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Abstract

Scientific corpora serve as the backbone for advancements in Natural Language

Processing (NLP) tasks within the biomedical domain. However, current methods for

corpus creation often rely solely on PubMed abstracts and Open Access (OA) publica-

tions on PubMed Central (PMC). This approach overlooks the amount of information

contained within the full text of scientific articles not available in these two services.

Furthermore, existing tools for UMLS named entities recognition, such as MetaMap,

can be computationally slow, hindering large-scale analysis. This work addresses these

limitations by introducing a novel tools and resources specifically designed to enhance

NLP tasks, especially UMLS and Phenotype NER, in the biomedical field.

First, I present Cadmus, the first fully automated pipeline for scientific corpus creation

that goes beyond PubMed abstracts and leverages the full text of OA and non-OA

publications. Cadmus utilizes a combination of APIs, web scraping and text processing

techniques to create comprehensive scientific corpora. Our analysis demonstrates that

Cadmus corpus creation provides a significant increase in the number of identified

entities (representing 64.9% of the total available UMLS entities on our DDG2P

dataset) compared to prior methods.

Second, I introduce ParallelPyMetaMap, a Python implementation of MetaMap. Par-

allelPyMetaMap offers full access to MetaMap’s robust named entity recognition cap-

abilities while incorporating a multiprocessing approach. This approach significantly

accelerates processing times, allowing researchers to analyze larger datasets in a more

efficient manner.

Third, I present the Autism Spectrum Disorder (ASD) Corpus, the first fully auto-

mated, full-text biomedical corpus. The ASD corpus is constructed by employing

Cadmus to gather full-text articles related to ASD, encompassing both OA and non-

OA publications. This corpus represents a valuable resource for researchers focused on

ASD, providing a comprehensive collection of full-text articles for in-depth analysis.

Our ASD corpus captures a significant portion of relevant publications (82.64% out

of 72,058) for ASD research.
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Finally, I introduce a novel Phenotype Named Entity Recognition (NER) model spe-

cifically optimized for identifying phenotypic entities within biomedical text. Our

Phenotype NER model is trained on a large-scale silver standard dataset and incorpor-

ates optimized pre-processing strategies. When compared to current state-of-the-art

methods on three Human expert annotated datasets, our model outperforms existing

approaches on two out of three datasets, demonstrating its effectiveness in identifying

phenotypic entities.

In conclusion, this work presents a comprehensive suite of tools and resources that

significantly enhance NLP capabilities in the biomedical domain. Cadmus with its

corpus creation and the Phenotype NER model demonstrably improve the identifica-

tion of entities and phenotypes, while ParallelPyMetaMap accelerates UMLS named

entity recognition. The ASD Corpus offers a valuable collection of full-text articles

for researchers focused on Autism Spectrum Disorder. These advancements offer an

alternative to existing methods that have been used and reused over the years.
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Lay Summary

My research focuses on making it easier for scientists to find and understand scientific

research. We know that scientific research is often published in different places, and

it can be hard to find everything we need in one place. That is why I have created

a way to collect all the scientific research publications in one place, so we can easily

find what we are looking for. It is like a big library where we can find all the books

we need in one place.

I am also using a special computer program called machine learning to help analyze all

the research. It is like a super smart computer that can read through all the research

and help us understand it better. Specifically, I am using a type of machine learning

called BERT, which is like a super smart computer that can read through all the

research and understand it like a human would. It can even tell us what is important

and what is not.

BERT is a powerful tool that can help us analyze large amounts of text, like scientific

research papers. It can identify important keywords and phrases, and it can even

summarize the main points of a paper for us. This can save everyone a lot of time

and effort because we do not have to read through every single paper ourselves.

One aspect of my research involves training a BERT model to extract phenotype

terms from scientific texts. Phenotype terms are the characteristics or traits of an

organism that can be observed, such as size, shape, color, or behavior. By using

BERT to extract these terms, we can create a database of phenotype terms that

scientists can use to better understand the characteristics of different organisms. This

can be especially helpful in fields like genetics, where understanding the relationship

between genes and phenotypes is crucial.

However, just like how you might need to try different ways to find what works

best for you, I am trying different ways of using BERT to see what works best. I

am experimenting with different settings and parameters to see how well BERT can

perform, and I am comparing the results to see which approach works best.

So, in summary, my research is about using BERT and machine learning to make

it easier for scientists to find and understand scientific research, including training a

BERT model to extract phenotype terms.
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Glossary

Application Programming Interface (API) allows different software applications

to communicate and interact with each other. It can be used to request and exchange

information, making it easier to integrate from one application into another.

Annotation refers to the process of adding metadata or labels to text data to provide

additional information or context. Annotated data sets serve as training data for

machine learning models, enabling them to learn patterns and make predictions or

classifications in text-based applications.

Benchmarking refers to the process of evaluating and comparing the performance

of different models, pipelines, or systems against established datasets.

Corpus refers to a large and structured collection of text that is used for the training

and testing of models and algorithms. Corpora can be specialized for specific domains

and serve as valuable resources.

Entity refers to a distinct concept of interest that is identifiable within a dataset.

F1 score is a metric that combines precision and recall into a single value, providing

a balanced assessment of a model’s performance. It is the harmonic mean of precision

and recall, calculated as 2 * ((precision * recall)/(precision + recall)).

Fine-tuning refers to the process of adjusting a pre-trained model on a specific task

or dataset.

FTP (File Transfer Protocol) allows users to send and receive files across a network

using standardized commands, making it a fundamental tool for file exchange.

Gold standard is considered the highest level of annotation quality, aiming for human-

level accuracy and precision. It involves annotations created by expert annotators who

adhere to strict guidelines, resulting in highly reliable labeled data. While gold stand-

ards provide the highest accuracy, they are resource-intensive and time-consuming.

Grid search is a hyperparameter tuning technique where a predefined set of hyper-

parameter values is systematically tested to find the combination that provides the

best model performance.
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Hyperparameter is a configuration setting external to the model that is not learned

from the training data but is set before the training process begins.

Language Model is a type of model designed to understand and generate human

language.

Layer refers to a component of a neural network. Neural networks are organized into

layers, each responsible for specific computations. The input layer receives the initial

data, hidden layers process information and the output layer produces the final result.

Metadata refers to additional information or descriptors that provide context and

details about the data being used.

Model, in the context of Natural Language Processing, is a computer program that

learns from data to understand and process human language.

N-grams refer to continuous sequences of n items extracted from a given text.

Ontology refers to a structured representation of knowledge that defines relationships

and categories within a specific domain.

Open Access refers to the practice of making research papers, datasets, and other

resources freely available to the public, without restrictions on access or use.

Out of Vocabulary (OOV) refers to words or tokens that are not present in the

vocabulary or training data of a model.

Parsing, in the context of automated content extraction from research articles, refers

to the systematic analysis of a document to identify and isolate specific pieces of

information crucial for data retrieval.

Precision is a metric that measures the accuracy of positive predictions made by a

model. It is calculated as the ratio of true positive predictions to the sum of true

positives and false positives.

Recall is a metric that measures the ability of a model to correctly identify all relevant

instances of a particular class. It is calculated as the ratio of true positive predictions

to the sum of true positives and false negatives.

Repository refers to centralized storage or a collection of datasets, code, and models.

Request refers to a specific communication made by a client to a server. This request

includes information about the desired file, its location, and any necessary parameters

or API keys for authentication.
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Silver standard represents an imperfect but cost-effective and resource-efficient

compromise in annotation quality. It involves computationally generated annotations

that may be less precise than a ”gold standard,” but they are still useful. The trade-

off with silver standards is that they are easier, less costly, and faster to create,

making them practical in situations where achieving human-level accuracy, as in a

gold standard, is not feasible or efficient.

Supervised learning means that the algorithm learns from input-output pairs, where

the correct output (label) is provided for each input.

Token refers to a unit of text that has been extracted or processed for analysis.

Tokens can be words, subwords, or characters, depending on the tokenization method

used.

Tokenization involves breaking down a piece of text into individual units, making it

easier for models to understand and process language.

Training refers to the process of teaching a model by exposing it to a dataset.

During training, the model learns patterns and relationships in the data, adjusting its

parameters to make predictions or perform tasks accurately.

Trigger refers to specific words or a list of words that prompt a model or system to

perform a particular action or make a prediction.

Unsupervised learning means that the algorithm explores the data’s inherent pat-

terns and structures, aiming to find relationships or groupings without labels.

Web scraping involves automated requests made by a script to extract data from

websites. These requests are initiated to retrieve specific information from web pages,

such as text, hyperlinks, or structured data.
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Chapter 1

Introduction

1.1 Natural Language Processing

Natural Language Processing (NLP) is at the intersection of linguistics, computer

science, and artificial intelligence, with the objective of translating the human language

for computational analysis. At its core, NLP endeavours to empower machines with

the ability to understand, interpret, and generate human language, ultimately helping

computers understand human language as well as we do.

Starting with word embeddings Collobert and Weston (2008), where words are rep-

resented as vectors, I unravel the profound impact of this innovation on NLP’s

capabilities. This approach not only laid the groundwork for enhanced language

understanding but also set the stage for Named Entity Recognition (NER), a critical

task within NLP that involves identifying and classifying entities (such as names of

people, organizations, and locations) in text.

The integration of statistical methods, motivated by n-gram models Shannon (1948),

showcased the power of large datasets in creating probabilistic language models.

These statistical approaches not only advanced general language processing tasks but

also contributed significantly to refining NER algorithms, enhancing their accuracy

and efficiency. The narrative of NLP’s evolution gains momentum with the rise

of neural networks, a development that significantly impacted NER methodologies.

Recurrent Neural Networks (RNNs) Graves, Jaitly, and rahman Mohamed (2013)

and Convolutional Neural Networks (CNNs) Kalchbrenner, Grefenstette, and Blunsom

(2014) emerged as state-of-the-art methods for language processing, revolutionizing

sequence analysis and feature extraction. This phase showcased the fusion of ma-

chine learning principles with neural network architectures to unlock unprecedented

linguistic insights, crucial for NER. NLP reaches its peak with the introduction of

transformer Vaswani et al. (2017) models. BERT Devlin, Chang, Lee, and Toutanova

1
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(2019) and GPT Radford and Narasimhan (2018) harnessed attention mechanisms

to dynamically capture contextual information. The impact echoed across language

modeling, sentiment analysis, and question answering, transforming the landscape

of NER by providing models with a heightened contextual understanding of named

entities.

From the multilingual prowess of translating services driven by word embeddings, to

the sentiment analyses used for market research, NLP found its place in various do-

mains. NER, in particular, finds applications in information retrieval, data mining, and

knowledge extraction, showcasing its utility in unlocking insights from vast volumes

of unstructured text.

1.1.1 The Transformer architecture

Introduced in Vaswani et al. (2017) the Transformer model revolutionized NLP. At its

core, the Transformer relies on a mechanism called ”self-attention” to process input

sequences, such as sentences or paragraphs. Unlike traditional sequential models,

the Transformer processes all elements of an input sequence simultaneously, allowing

for parallelization and improved efficiency. This self-attention mechanism enables the

model to weigh the importance of different words in a sentence concerning each

other, capturing complex dependencies and relationships. The architecture consists of

an encoder and a decoder, each comprising multiple layers. The encoder processes the

input sequence, while the decoder generates the output sequence. Each layer within

the encoder and decoder contains two main sub-components: multi-head self-attention

and position-wise feedforward networks. The encoder transforms the input sequence

into a series of contextualized representations, effectively encoding the information

in a way that the model can use to understand the relationships and nuances within

the input data. The decoder uses the contextualized representation created by the

encoder to generate the output sequence step by step. It attends to different parts of

the input sequence as needed, ensuring that the generated output maintains coherence

and context with the input data.

In the multi-head self-attention mechanism, the input sequence is transformed into

different representations by attending to different parts of the sequence simultan-

eously. This allows the model to capture both local and global dependencies within

the input data. The attention scores are computed through a learned set of parameters,
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enabling the model to adapt to different patterns in the data. The Transformer

architecture improved training efficiency and better performance on various NLP tasks.

The self-attention mechanism allows the Transformer to excel in capturing long-range

dependencies and contextual information.

1.1.2 Bidirectional Encoder Representations from Transformers

The Bidirectional Encoder Representations from Transformers (BERT) Devlin et al.

(2019) architecture has emerged as a groundbreaking model in natural language

processing, significantly advancing the capabilities of language understanding and

representation. BERT set new benchmarks in tasks such as question answering,

sentiment analysis, and named entity recognition.

BERT operates on the Transformer architecture, which allows for parallelized pro-

cessing of input sequences, bringing notable efficiency improvements. What distin-

guishes BERT from previous models is its bidirectional context awareness. Unlike tra-

ditional models that read text sequentially, BERT processes the entire input sequence

in both forward and backward directions, capturing contextual information from all

surrounding words. The power of BERT lies in its pre-training on large corpora using

unsupervised learning. During pre-training, the model learns to predict missing words

in a sentence by considering both the left and right context. This process exposes

BERT to a vast amount of diverse linguistic patterns and nuances, enabling it to

develop a rich understanding of language semantics.

BERT’s pre-training involves a Masked Language Model (MLM) objective. Random

words in a sentence are masked, and the model is tasked with predicting these masked

words using the surrounding context. This bidirectional approach ensures that the

model comprehensively learns contextual relationships, making it adept at capturing

intricate dependencies within the data. BERT utilizes embeddings to convert words

into vectors with rich semantic representations. Positional embeddings are incorpor-

ated to retain the order of words in a sentence, allowing BERT to understand not

only the meaning of individual words but also their contextual significance.

Following pre-training, BERT can be fine-tuned on smaller, task-specific datasets for

a variety of NLP applications. During fine-tuning, task-specific layers are added, and

the entire model is adjusted to perform well on the targeted task. This adaptability

has contributed to BERT’s success across a range of applications without the need

for extensive task-specific architecture modifications.
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1.2 Biomedical Natural Language Processing

Biomedical Natural Language Processing (BioNLP) stands as a distinct and special-

ized subfield within the broader landscape of Natural Language Processing (NLP).

While both NLP and BioNLP share the common goal of equipping machines with the

ability to comprehend and process human language, BioNLP focuses specifically on the

challenges and difficulties presented by biomedical texts. In contrast to conventional

NLP, where the focus spans a wide array of domains and applications, BioNLP narrows

its scope to address the unique language patterns prevalent in biomedical literature.

Biomedical texts, including scientific articles, case reports, and other documents,

often contain highly specialized terminology, domain-specific entities, and intricate

relationships that necessitate specialized language processing techniques.

A key distinction lies in the applications that each field emphasizes. NLP, in its

general sense, encompasses a broad range of applications such as language translation,

sentiment analysis, and chatbots. On the other hand, BioNLP places a particular

emphasis on tasks like Named Entity Recognition (BioNER), Named Entity Normal-

ization, and Relation extraction, where the goal is to identify, categorize, and link

entities specific to the biomedical domain, such as genes, proteins, diseases, and

chemicals. The evolution of BioNLP reflects the field’s commitment to addressing

the unique challenges posed by biomedical language, leading to the development of

tailored methodologies and models like BioBERT J. Lee et al. (2019) or SciBERT

Beltagy, Lo, and Cohan (2019), BERT-based models re-trained with a substantial

amount of biomedical data. As BioNLP continues to advance, it not only contributes

to the overarching goals of NLP but also plays a crucial role in advancing biomedical

research, drug discovery, and precision medicine by unlocking valuable insights from

the specialized language of biomedical literature.

1.3 Motivation

The creation of a robust biomedical full-text data retrieval tool aims to answer the

need for the creation of in-domain biomedical corpora as mentioned in Wang et al.

(2020). Previously, researchers were relying solely on Open Access PMC and PubMed

abstracts, which limited the scope of their search. The creation of a robust biomedical

full-text data retrieval tool provides a more comprehensive collection of scientific

literature by expanding the search to include a broader range of databases and
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sources. This will enable researchers to access a larger pool of relevant studies, thereby

improving the quality and accuracy of their research. Additionally, the tool streamlines

the process of collecting and organizing scientific literature, saving researchers time

and effort that would otherwise be spent searching and manually curating collections.

This effort is imperative as it contributes to the availability of high-quality datasets,

fostering advancements in natural language processing techniques specifically tailored

for biomedical research. The importance of in-domain corpora cannot be overstated,

as it directly impacts the performance of machine learning models, ultimately influ-

encing the quality of outcomes in biomedical applications for a specific condition.

The improvement of current silver standard annotation tools for BioNER is equally

essential. Given the intricate language structures and specialized terminologies within

biomedical texts, enhancing the accuracy of BioNER methodologies is vital for ensur-

ing the reliability of annotated biomedical corpora. Accurate annotations serve as the

foundation for training and evaluating machine learning models, playing a pivotal role

in the development of advanced tools that contribute to the broader understanding

of complex biological and medical information.

The silver standard in BioNLP has emerged as a vital tool in the field of natural

language processing, particularly in the biomedical domain. While the gold standard

has long been considered the ultimate benchmark for NLP tasks, the silver standard

offers several advantages, especially in terms of access and curation. Unlike the gold

standard, which requires manually annotated datasets that are time-consuming and

expensive to create, the silver standard utilizes automatically generated datasets that

are more readily available and cost-effective. Additionally, the silver standard allows

for more diverse and inclusive training data, as it can incorporate a broader range

of sources and languages. Furthermore, the silver standard enables more efficient

and scalable curation processes, as it can be automated and crowdsourced. With the

help of active learning and transfer learning methods, the silver standard can achieve

performance close to the gold standard while addressing the challenges of data scarcity

and bias. Therefore, the silver standard represents a significant step forward in making

NLP more accessible, efficient, and inclusive in the biomedical domain.

The generation and analysis of Autism Spectrum Disorder (ASD) and phenotype

corpora hold profound importance due to the rising prevalence of neurodevelopmental

disorders Mayada Elsabbagh (2012). ASD is a complex neurological disorder that

affects communication, social interaction, and behaviour. It is characterized by a

range of symptoms, including difficulty with verbal and nonverbal communication,
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social interactions, and repetitive behaviours. The complexity of ASD lies in its het-

erogeneity, with various subtypes and comorbidities, making it challenging to diagnose

and treat. One of the critical NLP challenges in ASD research is identifying and

extracting relevant information from vast amounts of biomedical literature. Named

entity recognition is a crucial step in this process, as it identifies and categorises

relevant entities, such as genes, proteins, drugs, and diseases. However, current NER

tools are limited in their ability to extract biomedical entities, especially when it comes

to phenotypes. Phenotypes are essential in understanding the clinical presentation and

progression of ASD. They can include behavioural symptoms, physiological character-

istics, and imaging descriptions. Developing an NER tool that can accurately extract

phenotypes from biomedical literature would enable researchers to identify patterns

and relationships that could lead to better diagnostic tools and therapeutic strategies.

Moreover, a NER tool that can extract phenotypes would facilitate the integration

of data from diverse sources, including clinical trials, genomic studies, and imaging

datasets. This integration could lead to a better understanding of the underlying

mechanisms of ASD and personalized treatment approaches. Developing a NER tool

that can accurately extract biomedical entities, including phenotypes, is crucial for

advancing ASD research and improving patient outcomes. By using recent advances

in natural language processing, we can create a valuable resource for researchers and

clinicians working in the field.

The study of different pre-processing methods to improve re-trained BERT-based

Devlin et al. (2019) models is crucial for enhancing the performance of language

models in the biomedical domain. Effective pre-processing methods are fundamental

to extracting meaningful patterns and relationships from biomedical text, thereby

optimizing the capabilities of state-of-the-art language models. This step is important

for ensuring that machine learning models can robustly handle the difficulties of bio-

medical language, promoting advancements in information extraction and knowledge

discovery. Finally, the assessment of the impact of silver standard re-trained BERT-

based models on human-annotated data is paramount for validating the practical

relevance of computational advancements in BioNLP. The synergy between computa-

tional tools and human expertise is essential for achieving the highest level of accuracy

and relevance in biomedical applications. Understanding how these models perform in

real-world scenarios ensures that the developed methodologies have tangible benefits

for researchers, clinicians, and other stakeholders involved in biomedical research and

healthcare.
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1.4 Aims

The primary aim of this research is to develop a pipeline for document retrieval that

offers a substitution technique to the current methods, providing access to a more

diverse biomedical literature and avoiding bias. This is achieved by leveraging and

connecting a range of APIs that do not solely rely on PubMed abstracts or Open

Access PMC, which only represent a subset of the available biomedical literature.

In addition, I aim to investigate the reliability of using MetaMap on a large-scale

corpus and evaluate the performance of a BERT-based model trained on HPO entities

extracted by MetaMap. This aim seeks to determine whether this approach can

produce a model that is on par or better than current state-of-the-art (SOTA) models.

Furthermore, I will create a novel ASD corpus and conduct a preliminary exploration

of the embedded information. This is critical due to the complexity of ASD and its

association with a wide range of biomedical categories.

I will also explore different pre-processing techniques for BERT-based models and

quantify the effects of various factors on their performance. This aim seeks to identify

the optimal pre-processing steps for BERT-based models in the biomedical domain.

Finally, I will evaluate the impact of a corpus domain on the generability of a model

for a given category. This aim will be achieved by comparing the performance of

BERT-based models trained on a general phenotype corpus versus an ASD corpus,

providing insights into the domain-specific requirements for effective NER.

Overall, I aim to develop a comprehensive pipeline for document retrieval, evaluate

the reliability and performance of BERT-based models trained on a large-scale corpus

annotated by MetaMap, and explore the optimal pre-processing techniques for BERT-

based models to perform Phenotype Named Entity Recognition.

1.5 Outline

In Chapter 2, I navigate the biomedical corpus landscape for Named Entity Recognition

(NER). I start with an introduction of gold-standard biomedical NER data spanning

different biomedical categories. Then I continue by presenting the raw biomedical text

corpora currently available (PubMed abstracts and PubMed Central Open Access).

