC will have sufficient full-text publications to prevent

model overfitting.

Cadmus Campbell et al. (2023), extends the information landscape by collecting
abstracts, PMC OA publications, and other OA and non-OA publications. It captures
valuable data locked within biomedical full-text publications, enriching the resources
available for training language models. Nevertheless, as opposed to the previously
mentioned methods, Cadmus needs to identify, request, and, extract the publication

making Cadmus the slowest method of all three.

To evaluate the information extracted from Cadmus not available using traditional
methods, Figure 2.4 shows the distribution of identified UMLS Bodenreider (2004)
entities extracted by the SciSpacy Neumann et al. (2019) UMLS entity linker within

the three corpora mentioned earlier: the abstract corpus, PMC OA, and Cadmus.

First, the abstract corpus, provides only a fraction of the total triggered entities,
amounting to 7.8% of which 1.2% is present only in this corpus. This highlights the
limited scope of information captured within abstracts.

Second, a more significant portion emerges when considering the collective impact
of both PMC OA and the abstract corpus, which together make up 35.1% of all the
triggered entities. It represents the percentage of knowledge BioNLP researchers can
access when limiting themselves by using the data made available with PubMed and
PMC.

Finally, the Cadmus non-OA corpus brings substantial additional knowledge, with
64.9% of all triggered entities originating due to its ability to draw from a variety of

resources such as the publisher's website to request the publication it can access.

In summary, Figure 2.4 reveals that abstracts offer valuable but limited information,
while the integration of multiple sources significantly increases access to a broader

scope of biomedical entities embedded in full-text showing the potential of Cadmus.
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Figure 2.4: Breakdown of the shared entities from each corpus. It shows the number
of entities found in each corpus. One corpus is composed of the abstracts, one of the
Open Access available from OA PMC, finally the last one is from Cadmus removing
the OA PMC. Cadmus brings 9,054,681 new UMLS entities not previously used.
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Density of Information

A common presumption is that full-text documents, due to their length, may contain
less entity per word when juxtaposed with concise abstracts, where information is
succinctly summarized. To investigate this assumption the histograms featured in
Figure 2.5 offer valuable insights into the count of biomedical entities per word across
distinct corpora.

For this analysis, | employed three distinct corpora: the abstract corpus, composed of
179,389 abstracts mentioned earlier; the PMC-OA corpus, comprising 44,264 full-texts
sourced from PMC Maloney et al. (2017); and finally, the Non-OA Cadmus corpus,
which is composed of 173,786 full-text documents, excluding the 44,264 documents
sourced from PMC.

To quantify the ratio of entity per word | used the following formula: Number of

entities in the document / Number of words in the document.

Documents obtained from both the OA PMC and non-OA Cadmus Campbell et al.
(2023) exhibit a close similarity, converging within a narrow interval between 0.25 and
0.3.

Furthermore, we can draw a second observation when looking at the distribution of the
ratio of entities per word, i.e. the frequency of biomedical entities in the text, within
abstracts. In this context, we note a modest elevation, ranging between 0.3 and 0.35.
This elevation reveals denser information content within abstracts. It's imperative
to contextualize this observation. Abstracts, by their very nature, are concentrated

summaries in comparison to full-text documents.

Taking this context into account, while it holds true that the ratio for full-text
documents is relatively smaller than that of abstracts, primarily due to their extensive
length, it is a compelling assertion that there is likely to be additional valuable
information embedded within full-text documents. This observation underscores the
continued significance of full-text sources for in-depth information extraction within

the biomedical domain as seen in Figure 2.7.
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Figure 2.5: Distribution of the ratio of SciSpacy biomedical entity per word. It shows
the number of UMLS entities found in each corpus compare to the number of total
words. The top of the distribution is similar for non-OA Cadmus and PMC-OA and
close to the top of abstract corpus. The actual value are available in Table 2.1

Corpus Number of | Mean Word | Entities per Word | OOV per Token
Documents | Count (SD) | mean (SD) mean (SD)
PMC-OA Subset 44,264 6142 (3139) 0.321 (0.04) 0.049 (0.039)
OA Cadmus 44,264 5460 (3144) 0.336 (0.03) 0.026 (0.027)
Non-OA Cadmus | 135,125 | 5185 (6304) 0.321 (0.04) 0.025 (0.028)
Abstracts 179,389 229 (80) 0.355 (0.05) 0.012 (0.016)

Table 2.1: Ratio of UMLS entities for each corpus. PMC-OA Subset — bulk
downloaded plain text files. OA Cadmus — Files retrieved using Cadmus subset for
those also present in the PMC-OA subset; Non-OA Cadmus — Files from the Cadmus
retrieved, genetic corpus excluding the open access papers; Abstracts - PubMed
Metadata abstracts for all available articles within the genetic corpus. OOV - Out
of Vocabulary records if a token lacks a word vector in the language model. Token -
a non-whitespace group of characters in the text. Word: A token that is not OOV,
punctuation or whitespace.




2.4. Comparative analysis for general unlabeled biomedical corpora 36

Coverage of the unique information extracted from biomedical ontologies

Focusing on the unique information contained within each corpus, | will now look at
the unique UMLS Bodenreider (2004) entities obtained with SciSpacy Neumann et
al. (2019) present in the biomedical documents retrieved. This exploration is shown in
Figure 2.6, where three distinct curves trace the rarification of unique UMLS entities,

considering the incremental addition of documents to each corpus.

The abstract corpus, even after incorporating 173,786 documents, exhibited approx-
imately 75,000 unique UMLS entities. In contrast, the PMC OA Maloney et al. (2017)
corpus offered a more substantial coverage, featuring around 110,000 unique UMLS
entities with only 44,264 documents. However, it is in the Cadmus Campbell et al.
(2023) corpus that we witness the highest number of unique UMLS with 175,000
unique UMLS entities for 173,786 documents, surpassing its counterparts significantly.