Finally, I mention existing silver-standard tools for BioNER. This introduction is
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followed by the presentation of Cadmus Campbell, Lain, and Simpson (2023), a

novel method for the automatic retrieval of biomedical text corpora. To show the

similarities and differences between PubMed abstracts, PubMed Central Open Access

Maloney, Sequeira, Kelly, Orris, and Beck (2017), and Cadmus, I do a comparative

analysis that provides insights into the volume of biomedical information embedded in

each method. The journey continues with the implementation of ParallelPyMetaMap

Lain and Simpson (2021), my Python library for UMLS-entity extraction Bodenreider

(2004), explaining the capabilities and features available in it. I finish with a discussion

on the limitations and future prospects within this chapter.

In Chapter 3, I first introduce unsupervised (Latent Dirichlet Allocation David M. Blei

(2003)), semi-supervised (Corex Ryan J. Gallagher (2017)), and supervised (BERTopic

Grootendorst (2022)) methods for topic modeling. Second, I present the concept of

biomedical ontologies and especially focus on the Medical Subject Headings (MeSH)

NLM (2008) and Human Phenotype Ontology (HPO) Robinson et al. (2008). Then

using Cadmus and ParallelPyMetaMap presented in Chapter 2, I cover the search

strategy employed to generate the first large-scale ASD corpus, before showing the

results of the metadata and textual analyses. Finally, using the ASD corpus, I employ

topic modeling methods to identify latent topics present in the corpus. It is followed

by the creation of two distinct phenotype corpora, with a focus on Human Phenotype

Ontology (HPO) Robinson et al. (2008). To end this chapter, I talk about the

limitations and lay the groundwork for future avenues of investigation.

In Chapter 4, I start with an introduction to Named Entity Recognition presenting

the Transformer Infrastructure Vaswani et al. (2017), BERT Devlin et al. (2019),

and GPT Radford and Narasimhan (2018). I then move my focus to Biomedical

Named Entity Recognition introducing the three best-known methods in the field:

BioBERT J. Lee et al. (2019), SciBERT Beltagy et al. (2019), and PubMedBERT

Gu et al. (2020). To end the introduction I present two Phenotype Named Entity

Recognition methods PhenoBERT Feng et al. (2022) and Phenotagger Luo et al.

(2020). The chapter then transitions into a series of experiments designed to refine

BERT-based Devlin et al. (2019) models using the data generated in Chapter 3

and curated using ParallelPyMetaMap presented in Chapter 2. These experiments

encompass data curation steps and the re-training of BERT-based models using silver

standard data are evaluated on gold standard phenotype-entity recognition datasets,

underscoring the potential of my work. Yet, I acknowledge the limitations and pave

the way for future enhancements.
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In chapter 5, the general discussion synthesizes the findings from biomedical corpora

generation, ASD research, and advancements in phenotype-entity recognition. As I

reflect on the aims outlined in the introduction.



Chapter 2

Navigating the Biomedical Corpus

Landscape for Named Entity

Recognition

2.1 Introduction

In the field of BioNLP, having access to a high-quality biomedical corpus is indispens-

able, yet acquiring such a resource proves to be a challenging task. Unlike general

NLP corpora, which are readily available, their biomedical counterparts remain quite

limited Huang and Lu (2016).

Data generation is an important component in NLP. It plays a crucial role in creating

vast amounts of training data for machine learning models, particularly for tasks

like named entity recognition, language translation, text summarization, and question

answering, among others. These tasks heavily rely on extensive data to train models

with precision by providing a lot of different examples present in different semantic

settings. Additionally, data generation can also be leveraged to produce synthetic data,

enhancing and diversifying existing datasets, and ultimately boosting the performance

and adaptability of the trained model.

The field of biomedicine is dynamic and ever-evolving, with approximately 4,000

new publications emerging on PubMed every day embedded with new biomedical

knowledge. A readily accessible, carefully curated biomedical corpus is a vital asset

for harnessing the potential of AI in decision-making processes. Nevertheless, ob-

taining the raw data required to train language models for biomedical NLP tasks

remains difficult. This work seeks to address this challenge by presenting two com-

mon methods in biomedical NLP and introducing our novel automated approach

for biomedical corpus generation. Through these methods, I create three distinct

10
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specialized biomedical corpora and analyze their differences and similarities. The first

approach involves collecting abstracts of biomedical research articles made available

directly from PubMed. The second solution uses the open-access (OA) full-text corpus

generated by PubMed Central (PMC) Maloney et al. (2017), offering a substantial yet

somewhat limited pool of published literature. Lastly, I introduce Cadmus Campbell

et al. (2023), a biomedical domain full-text retrieval tool. These approaches provide

valuable resources for advancing biomedical NLP and enhancing the accessibility of

biomedical data for research.

Human-specialized annotations are undeniably the gold standard when it comes to

annotation accuracy X. Li et al. (2021). However, they come with significant draw-

backs, primarily in terms of time and financial resources. The process of having human

experts annotate a large corpus of biomedical data can be laborious, result in a lack

of inter-annotator agreement, time-consuming, and costly, making it less scalable for

projects requiring extensive data annotation. To overcome these limitations, biomed-

ical annotation tools/systems based on extensive biomedical databases can be used

as valuable alternatives. These tools offer a trade-off between annotation accuracy

and resource efficiency, making them indispensable in the field of biomedical NLP.

In the upcoming sections, I will explore four resources that contribute to biomedical

NLP named entity recognition. These resources are the Unified Medical Language

System (UMLS) Bodenreider (2004), MetaMap Aronson (2001), cTAKES Savova et

al. (2010), and SciSpacy Neumann, King, Beltagy, and Ammar (2019). Additionally, I

will present my adaptation of MetaMap for the Python community called ParallelPy-

MetaMap Lain and Simpson (2021), which improves the accessibility and utilization

of MetaMap’s capabilities within the Python ecosystem.

The text corpus produced by these methods combined with specialized annotation

tools like MetaMap, cTAKES, and SciSpacy serve as a valuable resource for research-

ers. Researchers can seamlessly generate silver standard training data, specifically

tailored for tasks in biomedical named entity recognition by generating the text corpus

of their interest and extracting the relevant entities. These resources enable researchers

to create, refine, and expand their datasets. Without having to train a model, this

could also be used to extract the knowledge embedded in the corpus that can be

passed on to methods like data visualization or knowledge graph.
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2.2 Background

In this background section, I look into the generation of specialized biomedical cor-

pora by presenting different resources available to collect and use in biomedical text

annotation. My primary focus is on abstracts sourced from PubMed and the open-

access collection from PubMed Central (PMC) Maloney et al. (2017), which provide a

solid foundation for my research. I have deliberately omitted Wikipedia data from this

background section, prioritizing the reliability, accuracy, and credibility of my choice

of data sources by excluding community-generated data where I can not verify the

reliability of the claim.

The nature and objectives of Natural Language Processing (NLP) are significantly

shaped by the source of data. ClinicalNLP, for instance, relies heavily on Electronic

Health Records (EHRs) datasets like MIMIC (Medical Information Mart for Intens-

ive Care) Johnson et al. (2016). In contrast, BioNLP places a distinct emphasis

on research articles, where critical insights, discoveries, and emerging trends in the

biomedical field are documented.

PubMed stands as the key search engine in the life sciences VishrawasGopalakrishnan

(2019), indexing an extensive repository of over 35 million records dedicated to

biomedical literature. As of 2021, the annual influx of new articles indexed on PubMed

had tripled in two decades, surpassing approximately 1,800,000 newly added articles.

Furthermore, the landscape of BioNLP models, whether using full-texts, Electronic

Health Records, or abstracts, has witnessed remarkable growth. By the final quarter

of 2022, ’Hugging Face’ Julien Chaumond (2016) had indexed a collection of 899

biomedical models, each trained using textual data. Numerous biomedical domain-

adapted BERT Devlin et al. (2019) models have emerged, fine-tuned for specific

applications. One pioneering domain-adapted BioNLP model, BioBERT J. Lee et

al. (2019), was trained using abstracts from PubMed and the Open Access full-text

content of PMC Maloney et al. (2017).

The silver standard in NER refers to a level of accuracy or performance that is

considered good or excellent, but not the best. It is often used to describe a NER

model or system that is able to accurately identify and classify a high percentage of

named entities in a given text, but may not be able to detect all entities or distinguish

between entities of different types. The silver standard is often achieved through

machine annotation, where a computer algorithm is used to automatically identify

and classify named entities in a text. While machine annotation can be efficient and
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cost-effective, it may not always be accurate or reliable, as machines may not be able

to understand the context and nuances of human language in the same way that

humans can. The gold standard in NER, on the other hand, refers to the highest

level of accuracy or performance. It is often used to describe a NER model or system

that is able to accurately identify and classify all named entities in a given text, and

distinguish between entities of different types. The gold standard is often achieved

through human annotation, where a human expert manually reviews and annotates a

text to identify and classify all named entities. Human annotation is considered the

most accurate and reliable method for achieving the gold standard, as humans are

able to understand the context and nuances of human language and can make more

accurate judgments about the meaning and relevance of named entities. However,

human annotation can be time-consuming and expensive, which is why the silver

standard is often used as a compromise between accuracy and efficiency.

Below, I introduce some existing, widely used expert-annotated biomedical corpora,

including datasets like BC5CDR J. Li et al. (2016), BC4CHEMD Krallinger et al.

(2015), BC2GM Smith et al. (2008), and others. These corpora play an important

role in training and evaluating NLP models for biomedical named entity recognition.

It’s worth noting that most of these datasets focus on the same biomedical categories

(i.e. Disease, Drug/Chem., Gene/Protein, Species), which can make it challenging

to find a human-annotated dataset that precisely aligns with one’s specific research

interests. Consequently, comparing one’s novel method against another may prove

to be a complex task without a publicly available annotated dataset. In Section

4.4, I use GSC+ Lobo, Lamurias, and Couto (2017), ID-68 Feng et al. (2022), and

BioCreativeVIII task 3 Islamaj et al. (2023) introduced later in that section.

Moreover, I will continue by presenting raw biomedical corpora, focusing on PubMed

abstracts and the Open Access content from PMC Maloney et al. (2017). These two

sources act as a foundation for the development and evaluation of many NLP models

in the biomedical field. In addition to these resources, I introduce the first large-

scale domain-specific full-text corpus, CORD19 Wang et al. (2020), which became

a valuable asset in biomedical research during the early days of COVID-19. Its large

collection of research articles, preprints, and scholarly literature provides an extensive

source of data for various NLP applications.
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Finally, to bridge the gap between human-annotated corpora and raw biomedical

corpora, annotation tools designed to create silver standard annotations are needed.

These tools are cost-effective and efficient offering an alternative to expert-annotation

cost, time, and the risk of low inter-annotator agreement. I focus on MetaMap

Aronson (2001), cTAKES Savova et al. (2010), and ScispaCy Neumann et al. (2019).

2.2.1 Human-Annotated biomedical Named Entity Recogni-

tion Corpus

This section presents ten essential test datasets, with annotations made by experts,

that are used for training and testing NER models in biomedical named entity recog-

nition. They’re crucial resources for researchers and developers working on biomedical

NER models.

NCBI Disease

The NCBI Disease Corpus Dogan and Lu (2012) was developed for disease name

recognition and concept normalization. The corpus consists of 793 PubMed abstracts

that have been manually annotated with disease mentions and their corresponding

concepts in Medical Subject Headings (MeSH) NLM (2008) or Online Mendelian

Inheritance in Man (OMIM) Amberger, Bocchini, Schiettecatte, Scott, and Hamosh

(2014). The corpus is split into training, development, and test sets, and is publicly

available to the community. It can be used to train and test disease name recognition

and concept normalization systems, and to develop new methods for extracting and

analyzing information about diseases from biomedical literature. Since the test is the

same for every member of the community benchmarking is made possible. The NCBI

Disease Corpus contains 6,892 disease mentions, which are mapped to 790 unique

disease concepts.

BC5CDR

The BC5CDR corpus J. Li et al. (2016) contains 1,500 PubMed abstracts that have

been manually annotated with chemical entities and disease entities and the relations

between them. The BC5CDR PubMed abstracts were selected based on their relevance

to chemical-disease relation extraction, their length, and their quality. In the context

of NER, this corpus can be used to identify diseases and chemicals. It contains a
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wide variety of entities that new NER systems are able to generalize to new data.

According to the initial paper J. Li et al. (2016), they identified 12,850 mentioned

diseases mapped to 2,920 unique diseases after resolving synonyms, and there are

15,935 mentioned chemicals that mapped to 2,144 unique chemicals.

BC4CHEMD

The BC4CHEMD corpus Krallinger et al. (2015) contains 10,000 PubMed abstracts

that have been manually annotated with chemicals/drugs. The corpus is composed

of a wide variety of chemical/drug entities, including both common and rare entities.

The abstracts were selected randomly suggesting that no rules were developed to find

a set of PubMed abstracts relevant to chemical/drug. In the end, the corpus contains

84,355 chemical/drug entities mapping to 19,805 unique chemical/drug entities.

BC2GM

The BioCreative II Gene Mention Recognition task Smith et al. (2008) aimed to

identify gene mentions in biomedical text. The task organizers added 5,000 new

sentences from an existing dataset used in a previous challenge. In total, the corpus

is composed of 20,000 sentences for which 24,583 genes were annotated spanning

multi-species.

JNLPBA

The JNLPBA dataset Collier and Kim (2004) is composed of 2,404 abstracts, identi-

fied through a controlled search on MEDLINE using the MeSH terms ’human,’ ’blood

cells,’ and ’transcription factors.’ These abstracts were human-annotated to identify

various elements, including proteins, DNA, RNA, cell types, and cell lines. The dataset

was further divided into two subsets. The training set with 2,000 abstracts, featuring

a total of 51,301 mentions across all the categories mentioned above. Meanwhile,

the test set is made from the remaining 404 abstracts and includes a total of 8,662

mentions for evaluation purposes.
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LINNAEUS

The LINNAEUS corpus Gerner, Nenadic, and Bergman (2010) consists of 100 full-

text documents from the OA PMC document set which were randomly selected. All

mentions of species terms were manually annotated and normalized to the NCBI

taxonomy IDs of the intended species by human experts. The corpus contains 4,077

mentions of species as reported in J. Lee et al. (2019).

Species-800

The Species-800 corpus Pafilis et al. (2013) is composed of 800 abstracts published in

2011 or 2012 from journals selected to represent eight taxonomic groups: protistology,

entomology, virology, bacteriology, zoology, mycology, botany, and medicine. Each

category is represented by 100 abstracts of more than 500 characters. After human

annotations, 3,708 mentions of species were identified, mapping to 1,503 unique

species names representing 718 unique species.

GSC+

The GSC+ dataset Lobo et al. (2017) is formed of 228 abstracts cited by the Online

Mendelian Inheritance in Man (OMIM) database Amberger et al. (2014) to cover

44 complex dysmorphology syndromes analyzed in a previous Human Phenotype

Ontology (HPO) Robinson et al. (2008) study. The focus of the annotators was to

identify and link phenotype descriptions to their corresponding HPO identifiers. The

228 abstracts resulted in 1,933 annotations covering 460 unique concepts in HPO

related to 77 OMIM disorders.

ID-68

The ID-68 dataset consists of 68 medical clinical notes from patients with intellectual

disability anonymized and made public by Feng et al. (2022) where phenotypic de-

scriptions were described. This dataset was annotated by the authors of PhenoBERT

Feng et al. (2022) to offer an alternative to the only named entity recognition gold

standard phenotype corpus at the time. They follow the same annotation procedure as

employed by the GSC+ dataset Lobo et al. (2017) extracting the phenotype terms and

linking them to their corresponding HPO identifiers. The set counts 866 annotations

of which 578 are unique mapping to 437 HPO identifiers.
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BioCreativeVIII task 3

The BioCreativeVIII task 3 dataset Islamaj et al. (2023) consists of 3,136 organ system

observations extracted from de-identified dysmorphology physical examinations of

1,652 pediatric patients evaluated at the Children’s Hospital of Philadelphia. From

these 3,136 clinical notes, 2,170 are publicly available. The authors provided 1,716

de-identified observations for training and 454 de-identified observations for testing.

The BioCreativeVIII task 3 dataset like GSC+ Lobo et al. (2017) and ID-68 Feng et

al. (2022) focused on phenotypic mentions and mapping them to their HPO identifiers

Robinson et al. (2008). The training set contains 2,562 phenotype mentions mapped

to 707 unique HPO identifiers while the test set is composed of 685 phenotype entities

linked to 358 unique HPO identifiers.

2.2.2 Raw Biomedical Text Corpora

In this section, I introduce one of the two components required for generating gold or

silver standard data: the textual component also known as a corpus. Focusing only on

biomedical research articles, I first introduce two widely used techniques for creating

a biomedical corpus before presenting the only publicly large-scale domain-specific

biomedical corpus that I am aware of as well as mentioned in Wang et al. (2020).

PubMed Abstract

In the field of BioNLP, many renowned language models (J. Lee et al. (2019),

Beltagy et al. (2019), Gu et al. (2020)) are retrained using abstracts obtained from

PubMed. Access to PubMed’s extensive data is facilitated through its two FTP

portals, where researchers can request the necessary data. PubMed maintains and

updates its database, reflecting daily and annual changes, including new additions

and revisions to existing records. Each year, on the 1st of January, PubMed generates

XML files that contain 30,000 entries at a time until all records within the database

have been processed. Additionally, PubMed releases daily updates, providing new

entries and modifications to existing records that were accepted on the previous day.

This regular data update process ensures that BioNLP researchers have access to the

most up-to-date information for their language model training.
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As of early January 2023, there are approximately 1,200 XML files, collectively rep-

resenting 35 million records. Each XML file typically contains a maximum of 30,000

records, where the metadata ( https://dtd.nlm.nih.gov/publishing/tag-library/2.1/n-

58c0.html) and, when available, the abstract is provided.

Downloading all 1,200 files and extracting the contained information is a laborious

task. I developed an automated solution using Python, which is now available for

others to use Lain and Simpson (2022b). This automation relies on Python libraries

such as ’wget’ from the base package of Python and ’BeautifulSoup’ Richardson

(2014).

The first step of the automation involves politely requesting the files from PubMed

via ’https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/’ (housing publications from the

start of PubMed until January 1 of the current year) and ’https://ftp.ncbi.nlm.nih.gov

/pubmed/updatefiles/’ (which contains modifications of previously accepted record

and new entries for the current year). Using the ’wget’ library in combination with

’BeautifulSoup’ Richardson (2014) to identify the href tags in the FTP links, PubMed

sends multiple gz files containing an XML file with the records. Upon receiving this

file, the process extracts its contents and saves both the gz and the XML files in a

pre-defined directory. After all the files have been collected, the automation proceeds

to extract information from each XML file, employing ’BeautifulSoup’ Richardson

(2014). During this extraction process, the automation identifies and records the

following details:

• PMID

• Title

• Abstract

• Date

• Language

• Publication type

• MeSH terms

Instead of keeping the entire 30,000 records per file, the automation preserves the

PMID as an index. It stores the metadata in a designated metadata directory, while

the abstracts, when provided, are saved as individual text files within the abstracts

directory.
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PubMed Central open-access

PubMed Central (PMC) Maloney et al. (2017) is the largest repository of full-text

biomedical data. As of early 2023, PMC hosted an extensive archive of 8.6 million

articles. It’s worth noting that not all of these publications are free from copyright

restrictions; approximately 58% or 4,996,760 articles can be used freely and are

provided through the APIs. In a manner similar to PubMed, PMC provides two FTP

links to facilitate data collection. Unlike PubMed, PMC follows a different update

schedule, with updates occurring every three months and daily updates for newly

indexed publications. PMC’s content can be broadly categorized into three main types

of data:

• Journal and Publisher Program Deposit

• Author Manuscript Deposit

• Digitization Projects

Some publications featured in PMC are not indexed in PubMed. PubMed only started

indexing preprints in 2020 in its database as well as certain publication types like book

reviews are only available in PMC.

The process of collecting data from PMC shares similarities with the method described

in the previous section. However, several distinctions come into play:

- FTP links provided by PMC are categorized based on file format (e.g., txt, XML)

and license status (commercial, non-commercial, other). For research institutes, we

have authorization to access publications under all three license categories.

- When requesting files from PMC, they are provided in three components: the gz

file, metadata saved as a txt file, and metadata in XML format.

The gz file contains directories and txt files labelled with a unique PMCID.txt format.

These files contain extra data that necessitates additional processing steps to isolate

the publication’s content. After identification, my process preserves the content in a

predefined directory. In contrast to PubMed, the metadata files from PMC provide

different sets of information, including:

• Article File

• Article Citation

• AccessionID

• LastUpdated (YYYY-MM-DD HH:MM:SS)

• PMID

• License
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• Retracted

As for PubMed abstracts, I developed an automated solution using Python, publicly

available Lain and Simpson (2022a).

First biomedical large-scale full-text in-domain corpus: CORD19

CORD19 Wang et al. (2020) was created to facilitate the development of text mining

and information retrieval systems for COVID-19 research. In the initial paper Wang

et al. (2020), the authors describe the creation and first release of CORD19, a free

and open dataset of scientific literature on COVID-19. CORD19 was released by the

Allen Institute for AI (AI2), in collaboration with The White House Office of Science

and Technology Policy (OSTP), the National Library of Medicine (NLM), the Chan

Zuckerburg Initiative (CZI), Microsoft Research, Kaggle, and Georgetown University’s

Center for Security and Emerging Technology (CSET).

The first release contained 28,000 papers, and the collection expanded to more

than 140,000 papers over the next few weeks. The corpus is composed of metadata

about publications related to COVID-19 as well as their full-text content when avail-

able. CORD19 integrates papers and preprints from the World Health Organization,

PubMed Central, PubMed, bioRxiv, medRxiv, and arXiv.

All the information collected is harmonized and deduplicated through Semantic Scholar

of Medicine (2023a) a service also provided by AI2. Due to the unique nature of

COVID-19 in recent history, incentives were put in place to make coronavirus-related

papers easily accessible through PMC under open-access license terms. Also, pub-

lishers such as Elsevier and Springer Nature, provided full-text coverage of relevant

papers directly to AI2 so they could be included in the CORD19 dataset.

Despite all the efforts put into creating such a corpus with as much information

as possible when the corpus reached 140,000 publications only about 50% of the

publications identified had full-text available with them. Monetary prizes were also

available for the use of this corpus which resulted in the understanding of COVID-19.

Jake Lever (2020) used the CORD19 dataset combined with information retrieval

techniques to create a dashboard that summarizes information related to COVID-19.
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2.2.3 Silver Standard annotation tools for Named Entity Re-

cognition

In this section, I will present the second component required for generating gold or

silver standard data: the labels. An entity is a categorization assigned to a specific

span of text in a document, indicating the type of named entity it represents, such

as disease, gene, species, phenotype, or other entities of interest. These labels rep-

resent structured information from unstructured textual data. I will first introduce

the Unified Medical Language System (UMLS) Bodenreider (2004), a collection of

various controlled vocabularies, curated by experts, and used in the field of biomedical

research. Then I will describe three software tools that used the UMLS to build their

biomedical NER strategy.

Unified Medical Language System (UMLS)

The UMLS Bodenreider (2004) was developed to overcome two significant barriers to

effective biomedical information retrieval of machine-readable information: normaliz-

ing the synonyms or different terminologies mentioning the same biomedical concept

and merging the information embedded in different databases and ontologies.

As of the UMLS 2023AA of Medicine (2023b) release the three UMLS Knowledge

Sources are composed of:

• The Metathesaurus, which contains over fifteen million biomedical names, mapped

to more than three million biomedical concepts from over a hundred source

vocabularies

• The semantic network, defines 127 semantic biomedical types mapped to 15

broad biomedical categories. Each concept presented in the Metathesaurus will

be allocated to one of these categories providing an extra layer of information

to the biomedical concept

• The SPECIALIST Lexicon & Lexical Tools, which provide lexical information

and programs for language processing

The UMLS is a multilingual resource, meaning it can be used in several languages,

when focusing only on the English information, the UMLS 2023AA release counts just

above ten million biomedical names from 105 source vocabularies.

The semantic network used by the UMLS can be used to contextualize the nature of

the concept. Here is an example of 4 categories from 2 different groups:
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• Group type: Anatomy, Semantic Type: Anatomical Structure

• Group type: Anatomy, Semantic Type: Body Part, Organ, or Organ Component

• Group type: Chemicals & Drugs, Semantic Type: Clinical Drug

• Group type: Chemicals & Drugs, Semantic Type: Pharmacologic Substance

The semantic network created by the UMLS is a useful resource to generate an-

notations of interest based on the biomedical semantic type by merging information

coming from different database sources.

The source vocabularies of the Metathesaurus represents electronic versions of various

thesauri, classifications, code sets, and lists of controlled terms used in patient care,

health services billing, public health statistics, indexing and cataloguing biomedical

literature, and/or basic, clinical, and health services research. The Human Phenotype

Ontology (HPO) Robinson et al. (2008), the International Classification of Diseases

and Related Health Problems Tenth Revision (ICD10) Gr (1988), DrugBank Wishart

et al. (2017), the Gene Ontology (GO) Consortium (2003), and the MeSH ontology

NLM (2008) are examples of source vocabularies used by the UMLS.

MetaMap

MetaMap Aronson (2001) is a software program implemented to find UMLS Boden-

reider (2004) concepts in biomedical free text. MetaMap was developed using Prolog,

and since its first release in 1994, it evolved into a sophisticated UMLS-based named

entity recognition tool. MetaMap offers numerous parameters allowing its user to be

more strict during the extraction process. Since MetaMap uses the UMLS as lookup

information Bodenreider (2004), it can annotate more than four million concepts for

various categories.

In order to annotate biomedical free text, MetaMap takes text as input, the first step

of MetaMap is a lexical/syntactic analysis composed of 4 elements:

• The first element splits the input text into smaller segments and tries to identify

any acronym or abbreviation present in the segment

• The second element is a part-of-speech tagging that involves assigning a specific

grammatical category (i.e. Noun, Verb), to each word in the previously identified

segment.

• The input words are then compared to the lexical lookup, this can be used

to change abbreviations to their long form or normalize plural words to their

singular form
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• The last element of the first step uses the SPECIALIST minimal commitment

parser. It conducts a syntactic analysis of a text to identify phrases and their re-

spective lexical heads, providing a basic understanding of the text’s grammatical

structure

Following the lexical/syntactic analysis, using a table lookup, MetaMap identifies all

variants, i.e. words or groups of words, present in the segment. Once the variants are

identified, MetaMap will identify potential candidates from the UMLS by matching

each variant to the UMLS vocabularies. The evaluation procedure used by the UMLS

is a linear combination of four linguistically inspired measures: centrality; variation;

coverage; and cohesiveness.

• Centrality: This assesses the significance of the linguistic head’s presence in

candidate words. If the head appears among the candidates the centrality

coefficient goes up.

• Variation: This factor measures the variety between text words and their cor-

responding candidate words. It quantifies how much the candidates differ from

the input text

• Coverage: It evaluates how much of the input text is covered in the mapping,

indicating completeness. It measures the extent to which the input text is

represented in the candidate words

• Coherence: Coherence looks at how connected or unified the mapping is. It

checks how many adjacent sections of the input text are included in the mapping

These measures are combined linearly, the coverage and cohesiveness measures are

given twice the weight emphasizing the importance of these two measures. The result

is then scaled to a value between 0 and 1000. Finally, the last component of MetaMap

will sort the result from the previous component from the highest to the lowest score

then the UMLS concepts matched are returned.

When measured against other methods based on UMLS lookup, MetaMap outper-

formed them on 5 out of 5 gold standard datasets Demner-Fushman, Rogers, and

Aronson (2017).

Since then, the creators of MetaMap introduced a more recent version known as

MetaMap Lite Demner-Fushman et al. (2017), which is written in Java. While it

operates faster, it provides only a limited set of parameter choices compared to the

original MetaMap. There was also an effort to make MetaMap accessible to the Python

community with PyMetaMap Rios (2019), but, like MetaMap Lite, not all parameters

are available in this version. As mentioned in the review paper Demner-Fushman
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et al. (2017), the word-sense disambiguation parameter is one of the parameters of

MetaMap not yet implemented in the newer version. This means that the results

are solely based on their textual overlap without contextualization being one of the

limitations of using other implementations rather than the initial MetaMap software.

Clinical Text Analysis and Knowledge Extraction System (cTAKES)

cTAKES Savova et al. (2010) is an open-source natural language processing system

for information extraction from biomedical free text. It was developed in Java and

rendered possible use in a cloud computing environment. Overall cTAKES is a pipeline

of components that combine rule-based and machine learning techniques. For the

scope of this section, my focus will be on the named entity recognition of cTAKES but

other functionalities are available. The pipeline is composed of five modules executed

in sequence and iteratively to map every identified candidate found in the input-free

text to the UMLS Bodenreider (2004).

The first module takes the biomedical textual input and performs sentence bound-

ary detection using OpenNLP’s supervised ME sentence detector tool. This allows

cTAKES to identify the end of the sentences.

The second module tokenizes the segment of text identified in the previous modules

using a rule-based approach. The segment of text is split on space and punctuation,

then date, fraction, measurement, person title, range, roman numeral, and time token

are merged back together as one.

The third module is a normalizer which looks at a number of lexical properties. It maps

multiple mentions of the same word that do not have the same string representation

i.e. ’disease’ and ’diseases’.

The fourth module performs part-of-speech tagging on the normalized segment of

text by applying their supervised models inspired by the part-of-speech tagger of

OpenNLP’s module trained on clinical data.

Finally, the last component is cTAKES’ named entity recognition implementation.

The NER method is based on a dictionary look-up algorithm within the noun phrase

obtained by the part-of-speech tagging. The dictionary was originally made from the

UMLS and was later enriched by adding terms from the Mayo-maintained list of terms

Savova et al. (2010). The NER method employed does not resolve ambiguity in case

more than one result is identified during the dictionary look-up.
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SciSpacy

SciSpacy Neumann et al. (2019) is a toolkit tailored for the biomedical field, offering

a range of NLP tools and resources. It is designed to handle the unique terminology

and language commonly found in scientific research articles, making it an essential

asset for processing biomedical articles.

One of the key components of SciSpacy is its collection of pre-trained models like

en ner bc5cdr md or en ner jnlpba md trained on some of the datasets mentioned

in Section 2.2.1. These models are trained on a vast amount of biomedical text data,

allowing them to understand and process the specialized language used in these fields

instead of using dictionary lookup. These models can maintain a focus on the specific

vocabulary and context found in scientific literature.

The SciSpacy pipeline is made of components trained using machine learning to return

their predictions. The pipeline is composed of the following components:

• Tokenization

• Part-of-Speech Tagging

• Dependency Parsing

• Named Entity Recognition

• (Optional) Entity Linking

Tokenization and Part-of-Speech Tagging were defined in Section 2.2.3. Dependency

Parsing determines the grammatical relationships between words in a sentence. It is

used to help the named entity recognition task by considering the structure of the text.

The next step of the pipeline is the named entity recognition component. The NER

model employs machine learning methods to identify the biomedical entities present

in the text. The model used by the authors Neumann et al. (2019) is composed of a

combination of word embedding and a convolutional neural network. Once identified,

SciSpacy allows the user to use the ’EntityLinker’ component to map the entities

extracted to one of the five vocabulary sources employed by SciSpacy. The vocabulary

sources accepted are:

• The UMLS database Bodenreider (2004)

• The MeSH ontology NLM (2008)

• The RxNorm ontology of Medicine (2019)

• The Gene Ontology Consortium (2003)

• The human Phenotype Ontology Robinson et al. (2008)
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If an entity extracted from the NER model is successfully linked to one of the identifiers

from the vocabulary source used by the ’EntityLinker’ then the extraction is returned

with its corresponding ontology identifier.

2.3 Cadmus: Automatic creation of biomedical text

corpora

Cadmus Campbell et al. (2023) is an open-source system developed in Python. It

serves as a solution for generating biomedical text corpora from full-text published

literature. The challenge of acquiring such datasets has long hindered methodological

advancements in BioNLP and limited our capacity to extract invaluable biomedical

knowledge from the biomedical published literature (Khalil, Ameen, and Zarnegar

(2021), Bari and Kusa (2022)).

Cadmus is the second attempt at the usage of domain-specific corpus for biomedical

research following CORD19 Wang et al. (2020). Nevertheless, it distinguishes itself by

introducing a level of generalization and automation that marks the first attempt at a

corpus generator tailored specifically for biomedical published literature. The Cadmus

system operates through three main steps:

• Query & meta-data collection

• Document retrieval

• Parsing & collation of the resulting text into a single data repository

This system, which is open-source and highly adaptable, is designed to retrieve open-

access (OA) articles and those from publishers accessible to users or their host

institutions. Cadmus is able to process documents of diverse formats, standardizing

their extracted content into plain text, and organizing article meta-data. It’s important

to note that retrieval rates in Cadmus can vary depending on the nature of the query

and licensing status. Queries primarily consisting of newer papers tend to yield higher

retrieval rates, aligning with the ongoing efforts to promote Open Access (OA) in

recent years Jain (2012). Cadmus stands as an invaluable tool, simplifying access to

full-text literature articles and structuring them in a manner that facilitates knowledge

extraction through NLP and text-mining methodologies.
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Figure 2.1: Metadata collection pipeline from Cadmus.

2.3.1 Query & meta-data collection

The concept behind Cadmus was to construct a corpus retrieval system, utilizing

the same query structure as PubMed, but customized to meet specific research

requirements. Like PubMed, Cadmus initiates its operations with a search query. This

query is executed using the e-search tool from Entrez Direct Tao (2017), which queries

PubMed through an API provided by the National Library of Medicine (NIH). Lever-

aging the request library from the base package of Python, metadata is systematically

collected for each record. Crucial details such as PubMed Identifier, PubMed Central

Identifier Maloney et al. (2017), and Digital Object Identifier (DOI) are extracted and

kept in a Pandas DataFrame. To enhance the retrieval, full-text URLs are collected by

employing the Crossref API. A comprehensive overview of the extracted information

is presented in Figure 2.1.

2.3.2 Document retrieval

Following the collection of metadata, Cadmus proceeds to retrieve the respective

documents using the record identifiers extracted earlier. Cadmus leverages each record

identifier in conjunction with the relevant services and APIs, as shown in Figure 2.2.

Cadmus initiates the document retrieval process by attempting to access the pub-

lication from established repositories, following a specified order: Crossref, doi.org,

PubMed Central, and Europe PubMed Central. In the event of unsuccessful retrieval

from these sources, Cadmus proceeds to utilize any available publisher APIs before

resorting to requesting the document from the publisher’s webpage. When a publica-

tion is successfully located and identified as a full-text document, Cadmus saves the

publication and meticulously extracts its content. During the development phase, I
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Figure 2.2: Document retrieval pipeline from Cadmus.

extracted and annotated approximately 10,000 papers to establish statistical rules

aimed at detecting if the content extracted is the full text. These rules rely on

parameters such as cosine similarity between the abstract obtained from PubMed and

the content extracted from the file, file size, and word counts to classify a document

as full-text only when it aligns with our predefined criteria.

Cadmus is fully compliant within the regulatory guidelines defined by UK legislation

pertaining to the use of APIs for research purposes UK (2021), of Scientific T& MP

(2013). With these guidelines in mind, we prioritize the use of services explicitly

designed for research purposes before resorting to web scraping as a last resort.

Furthermore, if a document is requested but cannot be found, I have implemented ad-

ditional steps to extract candidate links, enabling continued search for the document.

These steps, along with the expected formats and services, are outlined in Figure 2.2.

2.3.3 Parsing & result

Parsing represents the final phase of the process. Once a document is determined to

be full-text, Cadmus employs one of three distinct methods based on the available

format. If the document is in a tagged format such as HTML or XML, content

extraction is carried out using the Python library Beautiful Soup 4 Richardson (2014).

For PDF content, the extraction process utilizes the Tika Mattmann (2014) Apache

Python library, while content in TXT format is directly extracted. Irrespective of the

format, after extraction, the system proceeds to process the text, removing metadata,

references, and links. This process results in a cleaner plain text representation of the

article’s full-text content. Additionally, I analyzed the out-of-vocabulary (OOV) terms



2.3. Cadmus: Automatic creation of biomedical text corpora 29

Figure 2.3: Overall pipeline of the Cadmus system.

to compile a list of words to be removed during the parsing process like link artefacts,

tags, and special characters. OOV terms were identified using a large model trained

by SciSpacy Neumann et al. (2019), specializing in various biomedical data sources.

Any word found in the content but absent from the SciSpacy model is classified as an

OOV term. I then sorted the OOV list based on occurrence frequency, enabling me

to curate the list and identify OOV artefacts originating from the parsing process.

2.3.4 Capabilities

The Cadmus system, presented in Figure 2.3, is equipped with a diverse set of

capabilities, meticulously designed to meet the demands of BioNLP researchers.

1) Adaptive retrieval: Cadmus automatically retrieves both open-access (OA) pub-

lications and non-OA articles, provided the necessary permissions are in place. This

approach ensures that the user can retrieve the resources available to them.

2) Comprehensive Document Processing: The system can process and extract content

from major document formats, including HTML, XML, PDF, and TXT. This allows

researchers to access the content of any retrieved publication regardless of format.

3) Dynamic Text-Corpus Generation: Cadmus facilitates dynamic text-corpus gen-

eration, allowing for updates to previous results and the addition of new terms into

existing searches. This adaptive feature ensures that the system can facilitate the shift

of research needs by only retrieving the result due to the new terms to the already

retrieved result.

4) Efficient Document Storage: Acknowledging the importance of storage efficiency,

Cadmus efficiently compresses all downloaded data. The system can store and read

zip files, offering users uncomplicated access to stored content.
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5) Robustness and Reliability: Cadmus has features that enable it to perform consist-

ently even in case of events such as server errors, power failures, and IP blocking.

6) Automated Full-Text Retrieval: Cadmus handles the full-text article retrieval pro-

cess, liberating researchers from this labour-intensive task.

7) Rich Knowledge Capture: Full-text article retrieval serves as the gateway to captur-

ing previously inaccessible in-depth knowledge embedded within published literature.

Cadmus extracts important metadata, including keywords from the authors and MeSH

terms that can be used by methods like knowledge graph, topic modeling, and,

document recommendation.

8) User-Parsing Flexibility: Cadmus provides users with the freedom to employ their

preferred parsing methods, such as AutoCorpus Hu, Sun, Rowlands, Beck, and Posma

(2021), by storing every format it finds. This approach allows researchers to generate

output that aligns with their specific research objectives and preferences.

Cadmus is a comprehensive tool developed to answer the dynamic and diverse needs

of the BioNLP research community. Whether it’s efficient storage, robust document

retrieval, rich knowledge capture, or automation and flexibility, Cadmus offers re-

searchers the resources to perform text-mining and NLP tasks for their tailored

biomedical corpus of interest. Cadmus is publicly available Campbell et al. (2023).

2.4 Comparative analysis for general unlabeled bio-

medical corpora

In this section, I will compare the information that can be extracted using the methods

detailed in Section 2. To perform this analysis, I use the corpus generated for our

paper, Yates, Láın, Campbell, Simpson, and FitzPatrick (2021), and some of the

analysis methods employed in Campbell et al. (2023).

The corpus was generated by combining the PubMed search results for 120 gene

names and symbols taken from the Developmental Disorders Genotype-2-Phenotype

(DDG2P) dataset Yates et al. (2021) Thormann et al. (2019). Cadmus Campbell et

al. (2023) was executed on a server hosted at the University of Edinburgh making
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use of Elsevier and Wiley API keys for maximized retrieval rate. The search query for

genetic disorders was executed using the 120 gene names from DDG2P with ’gene

symbol[TI]’ yielded a total of 204,043 journal articles, of which 173,786 (85.2%)

full-text documents were retrieved through the university’s subscription.

In comparison, PubMed provides 179,389 (87.9%) abstracts, an extra 5,603 (2.7%)

compared to what Cadmus retrieved using the University of Edinburgh’s subscription.

Furthermore, with the assistance of metadata provided by PubMed (when available),

I identified that 16,149 (7.9%) publications were affiliated with journals for which the

University of Edinburgh did not hold a subscription. While Cadmus was unsuccessful

in extracting these due to not owning the right to access this information it identified

the candidate links for these publications.

Finally, only 44,264 (21.69%) publications were indexed in the API provided by PMC.

Given that PMC is one of the services employed by Cadmus, it’s worth noting that

all the full texts from PMC are present within the Cadmus results.

2.4.1 Unlocking the biomedical embedded information of the

research literature

In my objective to identify data for training biomedical language models, I explored

three sources: PubMed abstract, PMC Open-Access set, and Cadmus. Each of these

sources offers advantages and limitations.

Access to embedded information

PubMed abstracts stand as a cornerstone in the training of biomedical language

models, primarily due to their wide accessibility. The accessibility they offer to the

biomedical domain is invaluable, providing a solution to one of the significant chal-

lenges faced when building language models, the data needed to train them.

One common misconception regarding PubMed is the belief that it provides abstracts

for all of its 35 million records. However, a closer examination reveals that not

all records include abstracts. To estimate the availability of abstracts, I conducted

a straightforward analysis, counting the occurrences of the ’abstract’ tag within

PubMed data. This analysis uncovered a total of 24,729,517 abstract tags (69.54%)

for 35,606,904 PMIDs.
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While abstracts offer a valuable entry point into the biomedical domain, they remain

a succinct introduction, leaving behind a wealth of information embedded within the

full text.

PMC Maloney et al. (2017) offers full-text information as opposed to PubMed, yet it

indexes only approximately 14% of the number of publications available in PubMed.

This limitation raises concerns, particularly in the context of domain adaptation for

biomedical purposes. When one seeks to focus on a specific condition or disease,

there’s no guarantee that PMC will have sufficient full-text publications to prevent

model overfitting.

Cadmus Campbell et al. (2023), extends the information landscape by collecting

abstracts, PMC OA publications, and other OA and non-OA publications. It captures

valuable data locked within biomedical full-text publications, enriching the resources

available for training language models. Nevertheless, as opposed to the previously

mentioned methods, Cadmus needs to identify, request, and, extract the publication

making Cadmus the slowest method of all three.

To evaluate the information extracted from Cadmus not available using traditional

methods, Figure 2.4 shows the distribution of identified UMLS Bodenreider (2004)

entities extracted by the SciSpacy Neumann et al. (2019) UMLS entity linker within

the three corpora mentioned earlier: the abstract corpus, PMC OA, and Cadmus.

First, the abstract corpus, provides only a fraction of the total triggered entities,

amounting to 7.8% of which 1.2% is present only in this corpus. This highlights the

limited scope of information captured within abstracts.

Second, a more significant portion emerges when considering the collective impact

of both PMC OA and the abstract corpus, which together make up 35.1% of all the

triggered entities. It represents the percentage of knowledge BioNLP researchers can

access when limiting themselves by using the data made available with PubMed and

PMC.

Finally, the Cadmus non-OA corpus brings substantial additional knowledge, with

64.9% of all triggered entities originating due to its ability to draw from a variety of

resources such as the publisher’s website to request the publication it can access.