In conclusion, this plot underscores a marked disparity in the diversity of unique UMLS
entities between full-text and abstract corpora. While the OA PMC collection serves
as a valuable resource, it is constrained by the availability of information within the
OA set. The amount of distinctive information contained within full-text documents is
proof of its usefulness. The exposure to a broader spectrum of unique data enhances
transformers-based Vaswani et al. (2017) models to be more robust and comprehensive

when performing knowledge extraction within the biomedical domain.

To highlight the importance of Cadmus as an addition to the PMC OA set, | quantified
the coverage of three ontologies related to the corpus generated. The three ontologies
used the Human Phenotype Ontology (HPO) Robinson et al. (2008) which has
13,000 entries, the Gene Ontology (GO) Consortium (2003) with 45,000 entries, and
RxNORM (Normalised Naming system for generic and branded drug) of Medicine
(2019) with 53,000 entries.

Looking at the HPO coverage curve presented in Figure 2.7, we can see that with
only 50,000 full-text publications, coverage falls below 40%. However, the increased
number of documents retrieved by Cadmus increased the coverage beyond 45%
(approximately 650 entries in the HPO). This results in providing more training data
examples and a more complete representation of the phenotype terms present in the

scientific literature retrieved.
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Figure 2.6: Rarefaction curves for unique UMLS entities. Each curves shows
the number of newly unique UMLS terms extracted as we increase the number
of documents for each corpus. OA PMC is quickly limited due to the number
of publications available. Cadmus and Abstracts had about the same number of
documents, still Cadmus finds 100,000 unique UMLS terms not present in the abstract
corpus.
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Figure 2.7: Rarefaction curves for ontology coverage. Using the Cadmus corpus, it
represents how much of the ontology coverage is available in our corpus. While most
of the term will be found in a small corpus, more documents result in identifying the
less common terms of the ontology.
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A similar narrative unfolds for the GO and RxNORM ontologies, where the initial
coverage was relatively small due to our corpus capturing only a fraction of their
vast content. As our corpus size grows, the coverage gains diminish, reflecting the
diminishing number of previously unseen terms, which tend to be more challenging to
capture. Nonetheless, increasing our coverage and ensuring that every term of interest,
no matter how rare, finds its place in our corpus offering a fair representation of the

knowledge available.

2.5 Silver standard annotation generation: Paral-
leiIPyMetaMap

In selecting a named entity recognition tool for the biomedical silver standard an-
notation, | carefully considered MetaMap Aronson (2001), cTAKES Savova et al.
(2010), and ScispaCy Neumann et al. (2019). All three effectively leverage the Unified
Medical Language System Bodenreider (2004) for NER and NEN tasks. My decision
was made on the specific needs of my project. While MetaMap and cTAKES offer
robust UMLS integration, ScispaCy would have been useful if | needed a wider
range of natural language processing functionalities beyond named entity recognition.
Since my research prioritises the standardisation in UMLS concept identification and
mapping, MetaMap's singular focus on this aspect, along with its ease of mapping
to external resources developed by the National Library of Medicine (like the UMLS
itself), might prove more useful for my research. | developed the ParallelPyMetaMap
Lain and Simpson (2021) library to make MetaMap, the UMLS, and other valuable
resources created by the National Library of Medicine accessible and efficient for the
research community. | took into account the limitations of the prior adaptations,
MetaMap Lite and PyMetaMap Rios (2019), as well as their slow response times,
with the aim of enhancing these aspects without compromising performance. Firstly,
ParallelPyMetaMap allows users to use all MetaMap input parameters that impact
annotation performance. Secondly, it introduces an automation module to simplify the
process of annotating large volumes of text data by using the subprocess module and
creating multiple parallel MetaMap server instances to process multiple documents
concurrently. Thirdly, it translates all the information generated by MetaMap into
human-readable formats by referencing the NLM documentation for result inter-
pretation. MetaMap is outputting code from the UMLS semantic networks that
ParallelPyMetaMap converts to their corresponding human labels. Additionally, to
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optimize memory usage, the system automatically compresses all extracted inform-
ation. However, it also provides helper functions to access this data without the
need for memory-intensive expansion. Lastly, ParallelPyMetaMap is designed to be
parallelizable, enabling it to run multiple MetaMap servers concurrently. This reduces
the time required to annotate a collection of documents by harnessing more computing

resources compared to the original 1994 version of MetaMap.

2.5.1 Capabilities

ParallelPyMetaMap Lain and Simpson (2021) takes advantage of the processing
power of the available CPU cores on your machine by generating parallel instances of
the MetaMap Aronson (2001) server, enabling multiple documents to be processed
simultaneously. Its primary goal is to facilitate the annotation of biomedical pub-
lications using the UMLS Bodenreider (2004). Furthermore, it offers all the input
options found in MetaMap impacting its performance, before returning the result
it transforms the information into a human-readable format during the annotation
process. ParallelPyMetaMap also adds a degree of flexibility and adaptability by
dynamically managing the distribution of data across the number of CPU cores
provided, ensuring efficient resource utilization. Finally, it allows dynamic generation
by updating the output folder as your input data expands, eliminating the need to
re-annotate previously processed texts. In the event of system disruptions or failures,
ParallelPyMetaMap can easily resume the annotation process by distributing only the

missing documents, thus enhancing the overall efficiency of the workflow.

Complete performance features availability

As described in Demner-Fushman et al. (2017) and the input parameters list offered by
PyMetaMap Rios (2019), some critical input options available in MetaMap Aronson
(2001) are not present in the previously attempted adaptations. For instance, the
absence of the word sense disambiguation parameter in MetaMap Lite Demner-
Fushman et al. (2017) leads to challenges in effectively filtering annotations that
are purely textually similar. For example, when using MetaMap Lite, a sentence like
"The steroid will be kept for now and tapered at a later date on follow-up with Dr.
Coma" incorrectly links "Coma” to the UMLS Bodenreider (2004) concept [C0009421]
Comatose due to the absence of word sense disambiguation, despite the context
indicating a different interpretation.
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ParallelPyMetaMap Lain and Simpson (2021), on the other hand, not only includes all
the available parameters for MetaMap's performance but also introduces additional
parameters to provide a more versatile user experience. These new parameters offer
options to adjust the computational resources allocated to the process, change the
level of detail in the output, select of preferred output format, and accommodate a

wider range of input types used in BioNLP.

Automation

ParallelPyMetaMap Lain and Simpson (2021) was specifically designed to efficiently
annotate large biomedical text collections. Users can specify their preferences and
provide the system with the path to the directory or file they wish to annotate.
The system then automatically creates a designated output directory to store the
generated information. Using Python's request package, it retrieves files from the NLM
to add information to the MetaMap Aronson (2001) output. The annotation process
is optimized by distributing data across the user-defined CPU cores and maintaining
necessary information in memory, thus reducing loading times. After processing each
document, data from the previous document is cleared to prevent memory overuse. If
ParallelPyMetaMap encounters a document that cannot be annotated by MetaMap,
it retains the information in the output directory to prevent redundant annotation
attempts on different cores. Upon completion, users can access the annotated data

in the output directory.

Recognizing the fast-evolving nature of the biomedical field, ParallelPyMetaMap in-
corporates a module that automatically identifies previously annotated and failed
documents, simplifying the addition of new data without wasting time on data that

has already been processed.

Conversion to human-readable format

Due to the complex formatting of MetaMap Aronson (2001) output as well as their
use of abbreviation codes to link to their semantic networks. ParallelPyMetaMap
Lain and Simpson (2021) uses files of Medicine (2023a) provided by the NLM to
resolve the abbreviation codes to their human-readable format. This way, the semantic
abbreviation code 'nnon’ becomes 'Nucleic Acid, Nucleoside, or Nucleotide' similarly

the group abbreviation code 'T114" becomes 'Chemicals & Drugs'.
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After resolving the codes employed by MetaMap, the system extracts the desired
information and stores it in a dictionary. The dictionary structure depends on the

output parameters selections of the user.

Efficiency of space memory

Depending on the number of publications processed by ParallelPyMetaMap Lain
and Simpson (2021), the space usage can quickly go up as the output generates
three files about the same or bigger size than the input file. In order to be cautious
of the space used during extraction, every file is compressed to limit the memory
they occupy. Still, the system was developed to be able to access the information
embedded in compressed files. Since ParallelPyMetaMap uses dictionaries and in
Python dictionaries have constant time complexity, exploring the data generated is

easily achieved by the user.

Faster processing time

The primary concern with MetaMap Aronson (2001) as mentioned in Aronson and
Lang (2010) was its slow response time, a consequence of its original development
back in 1994 using the Prolog programming language. Given the improvement in
computational power since then, MetaMap's usage of computing resources appears
relatively low in comparison to today's standards. Instead of embarking on a re-
implementation of MetaMap in the hopes of achieving greater speed, | opted to
address this problem by leveraging the built-in multiprocessing library within Python.
ParallelPyMetaMap Lain and Simpson (2021) evenly distributes the data among
available CPU cores, allowing each core to use MetaMap through Python's subpro-
cess library and execute multiple MetaMap instances concurrently, effectively using
more computational resources to expedite the process by dividing the original time
required by the number of cores allocated. While ParallelPyMetaMap doesn't retrieve
annotations from MetaMap more rapidly, its strategy of distributing the workload
across multiple cores significantly reduces the time required to annotate the corpus
by making the most of the available computing resources. This resulted in speeding

up the process by: (time required to run MetaMap) / number of cores allocated.
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2.5.2 ParallelPyMetaMap result formating

MetaMap Aronson (2001) offers different output results depending on the preference
of the user. There are three options available in MetaMap, human-readable output,
Prolog Machine Output (MMO), and Fielded MetaMap Indexing (MMI) Output.
While the human-readable output only provides the concepts identified by MetaMap
the other two outputs are more comprehensive in terms of the extraction information
(see below). For that reason, MMO and MMI outputs are also implemented in
ParallelPyMetaMap Lain and Simpson (2021) depending on what information the
user wants to access. Both options will return at least the entities identified as well

as their location identified by MetaMap.

Machine Output

The prolog machine output contains the highest level of detail from running MetaMap
Aronson (2001). The machine output result is embedded in a dictionary with the

following keys and information:

o cui - The UMLS Bodenreider (2004) Concept Unique Identifier (CUI) identified.

° prefered_name - The preferred name for the entity identified in the text accord-
ing to the UMLS Bodenreider (2004).

. semantic_type - Comma-separated list of the semantic type abbreviations for
the identified entity.

. full_semantic_type_name - Comma-separated list of semantic type long-form

names for the identified entity.

° semantic_group_name - Comma-separated list of semantic group long-form
names for the identified entity.

. occurrence - Number of times this CUI has been found in the text in total.

° negation - Number of times this CUI has been found in the text in a negative/-
absent context.

o trigger - The list of the actual text mapped to this UMLS Bodenreider (2004)
concept identification.

° sab - The list of Abbreviated Source name, i.e. source vocabularies, in which
the CUI is registered.

. pos_info - The list of positional information doubles showing StartPos, /, and

Length of each entity identified.
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° score - The score has a maximum value of 1000. The higher the score, the
greater the relevance of the UMLS Bodenreider (2004) concept according to
MetaMap Aronson (2001). When the entity is considered in a negative/absent

setting the score is negative in that case the highest value is -1000.

Fielded MetaMap Indexing
The Fielded MetaMap Indexing (MMI) Output obtained by MetaMap Aronson (2001)

extracts less information than the prolog machine output. After reviewing the docu-
mentation, ParallelPyMetaMap Lain and Simpson (2021) provides the following level

of information for MMI output:

. cui - The UMLS Bodenreider (2004) Concept Unique Identifier (CUI) identified.