In summary, Figure 2.4 reveals that abstracts offer valuable but limited information,

while the integration of multiple sources significantly increases access to a broader

scope of biomedical entities embedded in full-text showing the potential of Cadmus.
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Figure 2.4: Breakdown of the shared entities from each corpus. It shows the number
of entities found in each corpus. One corpus is composed of the abstracts, one of the
Open Access available from OA PMC, finally the last one is from Cadmus removing
the OA PMC. Cadmus brings 9,054,681 new UMLS entities not previously used.
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Density of Information

A common presumption is that full-text documents, due to their length, may contain

less entity per word when juxtaposed with concise abstracts, where information is

succinctly summarized. To investigate this assumption the histograms featured in

Figure 2.5 offer valuable insights into the count of biomedical entities per word across

distinct corpora.

For this analysis, I employed three distinct corpora: the abstract corpus, composed of

179,389 abstracts mentioned earlier; the PMC-OA corpus, comprising 44,264 full-texts

sourced from PMC Maloney et al. (2017); and finally, the Non-OA Cadmus corpus,

which is composed of 173,786 full-text documents, excluding the 44,264 documents

sourced from PMC.

To quantify the ratio of entity per word I used the following formula: Number of

entities in the document / Number of words in the document.

Documents obtained from both the OA PMC and non-OA Cadmus Campbell et al.

(2023) exhibit a close similarity, converging within a narrow interval between 0.25 and

0.3.

Furthermore, we can draw a second observation when looking at the distribution of the

ratio of entities per word, i.e. the frequency of biomedical entities in the text, within

abstracts. In this context, we note a modest elevation, ranging between 0.3 and 0.35.

This elevation reveals denser information content within abstracts. It’s imperative

to contextualize this observation. Abstracts, by their very nature, are concentrated

summaries in comparison to full-text documents.

Taking this context into account, while it holds true that the ratio for full-text

documents is relatively smaller than that of abstracts, primarily due to their extensive

length, it is a compelling assertion that there is likely to be additional valuable

information embedded within full-text documents. This observation underscores the

continued significance of full-text sources for in-depth information extraction within

the biomedical domain as seen in Figure 2.7.
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Figure 2.5: Distribution of the ratio of SciSpacy biomedical entity per word. It shows
the number of UMLS entities found in each corpus compare to the number of total
words. The top of the distribution is similar for non-OA Cadmus and PMC-OA and
close to the top of abstract corpus. The actual value are available in Table 2.1

Corpus
Number of
Documents

Mean Word
Count (SD)

Entities per Word
mean (SD)

OOV per Token
mean (SD)

PMC-OA Subset 44,264 6142 (3139) 0.321 (0.04) 0.049 (0.039)
OA Cadmus 44,264 5460 (3144) 0.336 (0.03) 0.026 (0.027)
Non-OA Cadmus 135,125 5185 (6304) 0.321 (0.04) 0.025 (0.028)
Abstracts 179,389 229 (80) 0.355 (0.05) 0.012 (0.016)

Table 2.1: Ratio of UMLS entities for each corpus. PMC-OA Subset – bulk
downloaded plain text files. OA Cadmus – Files retrieved using Cadmus subset for
those also present in the PMC-OA subset; Non-OA Cadmus – Files from the Cadmus
retrieved, genetic corpus excluding the open access papers; Abstracts - PubMed
Metadata abstracts for all available articles within the genetic corpus. OOV - Out
of Vocabulary records if a token lacks a word vector in the language model. Token -
a non-whitespace group of characters in the text. Word: A token that is not OOV,
punctuation or whitespace.
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Coverage of the unique information extracted from biomedical ontologies

Focusing on the unique information contained within each corpus, I will now look at

the unique UMLS Bodenreider (2004) entities obtained with SciSpacy Neumann et

al. (2019) present in the biomedical documents retrieved. This exploration is shown in

Figure 2.6, where three distinct curves trace the rarification of unique UMLS entities,

considering the incremental addition of documents to each corpus.

The abstract corpus, even after incorporating 173,786 documents, exhibited approx-

imately 75,000 unique UMLS entities. In contrast, the PMC OA Maloney et al. (2017)

corpus offered a more substantial coverage, featuring around 110,000 unique UMLS

entities with only 44,264 documents. However, it is in the Cadmus Campbell et al.

(2023) corpus that we witness the highest number of unique UMLS with 175,000

unique UMLS entities for 173,786 documents, surpassing its counterparts significantly.

In conclusion, this plot underscores a marked disparity in the diversity of unique UMLS

entities between full-text and abstract corpora. While the OA PMC collection serves

as a valuable resource, it is constrained by the availability of information within the

OA set. The amount of distinctive information contained within full-text documents is

proof of its usefulness. The exposure to a broader spectrum of unique data enhances

transformers-based Vaswani et al. (2017) models to be more robust and comprehensive

when performing knowledge extraction within the biomedical domain.

To highlight the importance of Cadmus as an addition to the PMC OA set, I quantified

the coverage of three ontologies related to the corpus generated. The three ontologies

used the Human Phenotype Ontology (HPO) Robinson et al. (2008) which has

13,000 entries, the Gene Ontology (GO) Consortium (2003) with 45,000 entries, and

RxNORM (Normalised Naming system for generic and branded drug) of Medicine

(2019) with 53,000 entries.

Looking at the HPO coverage curve presented in Figure 2.7, we can see that with

only 50,000 full-text publications, coverage falls below 40%. However, the increased

number of documents retrieved by Cadmus increased the coverage beyond 45%

(approximately 650 entries in the HPO). This results in providing more training data

examples and a more complete representation of the phenotype terms present in the

scientific literature retrieved.
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Figure 2.6: Rarefaction curves for unique UMLS entities. Each curves shows
the number of newly unique UMLS terms extracted as we increase the number
of documents for each corpus. OA PMC is quickly limited due to the number
of publications available. Cadmus and Abstracts had about the same number of
documents, still Cadmus finds 100,000 unique UMLS terms not present in the abstract
corpus.
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Figure 2.7: Rarefaction curves for ontology coverage. Using the Cadmus corpus, it
represents how much of the ontology coverage is available in our corpus. While most
of the term will be found in a small corpus, more documents result in identifying the
less common terms of the ontology.
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A similar narrative unfolds for the GO and RxNORM ontologies, where the initial

coverage was relatively small due to our corpus capturing only a fraction of their

vast content. As our corpus size grows, the coverage gains diminish, reflecting the

diminishing number of previously unseen terms, which tend to be more challenging to

capture. Nonetheless, increasing our coverage and ensuring that every term of interest,

no matter how rare, finds its place in our corpus offering a fair representation of the

knowledge available.

2.5 Silver standard annotation generation: Paral-

lelPyMetaMap

In selecting a named entity recognition tool for the biomedical silver standard an-

notation, I carefully considered MetaMap Aronson (2001), cTAKES Savova et al.

(2010), and ScispaCy Neumann et al. (2019). All three effectively leverage the Unified

Medical Language System Bodenreider (2004) for NER and NEN tasks. My decision

was made on the specific needs of my project. While MetaMap and cTAKES offer

robust UMLS integration, ScispaCy would have been useful if I needed a wider

range of natural language processing functionalities beyond named entity recognition.

Since my research prioritises the standardisation in UMLS concept identification and

mapping, MetaMap’s singular focus on this aspect, along with its ease of mapping

to external resources developed by the National Library of Medicine (like the UMLS

itself), might prove more useful for my research. I developed the ParallelPyMetaMap

Lain and Simpson (2021) library to make MetaMap, the UMLS, and other valuable

resources created by the National Library of Medicine accessible and efficient for the

research community. I took into account the limitations of the prior adaptations,

MetaMap Lite and PyMetaMap Rios (2019), as well as their slow response times,

with the aim of enhancing these aspects without compromising performance. Firstly,

ParallelPyMetaMap allows users to use all MetaMap input parameters that impact

annotation performance. Secondly, it introduces an automation module to simplify the

process of annotating large volumes of text data by using the subprocess module and

creating multiple parallel MetaMap server instances to process multiple documents

concurrently. Thirdly, it translates all the information generated by MetaMap into

human-readable formats by referencing the NLM documentation for result inter-

pretation. MetaMap is outputting code from the UMLS semantic networks that

ParallelPyMetaMap converts to their corresponding human labels. Additionally, to
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optimize memory usage, the system automatically compresses all extracted inform-

ation. However, it also provides helper functions to access this data without the

need for memory-intensive expansion. Lastly, ParallelPyMetaMap is designed to be

parallelizable, enabling it to run multiple MetaMap servers concurrently. This reduces

the time required to annotate a collection of documents by harnessing more computing

resources compared to the original 1994 version of MetaMap.

2.5.1 Capabilities

ParallelPyMetaMap Lain and Simpson (2021) takes advantage of the processing

power of the available CPU cores on your machine by generating parallel instances of

the MetaMap Aronson (2001) server, enabling multiple documents to be processed

simultaneously. Its primary goal is to facilitate the annotation of biomedical pub-

lications using the UMLS Bodenreider (2004). Furthermore, it offers all the input

options found in MetaMap impacting its performance, before returning the result

it transforms the information into a human-readable format during the annotation

process. ParallelPyMetaMap also adds a degree of flexibility and adaptability by

dynamically managing the distribution of data across the number of CPU cores

provided, ensuring efficient resource utilization. Finally, it allows dynamic generation

by updating the output folder as your input data expands, eliminating the need to

re-annotate previously processed texts. In the event of system disruptions or failures,

ParallelPyMetaMap can easily resume the annotation process by distributing only the

missing documents, thus enhancing the overall efficiency of the workflow.

Complete performance features availability

As described in Demner-Fushman et al. (2017) and the input parameters list offered by

PyMetaMap Rios (2019), some critical input options available in MetaMap Aronson

(2001) are not present in the previously attempted adaptations. For instance, the

absence of the word sense disambiguation parameter in MetaMap Lite Demner-

Fushman et al. (2017) leads to challenges in effectively filtering annotations that

are purely textually similar. For example, when using MetaMap Lite, a sentence like

”The steroid will be kept for now and tapered at a later date on follow-up with Dr.

Coma”incorrectly links ”Coma”to the UMLS Bodenreider (2004) concept [C0009421]

Comatose due to the absence of word sense disambiguation, despite the context

indicating a different interpretation.
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ParallelPyMetaMap Lain and Simpson (2021), on the other hand, not only includes all

the available parameters for MetaMap’s performance but also introduces additional

parameters to provide a more versatile user experience. These new parameters offer

options to adjust the computational resources allocated to the process, change the

level of detail in the output, select of preferred output format, and accommodate a

wider range of input types used in BioNLP.

Automation

ParallelPyMetaMap Lain and Simpson (2021) was specifically designed to efficiently

annotate large biomedical text collections. Users can specify their preferences and

provide the system with the path to the directory or file they wish to annotate.

The system then automatically creates a designated output directory to store the

generated information. Using Python’s request package, it retrieves files from the NLM

to add information to the MetaMap Aronson (2001) output. The annotation process

is optimized by distributing data across the user-defined CPU cores and maintaining

necessary information in memory, thus reducing loading times. After processing each

document, data from the previous document is cleared to prevent memory overuse. If

ParallelPyMetaMap encounters a document that cannot be annotated by MetaMap,

it retains the information in the output directory to prevent redundant annotation

attempts on different cores. Upon completion, users can access the annotated data

in the output directory.

Recognizing the fast-evolving nature of the biomedical field, ParallelPyMetaMap in-

corporates a module that automatically identifies previously annotated and failed

documents, simplifying the addition of new data without wasting time on data that

has already been processed.

Conversion to human-readable format

Due to the complex formatting of MetaMap Aronson (2001) output as well as their

use of abbreviation codes to link to their semantic networks. ParallelPyMetaMap

Lain and Simpson (2021) uses files of Medicine (2023a) provided by the NLM to

resolve the abbreviation codes to their human-readable format. This way, the semantic

abbreviation code ’nnon’ becomes ’Nucleic Acid, Nucleoside, or Nucleotide’ similarly

the group abbreviation code ’T114’ becomes ’Chemicals & Drugs’.
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After resolving the codes employed by MetaMap, the system extracts the desired

information and stores it in a dictionary. The dictionary structure depends on the

output parameters selections of the user.

Efficiency of space memory

Depending on the number of publications processed by ParallelPyMetaMap Lain

and Simpson (2021), the space usage can quickly go up as the output generates

three files about the same or bigger size than the input file. In order to be cautious

of the space used during extraction, every file is compressed to limit the memory

they occupy. Still, the system was developed to be able to access the information

embedded in compressed files. Since ParallelPyMetaMap uses dictionaries and in

Python dictionaries have constant time complexity, exploring the data generated is

easily achieved by the user.

Faster processing time

The primary concern with MetaMap Aronson (2001) as mentioned in Aronson and

Lang (2010) was its slow response time, a consequence of its original development

back in 1994 using the Prolog programming language. Given the improvement in

computational power since then, MetaMap’s usage of computing resources appears

relatively low in comparison to today’s standards. Instead of embarking on a re-

implementation of MetaMap in the hopes of achieving greater speed, I opted to

address this problem by leveraging the built-in multiprocessing library within Python.

ParallelPyMetaMap Lain and Simpson (2021) evenly distributes the data among

available CPU cores, allowing each core to use MetaMap through Python’s subpro-

cess library and execute multiple MetaMap instances concurrently, effectively using

more computational resources to expedite the process by dividing the original time

required by the number of cores allocated. While ParallelPyMetaMap doesn’t retrieve

annotations from MetaMap more rapidly, its strategy of distributing the workload

across multiple cores significantly reduces the time required to annotate the corpus

by making the most of the available computing resources. This resulted in speeding

up the process by: (time required to run MetaMap) / number of cores allocated.
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2.5.2 ParallelPyMetaMap result formating

MetaMap Aronson (2001) offers different output results depending on the preference

of the user. There are three options available in MetaMap, human-readable output,

Prolog Machine Output (MMO), and Fielded MetaMap Indexing (MMI) Output.

While the human-readable output only provides the concepts identified by MetaMap

the other two outputs are more comprehensive in terms of the extraction information

(see below). For that reason, MMO and MMI outputs are also implemented in

ParallelPyMetaMap Lain and Simpson (2021) depending on what information the

user wants to access. Both options will return at least the entities identified as well

as their location identified by MetaMap.

Machine Output

The prolog machine output contains the highest level of detail from running MetaMap

Aronson (2001). The machine output result is embedded in a dictionary with the

following keys and information:

• cui - The UMLS Bodenreider (2004) Concept Unique Identifier (CUI) identified.

• prefered name - The preferred name for the entity identified in the text accord-

ing to the UMLS Bodenreider (2004).

• semantic type - Comma-separated list of the semantic type abbreviations for

the identified entity.

• full semantic type name - Comma-separated list of semantic type long-form

names for the identified entity.

• semantic group name - Comma-separated list of semantic group long-form

names for the identified entity.

• occurrence - Number of times this CUI has been found in the text in total.

• negation - Number of times this CUI has been found in the text in a negative/-

absent context.

• trigger - The list of the actual text mapped to this UMLS Bodenreider (2004)

concept identification.

• sab - The list of Abbreviated Source name, i.e. source vocabularies, in which

the CUI is registered.

• pos info - The list of positional information doubles showing StartPos, /, and

Length of each entity identified.
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• score - The score has a maximum value of 1000. The higher the score, the

greater the relevance of the UMLS Bodenreider (2004) concept according to

MetaMap Aronson (2001). When the entity is considered in a negative/absent

setting the score is negative in that case the highest value is -1000.

Fielded MetaMap Indexing

The Fielded MetaMap Indexing (MMI) Output obtained by MetaMap Aronson (2001)

extracts less information than the prolog machine output. After reviewing the docu-

mentation, ParallelPyMetaMap Lain and Simpson (2021) provides the following level

of information for MMI output:

• cui - The UMLS Bodenreider (2004) Concept Unique Identifier (CUI) identified.

• umls prefered name - The preferred name for the entity identified in the text

according to the UMLS Bodenreider (2004).

• semantic type - Comma-separated list of the semantic type abbreviations for

the identified entity.

• full semantic type name - Comma-separated list of semantic type long-form

names for the identified entity.

• semantic group name - Comma-separated list of semantic group long-form

names for the identified entity.

• occurrence - Number of times this CUI has been found in the text in total.

• annotation - A dictionary containing the raw result from MetaMap Aronson

(2001).

2.6 Discussion

In this chapter, I initially provided an overview of the existing landscape in the field of

biomedical corpus generation for named entity recognition. I discussed the currently

available gold standard datasets for biomedical named entity recognition, introduced

the methods for generating raw biomedical text corpora, and presented the UMLS

database Bodenreider (2004) along with tools for silver standard annotation for NER.

I next detailed my novel approach to biomedical corpus generation Cadmus Campbell

et al. (2023). I broke down the various components of Cadmus, explaining the entire

process from start to finish. Cadmus represents the first-ever attempt at an automatic

biomedical corpus retrieval system. To assess Cadmus’ utility, I conducted a compar-

ative analysis against PubMed abstracts and OA PMC. I emphasized that while the
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ratio of entity per word it offers is similar to what you can get from PubMed abstracts,

Cadmus provides access to unique biomedical information embedded in the documents

it extracts, contributing an additional 66% extracted entities to the existing knowledge

compared to previous methods.

I introduced my Python implementation of MetaMap Aronson (2001), known as

ParallelPyMetaMap Lain and Simpson (2021). While it’s not the first attempt to adapt

MetaMap to a newer programming language, ParallelPyMetaMap distinguishes itself

by successfully incorporating all the performance features of the original method while

addressing the demand for reduced response times, achieved through its parallelization

capabilities.

By combining the two methods I developed in this chapter, researchers have the

tools to construct their silver standard datasets by unlocking the knowledge stored

within the UMLS for their specific areas of interest. The fusion of these two methods

can prove valuable in text mining tasks that could result in the creation of data

visualization tools or the development of knowledge graphs.

2.6.1 Limitations

I will first introduce the limitations of Cadmus Campbell et al. (2023) before moving

on to ParallelPyMetaMap Lain and Simpson (2021).

Cadmus

Cadmus Campbell et al. (2023) is the first attempt to create a free research tool for

automatic biomedical full-text corpus generation. As highlighted in Wang et al. (2020),

there is a growing need, especially in times of emergency, for increased accessibility to

scientific content for researchers. Cadmus effectively addresses this need within the

range of available content access. The same query can yield different output based

on the user’s license status. However, Cadmus extends its reach beyond the OA PMC

dataset Maloney et al. (2017), providing access to a more extensive coverage than

existing solutions. It is important to note that Cadmus emerges as a highly valuable

resource for users with extensive publisher subscriptions by allowing them to retrieve

what they have the right to access. On the other hand, users without subscriptions

may access more publications than those within OA PMC but may have access to a

more limited selection compared to users with active subscriptions.
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Cadmus has been developed in compliance with the UK regulations governing text

data mining for research purposes (UK (2021), of Scientific T& MP (2013)). The legal

framework in the UK promotes the utilization of text data mining, allowing them to

leverage computer systems for accessing the subscribed materials fully. However, it’s

essential to note that users are not permitted to redistribute this content, as they

do not own the copyright. This means that research findings can be shared, and a

small part of the content present in these publications can be disseminated to others

by employing a 100-character window around the entity of interest. Nevertheless,

the complete content should remain with the individual user, in line with copyright

regulations.

Cadmus provides access to publications that users are authorized to reach by initially

identifying a list of potential candidates and then employing various services to locate

and request them. In contrast, PubMed abstracts and OA PMC directly offer access to

their complete datasets, only requiring users to extract the relevant results and identify

the potential publications on their own. However, it’s important to note that Cadmus

does not possess its own data, which means that each request must be initiated

anew for every search, without the benefit of pre-existing datasets. Consequently, this

results in Cadmus being much slower than its counterparts. Cadmus includes all the

information available from PubMed abstracts and OA PMC in its results, along with

additional publications, all of which are automatically integrated, saving users the

effort of manual extraction.

The current Cadmus version exclusively provides a single output format, where all

the content from a publication is available in plain text. However, it does not offer

the options for users to explore the content using a dictionary-style approach, as

demonstrated in Hu et al. (2021), or to selectively extract only the desired paragraphs.

This process can be facilitated by utilizing the Information Artifact Ontology Ceusters

(2012), which allows access to specific sections, such as the ’methods section’ or

’results section.’

Cadmus currently relies on the search strategy used by Entrez Direct Tao (2017). For

that reason, Cadmus can only offer publications that are indexed in PubMed and those

identified using this search engine approach. While PubMed is widely recognized as a

significant database of records of biomedical publications, Cadmus’ coverage remains

partial due to its dependence on PubMed.
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ParallelPyMetaMap

ParallelPyMetaMap Lain and Simpson (2021) provides the features from MetaMap

Aronson (2001), a higher annotation speed rate, and unlocks the full potential of the

UMLS Bodenreider (2004) for the community. However, its strategy is mainly based

on dictionary look-up making it useless in case the vocabulary of interest is absent

from the dictionary. Its inability to identify unseen entities makes it less reliable than

the current state of the art for certain source vocabularies.

It’s important to note that ParallelPyMetamap necessitates the use of MetaMap,

which is a resource distributed under license, thereby imposing restrictions on its

usage.

Despite efforts to parallelize the process, the time required for ParallelPyMetamap

to annotate a single input on one core remains relatively slower than current deep

learning models. This is because ParallelPyMetamap attempts to match an identified

candidate with the four million concepts within the UMLS, in contrast to deep learning

models with a smaller number of categories. When ParallelPyMetamap is configured

with input parameters that filter the UMLS to a smaller vocabulary size then its

annotation speed almost compares with current state-of-the-art solutions by being

only slightly slower.

2.6.2 Future work

In this section, I will mention the areas where Cadmus Campbell et al. (2023) and

ParallelPyMetaMap Lain and Simpson (2021) could be developed in the future to

improve performance or usability.