° umls_prefered_name - The preferred name for the entity identified in the text
according to the UMLS Bodenreider (2004).
. semantic_type - Comma-separated list of the semantic type abbreviations for

the identified entity.

° full_semantic_type_name - Comma-separated list of semantic type long-form
names for the identified entity.

. semantic_group_name - Comma-separated list of semantic group long-form

names for the identified entity.

° occurrence - Number of times this CUI has been found in the text in total.
° annotation - A dictionary containing the raw result from MetaMap Aronson
(2001).

2.6 Discussion

In this chapter, | initially provided an overview of the existing landscape in the field of
biomedical corpus generation for named entity recognition. | discussed the currently
available gold standard datasets for biomedical named entity recognition, introduced
the methods for generating raw biomedical text corpora, and presented the UMLS

database Bodenreider (2004) along with tools for silver standard annotation for NER.

| next detailed my novel approach to biomedical corpus generation Cadmus Campbell
et al. (2023). | broke down the various components of Cadmus, explaining the entire
process from start to finish. Cadmus represents the first-ever attempt at an automatic
biomedical corpus retrieval system. To assess Cadmus’ utility, | conducted a compar-
ative analysis against PubMed abstracts and OA PMC. | emphasized that while the
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ratio of entity per word it offers is similar to what you can get from PubMed abstracts,
Cadmus provides access to unique biomedical information embedded in the documents
it extracts, contributing an additional 66% extracted entities to the existing knowledge

compared to previous methods.

| introduced my Python implementation of MetaMap Aronson (2001), known as
ParallelPyMetaMap Lain and Simpson (2021). While it's not the first attempt to adapt
MetaMap to a newer programming language, ParallelPyMetaMap distinguishes itself
by successfully incorporating all the performance features of the original method while
addressing the demand for reduced response times, achieved through its parallelization

capabilities.

By combining the two methods | developed in this chapter, researchers have the
tools to construct their silver standard datasets by unlocking the knowledge stored
within the UMLS for their specific areas of interest. The fusion of these two methods
can prove valuable in text mining tasks that could result in the creation of data

visualization tools or the development of knowledge graphs.

2.6.1 Limitations

| will first introduce the limitations of Cadmus Campbell et al. (2023) before moving
on to ParallelPyMetaMap Lain and Simpson (2021).

Cadmus

Cadmus Campbell et al. (2023) is the first attempt to create a free research tool for
automatic biomedical full-text corpus generation. As highlighted in Wang et al. (2020),
there is a growing need, especially in times of emergency, for increased accessibility to
scientific content for researchers. Cadmus effectively addresses this need within the
range of available content access. The same query can yield different output based
on the user's license status. However, Cadmus extends its reach beyond the OA PMC
dataset Maloney et al. (2017), providing access to a more extensive coverage than
existing solutions. It is important to note that Cadmus emerges as a highly valuable
resource for users with extensive publisher subscriptions by allowing them to retrieve
what they have the right to access. On the other hand, users without subscriptions
may access more publications than those within OA PMC but may have access to a

more limited selection compared to users with active subscriptions.
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Cadmus has been developed in compliance with the UK regulations governing text
data mining for research purposes (UK (2021), of Scientific T& MP (2013)). The legal
framework in the UK promotes the utilization of text data mining, allowing them to
leverage computer systems for accessing the subscribed materials fully. However, it's
essential to note that users are not permitted to redistribute this content, as they
do not own the copyright. This means that research findings can be shared, and a
small part of the content present in these publications can be disseminated to others
by employing a 100-character window around the entity of interest. Nevertheless,
the complete content should remain with the individual user, in line with copyright

regulations.

Cadmus provides access to publications that users are authorized to reach by initially
identifying a list of potential candidates and then employing various services to locate
and request them. In contrast, PubMed abstracts and OA PMC directly offer access to
their complete datasets, only requiring users to extract the relevant results and identify
the potential publications on their own. However, it's important to note that Cadmus
does not possess its own data, which means that each request must be initiated
anew for every search, without the benefit of pre-existing datasets. Consequently, this
results in Cadmus being much slower than its counterparts. Cadmus includes all the
information available from PubMed abstracts and OA PMC in its results, along with
additional publications, all of which are automatically integrated, saving users the

effort of manual extraction.

The current Cadmus version exclusively provides a single output format, where all
the content from a publication is available in plain text. However, it does not offer
the options for users to explore the content using a dictionary-style approach, as
demonstrated in Hu et al. (2021), or to selectively extract only the desired paragraphs.
This process can be facilitated by utilizing the Information Artifact Ontology Ceusters
(2012), which allows access to specific sections, such as the 'methods section’ or

"results section.’

Cadmus currently relies on the search strategy used by Entrez Direct Tao (2017). For
that reason, Cadmus can only offer publications that are indexed in PubMed and those
identified using this search engine approach. While PubMed is widely recognized as a
significant database of records of biomedical publications, Cadmus’ coverage remains

partial due to its dependence on PubMed.
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ParallelPyMetaMap

ParallelPyMetaMap Lain and Simpson (2021) provides the features from MetaMap
Aronson (2001), a higher annotation speed rate, and unlocks the full potential of the
UMLS Bodenreider (2004) for the community. However, its strategy is mainly based
on dictionary look-up making it useless in case the vocabulary of interest is absent
from the dictionary. Its inability to identify unseen entities makes it less reliable than

the current state of the art for certain source vocabularies.

It's important to note that ParallelPyMetamap necessitates the use of MetaMap,
which is a resource distributed under license, thereby imposing restrictions on its

usage.

Despite efforts to parallelize the process, the time required for ParallelPyMetamap
to annotate a single input on one core remains relatively slower than current deep
learning models. This is because ParallelPyMetamap attempts to match an identified
candidate with the four million concepts within the UMLS, in contrast to deep learning
models with a smaller number of categories. When ParallelPyMetamap is configured
with input parameters that filter the UMLS to a smaller vocabulary size then its
annotation speed almost compares with current state-of-the-art solutions by being

only slightly slower.

2.6.2 Future work

In this section, | will mention the areas where Cadmus Campbell et al. (2023) and
ParallelPyMetaMap Lain and Simpson (2021) could be developed in the future to

improve performance or usability.

Cadmus

The initial enhancement that can be applied to Cadmus Campbell et al. (2023) is
regarding its response when dealing with multiple JavaScript redirections. Cadmus
relies on services to identify the paper’s location, it can be achieved for example by
accessing doi.org/{DOI of the paper}. If one enters this URL in a web browser, one
will observe a redirection from doi.org to the actual publisher’'s website where the
paper is stored. Although Cadmus is generally effective at handling these redirections,
| have identified areas for improvement, particularly when consecutive redirections

occur. Addressing this issue could ultimately enhance Cadmus' retrieval performance.
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By merging the search strategy and database entries from other sources, Cadmus
could let users select their preferences in terms of data providers. Cadmus may
potentially offer the choice to include preprints from sources like arXiv, bioRxiv, and
medRxiv. This would be beneficial when users need timely access to information, such
as in emergency situations, as opposed to Cadmus’ current practice of exclusively
offering peer-reviewed papers. This feature could also grant users the option to select
their preferred search engine strategy. Currently, Cadmus only provides results from
PubMed, but in the future, it could also provide results obtained from PMC Maloney
et al. (2017). By merging the results from multiple search engines Cadmus will have

a better coverage of one's scientific interest.

Currently, there is only a single output format that extracts the content directly from
the publication and saves the content as a plain text file, overlooking the document's
structure, and thus missing the structural organization of the content. Thanks to
recent progress in PDF extraction tools and the parsing of HTML and XML formats,
Cadmus could introduce an option to either extract the content as a whole or maintain
the paper's structural elements. This improvement would ultimately improve the user
experience by enabling users to easily navigate the document and choose or omit

specific paragraphs of interest.

ParallelPyMetaMap

ParallelPyMetaMap Lain and Simpson (2021) serves as a biomedical named entity
recognition tool for generating annotations at a silver standard level. Given the specific
nature of its annotations, there may be a need to utilize human annotation web page
tools like TeamTat Dogan, Kwon, Kim, and Lu (2020) to review and manually refine
the predictions made by ParallelPyMetaMap. At the moment, ParallelPyMetaMap can
effectively handle various document formats, but it treats the content as plain text
input. A valuable enhancement could involve implementing a feature that enables
users to select from a range of structural input options, such as the BioC format
Comeau et al. (2013). This would allow ParallelPyMetaMap to navigate the input
and provide its predictions in the desired format directly, this way ParallelPyMetaMap

aligned itself with the user's specific requirements.



Chapter 3

Advancing Biomedical Knowledge
with Autism Spectrum and MeSH
Phenotype Insights

3.1 Introduction

The imperative for large-scale biomedical corpora is underscored by the difficulty and
expansive nature of biomedical data. This demand comes from the necessity to capture
the diversity and complexity inherent in various biomedical sources, including research
articles, clinical notes, and genetic information. In this context, Autism Spectrum
Disorder (ASD) is the perfect example of a disease reliant on multiple clinical aspects,
warranting comprehensive corpora for a better understanding. The surge in data-driven
technologies, particularly in natural language processing and machine learning, further
accentuates the need for extensive corpora as training grounds for developing robust
models. These corpora serve as invaluable resources for identifying trends, patterns,
information, and emerging themes within the vast domain of biomedical literature.
Moreover, having large-scale corpora contributes to the reproducibility of research
findings, providing foundations for evidence-based decisions. As biomedical research
continues its evolution, large-scale corpora remain pivotal, serving as an indispensable

component to unravel the complexities of human health and disease.

In this chapter, the exploration begins with an introduction to fundamental concepts
and tools essential for navigating biomedical textual data. The first section introduces

methods in topic modeling, and some biomedical ontologies.

49
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The second section introduces the Autism Spectrum Disorder (ASD) corpus. | present
the search strategy used for the automated generation of the first large-scale disease-
specific corpus. Additionally, a detailed analysis of metadata and textual information is
presented, setting the stage for the application of four distinct topic modeling methods
on our ASD corpus. This comprehensive approach provides insights into latent topics
within the ASD corpus, enriching our understanding of the vast landscape of ASD-

related literature.

The third section introduces our phenotype corpora by presenting their generation
process and retrieval. These corpora showcase the careful curation and coverage of
the Human Phenotype Ontology (HPO) Robinson et al. (2008).

3.2 Background

This background section introduces two tools in corpus classification and visualization:
Topic Modeling, and Ontologies. In the exploration of Topic Modeling, | introduce
Latent Dirichlet Allocation (LDA) David M. Blei (2003), Corex Ryan J. Gallagher
(2017), and BERTopic Grootendorst (2022) and describe their approach to topic

extraction.

Then my focus turns to ontologies, especially the Medical Subject Headings (MeSH)
NLM (2008) and Human Phenotype Ontology (HPO) Robinson et al. (2008). These
ontologies contribute to standardizing descriptions of biomedical entities, fostering

interoperability, and facilitating effective data integration.

3.2.1 Topic Modeling

Topic modeling is a method used in natural language processing to automatically
identify topics present in a large corpus of text. It is a way to uncover hidden structures
in the data and discover patterns in the text. These topics are represented as a
mixture of words and can be used for various applications such as text classification,
information retrieval, and document summarization. It can also be used for visualizing
the theme of a collection of documents, finding the main topics discussed in a large

corpus of text, and extracting insights from unstructured data.
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Diverse methods include unsupervised techniques like Latent Dirichlet Allocation
(LDA) David M. Blei (2003) and Non-Negative Matrix Factorization D. D. Lee
and Seung (1999). Supervised approaches like Guided LDA Zhou, Kan, Huang, and
Silbernagel (2021) and Labeled LDA Ramage, Hall, Nallapati, and Manning (2009)
incorporate external guidance, while weakly supervised methods utilize external know-
ledge for topic modeling with methods like Corex Ryan J. Gallagher (2017).