Cadmus

The initial enhancement that can be applied to Cadmus Campbell et al. (2023) is

regarding its response when dealing with multiple JavaScript redirections. Cadmus

relies on services to identify the paper’s location, it can be achieved for example by

accessing doi.org/{DOI of the paper}. If one enters this URL in a web browser, one

will observe a redirection from doi.org to the actual publisher’s website where the

paper is stored. Although Cadmus is generally effective at handling these redirections,

I have identified areas for improvement, particularly when consecutive redirections

occur. Addressing this issue could ultimately enhance Cadmus’ retrieval performance.
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By merging the search strategy and database entries from other sources, Cadmus

could let users select their preferences in terms of data providers. Cadmus may

potentially offer the choice to include preprints from sources like arXiv, bioRxiv, and

medRxiv. This would be beneficial when users need timely access to information, such

as in emergency situations, as opposed to Cadmus’ current practice of exclusively

offering peer-reviewed papers. This feature could also grant users the option to select

their preferred search engine strategy. Currently, Cadmus only provides results from

PubMed, but in the future, it could also provide results obtained from PMC Maloney

et al. (2017). By merging the results from multiple search engines Cadmus will have

a better coverage of one’s scientific interest.

Currently, there is only a single output format that extracts the content directly from

the publication and saves the content as a plain text file, overlooking the document’s

structure, and thus missing the structural organization of the content. Thanks to

recent progress in PDF extraction tools and the parsing of HTML and XML formats,

Cadmus could introduce an option to either extract the content as a whole or maintain

the paper’s structural elements. This improvement would ultimately improve the user

experience by enabling users to easily navigate the document and choose or omit

specific paragraphs of interest.

ParallelPyMetaMap

ParallelPyMetaMap Lain and Simpson (2021) serves as a biomedical named entity

recognition tool for generating annotations at a silver standard level. Given the specific

nature of its annotations, there may be a need to utilize human annotation web page

tools like TeamTat Dogan, Kwon, Kim, and Lu (2020) to review and manually refine

the predictions made by ParallelPyMetaMap. At the moment, ParallelPyMetaMap can

effectively handle various document formats, but it treats the content as plain text

input. A valuable enhancement could involve implementing a feature that enables

users to select from a range of structural input options, such as the BioC format

Comeau et al. (2013). This would allow ParallelPyMetaMap to navigate the input

and provide its predictions in the desired format directly, this way ParallelPyMetaMap

aligned itself with the user’s specific requirements.



Chapter 3

Advancing Biomedical Knowledge

with Autism Spectrum and MeSH

Phenotype Insights

3.1 Introduction

The imperative for large-scale biomedical corpora is underscored by the difficulty and

expansive nature of biomedical data. This demand comes from the necessity to capture

the diversity and complexity inherent in various biomedical sources, including research

articles, clinical notes, and genetic information. In this context, Autism Spectrum

Disorder (ASD) is the perfect example of a disease reliant on multiple clinical aspects,

warranting comprehensive corpora for a better understanding. The surge in data-driven

technologies, particularly in natural language processing and machine learning, further

accentuates the need for extensive corpora as training grounds for developing robust

models. These corpora serve as invaluable resources for identifying trends, patterns,

information, and emerging themes within the vast domain of biomedical literature.

Moreover, having large-scale corpora contributes to the reproducibility of research

findings, providing foundations for evidence-based decisions. As biomedical research

continues its evolution, large-scale corpora remain pivotal, serving as an indispensable

component to unravel the complexities of human health and disease.

In this chapter, the exploration begins with an introduction to fundamental concepts

and tools essential for navigating biomedical textual data. The first section introduces

methods in topic modeling, and some biomedical ontologies.

49
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The second section introduces the Autism Spectrum Disorder (ASD) corpus. I present

the search strategy used for the automated generation of the first large-scale disease-

specific corpus. Additionally, a detailed analysis of metadata and textual information is

presented, setting the stage for the application of four distinct topic modeling methods

on our ASD corpus. This comprehensive approach provides insights into latent topics

within the ASD corpus, enriching our understanding of the vast landscape of ASD-

related literature.

The third section introduces our phenotype corpora by presenting their generation

process and retrieval. These corpora showcase the careful curation and coverage of

the Human Phenotype Ontology (HPO) Robinson et al. (2008).

3.2 Background

This background section introduces two tools in corpus classification and visualization:

Topic Modeling, and Ontologies. In the exploration of Topic Modeling, I introduce

Latent Dirichlet Allocation (LDA) David M. Blei (2003), Corex Ryan J. Gallagher

(2017), and BERTopic Grootendorst (2022) and describe their approach to topic

extraction.

Then my focus turns to ontologies, especially the Medical Subject Headings (MeSH)

NLM (2008) and Human Phenotype Ontology (HPO) Robinson et al. (2008). These

ontologies contribute to standardizing descriptions of biomedical entities, fostering

interoperability, and facilitating effective data integration.

3.2.1 Topic Modeling

Topic modeling is a method used in natural language processing to automatically

identify topics present in a large corpus of text. It is a way to uncover hidden structures

in the data and discover patterns in the text. These topics are represented as a

mixture of words and can be used for various applications such as text classification,

information retrieval, and document summarization. It can also be used for visualizing

the theme of a collection of documents, finding the main topics discussed in a large

corpus of text, and extracting insights from unstructured data.
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Diverse methods include unsupervised techniques like Latent Dirichlet Allocation

(LDA) David M. Blei (2003) and Non-Negative Matrix Factorization D. D. Lee

and Seung (1999). Supervised approaches like Guided LDA Zhou, Kan, Huang, and

Silbernagel (2021) and Labeled LDA Ramage, Hall, Nallapati, and Manning (2009)

incorporate external guidance, while weakly supervised methods utilize external know-

ledge for topic modeling with methods like Corex Ryan J. Gallagher (2017).

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) David M. Blei (2003) is a generative probabilistic

model for topic modeling in text data. It is one of the most popular unsupervised

techniques for topic modeling.

The basic idea behind LDA is that each document in a corpus is a mixture of multiple

topics, and each topic is a mixture of multiple words. LDA represents documents as a

probability distribution over topics and topics as a probability distribution over words.

The model assumes that the words in a document are generated by first selecting a

topic from a document-specific topic distribution and then selecting a word from the

topic-specific word distribution.

The process of training an LDA model involves estimating the parameters of the topic-

word and document-topic distributions using the data. Once the model is trained, it

can be used to discover the topics in new documents by inferring the topic distribution

for each document.

Corex

Corex Ryan J. Gallagher (2017) is an algorithm for topic modeling that is based on

the idea of ”correlation explanation”. It aims to identify the most informative words

and the most relevant topics in a corpus of text. Corex works by finding the most

highly correlated words in the data and grouping them into clusters, which represent

the topics. Corex does not rely on a probabilistic generative model, but instead, it

uses a combination of a sparse linear model and a clustering algorithm to identify the

topics.
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Some of the main advantages of Corex are that first, it is able to handle high-

dimensional and sparse data. Second, it can also identify overlapping topics and words,

which is something that LDA David M. Blei (2003) is not able to do. Third, Corex

can provide a more interpretable output than LDA, as it generates topic labels based

on the most informative words in the corpus. Finally using Corex one can infer the

topics one is looking for by providing a list of ’anchor words’. The model will then try

to match the words provided with the most highly correlated words in the text.

BERTopic

BERTopic Grootendorst (2022) is a variant of BERT (Bidirectional Encoder Repres-

entations from Transformers) Devlin et al. (2019), a pre-trained transformer-based

neural network architecture, that is fine-tuned for topic classification. BERTopic is

trained to predict the topic of a given text by using the transformer architecture with

a multi-label classification head for the last layer of the model.

BERTopic uses a pre-trained language model as a starting point which allows it

to understand the context and meaning of the words in a text. Like Corex Ryan

J. Gallagher (2017), BERTopic can be used for unsupervised and semi-supervised

training.

In the case of unsupervised training, the fine-tuned BERTopic is used to generate

representations of the texts, and then clustering (HDBSCAN McInnes, Healy, and

Astels (2017)) and dimensionality reduction techniques (UMAP McInnes and Healy

(2018)) are applied to these representations to discover topics. It uses the pre-trained

BERT model as an encoder to map the text data into a high-dimensional space where

the texts with similar topics are close to each other.

In the case of semi-supervised training, the BERTopic model is fine-tuned on a corpus

and its corresponding topics, so it can learn to predict the topic of new texts. The fine-

tuning process involves adjusting the model’s parameters to optimize the performance

on the task of topic classification. Supervised BERTopic Grootendorst (2022) showed

state-of-the-art performance on a variety of topic classification tasks such as news,

scientific papers, and Twitter data.
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3.2.2 Introduction to biomedical ontologies

An ontology is a framework that defines and organizes knowledge in a specific domain,

capturing relationships and entities while providing a structured representation of their

connections represented as a tree structure. Essentially, it is a formalized, explicit

specification of shared vocabularies within a particular field, offering a common un-

derstanding and vocabulary for individuals or systems interacting within that domain.

The importance of an ontology lies in its ability to enhance information sharing,

exchange and make use of structured information across diverse systems and ap-

plications. By establishing a standardized and universally accepted set of terms and

relationships, ontologies facilitate more effective communication and knowledge in-

tegration. Ontologies can allow computers to interpret, reason, and infer meaning

from data.

Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) ontology NLM (2008) is a comprehensive and

hierarchically structured vocabulary developed by the National Library of Medicine

(NLM) for indexing, cataloguing, and organizing biomedical information. MeSH is

used by PubMed to describe the content of its records providing a standardized way

to categorize and retrieve information from biomedical research articles. Comprising

over 30,000 descriptors, MeSH encompasses terms related to anatomy, diseases,

chemicals, drugs, and medical procedures, among others. This extensive ontology is

organized into a tree-like structure, with broader categories containing more specific

subcategories. MeSH incorporates relationships between one term to the rest of the

ontology, contributing to its dynamic nature and adaptability.

Human Phenotype Ontology (HPO)

The Human Phenotype Ontology (HPO) Robinson et al. (2008) is a structured

and standardized vocabulary designed to systematically capture and represent human

phenotype. Developed to facilitate the analysis of phenotypic information, especially

in the context of genomic data, HPO is used in the field of medical genetics and rare

diseases. HPO is composed of over 13,000 terms, it categorizes terms related to ana-

tomical structures, physiological functions, and clinical manifestations. These terms

are connected through a hierarchical structure, allowing for a detailed representation

of the relationships between different phenotypic features. The ontology provides all
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the synonyms of a term, this can later be used for normalization purposes and connect

the extracted information together. The HPO is incorporated into other ontologies like

MeSH NLM (2008) and the UMLS Bodenreider (2004), the information is recorded

within the ontology simplifying cross-references to other data sources. Finally, HPO

provides information related to the relations between a phenotype term to known

diseases or known genes linked to it.

3.3 The Autism Spectrum literature corpus

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is charac-

terized by deficits in social interaction, impaired communication, and a range of

stereotyped and repetitive behaviours. Mayada Elsabbagh (2012) estimated that 1

in 160 children in America, the Western Pacific, and Europe have Autism Spectrum

Disorder. Most of the characteristics to identify ASD are a list of terms describing

the behaviour of an individual. An individual with ASD can have a multitude of co-

morbidities including intellectual and language disabilities as well as various social and

behavioral features. Approximately one-third of cases regress between one and two

years of age Backer (2015). An accurate and deep characterization of the ’phenotype’

of a patient is key when diagnosing ASD. Also, there are different levels of phenotype

descriptions depending on the ability of one with ASD. For example, when evaluating

someone with ASD in the matter of social interaction and communication, a specialist

will look for: difficulties in normal back-and-forth conversation, reduced sharing of

interests or emotions, challenges in understanding or responding to social cues such as

eye contact and facial expressions, deficits in developing/maintaining/understanding

relationships (trouble making friends), and others. Capturing detailed and accurate

phenotype descriptions will help the research community better understand ASD and

to link phenotypic information to other clinical and generic data. Sometimes, when

parents are waiting for a diagnosis, they will go through a lot of stress and unnecessary

medical exams. This is the result of a poor understanding of the condition. Although

it has improved in recent years, the average time to diagnosis is still greater than

three yearsFabrice Rousselot (2015).
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3.3.1 Corpus Generation

The search strategy employed to generate the Autism corpus using Cadmus Campbell

et al. (2023) based on the PubMed search engine is thoughtfully constructed. After

multiple attempts at capturing most of the ASD-related literature I used the following

query: ’((((Autism) OR (Autistic)) OR (Autism Spectrum Disorder)) OR (Asperger

syndrome)) OR (ASD)) NOT (Atrial Septal Defect),’. This query shows a well-

balanced combination of inclusiveness and specificity. It contains synonymous terms

associated with autism, such as ’Asperger syndrome’, ’Autistic’, ’Autism Spectrum

Disorder’, and ’ASD’, ensuring a comprehensive coverage of relevant literature. Sim-

ultaneously, its precision is enhanced through the exclusionary component ’NOT

(Atrial Septal Defect),’ eliminating articles related to a different medical condition also

shortened as ASD, thus refining the search to articles exclusively focused on autism.

The query’s sensitivity to the variability in terminology, meticulous use of logical

operators, and adherence to PubMed’s search syntax contribute to its effectiveness

in retrieving a targeted and pertinent set of autism-related research articles. The

numbers of unique PMIDs attributed to each search term are presented in Table 3.1.

The autism corpus could potentially be very useful for the scientific community. It

could be used to train machine learning models for various NLP tasks, such as text

classification, information extraction, and named entity recognition, which could help

researchers and practitioners in the field of autism to better understand the condition

and develop new treatments and protocols. Additionally, the autism corpus could also

be used to improve the performance of natural language interfaces for individuals with

autism, such as chatbots Cooper and Ireland (2018) or virtual assistants Rehman et

al. (2021), which could help improve their communication and social interactions.

Using Cadmus, the Autism corpus is composed of 72,058 records as of May 2022.

Cadmus, under the licenses owned by the University of Edinburgh, was able to retrieve

59,547 full texts. Here is the summary of the documents retrieved by Cadmus:

• Number of records indexed in Pubmed: 72,058 (100%)

• Number of full text found: 59,547 (82.64%)

• Number of records where at least one tagged file was found: 35,246 (48.91%)

• PDF format: 35,043 (48.63%)

• HTML format: 29,075 (40.35%)

• XML format: 18,121 (25.15%)

• TXT format: 14,590 (20.25%)
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PubMed search Number of PMIDs
Autism 62,509
Autistic 29,174

Autism Spectrum Disorder 47,444
Asperger syndrome 2,561

ASD 30,834
((((Autism) OR (Autistic))

OR (Autism Spectrum Disorder))
OR (Asperger syndrome)))

67,063

((((Autism) OR (Autistic))
OR (Autism Spectrum Disorder))

OR (Asperger syndrome)) OR (ASD))
75,452

((((Autism) OR (Autistic))
OR (Autism Spectrum Disorder))

OR (Asperger syndrome)) OR (ASD))
NOT (Atrial Septal Defect)

72,058

Table 3.1: Contribution of each search term to the overall query.
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3.3.2 Metadata Analysis & textual visualization

When running cadmus Campbell et al. (2023), metadata is retrieved before looking

for the full text as shown in Figure 2.1. The metadata of a corpus contains information

that provides a structured overview of its contents, facilitating effective organization

and analysis. In the context of research literature, metadata elements include pub-

lication date, journal, publication type, MeSH terms NLM (2008), and keywords.

Publication date provides the temporal dimension, the chronological evolution of

research topics, and if any shift of focus emerges as the year passes. Journal metadata

offers insights into the sources and outlets of the work, aiding in the assessment

of credibility. Additionally, publication type categorizes documents, distinguishing

between original research, reviews, and various content types, thereby shaping the

corpus’ composition. Finally, MeSH terms and keywords, when available, provide a

general idea of what the content of the publication is about by providing a list of

specific key terms.

Data literacy of a corpus is the capacity to interpret, analyze, and derive meaningful

insights from the data within that corpus. A text corpus is filled with embedded

information, data literacy equips individuals to navigate, comprehend, and leverage

the information by harnessing the knowledge embedded within the dataset.

The historical frequency of the Autism research

The concept of autism was first introduced in 1911 by the German psychiatrist Eugen

Bleuler to characterize a symptom observed in the most severe cases of schizophrenia

a concept he had previously formulated Evans (2013). After its inception, autism

research found minimal interest until the year 2000. Figure 3.1 illustrates the limited

research output on autism between 1951 and 2000, with only 6,764 publications during

this period.

Notably, from 2001 to 2005, a substantial peak occurred, where approximately 63%

of the cumulative research output from the previous fifty years was published. Since

then, there has been a continuous rise in publications related to autism, reaching

25,225 for the period 2015-2020.

Figure 3.2 zooms in on the years 2011-2021, given that the corpus was retrieved

in early 2022. In 2011, 2,386 publications were released, and Cadmus Campbell et

al. (2023) successfully obtained 83% of the full texts using the licenses held by

the University of Edinburgh. By 2021, the number of publications had surged to
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Figure 3.1: Number of publications submitted between 1951 to 2020 aggregated by
5 years window.

8,386—3.5 times the 2011 figure. Over the years, Cadmus has demonstrated improved

retrieval rates, particularly noticeable between 2011 and 2020. However, in 2021, the

challenge arose as records sometimes preceded the availability of links to the full texts,

making the retrieval of very recent publications more difficult.

Distribution of the Journal publishing Autism research

The effectiveness of Cadmus Campbell et al. (2023) depends on two primary factors:

journal subscription and a tendency to excel in finding newer publications. Figure 3.3

illustrates the distribution of the top 20 journals in which autism research has been

published. The top three journals are specialized in autism research.

Frequency of the Publication Type in the Autism Corpus

About half of the publication type tags present in our corpus are journal articles

as shown in Figure 3.4, which makes it the biggest publication type of the autism

corpus. Some interesting publication types: 7.63% are review articles, 3.26% are case

support where one can find additional information alongside the full text, and 2.17%

are comparative studies.
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Figure 3.2: The retrieval rate of the autism corpus for the last 10 years, with the
number of publications per year.

Analysis of the Mesh terms present in the Autism Corpus

In Figure 3.5, the top 30 most recurrent MeSH terms NLM (2008) within the Autism

Spectrum Disorder (ASD) corpus provide an overview of the type of information

one can expect to find in the corpus. The top of the list focuses on population-

related descriptors, with terms like ’humans’, ’male’, ’female’, ’child’, ’adolescent’, and

’adult’, it reflects the population contributing to and benefiting from ASD research.

Then around the middle of the list, clinical terms such as ’genetics’, ’psychology’,

’physiopathology’, and ’metabolism’ show the multi-disciplinarity of ASD research,

highlighting the connection between areas like genetics, psychology, and physiology.

Finally, ASD-specific MeSH terms like ’autistic disorder’, ’autism spectrum disorder’,

’child development disorders pervasive’, and ’social behavior’ focus on specific parts

of the spectrum.

Analysis of the Keywords provided by the authors

Keywords as opposed to MeSH terms NLM (2008) are provided directly by the authors

and are neither normalized nor restricted to the scope of an ontology. This results

in a more in-depth and descriptive description of what is present in the publication.

However, the absence of standardization often leads to increased term duplication,

posing challenges for information extraction. For example, the first four terms reported

in Figure 3.6 are ’autism’, ’autism spectrum disorder’, ’autism spectrum disorders’,

and ’asd’. These four terms refer to the same information, meaning with a better

consistency as with MeSH terms, their counts would have been aggregated together,

instead, the first item, i.e. ’autism’, of Figure 3.6 is mentioned ∼8000 times in the
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Figure 3.3: Distribution of the most common journals in which Autism publications
are published.
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Figure 3.4: Distribution of the publication types, publication types below 1%
frequency have been aggregated together to form the publication type ’other’.
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Figure 3.5: Top 30 most recurrent MeSH terms within the ASD corpus.

metadata while in Figure 3.5 the first item, i.e. ’humans’, is present 50,000 times in

the metadata. Nevertheless, there is value in studying keywords as the information

they provide is more detailed and clinically oriented to the MeSH terms presented

in Figure 3.5. Some of the clinically relevant keywords present in the top 30 are:

’schizophrenia’, ’adhd’, ’fragile x syndrome’, and ’social cognition’.

Analysis of the Title

Examining the most frequently occurring n-grams in the titles, Figure 3.7 reveals

the presence of terms such as ’Autism,’ ’Spectrum,’ ’Disorder,’ ’ASD,’ and their

combinations. This observation aligns with expectations, providing a comprehensive

overview of the corpus content. Notably, the inclusion of ’systematic review,’ refer-

ences to studies on mice indicated by ’mouse model,’ genetic investigations, mentions

of phenotypes, and comparisons with other known neurodevelopmental disorders are

pertinent to Autism Spectrum Disorder (ASD).
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Figure 3.6: Top 30 most recurrent keywords terms within the ASD corpus.

Transitioning from n-grams to the most recurrent words in the titles, Figure 3.8

affirms the dominance of ’autism,’ ’spectrum,’ and ’disorder’ in the top three positions.

Furthermore, ’children’ claims the 4th position, distinguishing studies focusing on

this demographic from those concentrating on young adults (22nd position) or adults

(14th position). The appearance of ’social’ in the 9th position reflects a crucial aspect

addressed in research involving autistic individuals, and ’behavior’ in the 15th position

underscores its significance in the diagnosis of autism.

Analysis of the Abstract

After the title, focusing on the abstract is highly relevant as the majority of the

biomedical language models use the abstract for training. While some of the expec-

ted n-grams are also present, like in the titles, noise appears with the structure of

the abstracts also being present: ’CONCLUSION’, ’METHOD’, ’OBJECTIVE’, and

’BACKGROUND’. Most of the vocabulary present in Figure 3.9 are relevant to the

study of autism.
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Figure 3.7: A word cloud of the most common n-grams present in the titles of the
Autism corpus.

Figure 3.8: The most frequent words present in the titles of the Autism corpus.
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Figure 3.9: A word cloud of the most common n-grams present in the abstracts of
the Autism corpus.