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) David M. Blei (2003) is a generative probabilistic
model for topic modeling in text data. It is one of the most popular unsupervised

techniques for topic modeling.

The basic idea behind LDA is that each document in a corpus is a mixture of multiple
topics, and each topic is a mixture of multiple words. LDA represents documents as a
probability distribution over topics and topics as a probability distribution over words.
The model assumes that the words in a document are generated by first selecting a
topic from a document-specific topic distribution and then selecting a word from the

topic-specific word distribution.

The process of training an LDA model involves estimating the parameters of the topic-
word and document-topic distributions using the data. Once the model is trained, it
can be used to discover the topics in new documents by inferring the topic distribution

for each document.

Corex

Corex Ryan J. Gallagher (2017) is an algorithm for topic modeling that is based on
the idea of "correlation explanation”. It aims to identify the most informative words
and the most relevant topics in a corpus of text. Corex works by finding the most
highly correlated words in the data and grouping them into clusters, which represent
the topics. Corex does not rely on a probabilistic generative model, but instead, it
uses a combination of a sparse linear model and a clustering algorithm to identify the

topics.
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Some of the main advantages of Corex are that first, it is able to handle high-
dimensional and sparse data. Second, it can also identify overlapping topics and words,
which is something that LDA David M. Blei (2003) is not able to do. Third, Corex
can provide a more interpretable output than LDA, as it generates topic labels based
on the most informative words in the corpus. Finally using Corex one can infer the
topics one is looking for by providing a list of "anchor words’. The model will then try

to match the words provided with the most highly correlated words in the text.

BERTopic

BERTopic Grootendorst (2022) is a variant of BERT (Bidirectional Encoder Repres-
entations from Transformers) Devlin et al. (2019), a pre-trained transformer-based
neural network architecture, that is fine-tuned for topic classification. BERTopic is
trained to predict the topic of a given text by using the transformer architecture with

a multi-label classification head for the last layer of the model.

BERTopic uses a pre-trained language model as a starting point which allows it
to understand the context and meaning of the words in a text. Like Corex Ryan
J. Gallagher (2017), BERTopic can be used for unsupervised and semi-supervised

training.

In the case of unsupervised training, the fine-tuned BERTopic is used to generate
representations of the texts, and then clustering (HDBSCAN Mclnnes, Healy, and
Astels (2017)) and dimensionality reduction techniques (UMAP Mclnnes and Healy
(2018)) are applied to these representations to discover topics. It uses the pre-trained
BERT model as an encoder to map the text data into a high-dimensional space where

the texts with similar topics are close to each other.

In the case of semi-supervised training, the BERTopic model is fine-tuned on a corpus
and its corresponding topics, so it can learn to predict the topic of new texts. The fine-
tuning process involves adjusting the model’'s parameters to optimize the performance
on the task of topic classification. Supervised BERTopic Grootendorst (2022) showed
state-of-the-art performance on a variety of topic classification tasks such as news,

scientific papers, and Twitter data.
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3.2.2 Introduction to biomedical ontologies

An ontology is a framework that defines and organizes knowledge in a specific domain,
capturing relationships and entities while providing a structured representation of their
connections represented as a tree structure. Essentially, it is a formalized, explicit
specification of shared vocabularies within a particular field, offering a common un-

derstanding and vocabulary for individuals or systems interacting within that domain.

The importance of an ontology lies in its ability to enhance information sharing,
exchange and make use of structured information across diverse systems and ap-
plications. By establishing a standardized and universally accepted set of terms and
relationships, ontologies facilitate more effective communication and knowledge in-
tegration. Ontologies can allow computers to interpret, reason, and infer meaning

from data.

Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) ontology NLM (2008) is a comprehensive and
hierarchically structured vocabulary developed by the National Library of Medicine
(NLM) for indexing, cataloguing, and organizing biomedical information. MeSH is
used by PubMed to describe the content of its records providing a standardized way
to categorize and retrieve information from biomedical research articles. Comprising
over 30,000 descriptors, MeSH encompasses terms related to anatomy, diseases,
chemicals, drugs, and medical procedures, among others. This extensive ontology is
organized into a tree-like structure, with broader categories containing more specific
subcategories. MeSH incorporates relationships between one term to the rest of the

ontology, contributing to its dynamic nature and adaptability.

Human Phenotype Ontology (HPO)

The Human Phenotype Ontology (HPO) Robinson et al. (2008) is a structured
and standardized vocabulary designed to systematically capture and represent human
phenotype. Developed to facilitate the analysis of phenotypic information, especially
in the context of genomic data, HPO is used in the field of medical genetics and rare
diseases. HPO is composed of over 13,000 terms, it categorizes terms related to ana-
tomical structures, physiological functions, and clinical manifestations. These terms
are connected through a hierarchical structure, allowing for a detailed representation

of the relationships between different phenotypic features. The ontology provides all
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the synonyms of a term, this can later be used for normalization purposes and connect
the extracted information together. The HPO is incorporated into other ontologies like
MeSH NLM (2008) and the UMLS Bodenreider (2004), the information is recorded
within the ontology simplifying cross-references to other data sources. Finally, HPO
provides information related to the relations between a phenotype term to known

diseases or known genes linked to it.

3.3 The Autism Spectrum literature corpus

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is charac-
terized by deficits in social interaction, impaired communication, and a range of
stereotyped and repetitive behaviours. Mayada Elsabbagh (2012) estimated that 1
in 160 children in America, the Western Pacific, and Europe have Autism Spectrum
Disorder. Most of the characteristics to identify ASD are a list of terms describing
the behaviour of an individual. An individual with ASD can have a multitude of co-
morbidities including intellectual and language disabilities as well as various social and
behavioral features. Approximately one-third of cases regress between one and two
years of age Backer (2015). An accurate and deep characterization of the 'phenotype’
of a patient is key when diagnosing ASD. Also, there are different levels of phenotype
descriptions depending on the ability of one with ASD. For example, when evaluating
someone with ASD in the matter of social interaction and communication, a specialist
will look for: difficulties in normal back-and-forth conversation, reduced sharing of
interests or emotions, challenges in understanding or responding to social cues such as
eye contact and facial expressions, deficits in developing/maintaining/understanding
relationships (trouble making friends), and others. Capturing detailed and accurate
phenotype descriptions will help the research community better understand ASD and
to link phenotypic information to other clinical and generic data. Sometimes, when
parents are waiting for a diagnosis, they will go through a lot of stress and unnecessary
medical exams. This is the result of a poor understanding of the condition. Although
it has improved in recent years, the average time to diagnosis is still greater than
three yearsFabrice Rousselot (2015).
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3.3.1 Corpus Generation

The search strategy employed to generate the Autism corpus using Cadmus Campbell
et al. (2023) based on the PubMed search engine is thoughtfully constructed. After
multiple attempts at capturing most of the ASD-related literature | used the following
query: '((((Autism) OR (Autistic)) OR (Autism Spectrum Disorder)) OR (Asperger
syndrome)) OR (ASD)) NOT (Atrial Septal Defect),’. This query shows a well-
balanced combination of inclusiveness and specificity. It contains synonymous terms
associated with autism, such as 'Asperger syndrome’, 'Autistic’, 'Autism Spectrum
Disorder’, and 'ASD’, ensuring a comprehensive coverage of relevant literature. Sim-
ultaneously, its precision is enhanced through the exclusionary component 'NOT
(Atrial Septal Defect),” eliminating articles related to a different medical condition also
shortened as ASD, thus refining the search to articles exclusively focused on autism.
The query's sensitivity to the variability in terminology, meticulous use of logical
operators, and adherence to PubMed's search syntax contribute to its effectiveness
in retrieving a targeted and pertinent set of autism-related research articles. The

numbers of unique PMIDs attributed to each search term are presented in Table 3.1.

The autism corpus could potentially be very useful for the scientific community. It
could be used to train machine learning models for various NLP tasks, such as text
classification, information extraction, and named entity recognition, which could help
researchers and practitioners in the field of autism to better understand the condition
and develop new treatments and protocols. Additionally, the autism corpus could also
be used to improve the performance of natural language interfaces for individuals with
autism, such as chatbots Cooper and Ireland (2018) or virtual assistants Rehman et

al. (2021), which could help improve their communication and social interactions.

Using Cadmus, the Autism corpus is composed of 72,058 records as of May 2022.
Cadmus, under the licenses owned by the University of Edinburgh, was able to retrieve

59,547 full texts. Here is the summary of the documents retrieved by Cadmus:

o Number of records indexed in Pubmed: 72,058 (100%)

. Number of full text found: 59,547 (82.64%)

o Number of records where at least one tagged file was found: 35,246 (48.91%)
o PDF format: 35,043 (48.63%)

o HTML format: 29,075 (40.35%)

o XML format: 18,121 (25.15%)

° TXT format: 14,590 (20.25%)



3.3. The Autism Spectrum literature corpus

PubMed search Number of PMIDs
Autism 62,509
Autistic 29,174
Autism Spectrum Disorder 47,444
Asperger syndrome 2,561
ASD 30,834
((((Autism) OR (Autistic))
OR (Autism Spectrum Disorder)) 67,063

OR (Asperger syndrome)))
((((Autism) OR (Autistic))
OR (Autism Spectrum Disorder)) 75,452
OR (Asperger syndrome)) OR (ASD))
((((Autism) OR (Autistic))
OR (Autism Spectrum Disorder))
OR (Asperger syndrome)) OR (ASD))
NOT (Atrial Septal Defect)

72,058

Table 3.1: Contribution of each search term to the overall query.
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3.3.2 Metadata Analysis & textual visualization

When running cadmus Campbell et al. (2023), metadata is retrieved before looking
for the full text as shown in Figure 2.1. The metadata of a corpus contains information
that provides a structured overview of its contents, facilitating effective organization
and analysis. In the context of research literature, metadata elements include pub-
lication date, journal, publication type, MeSH terms NLM (2008), and keywords.
Publication date provides the temporal dimension, the chronological evolution of
research topics, and if any shift of focus emerges as the year passes. Journal metadata
offers insights into the sources and outlets of the work, aiding in the assessment
of credibility. Additionally, publication type categorizes documents, distinguishing
between original research, reviews, and various content types, thereby shaping the
corpus’ composition. Finally, MeSH terms and keywords, when available, provide a
general idea of what the content of the publication is about by providing a list of

specific key terms.

Data literacy of a corpus is the capacity to interpret, analyze, and derive meaningful
insights from the data within that corpus. A text corpus is filled with embedded
information, data literacy equips individuals to navigate, comprehend, and leverage

the information by harnessing the knowledge embedded within the dataset.

The historical frequency of the Autism research

The concept of autism was first introduced in 1911 by the German psychiatrist Eugen
Bleuler to characterize a symptom observed in the most severe cases of schizophrenia
a concept he had previously formulated Evans (2013). After its inception, autism
research found minimal interest until the year 2000. Figure 3.1 illustrates the limited
research output on autism between 1951 and 2000, with only 6,764 publications during
this period.

Notably, from 2001 to 2005, a substantial peak occurred, where approximately 63%
of the cumulative research output from the previous fifty years was published. Since
then, there has been a continuous rise in publications related to autism, reaching
25,225 for the period 2015-2020.