Full text

After exploring the n-grams found in both titles and abstracts, I aimed to compare

them with the content of the full text. The titles and abstracts are directly obtained

from Medline records by Cadmus Campbell et al. (2023), ensuring their relevance

to autism due to the indexing process of the PubMed search engine relying on the

similarity between the query with the title, abstract, keywords, and MeSH terms NLM

(2008).

Once again, Figure 3.10 demonstrates the presence of terms one would anticipate

in research about autism. While the n-grams remain pertinent to autism, a few

residual artefacts, such as ’htpps’ and ’org,’ can be discerned from the full-text

parsing. Although the n-grams exhibit similarities across all three scenarios, variations

in writing styles are expected between abstracts and full texts. How knowledge is

introduced and embedded appears more robust and reflective of real-life scenarios in

full-text instances compared to abstracts. This underlies the creation of Cadmus to

extract the embedded information from the full text in the autism corpus.

Table 3.2 provides a word count summary for titles, abstracts, and full texts. As

anticipated, the full text is, on average, 27 times larger than the abstract. Overall,

these findings provide a more concrete representation of the vocabulary and its

contextual usage in autism publications.
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Figure 3.10: A word cloud of the most common n-grams present in the full text of
the Autism corpus.

Title Abstract Full-Text
Number of articles 71,995 64,792 59,547
Mean word count 13 199 5,425
Standard deviation word count 4 83 4,759
Min word count 1 1 101
Q1 word count 10 140 3,252
Q2 word count 13 196 4,890
Q3 word count 16 247 6,700
Max word count 62 5,414 387,516

Table 3.2: The word count summary between title, abstract, and full text. Min stands
for the minimum number of words. Q1 stands for the first quartile and is the value
under which 25% of data points are found when they are arranged in increasing order.
Q2 stands for the second quartile and is the value under which 50% of data points
are found when they are arranged in increasing order. Q3 stands for the third quartile
and is the value under which 75% of data points are found when they are arranged
in increasing order. Max stands for the maximum number of words.
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ParallelPyMetaMap applied to the autism corpus

ParallelPyMetaMap Lain and Simpson (2021) was used to extract the biomedical en-

tities present in the full-text documents of the autism corpus. Out of the 59,547 texts

retrieved by Cadmus Campbell et al. (2023), ParallelPyMetaMap was able to annotate

57,690 (96.9%) of them. The publications that were not annotated by ParallelPy-

MetaMap contained too many characters to be processed. In Figures 3.11 3.12 3.13 3.14,

I show some of the highlights of the analysis.

Figures 3.11 and 3.12 present the top 10 highest ASD-related entities manually

extracted from the UMLS Bodenreider (2004) and HPO Robinson et al. (2008),

respectively, derived from the machine extracted top 30. Both figures share two

common terms, namely ’Autistic Disorder’ and ’Autism Spectrum Disorders,’ aligning

with the focus of the corpus. In Figure 3.11, ’Behavior’ occupies the 7th position,

while Figure 3.12 provides a more detailed breakdown with ’Abnormal Behavior,’

’Hyperactive behavior,’ and ’Aggressive behavior’ at the 6th, 7th, and 10th positions,

respectively. Figure 3.11 highlights two entities related to the known social difficulties

of ASD, featuring ’Pervasive Development Disorder’ at the 2nd position and later

’Social.’ Additionally, it includes mentions of population characteristics with ’Child’

ranking 3rd and three positions down ’parent.’ Two instances of clinical information

emerge with ’Brain’ and ’CD44 wt Allele’ at the bottom of the list showcasing the

potential of NLP in extracting and connecting clinical knowledge embedded in research

articles. Contrastingly, Figure 3.12, influenced by the nature of the HPO, emphasizes

terms describing characteristics that individuals with autism may develop. Examples

include ’Attention deficit hyperactivity disorder’ at the 3rd position and ’Anxiety’

at the 5th position. Nevertheless, the 8th position introduces an entity, ’Genetic

Heterogeneity,’ leaning more toward clinical information.

Figure 3.13 informs us of the ontology origins of the entities by providing the name

of the ontology in which the term is present. Unsurprisingly, with 252,473 entities

and its general vocabulary Metathesaurus (MTH) Bodenreider (2004) takes the first

spot of the distribution. SNOMEDCT US Spackman (2000), the first well-known

biomedical ontology from the list composed of 434,906 entities is in the 4th place.

Some other ontologies related to Autism with their well-defined scope and rather

smaller size present in the top 30 are Medical Subject Headings (MSH) NLM (2008),

Psychological Index Terms (PSY) Beike (2016), Online Mendelian Inheritance in Man

(OMIM) Amberger et al. (2014), and Human Phenotype Ontology (HPO) Robinson

et al. (2008).
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Figure 3.11: Top 10 highest ASD-related entities extracted manually from the top
30 UMLS entities extracted by ParallelPyMetaMap. CUI is the concept identifier from
MetaMap. The CUI is used to normalize extracted terms with the same meaning under
the same identifier.

Finally, Figure 3.14 gives us insight into the semantic types the entities are from

according to the UMLS tree structure. In comparison, a model like BioBERT J. Lee

et al. (2019), due to its original training, would only be able to identify the entities

from ’Disorders’, ’Genes & Molecular Sequences’, ’Living Beings’, and ’Chemicals &

Drugs’ which accounted for 24.41% of the total number of entities. One of the pros

of using the UMLS is its rich vocabulary that spans very different categories that are

relevant for autism, one example is ’Concepts & Ideas’ which has 47.09% of the total

number of entities.

In total ParallelPyMetaMap Lain and Simpson (2021) identified 155,472,341 annota-

tions from the autism corpus of which 200,205 were unique.
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Figure 3.12: Top 10 highest ASD-related entities extracted manually from the top
30 HPO entities extracted by ParallelPyMetaMap. CUI is the concept identifier from
MetaMap. The CUI is used to normalize extracted terms with the same meaning
under the same identifier.

3.3.3 Topic Modeling

As the number of records recorded in PubMed grows exponentially, navigating through

the literature becomes increasingly challenging VishrawasGopalakrishnan (2019). Topic

modeling, driven by algorithms like Latent Dirichlet Allocation (LDA) David M. Blei

(2003), becomes indispensable for automatically discerning and categorizing key themes

within the vast corpus. ASD research is characterized by its multidisciplinary nature

spanning genetics, neuroscience, psychology, and clinical interventions, topic modeling

plays a part in providing an automated and systematic approach to identifying pre-

valent topics. Topic Modeling helps efficiently uncover and interpret patterns across

a broad spectrum of literature like ASD. Topic modeling can identify prevalent topics

over time allowing researchers to gain insights into evolving themes, and ensuring that

their investigations remain aligned with current research priorities and developments.

Moreover, the utility of topic modeling extends to information retrieval by structuring

articles based on themes. It enhances the precision of searches for ASD-related studies,

facilitating researchers in locating relevant literature within the corpus.
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Figure 3.13: Top 30 Abbreviated Source Names (SAB), i.e. ontologies, present in
the Autism corpus.
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Figure 3.14: Semantic type of entities extracted by ParallelPyMetaMap with respect
to the UMLS tree. The semantic types below 1% frequency have been aggregated
together to form the semantic type ’other’.
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Figure 3.15: LDA model classification results, when number of topics set to 10, on
the autism corpus.

Latent Dirichlet Allocation

In the pursuit of training an LDA David M. Blei (2003) model in Python for the analysis

of autism-related research articles, the dataset underwent essential pre-processing

steps, including conversion to lowercase and the removal of punctuation and stop

words. Setting the number of topics to 10, one of the parameters available in the

Gensim library LDA implementation Rehurek and Sojka (2011), the subsequent ex-

ploration of uncovered topics revealed a mixed outcome.

The topics can be found in Figure 3.15. While certain topics, such as Topic 9 (Gene),

Topic 4 (Hyperactivity), Topic 3 (Mice experiment), and Topic 0 (Digestive), proved

highly relevant to autism, some demonstrated irrelevant information. For instance,

Topic 6 comprised Spanish and French stop-words, and Topic 8 appeared to be related

to robots but contained artefacts like ’etal’ and ’httpsorg’ from the parsing process.

This underscores the limitation of using unsupervised topic modeling techniques like

LDA.
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Figure 3.16: Unsupervised Corex model classification results on the autism corpus.

Figure 3.17: Semi-Supervised Corex model classification results on the autism corpus.

Corex

Following the same pre-processing technique as employed in Section 3.3.3, I trained

two Corex models Ryan J. Gallagher (2017) using both unsupervised and semi-

supervised methods, and the outcomes are presented in Figure 3.16, and in Fig-

ure 3.17, respectively.

Similar to Section 3.3.3, the parameter for the number of topics in Corex was set to

10. The results obtained using unsupervised Corex, as illustrated in Figure 3.16, are

more robust and pertinent to autism when compared to those identified using LDA

David M. Blei (2003). Notably, Topic 2 emerged as an outlier, seemingly associated

with publisher names.

As opposed to LDA, semi-supervised Corex demonstrated the capability to use a list

of user-provided keywords, referred to as anchor words, to generate topics aligned

with the user’s input. A list of five topics of interest, derived from semantic categories

available in the UMLS Bodenreider (2004), including Behavior, Clinical Attribute, Ge-

netic Function, Molecular Function, and Molecular Sequence, was created by isolating

these categories from the rest of the ParallelPyMetaMap Lain and Simpson (2021)

output, then the entities present in the corpus were extracted to generate the lists of

anchor words. This time eight topics were generated, as presented in Figure 3.17. I

decided to limit the freedom of the model and evaluate its performance in fitting the

anchor word by decreasing the number of topics from 10 to 8.
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Topic Number Topic Name
0 mice neuron cell use
1 asd group children autism
2 gene variant use mutat
3 asd autism studi score
4 variant gene autism mutat
5 etal cell use mice
6 cell neuron express protein
7 cell bola2 gene human
8 asd gene neuron model
9 gene cell express php
10 cortic brain develop neuron

Table 3.3: Unsupervised BERTopic model classification results on the autism corpus.

The results obtained from the semi-supervised Corex, using the provided anchor words,

showed better topics than the ones provided by LDA or unsupervised Corex. While

Topic 1 fell short in producing a topic related to Behavior, by providing instead a list of

publication titles in which this topic is mentioned instead. Topics 2 to 5 all produced

a result aligned with their respective topic names. On the other hand, Topics 6, 7,

and 8 were generated through an unsupervised approach, related to autism, and they

provided a distinct focus from the topics obtained with anchor words. The use of

anchor words in the semi-supervised approach provided better results than the topics

generated by LDA, still Topic 1 showed the limitation of using Corex. Corex tries to

fit the anchor words but ultimately it will refine the list depending on what it finds in

the corpus.

BERTopic

As opposed to Sections 3.3.3 and 3.3.3, BERTopic Grootendorst (2022) does not take

a fixed number but instead a minimum and a maximum number of topics to generate.

At the end of the process, it provides the result for the optimal number of topics

it identified using the normalized pointwise mutual information score Grootendorst

(2022). The number of topics for unsupervised BERTopic was set between 10 to 15.

Regarding the semi-supervised BERTopic, I used the same list of anchor words as for

Section 3.3.3. The results can be found in Table 3.3 and in Figure 3.18.
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Figure 3.18: Semi-Supervised BERTopic model classification results on the autism
corpus.
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Table 3.3 summarizes the results obtained using the unsupervised BERTopic. Unsuper-

vised BERTopic is taking advantage of word embedding, clustering, and dimensionality

reduction techniques to create the topic. I provided BioBERT as word embedding.

The model identified eleven topics all relevant to clinical autism compared to Corex

Ryan J. Gallagher (2017) or LDA David M. Blei (2003) but much more similar as well.

For example ’cell’ is a major descriptive word for five of the eleven topics. Similarly

to LDA, BERTopic only assigns a document to one and only one topic as opposed to

Corex and a multi-label BERT Devlin et al. (2019) Document Classification. Unlike

LDA, BERTopic has the ability to not assign a document to any topic.

Figure 3.18 displays the top word scores for each topic identified by the semi-supervised

model. Using the same parameters as before, and the vocabulary used in Section 3.3.3.

This time the model found twelve topics and I can conclude the same observation as

made in the unsupervised analysis. The topics are mainly clinical and similar to each

other. One of the list vocabulary provided to the model was related to ’behavior’ and

as opposed to Corex, BERTopic successfully identified it as seen in topics 1 and 2.

BERT Document Classification

Finally, a BERT model for document classification Devlin et al. (2019), i.e. topic

modeling, was trained using the ASD corpus. I used the MeSH terms NLM (2008)

provided by PubMed as labels to create my three topics: Phenotype, Behavior, and

Gene.

The fined-tuning process involved adjusting BioBERT’s parameters J. Lee et al.

(2019) to optimize the performance on the task of document classification. Using

this approach, BioBERT can be fine-tuned using a multi-label classification layer,

where the model is trained to predict multiple topics, single topic, or no topic, for a

given text.

The process of fine-tuning BioBERT for topic modeling involves:

• Pre-processing the text data, by tokenizing and converting the texts into the

format that BioBERT can process.

• Fine-tuning BioBERT model on the corpus and its corresponding topics. This

involves training the model to predict the topics of the texts by adjusting

BioBERT’s parameters.

• Once BioBERT is fine-tuned, it can be used to predict the topics of new texts.
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There are two reasons behind training a BERT Devlin et al. (2019) model instead of

using the MeSH terms directly. First, 21% of the ASD corpus did not have any MeSH

terms in the metadata, as MeSH terms are not always present in the PubMed records.

By re-training a BERT-type model, one will be able to annotate the publications

without MeSH terms. Second, one can group MeSH terms together to generate one’s

own categories. For example, the way MeSH defines phenotype and the way HPO

Robinson et al. (2008) defines phenotype are different, one will be able to group the

MeSH terms together to recreate the HPO definition and then re-train a model to

generate the phenotype topic according to the HPO definition.

To generate the labels, I loaded the ASD corpus from Cadmus Campbell et al. (2023)

and converted the MeSH terms available in the metadata to their corresponding MeSH

identifier obtained from the MeSH tree file. The MeSH identifier is composed of one

letter and then groups of numbers separated by a comma. The first character of

the MeSH identifier is a letter that represents a specific category. For example ’A01’

translates to ’Body Regions’ while ’C01’ represents ’Infections’. Then numbers are

used to specify a more in-depth term in the category. For example ’Body Regions;A01’,

’Breast;A01.236’, ’Mammary Glands, Human;A01.236.249’, as it goes deeper after

A01, it becomes more and more specific toward one body region.

Converting the MeSH terms to their corresponding MeSH identifier made it easier

to identify the child of a node. For example, the MeSH term ’behavior and behavior

mechanisms’ i.e. ’F01’ code, result in any publication that contains ’F01’ in their

MeSH code being labelled as a behavior publication. The behavior topic was generated

based on the ’behavior and behavior mechanisms’ and ’behavior’ nodes from the

MeSH ontology. The phenotype using the node ’phenotype’. Finally, the gene topic

was generated using ’genetics’, ’genetic phenomena’, ’cells’, and ’genotype’ nodes.

In the end, 26,972 publications were tagged for behavior, 3,043 for phenotype, and

15,983 for gene.

In order to re-train the model, first the data was filtered to keep only the rows

with full text and mesh terms in their corresponding metadata. After filtering 46,261

publications remained that split into test (15,267 or 33%) and training (30,994 or

67%) subsets. Second, the embedding and the tokenizer from BioBERT J. Lee et al.

(2019) were selected as required for the model training. Third, the last layer of the

model is a dense fully connected layer for multiclass prediction. Fourth, the model was

trained using a stochastic gradient descent optimizer Yang and Yang (2018), a binary

cross-entropy loss function, and the area under the curve (AUC) as the metric to
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evaluate the performance of the model. The summary of the training performance is

shown in 3.4. Finally, no grid search to find the best hyperparameter combination was

performed instead the model was trained using batch sizes of 64 and 3 epochs. The

performance of the model can be found in Table 3.5 for the phenotype classification,

Table 3.6 for the gene classification, and Table 3.7 for the behavior classification.

False means a document is not part of a topic. True means a document is part of the

topic. Macro Average computes the overall performance of a model across multiple

classes by treating all classes equally, regardless of their imbalance. Weighted Average

computes the overall performance of a model across multiple classes by considering

the imbalance in the dataset by giving more significance to the metrics of classes with

larger sample sizes.

In Table 3.5, the results unveil a class imbalance issue within the phenotype topic, with

only 901 out of 15,267 documents classified as such. This imbalance led to overfitting,

reflected in the high weighted average F1 score of 0.92. However, a closer examination

using the macro average, which considers class balance, shows an F1 score of 0.52.

This variation suggests that the model’s performance diminishes when confronted

with the imbalanced distribution of classes, indicating the need for further refinement.

This could be done by upsampling or downsampling the data or by optimizing the

hyper-parameters used by the model.

Moving on to Table 3.6, the gene topic shows a more evenly distributed class im-

balance, with 4,677 documents out of 15,267 being part of the gene topic. Despite

a decrease in the macro average F1 score to 0.87, the weighted average rises to

0.89, signalling accurate predictions for the gene topic. This suggests that, unlike the

phenotype classification, the model successfully identifies documents related to the

gene topic even within the imbalanced setting.

Finally, in Table 3.7, no class imbalance is observed for the behavior topic, with 7,233

out of 15,267 documents being classified as such. While the model’s performance

surpasses the one of the phenotype topic, it performs worse than the gene topic.

This implies that, despite a more balanced training dataset, the model encounters

challenges in identifying strongly correlated words to the behavior topic, something it

did better with the gene topic.
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Loss Train AUC Validation AUC
Epoch 1 0.4193 0.8467 0.8852
Epoch 2 0.3395 0.9060 0.9160
Epoch 3 0.3166 0.9184 0.9232

Table 3.4: BioBERT model performances during re-training of document classi-
fication for the autism corpus. Since the model was re-trained using a dense fully
connected layer for multiclass prediction with the area under the curve (AUC) as the
optimizing metric all three classes are aggregated together.

Precision Recall F1 Score Support
False 0.94 1 0.97 14,366
True 0.85 0.03 0.06 901

Macro Average 0.90 0.52 0.52 15,267
Weighted Average 0.94 0.94 0.92 15,267

Table 3.5: Re-trained BioBERT model performance on the test set for the phenotype
topic classification on the autism corpus.

Precision Recall F1 Score Support
False 0.94 0.89 0.92 10,590
True 0.78 0.87 0.82 4,677

Macro Average 0.86 0.88 0.87 15,267
Weighted Average 0.89 0.89 0.89 15,267

Table 3.6: Re-trained BioBERT model results on the test set for the gene topic
classification on the autism corpus.

Precision Recall F1 Score Support
False 0.72 0.84 0.78 8,034
True 0.78 0.65 0.71 7,233

Macro Average 0.75 0.74 0.74 15,267
Weighted Average 0.75 0.75 0.74 15,267

Table 3.7: Re-trained BioBERT model results on the test set for the behavior topic
classification on the autism corpus.
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3.4 Creating MeSH Phenotype corpora

Phenotype is an observable trait or characteristic, that serves as an important factor in

the diagnosis and categorization of various diseases. The identification and analysis of

specific phenotypic traits help healthcare professionals recognize patterns indicative

of certain diseases. This process is particularly crucial in conditions where genetic

factors contribute significantly to the disease’s expression. A phenotype corpus allows

researchers and clinicians to explore the relationships between genotype and phenotype

since phenotype descriptions often bridge the gap between genetic factors and clinical

manifestations.

The construction of a corpus focused on phenotype terms present in HPO Robinson

et al. (2008) is facilitated by leveraging the flexibility of the PubMed search engine.

PubMed’s search capabilities allow researchers to design precise and tailored search

strategies. One of the features of PubMed is its MeSH NLM (2008) terms filter, a

controlled vocabulary that categorizes articles based on their content. MeSH terms

provide a standardized way to organize and retrieve biomedical information, its integ-

ration of the HPO offers a structured approach to building a phenotype corpus. Within

MeSH terms, there is a distinction between ”MeSH”and ”MeSH Major Topic.”While

both are useful, ”MeSH Major Topic” specifically identifies articles where the term is

a major focus, ensuring a more targeted selection aligned with the intended research

focus. To refine the search strategy further, PubMed provides the filter ’noexp’ (no

explosion). This filter restricts the search to the specific MeSH term without including

more general terms found in the MeSH hierarchy. This precise filtering is particularly

valuable allowing researchers to narrow down their focus to the specific traits or

characteristics of interest without introducing irrelevant or overly broad results. The

default parameter in PubMed is ’exp’ (explosion) which includes the child nodes from

the MeSH hierarchy of the terms present in the query.

3.4.1 Phenotype Corpora generation

The initial step in creating the search strategy for constructing a phenotype corpus

involves isolating HPO Robinson et al. (2008) terms within the MeSH NLM (2008)

ontology. Within the HPO, there exist 2,164 unique identifiers linked to corresponding

MeSH identifiers. Subsequently, a looped command was executed using the edirect

package Tao (2017) by NCBI, employing the ’esearch’ and ’efetch’ commands to

query PubMed via API from the terminal:
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esearch -db pubmed -query $MeSH term$ $[FILTER]$| efetch -format

medline

The looped command, executed 8,656 times, involved substituting the ’$MeSh term$’

with each of the 2,164 unique MeSH terms and ’$[FILTER]$’ with one of the following:

[MeSH], [MeSH:noexp], [MeSH Major Topic], [MeSH Major Topic:noexp]. For each

MeSH term, I collected the list of PMIDs linked to the corresponding query. After

I aggregated the results of each query sharing the same $[FILTER]$ together, a

summary is provided in Table 3.8.

The filter yielding the most results was [MeSH], as anticipated due to its lack of re-

striction. Out of the 2,164 unique MeSH terms, 1,958 had at least 1 PMID linked to it,

resulting in 46,481,099 PMIDs mapped to 13,442,024 unique PMIDs. The [MeSH Ma-

jor Topic] filter, in the second position, had 34,468,297 PMIDs mapped to 11,646,059

unique PMIDs, with a drop of approximately 12 million PMIDs and 1.8 million unique

PMIDs compared to [MeSH]. The [MeSH:noexp] filter, with stricter constraints than

[MeSH Major Topic], resulted in 21,415,778 PMIDs mapped to 10,938,658 unique

PMIDs. Similar to [MeSH], 1,958 out of 2,164 unique MeSH terms had at least

1 PMID link. The most restrictive filter, [MeSH Major Topic:noexp], presented the

lowest number of matches, with 15,775,943 PMIDs mapped to 9,300,751 unique

PMIDs. Also, only 1,948 out of 2,164 unique MeSH Terms had at least 1 PMID

linked to it.

Table 3.9 provides statistical summaries, including minimum, first quartile, median,

mean, third quartile, and maximum values for each $[FILTER]$ before aggregating

the results. The proportional differences in most values between the filters from

Table 3.8 and Table 3.9 remain consistent, except for the shared minimum of 1 and

for the maximum values, where [MeSH] and [MeSH Major Topic] showed a higher

proportional difference compared to the other two filters.

Despite [MeSH Major Topic:noexp] imposing stricter restrictions compared to [MeSH],

the challenges posed by the number of results in terms of document retrieval, com-

putational storage, and processing required to make a decision. Consequently, the

focus narrowed to [MeSH Major Topic] and [MeSH Major Topic:noexp] filters, as the

PMIDs returned by these two filters are included within the two discarded filters. The

decision to keep two corpora instead of one aims to explore the impact of including

more general terms obtained by the absence of the ’noexp’ filter. However, retrieving

9,300,751 full-text documents remained challenging. To address this challenge, a

random selection of 200 PMIDs was drawn from the list of PMIDs returned for each
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PubMed filter
Number of
PMIDs

Number of
unique PMIDs

Number of HPO terms that
matched at least 1 PMID

[MeSH] 46,481,099 13,442,024 1,958/2164
[MeSH:noexp] 21,415,778 10,938,658 1,958/2164
[MeSH Major

Topic]
34,468,297 11,646,059 1,954/2164

[MeSH Major
Topic:noexp]

15,775,943 9,300,751 1,948/2164

Table 3.8: Summary of the HPO to MeSH PubMed records search result. The
PubMed filter represents the filter added in each query with the unique HPO MeSH
term. Number of PMIDs is the cumulative number of PMIDs obtained for each query.
Number of unique PMIDs is the number of PMIDs after removing the overlap obtained
between each query.
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PubMed filter Minimum Q1 Median Mean Q3 Maximum
[MeSH] 1 1,084 4,498 23,726 16,234 3,751,344

[MeSH:noexp] 1 903 3,325 10,931 9,185 487,536
[MeSH Major

Topic]
1 790 3,243 17,630 11,800 1,186,867

[MeSH Major
Topic:noexp]

1 632 2,338 8,094 6,546 407,257

Table 3.9: Statistical summary of the PubMed records search result per HPO.
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Corpus
Number of

PubMed records
Abstracts
retrieved

Full-text
retrieved

Phenotype corpus
(Explosion)

322,901 226,745 (70.22%) 190,495 (58.99%)

Phenotype corpus
(No Explosion)

342,196 220,477 (64.43%) 180,537 (52.76%)

Table 3.10: Summary of the text retrieval for the Phenotype corpora.
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of the 2,164 unique MeSH terms. In cases where fewer than 200 PMIDs were retrieved

for a specific MeSH term, all PMIDs were retained. This decision aimed to reduce the

candidate pool from 9,300,751 to a more manageable 432,800, rendering the time

required for full-text collection more reasonable. This process was executed twice, once

for the [MeSH Major Topic] filter and another for the [MeSH Major Topic:noexp]

filter. Subsequently, Cadmus Campbell et al. (2023) was employed to retrieve the

corpora. Table 3.10 provides a comprehensive summary of the abstracts and full-text

documents retrieved by Cadmus for both corpora.

The Phenotype corpus (Explo) comes from the [MeSH Major Topic] PubMed search.

Factoring in the number of unique MeSH terms with no match, those with less

than 200 matches, and those with overlapping matches, the corpus contains 322,901

PMIDs. From this, 226,745 abstracts (70.22%) and 190,495 full-text documents

(58.99%) were successfully collected. On the other hand, the Phenotype corpus (No

explo) is generated based on the [MeSH Major Topic:noexp] filter, following a similar

rationale as the Phenotype corpus (Explo). This corpus is constituted of 342,196

PMIDs, from which 220,477 abstracts (64.43%)and 180,537 full-text documents

(52.76%) were retrieved.

3.4.2 Phenotype Corpora HPO analysis

Having generated the two corpora using Cadmus, the next step involved extracting

HPO Robinson et al. (2008) terms present in both the abstracts and full-text docu-

ments for each corpus. ParallelPyMetaMap Lain and Simpson (2021) was used with

the following parameters:

• data version = ’NLM’

• data year = ’2021AA’

• ignore stop phrases = True

• word sense disambiguation=True

• no derivational variants=True

• restrict to sources = [’HPO’]

The total number of annotations and unique annotations extracted for each corpus

are summarized in Table 3.11. The number of entities extracted for the abstract

corpora is consistent between both phenotype corpora, as is the case for the full-text

corpora. However, the total entities extracted in the full-text corpora are tenfold larger

than those in the abstract corpora. Additionally, there is a disparity of approximately

2,300 unique annotations between the abstract corpora and the full-text corpora.
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This signifies that accessing the full-text documents led to the discovery of these

additional 2,300 unique entities despite the abstract corpora having greater numbers

of unique annotated files than the full-text corpora. Finally, the Phenotype corpus

(No explo) full text has 10,300 unique HPO entities out of the 13,000 terms in the

HPO, covering 79.23% of the ontology. This emphasizes the significance of accessing

full-text documents in enhancing the comprehensiveness of HPO annotations within

the corpus.

3.5 Discussion

In this chapter, I introduced our ASD corpus the first large-scale, disease-specific cor-

pus, automated and dynamically generated, made possible through Cadmus Campbell

et al. (2023). A detailed exploration of the search strategy revealed the meticulous

process behind the creation of our ASD corpus. In total, 59,547 full-text documents

were successfully requested from the 72,058 PubMed records identified.

Using the amount of metadata and textual information obtained from Cadmus, I

went into a comprehensive data analysis. Subsequently, I broadened the exploration

by employing four distinct topic modeling methods, adding a layer of depth to our

understanding of the latent topics present in the ASD corpus.

Transitioning beyond the ASD corpus, my focus shifted to the creation of two ex-

pansive phenotype corpora. These corpora, capturing phenotypic descriptions, demon-

strated remarkable coverage by having approximately 80% of the HPO Robinson et

al. (2008). This extensive coverage underscores the significance of these corpora as

valuable resources for studying the phenotypic dimensions in the clinical field.

3.5.1 Limitations

The first limitation is in the context of the BERT Devlin et al. (2019) document classi-

fication, a constraint that arose from the absence of gold-standard human-annotated

data for training and benchmarking. To bypass this challenge, MeSH NLM (2008)

terms were employed as labels. However, this approach has limitations as the definition

used by MeSH to characterize phenotypes diverges from the definition employed by

the HPO Robinson et al. (2008). This disagreement introduces a potential source of

bias and inconsistency in the classification model by overfitting the MeSH ontology,

affecting its generalizability to phenotypic traits as defined by HPO.
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Corpus
Number of files

annotated
Number of HPO
entities extracted

Number of unique
HPO entities extracted

Phenotype corpus
(Explo) Abstract

224,235 2,560,906 7,953

Phenotype corpus
(Explo) Full text

189,167 27,325,042 10,297

Phenotype corpus
(No explo) Abstract

217,843 2,410,475 8,001

Phenotype corpus
(No explo) Full text

179,110 24,964,246 10,300

Table 3.11: Summary of the HPO entities extraction for the Phenotype corpora.
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Secondly, the limitations associated with our phenotype corpora need consideration.

While these corpora represent a unique and substantial resource in terms of both

volume and content, they do not provide exhaustive coverage of the HPO ontology.

Despite covering an impressive 79.23% of the ontology, approximately one-fifth of

the HPO remains unexplored in our corpora. Exploring the entire ontology could offer

valuable insights into a broader spectrum of phenotypic characteristics related to

various disorders. However, this exploration is hindered by practical constraints. The

process of downloading the full set of 9 million documents, aside from being time-

intensive, is also restricted by access limitations imposed by copyright considerations.

As a result, the current corpora, while robust, do not offer a comprehensive view of

the entire HPO landscape.

3.5.2 Future work

First and foremost, there is an opportunity to create a resource freely and publicly

available for our ASD corpus. Leveraging the metadata and textual data obtained

from Cadmus Campbell et al. (2023), coupled with the entities extracted by Paral-

lelPyMetaMap Lain and Simpson (2021) and topic classification from supervised topic

modeling, this resource could serve as a valuable hub for disseminating knowledge

about ASD. By aggregating and presenting information in an accessible manner,

this initiative has the potential to educate the general public, foster awareness, and

contribute to a more informed understanding of ASD.

Second, the development of a comprehensive knowledge graph. This knowledge graph

could represent a wide array of relationships, including those between phenotype terms

and genes. Constructing such a graph would not only deepen our understanding of the

intricate connections between different components of ASD but also offer a power-

ful tool for researchers and clinicians to explore and analyze complex relationships

within the disorder. This endeavour aligns with the broader goal of advancing our

comprehension of ASD at both the genetic and phenotypic levels.

Finally, creating gold standard data to train and refine supervised BERT Devlin et al.

(2019) Document Classification for topic classification. The availability of accurate

and meticulously annotated data can significantly enhance the model’s performance

and applicability in classifying ASD-related topics. This supervised approach holds the

potential to yield more reliable results, contributing to the robustness of document

classification models in the context of ASD research.



Chapter 4

Enhancing BERT-Based Models:

Optimizing Performance through

Input Data

4.1 Introduction

In recent years, NLP has witnessed significant advancements, with BERT (Bidirec-

tional Encoder Representations from Transformers) Devlin et al. (2019) emerging as

a key deep learning method. BERT’s ability to capture contextual information from

both left and right contexts in a sentence has proven invaluable in various NLP tasks.

However, to harness the full potential of BERT-based models, it is crucial to optimize

their performance through meticulous handling of input data in terms of data selection

and data preparation.

The initial section of this chapter focuses on providing background on NER, a pivotal

task in information extraction where entities, such as names of people, locations,

organizations, and more, are identified and classified into categories within a given

text. A deeper dive into Biomedical NER reveals the unique challenges posed by the

biomedical domain, where entities are often complex, context-dependent, and demand

specialized attention. Furthermore, Phenotype NER comes into focus, targeting the

extraction of phenotype-related information from textual data, a crucial component

in understanding genetic and medical information.

The focus of the second section is directed toward the critical process of curating

domain-specific data for training BERT models. The nuances of phenotype-related

information require attention, urging the need for a curated corpus that reflects the

complexity of the biomedical domain. A series of experiments are made in this section,

each designed to evaluate the impact of various factors on model performance. The

89
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comparison between 512-token training and sentence-level training aims to identify

the optimal sequence length for training efficiency. The choice between abstracts and

full-texts as training data explores the balance between comprehensive information and

computational efficiency. Furthermore, I examine general versus specialized corpora

and seek to identify the right level of specialization that aligns with the specificity of

the Phenotype NER task. Each experiment serves as a stepping stone, contributing

to the goal of enhancing BERT-based models by fine-tuning them to phenotype

extraction.

In the final section of this chapter, I re-train BERT-based models for phenotype

NER using the labels I obtained from MetaMap Aronson (2001) using the phenotype

corpora generated in the previous chapter. To see how well my models perform, I

compare them to other Phenotype NER models using phenotype gold-standard data

annotated by human experts. By benchmarking my models against other models, I

evaluate the effectiveness of my experiments as well as the performance of a model

trained using silver-standard rather than gold-standard labels.

4.2 Background

Delving into the foundations of Named Entity Recognition I first introduce deep

learning methods used in natural language processing particularly transformers like

BERT (Bidirectional Encoder Representations from Transformers) Devlin et al. (2019)

and GPT (Generative Pre-trained Transformers) Radford and Narasimhan (2018),

and their role in language understanding. BERT revolutionizes the understanding of

language by combining transformers and considering the contextual meaning of words

bidirectionally.

Within BioNLP, my focus is on BioBERT J. Lee et al. (2019), SciBERT Beltagy et

al. (2019), and PubMedBERT Gu et al. (2020), specialized transformers meticulously

fine-tuned for biomedical contexts. BioBERT and SciBERT models were the first at-

tempts at domain adaptation in the biomedical field. BioBERT, trained on biomedical

corpora, and SciBERT, tailored for scientific discourse using 1.14M papers in which

18% papers from the computer science domain and 82% from the broad biomedical

domain, serve as examples of the dynamic between general NER advancements and

their adaptations to the fields of medicine and science. These three methods are not
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based on dictionary matching instead they are tailored to understand the specific

language and context used in these specialized domains, enhancing the precision and

effectiveness of information extraction as opposed to traditional non-deep learning

techniques.

Finally, I introduce two of the best-known methods in Phenotype NER, Phenotagger

Luo et al. (2020) and PhenoBERT Feng et al. (2022). Phenotagger employs rule-

based methodologies to identify phenotypic entities, providing a structured approach

to the complexity of genetic language. On the other hand, PhenoBERT leverages

the BERT architecture, showcasing the convergence of rule-based and deep learning

approaches from general NER to domain-adapted NER.

4.2.1 Named entity recognition

Named Entity Recognition (NER) has undergone performance improvement with

the introduction of advanced deep learning language models, particularly with the

transformer infrastructure, BERT (Bidirectional Encoder Representations from Trans-

formers) Devlin et al. (2019), and GPT (Generative Pre-trained Transformers) Rad-

ford and Narasimhan (2018). Each of these technologies has significantly improved

the performance of NER, enhancing the precision and efficiency of extracting and

classifying crucial information from text.

Transformer Infrastructure

The transformer architecture Vaswani et al. (2017), the backbone of models like

BERT Devlin et al. (2019), has played a crucial role in improving NER. Transformers

facilitate the parallel processing of words in a sentence, allowing the model to capture

relationships and dependencies efficiently. This architectural innovation has led to

substantial improvements in the ability of NER models to understand the context in

which named entities appear. The self-attention mechanism in transformers allows

the model to assign varying degrees of importance to different words, enhancing the

overall contextual understanding. This infrastructure has not only contributed to the

success of models like BERT but has become a cornerstone in the development of

advanced NLP models across various domains and outside of NLP as well.
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BERT

BERT Devlin et al. (2019) employs a bidirectional approach to understanding context

in language. Unlike traditional models that process text in a unidirectional manner,

BERT considers the entire context, both left and right of a word, enabling a deeper

comprehension of semantics. The transformer architecture Vaswani et al. (2017)

at the core of BERT facilitates this bidirectional processing, allowing the model

to capture complex relationships between words. BERT has achieved remarkable

success in various NLP tasks, including NER, by providing contextualized embeddings

that significantly improve the model’s ability to identify and classify named entities

accurately.

GPT

GPT Radford and Narasimhan (2018) brings generative capabilities to pre-trained

transformers. GPT has demonstrated an ability to understand and generate coherent

text. In the context of NER, GPT’s proficiency lies in its contextual embeddings and

the ability to predict the next word in a sequence. Although not initially designed for

sequence labelling tasks like NER, the versatility of GPT has led to its exploration

and adaptation in various natural language processing applications. GPT’s approach

to language understanding is rendered possible by leveraging its pre-trained knowledge

to enhance entity recognition in context.

4.2.2 Biomedical named entity recognition

Biomedical Named Entity Recognition (BioNER) has known remarkable improvement

with the integration of specialized models, particularly BioBERT J. Lee et al. (2019),

SciBERT Beltagy et al. (2019), and PubMedBERT Gu et al. (2020). These mod-

els, fine-tuned using biomedical literature, have increased the complex extraction of

entities in the domain of biomedical information.

BioBERT

BioBERT J. Lee et al. (2019), the first attempt at BERT Devlin et al. (2019) model

adaptation to the biomedical field, has been specifically designed for biomedical

NLP tasks. Trained on large-scale biomedical corpora, including PubMed abstracts

and OA PMC Maloney et al. (2017), BioBERT captures the complex semantics of

the biomedical language, enabling it to understand and recognize entities with high
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accuracy. The model’s pre-training on biomedical texts and subsequent fine-tuning

for specific tasks, including NER, has proven invaluable in achieving state-of-the-art

performance in various biomedical information extraction tasks. BioBERT’s contextual

embeddings provide a robust foundation for capturing context-dependent relationships

among biomedical entities, making it one of the most downloaded BioNER pre-trained

models.

SciBERT

SciBERT Beltagy et al. (2019) is a BERT Devlin et al. (2019) domain adaptation

tailored for scientific literature. Trained on a diverse range of scientific documents,

SciBERT excels in understanding and extracting information from research articles.

The model’s pre-training on a mixture of scientific and biomedical data allows it

to capture the unique language used in these domains. SciBERT’s contextualized

embeddings facilitate accurate entity recognition in the context of scientific literature,

making it particularly effective in applications that require a deep understanding of

specialized terminology and relationships.

PubMedBERT

PubMedBERT Gu et al. (2020) is fine-tuned on the vast repository of biomedical

literature available on PubMed. This model leverages the domain-specific information

present in PubMed articles to enhance its ability to recognize biomedical entities. By

tailoring its training data to the PubMed corpus, PubMedBERT achieves a heightened

sensitivity to the complexity of biomedical language, resulting in improved entity

recognition in this domain. The model’s embeddings are adept at capturing the

specificity of biomedical concepts, making it useful for tasks in BioNER that require

a focus on literature from biomedical databases.

4.2.3 Phenotype named entity recognition

With the release of three gold-standard datasets (Lobo et al. (2017), Feng et al.

(2022), Islamaj et al. (2023)) regarding phenotype NER in recent years, the interest

in specialized and deep-learning language models for phenotype NER has increased.

Phenotagger Luo et al. (2020), a hybrid method that combines both dictionary

and deep-learning methods and the PhenoBERT Feng et al. (2022), a deep-learning
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model, have achieved great improvements in the recognition of phenotype entities.

Nevertheless, the performances of these works show limitations due to the complexity

of catching phenotype entities often described as a long description of common words

making it context-dependent between phenotype and non-phenotype descriptions.

PhenoBERT

PhenoBERT Feng et al. (2022) is a deep-learning language model fine-tuned on

a specialized dataset related to genetic traits. Its contextualized embeddings excel

in identifying phenotypic entities in text. Its training on domain-specific corpora

outperformed four traditional dictionary-based methods (NCBO Annotator Jonquet

et al. (2009), Clinphen Deisseroth et al. (2018), MetaMapLite Demner-Fushman et al.

(2017), and Doc2hpo Liu et al. (2019)) and two deep-learning-based methods (Neur-

alCR Arbabi, Adams, Fidler, and Brudno (2019) and PhenoTagger Luo et al. (2020))

for phenotype NER. PhenoBERT currently achieves state-of-the-art performance in

phenotype NER.

Phenotagger

Phenotagger Luo et al. (2020) distinguishes itself with its hybrid approach, combining

rule-based and machine-learning techniques to perform phenotype NER. The hybrid

methodology allows Phenotagger to leverage the structured rules defined by experts

in the field, ensuring precise identification of key phenotypic terms. At the same

time, machine learning algorithms enhance the system’s adaptability and performance

through its specialized training. In its rule-based component, Phenotagger relies on

predefined patterns and linguistic rules to recognize and tag specific phenotypic terms.

This ensures that the system is contextually aware and can identify the relevant

information. On the other hand, the machine learning aspect involves training the

system on annotated specialized datasets, allowing it to generalize patterns and adapt

to various linguistic, contexts and out of vocabulary. Phenotagger handles both well-

defined, rule-based scenarios and more complex situations where machine learning

excels. The hybrid model’s flexibility makes it effective providing users with a robust

tool for extracting and annotating phenotypic information.



4.3. Phenotype NER Model: Domain-Specific Data Curation 95

4.3 Phenotype NER Model: Domain-Specific Data

Curation

In this section, I explore pre-processing strategies and their pivotal influence on model

performance. My exploration looks at several dimensions that have a profound impact

on the efficacy of BERT Devlin et al. (2019) models within the biomedical domain.

I start by introducing the data used and explain how I generated the training, val-

idation, and test sets. Splitting the data and keeping the test set unseen from the

models ensures the reliability and strength of the subsequent analyses and findings.

My first experiment examines tokenization quality. I will demonstrate how tokenization

quality can affect the precision and recall of biomedical NLP models.

Next, I use two corpora generated using two distinct search strategies, one incorpor-

ating publications from child nodes within biomedical ontologies and the other using

only the node present within biomedical ontologies. This expansion of data sources

can have an impact on the diversity and richness of the information available to our

models, ultimately enhancing their capacity to extract meaningful insights.

I next investigate the merits and trade-offs between training at the sentence level

versus employing a 512-token bin strategy. This exploration sheds light on the most

effective approach depending on the input length the model is trained for.

Furthermore, I compare the models’ performance depending on whether they have

been trained with full-text documents or abstracts. The decision to incorporate full-

text content or restrict the corpus to abstracts can have profound implications for the

robustness and volatility of the information extracted.

Lastly, I present the advantages of retraining models to be category-specific, i.e. HPO

Robinson et al. (2008) specific, and subsequently disease-category-specific, i.e. ASD

HPO specific, within the biomedical domain. This fine-tuning process enhances the

precision and relevance of model outputs in addressing specific biomedical NER tasks.