Figure 3.2 zooms in on the years 2011-2021, given that the corpus was retrieved
in early 2022. In 2011, 2,386 publications were released, and Cadmus Campbell et
al. (2023) successfully obtained 83% of the full texts using the licenses held by
the University of Edinburgh. By 2021, the number of publications had surged to
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Figure 3.1: Number of publications submitted between 1951 to 2020 aggregated by
5 years window.

8,386—3.5 times the 2011 figure. Over the years, Cadmus has demonstrated improved
retrieval rates, particularly noticeable between 2011 and 2020. However, in 2021, the
challenge arose as records sometimes preceded the availability of links to the full texts,

making the retrieval of very recent publications more difficult.

Distribution of the Journal publishing Autism research

The effectiveness of Cadmus Campbell et al. (2023) depends on two primary factors:
journal subscription and a tendency to excel in finding newer publications. Figure 3.3
illustrates the distribution of the top 20 journals in which autism research has been

published. The top three journals are specialized in autism research.

Frequency of the Publication Type in the Autism Corpus

About half of the publication type tags present in our corpus are journal articles
as shown in Figure 3.4, which makes it the biggest publication type of the autism
corpus. Some interesting publication types: 7.63% are review articles, 3.26% are case
support where one can find additional information alongside the full text, and 2.17%

are comparative studies.
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Figure 3.2: The retrieval rate of the autism corpus for the last 10 years, with the
number of publications per year.

Analysis of the Mesh terms present in the Autism Corpus

In Figure 3.5, the top 30 most recurrent MeSH terms NLM (2008) within the Autism
Spectrum Disorder (ASD) corpus provide an overview of the type of information
one can expect to find in the corpus. The top of the list focuses on population-
related descriptors, with terms like 'humans’, 'male’, 'female’, 'child’, 'adolescent’, and
"adult’, it reflects the population contributing to and benefiting from ASD research.
Then around the middle of the list, clinical terms such as 'genetics’, 'psychology’,
'physiopathology’, and 'metabolism’ show the multi-disciplinarity of ASD research,
highlighting the connection between areas like genetics, psychology, and physiology.
Finally, ASD-specific MeSH terms like 'autistic disorder’, "autism spectrum disorder’,
"child development disorders pervasive’, and 'social behavior' focus on specific parts

of the spectrum.

Analysis of the Keywords provided by the authors

Keywords as opposed to MeSH terms NLM (2008) are provided directly by the authors
and are neither normalized nor restricted to the scope of an ontology. This results
in a more in-depth and descriptive description of what is present in the publication.
However, the absence of standardization often leads to increased term duplication,
posing challenges for information extraction. For example, the first four terms reported
in Figure 3.6 are 'autism’, 'autism spectrum disorder’, 'autism spectrum disorders’,
and 'asd’. These four terms refer to the same information, meaning with a better
consistency as with MeSH terms, their counts would have been aggregated together,

instead, the first item, i.e. 'autism’, of Figure 3.6 is mentioned ~8000 times in the
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Figure 3.4: Distribution of the publication types, publication types below 1%
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Figure 3.5: Top 30 most recurrent MeSH terms within the ASD corpus.

metadata while in Figure 3.5 the first item, i.e. 'humans’, is present 50,000 times in
the metadata. Nevertheless, there is value in studying keywords as the information
they provide is more detailed and clinically oriented to the MeSH terms presented
in Figure 3.5. Some of the clinically relevant keywords present in the top 30 are:

'schizophrenia’, 'adhd’, 'fragile x syndrome’, and 'social cognition’.

Analysis of the Title

Examining the most frequently occurring n-grams in the titles, Figure 3.7 reveals
the presence of terms such as 'Autism,” 'Spectrum,” 'Disorder,” 'ASD," and their
combinations. This observation aligns with expectations, providing a comprehensive
overview of the corpus content. Notably, the inclusion of 'systematic review,’ refer-
ences to studies on mice indicated by 'mouse model,’ genetic investigations, mentions
of phenotypes, and comparisons with other known neurodevelopmental disorders are

pertinent to Autism Spectrum Disorder (ASD).
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Figure 3.6: Top 30 most recurrent keywords terms within the ASD corpus.

Transitioning from n-grams to the most recurrent words in the titles, Figure 3.8
affirms the dominance of 'autism,’ 'spectrum,’ and 'disorder’ in the top three positions.
Furthermore, 'children’ claims the 4th position, distinguishing studies focusing on
this demographic from those concentrating on young adults (22nd position) or adults
(14th position). The appearance of 'social” in the 9th position reflects a crucial aspect

addressed in research involving autistic individuals, and 'behavior’ in the 15th position

underscores its significance in the diagnosis of autism.

Analysis of the Abstract

After the title, focusing on the abstract is highly relevant as the majority of the
biomedical language models use the abstract for training. While some of the expec-
ted n-grams are also present, like in the titles, noise appears with the structure of
the abstracts also being present: 'CONCLUSION’, '"METHOD’, 'OBJECTIVE’, and
'BACKGROUND'. Most of the vocabulary present in Figure 3.9 are relevant to the

study of autism.
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Autism corpus.
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the Autism corpus.

Full text

After exploring the n-grams found in both titles and abstracts, | aimed to compare
them with the content of the full text. The titles and abstracts are directly obtained
from Medline records by Cadmus Campbell et al. (2023), ensuring their relevance
to autism due to the indexing process of the PubMed search engine relying on the
similarity between the query with the title, abstract, keywords, and MeSH terms NLM
(2008).

Once again, Figure 3.10 demonstrates the presence of terms one would anticipate
in research about autism. While the n-grams remain pertinent to autism, a few
residual artefacts, such as 'htpps’ and 'org,” can be discerned from the full-text
parsing. Although the n-grams exhibit similarities across all three scenarios, variations
in w