Through these analyses, I demonstrate the relationship between pre-processing strategies

and model performance, ultimately helping biomedical researchers to make the right

decision when designing their experiments before engaging cost in training their

models.
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4.3.1 Data description

Text selection

Utilizing the ASD and phenotype corpora introduced in the previous chapter, I now

explain how I re-trained BioBERT J. Lee et al. (2019) models for the forthcoming

analysis. In this section, I outline the process of establishing the training, validation,

and test sets for each of the three datasets.

To ensure fair assessments, I retained only publications that contained both full-

text and abstract. This decision was made to prevent the introduction of a concept

exclusively in either an abstract or a full-text document when its counterpart was

missing.

The second decision applied uniformly across all three corpora involved ensuring that

no publications from the autism dataset would overlap with the other two phenotype

datasets. Instead of simply excluding these publications from the phenotype corpora, I

removed them from all three datasets. This ensured that the model trained using the

autism corpus was not predominantly shaped by publications featuring HPO Robinson

et al. (2008) MeSH NLM (2008) terms.

Lastly, I ensured that none of the publications used for training any of the models

were included in any of the test sets. This precaution was taken to prevent any model

from having a prior advantage by being exposed to the test data beforehand.

Labels

My aim in conducting these analyses is to emphasize that making thoughtful decisions

in the initial data preparation stage can lead to improved performance, regardless of

the specific corpus or categories under consideration. To illustrate this point, I use

labels obtained from ParallelPyMetaMap Lain and Simpson (2021) restricted to the

HPO Robinson et al. (2008) source vocabulary, while also employing the word sense

disambiguation parameter to filter out certain textual labels. It’s important to note

that the results presented in these analyses do not convey a phenotype-named entity

recognition model; instead, they are evaluated on an HPO MetaMap Aronson (2001)

NER test set as generating a phenotype-entity recognition gold standard of this scale

is very unlikely to happen. In this section, I opted to use silver standard sets for their
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ease of generation at large scales. Since all the test sets in these analyses share the

same label generation methods, it is reasonable to conclude that any variations in

results are primarily attributed to differences in the pre-processing step rather than

variations in how the sets were annotated.

The ASD corpus data split

The ASD corpus has a total of 63,658 abstracts and 59,320 full-text publications, with

an overlap of 53,694 occurrences where both the abstracts and full-text versions are

available. Additionally, the ASD corpus initially shared 1,423 abstracts/publications

with the other two corpora, which were removed before the data-splitting process,

leaving 52,271 abstracts/publications.

From the original pool of 52,271 abstracts/publications, I randomly assigned 10% for

the unseen test set, resulting in 5,227 abstracts/publications that form two distinct

test sets: one of abstracts and another of full-text documents. After creating the test

set, the remaining 47,044 abstracts/publications were divided, with 66% allocated

for training and 34% for validation. This distribution resulted in 31,049 records for

the abstract training set and 31,049 records for the full-text training set, while the

validation sets received 15,995 records in total.

The phenotype corpora data split

As opposed to the splitting of the ASD corpus, I will address the splitting of the

phenotype corpora together as they are contextually related. As a reminder, these

corpora resulted from two different search strategies from PubMed. One of them was

generated using the default behaviour of PubMed, and a list of MeSH NLM (2008)

terms, to include the child nodes of a MeSH term and will be defined as the Phenotype

explo corpus. The other was generated using the same list of MeSH terms with the

additional filter ’noexp’ applied on PubMed. This resulted in only having publications

for which the MeSH terms from the list were listed as at least one MeSH term in

those publications. I will refer to that corpus as the Phenotype no explo corpus.

The phenotype explo corpus has a total of 224,235 abstracts and 189,166 full-text

publications, with an overlap of 150,672 occurrences where both the abstracts and

full-text versions are available. Additionally, the phenotype explo corpus initially shared

884 abstracts/publications with the other two corpora, which were removed before

the data-splitting process, leaving 149,788 abstracts/publications.
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The phenotype no explo corpus has a total of 217,843 abstracts and 179,109 full-text

publications, with an overlap of 138,171 occurrences where both the abstracts and

full-text versions are available. Additionally, the phenotype no explo corpus initially

shared 747 abstracts/publications with the other two corpora, which were removed

before the data-splitting process, leaving 137,424 abstracts/publications.

To avoid duplication of training data between both corpora and to be able to identify

the impact of leaving out the child nodes from training. I generated the test set by

using the overlapping abstracts/publications from both corpora. Thus the unseen test

sets are the same for the phenotype explo corpus and the phenotype no explo corpus.

The test sets resulted in 29,169 abstracts/publications that form two distinct test

sets: one of abstracts and another of full-text documents. The test sets represent

19.5% of the data available for the phenotype explo corpus and 21.2% of the data

available for the phenotype no explo corpus.

Regarding the rest of the splitting, the same strategy was employed as for the ASD

split, 66% of the remaining data was randomly assigned to the training sets, while

the last 34% was assigned to the validation sets. This distribution resulted in 79,609

records for the abstract training set and 79,609 records for the full-text training set,

while the validation sets received 41,010 records in total for the phenotype explo

corpus. For the phenotype no explo corpus, 71,448 records for the abstract training

set and 71,448 records for the full-text training set, while the validation sets received

36,807 records in total.

4.3.2 Improving Tokenization Quality

This section is the result of separate work Lain, Yoon, Kim, Kang, and Simpson

(2022) where improving the tokenization quality yielded improved performance on

user-generated data. I thought to include this work here as EHRs reports like in

Islamaj et al. (2023) are by their nature messier than what one can expect by using

PubMed research articles yet part of this work was transferable to our data. Since I

was aware of the improvement in performance due to pre-processed tokenization, all

of the data used for the following sections was processed using this principle.

In this section, I present part of the work Lain et al. (2022) where I aimed to detect

disease mentions from tweets written in Spanish as part of the Social Media Mining

for Health(SMM4H) 2022 SocialDisNER task (Weissenbacher et al. (2022), Gasco et

al. (2022)) in which I participated with other members of the DMIS group.
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The organizers provided the participants with a set of data labelled by healthcare

experts. Since the data was user-generated text limited to 280 characters as per the

limitation from Twitter, it contained misspelled words, abbreviations, emojis, links,

hashtags, and mentions to other users of the platform, making the task relevant for

improving tokenization quality.

User-generated text and the full text obtained from PubMed are very different. Tweets

are noisy, not necessarily scientific, and contain emojis that we do not expect to

be present in our corpus. Nevertheless, it has been shown in Kim, Sung, Yoon,

Park, and Kang (2021) that improving the quality of the tokenization might improve

the performance of a model overall. As abbreviations, punctuation, mathematical

measures, and misspelled words are present in biomedical research papers as well I

look at the impact of tokenization quality using the data provided for this task.

Data Description

The set released by the organizers was a gold standard corpus composed of 7,500

tweets. It was accompanied by a tab-separated file with healthcare experts’ annota-

tions containing the unique tweet ID, beginning position, end position, type, and

extraction. This set was divided into 2 subsets, a training set of 5,000 tweets and

a development set of 2,500 tweets. Later, the organizers used 2,000 out of 23,430

tweets for the test set to evaluate the performance of each team but the labels were

not disclosed by the time of submission nor made publicly available since.

BIO tagging format

The IOB format (inside, outside, beginning), also known as the BIO format, is a

tagging format for tagging tokens for named entity recognition. It was presented in

Ramshaw and Marcus (1999). The I- prefix before a tag indicates that the tag is inside

a chunk. An O tag indicates that a token belongs to no chunk. The B- prefix before

a tag indicates that the tag is the beginning of a chunk that immediately follows

another chunk without O tags between them. It is used only in that case: when a

chunk comes after an O tag, the first token of the chunk takes the I- prefix. Another

similar format that is widely used is the IOB2 format, which is the same as the IOB

format except that the B-tag is used at the beginning of every chunk (i.e. all chunks

start with the B-tag).
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Experiments

In order to perform my analysis I needed to convert the data to BIO2 Ramshaw and

Marcus (1999) using two different approaches. My first approach consisted of just

splitting the input text by space and then allocating each word with its corresponding

BIO2 tags, I will later refer to this method as ’simple’. The second approach consisted

of splitting each tweet by space, then I lowered any capital letters from each word

before I split every word to separate any punctuation or emoji present in them with the

rest of the word before I allocated them their corresponding BIO2 tags, this method

will later be referred as ’improved’. This resulted in separating hashtags (#) and at

(@) from their original mention as well.

My next step consisted of model selection where I compared the performance of

five trained models in biomedical Spanish named entity recognition (Carrino et al.

(2022), Cañete et al. (2020), Chizhikova et al. (n.d.), Huertas-Tato, Mart́ın, and

Camacho (2022), Sanh, Debut, Chaumond, and Wolf (2019)) and found that Carrino

et al. (2022) F1-score was slightly better than the others using the same fine-tuning

parameters across all models (3 epochs, learning rate = 1e−4 and weight decay =

1e−5) after retraining them using the improved data and evaluated on the validation

set.

After I converted our data using the simple and improved method and identified which

model to use, I retrained the model using the same fine-tuning parameters for both

sets. The results can be found in Table 4.1. Improving the tokenization quality by

spacing out the punctuation and lowering every character from each word resulted in

a 6.1% strict F1-score improvement as opposed to the simple method where I just

split the word based on space. Also using this method only, without optimizing the

hyper-parameters selection, resulted in +12.8% F1 over the average results, +4.2%

F1 score over the median, across all submissions to the SocialDisNER Gasco et al.

(2022) challenge. These results demonstrate the potential unlocked by improving the

quality of tokenization before training the model.
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Model Set Measure Precision Recall F1
Simple Validation Strict 71.9 82.4 76.8
Improved Validation Strict 83.1 82.7 82.9

Simple Validation Partial 84.5 95.1 89.5
Improved Validation Partial 94.6 92.7 93.7

All participants Test Strict Mean 68.0 67.7 67.5
All participants Test Strict Median 75.8 78.0 76.1
Improved Test Strict 80.9 79.8 80.3

Table 4.1: Summary of the results for the SocialDisNER task based on the official
overlap and strict evaluation.

4.3.3 The impact of the ’noexp’ filter on models’ performance

In this section, I explore the impact of the two different strategies employed when

creating the phenotype corpora. The ”phenotype explo”corpus consists of publications

tagged with either HPO Robinson et al. (2008) MeSH NLM (2008) terms or tagged

with child nodes of HPO MeSH terms. In contrast, the ”phenotype no explo” corpus

exclusively contains publications tagged with only the specific HPO MeSH terms

annotated to the paper. With this setup, I aim to discern whether the inclusion of

child nodes in the training data results in a more robust model.

In order to perform my analysis, I re-trained the BioBERT J. Lee et al. (2019) model

using the training and validation data from the abstract and full-text of the ”phenotype

explo”corpus as well as the abstract and full-text of the ”phenotype no explo”corpus.

All four models were re-trained using 3 epochs, a learning rate of 1e−4, and a weight

decay of 1e−5.

To evaluate the difference, I compare the results of the abstract model trained using

the ”phenotype explo”corpus against the abstract model trained using the ”phenotype

no explo” corpus. I do the same for the full-text model trained using the ”phenotype

explo”corpus against the full-text model trained using the ”phenotype no explo”corpus.

I then evaluate their performance using the abstract phenotype test set and the full-

text phenotype test set respectively. Each re-trained model was trained and evaluated

using an input length of 512 token bins. The results can be found in Table 4.2 and

in Table 4.3. As we can observe from the last column of each table the gain for the

same test set over the same amount of training data for each corpora resulted in a

negligible gain in performance. The highest gain is 0.225% F1-score and less than
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Abstract phenotype
explo corpus

Abstract phenotype
no explo corpus

|∆ in model
F1-score|

Test phenotype abstract 89.170/89.452/89.311 88.927/89.245/89.086 0.225
Test phenotype full-text 86.285/79.053/82.511 85.643/79.699/82.564 0.053

Table 4.2: Summary of the evaluation for the abstract models trained on the two
phenotype corpora. The scores reported are Precision/Recall/F1-Score.

Full-text phenotype
explo corpus

Full-text phenotype
no explo corpus

|∆ in model
F1-score|

Test phenotype abstract 92.988/93.447/93.217 92.913/93.586/93.248 0.031
Test phenotype full-text 92.397/91.920/92.158 92.220/91.993/92.107 0.051

Table 4.3: Summary of the evaluation for the full-text models trained on the two
phenotype corpora. The scores reported are Precision/Recall/F1-Score.

0.1% F1-score for the last 3 tests. I can conclude, under the circumstances of this

test, where each corpus contains more than 70,000 documents in the training set,

that including or not the children nodes in the training data resulted in a negligible

change of performance for the models.

4.3.4 Analysis of input-length training

Before the introduction of Longformer Beltagy, Peters, and Cohan (2020), most

BERT-based Devlin et al. (2019) models handled a maximum input length of 512

tokens, making the users of these models split their input text in bins of 512 tokens,

due to this restriction, I wanted to explore the difference in models trained using bins

of 512 tokens against models trained using the exact same source of training data but

this time split at the sentence level. After training, I evaluated the models by testing

their performance on test sets containing samples of 512 tokens text input and the

same test sets text at the sentence level.

When fed into a model, words are converted into tokens, which are numerical rep-

resentations of those words. This allows the model to process and understand the

meaning of the words in a more efficient and standardized way. Most BERT-based

models have a maximum window of 512 tokens, meaning they can only process

sequences of up to 512 tokens at a time. To work with longer sequences, the input

is typically split into multiple segments, each of which is processed independently.

A 512-token bin is a fixed-size window of 512 tokens, which allows the model to
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process a segment of the input sequence at a time. Sentence bins take this a step

further by dividing the input into individual sentences, each of which is tokenized and

processed independently. This allows the model to focus on the meaning and context

of individual sentences, rather than just a fixed-size window of tokens.

This analysis was performed over eight models derived from the ASD corpus and the

”phenotype explo”corpus. The eight models are as follows:

1 - The abstract model trained using the ASD corpus with input lengths of 512 tokens,

will be reported as ABS ASD 512 in the result tables.

2 - The abstract model trained using the ASD corpus with input lengths at the

sentence level, will be reported as ABS ASD Sentence in the result tables.

3 - The abstract model trained using the ”phenotype explo”corpus with input lengths

of 512 tokens, will be reported as ABS Pheno 512 in the result tables.

4 - The abstract model trained using the ”phenotype explo”corpus with input lengths

at the sentence level, will be reported as ABS Pheno Sentence in the result tables.

5 - The full-text model trained using the ASD corpus with input lengths of 512 tokens,

will be reported as FT ASD 512 in the result tables.

6 - The full-text model trained using the ASD corpus with input lengths at the

sentence level, will be reported as FT ASD Sentence in the result tables.

7 - The full-text model trained using the ”phenotype explo”corpus with input lengths

of 512 tokens, will be reported as FT Pheno 512 in the result tables.

8 - The full-text model trained using the ”phenotype explo”corpus with input lengths

at the sentence level, will be reported as FT Pheno Sentence in the result tables.

Due to the constraints in computing power and the time needed to train and analyze

models within the Ph.D. timeline, Sentence FT ASD and Sentence FT Pheno could

not be trained using all the sentences from the full text. Instead, I randomly selected

25% of all sentences for each document in the corpus for Sentence FT ASD, and

similarly, I selected 15% of all sentences for Sentence FT Pheno. These values were

selected based on the success of training the model without failures from the machine.

The result of this experiment can be found in Table 4.4 for the ABS ASD, Table

4.5 for the ABS Pheno, Table 4.6 for the FT ASD, and Table 4.7 for the FT

Pheno.
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ABS test set
(512 tokens bin)

ABS test set
(sentence bin)

|∆ in test
F1-score|

ABS ASD trained
on 512

94.249/94.882/94.564 93.045/92.282/92.662 1.902

ABS ASD trained
on sentences

82.143/81.453/81.797 93.791/93.740/93.765 11.968

|∆ in model F1-score| 12.767 1.103

Table 4.4: Summary of the comparison between the ABS ASD models trained on
the same training data with different input length sizes. The scores reported are
Precision/Recall/F1-Score.

ABS test set
(512 tokens bin)

ABS test set
(sentence bin)

|∆ in test
F1-score|

ABS Pheno trained
on 512

89.170/89.452/89.311 85.798/85.445/85.621 3.690

ABS Pheno trained
on sentences

70.613/66.045/68.253 88.232/85.821/87.010 18.748

|∆ in model F1-score| 21.058 1.389

Table 4.5: Summary of the comparison between the ABS Pheno models trained
on the same training data with different input length sizes. The scores reported are
Precision/Recall/F1-Score.

FT test set
(512 tokens bin)

FT test set
(sentence bin)

|∆ in test
F1-score|

FT ASD trained
on 512

94.455/94.873/94.664 93.820/94.385/94.102 0.562

FT ASD trained
on sentences
(25% of the corpus)

85.103/85.091/85.097 93.883/93.852/93.867 8.770

|∆ in model F1-score| 9.567 0.235

Table 4.6: Summary of the comparison between the FT ABS models trained on
the same training data with different input length sizes. The scores reported are
Precision/Recall/F1-Score.
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FT test set
(512 tokens bin)

FT test set
(sentence bin)

|∆ in test
F1-score|

FT Pheno trained
on 512

92.397/91.920/92.158 91.163/90.695/90.928 1.230

FT Pheno trained
on sentences
(15% of the corpus)

82.344/80.570/81.447 88.946/87.780/88.359 6.912

|∆ in model F1-score| 10.711 2.569

Table 4.7: Summary of the comparison between the FT Pheno models trained on
the same training data with different input length sizes. The scores reported are
Precision/Recall/F1-Score.

Since the results reported in Tables 4.6 and 4.7 used only a subset of the available

data for training the sentence models I will focus my analysis on the results reported

in Tables 4.4 and 4.5. I decided to report the results of Tables 4.6 and 4.7 as they

seem to converge toward the same phenomenon as Tables 4.4 and 4.5 with only

25% of the available data for the FT ASD and 15% of the available data for the FT

Pheno. The fact that with only a subset of the data, the result seems to point toward

the same direction is promising.

Regarding the results obtained from Tables 4.4 and 4.5 when the model is trained on

either individual sentences or in batches of 512 tokens, it affects how well the model

performs, even when predicting on the data it was trained on. There is a difference

of 0.799% F1 score for the 512 tokens model on the 512 tokens test set and for the

sentence model on the sentences test set on the ABS ASD corpus. The difference

goes up by 2.301% F1 score for the ABS Pheno. The re-trained model considers the

training input length when making predictions. The first performing model is the 512

tokens model on the 512 tokens test set. The second best-performing model is the

sentences model on the sentences test set. This means that it is better to train the

model on the input length the model will need to make predictions on. In all four

tables, our models seem to perform better when it has more context, suggesting they

use larger windows of input text to make predictions.

There is a significant decrease in performance when a model trained on sentences tries

to predict on 512 tokens input. On the contrary, when a model trained on 512 tokens

predicts on sentence input, the decrease is much smaller, highlighting the robustness

of 512-token models when predicting on smaller input length. The model adapts and

learns to make decisions based on the type of training windows it was exposed to.
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Both models consistently perform best when predicting their respective categories i.e.

512 tokens model performs better on 512 tokens than on sentences. Interestingly, the

performance drop is more controlled within in-domain settings like the ASD corpus

where all the relevant publications are present in the set, with a 12% drop for ASD

(see Table 4.4) compared to a 21% drop for Pheno (see Table 4.5).

4.3.5 Analysis of abstract and full-text training

For this experiment, I use the ASD corpus and phenotype explo corpus that I mention

as the Pheno corpus in this section. My goal is to show the difference in performance,

if any, between models trained on abstract and models trained on full text. Following

the results obtained in Section 4.3.2 and in Section 4.3.4 the same tokenization

techniques were employed for all the data used in this experiment and the documents

were split in consecutive bins of 512 tokens maximum finishing at the last complete

sentence before going above 512 tokens.

In total I trained 4 models for this experiment:

• ASD 512 model trained using the abstract

• ASD 512 model trained using the full text

• Pheno 512 model trained using the abstract

• Pheno 512 model trained using the full text

To evaluate the performance of these models I used four test sets:

• Abstract related to ASD split in bins of 512

• Full text related to ASD split in bins of 512

• Abstract related to Pheno split in bins of 512

• Full text related to Pheno split in bins of 512

The results are presented in Tables 4.8 and 4.9.

In this experiment, the models trained on full-text articles performed better than those

trained on abstracts. By nature, the information within an abstract is more compact,

and the sentences are structured differently compared to a full-text article. The full-

text models consistently outperformed the abstract models in both the abstract and

the full-text test settings.
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ABS ASD test set
(512 tokens bin)

FT ASD test set
(512 tokens bin)

ASD abstract model
(512 tokens bin)

94.249/94.882/94.564 91.278/87.896/89.555

ASD full text model
(512 tokens bin)

95.031/96.446/95.733 94.455/94.873/94.664

|∆ in model F1-score| 1.169 5.109

Table 4.8: Summary of the comparison between the ABS ASD model and the FT
ASD model trained on the same collection of documents using bins of maximum size
of 512 tokens. The scores reported are Precision/Recall/F1-Score.

ABS Pheno test set
(512 tokens bin)

FT Pheno test set
(512 tokens bin)

Pheno abstract model
(512 tokens bin)

89.170/89.452/89.311 86.285/79.053/82.511

Pheno full text model
(512 tokens bin)

92.988/93.447/93.217 92.397/91.920/92.158

|∆ in model F1-score| 3.906 9.647

Table 4.9: Summary of the comparison between the ABS Pheno model and the FT
Pheno model trained on the same collection of documents using bins of a maximum
size of 512 tokens. The scores reported are Precision/Recall/F1-Score.
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One reason for this difference is the brevity of abstracts. Due to their concise summary,

some HPO Robinson et al. (2008) terms may never appear in an abstract as seen in

Section 3, but they are more commonly found in the detailed content of the full text.

The structure of abstracts imposes limitations on the information we can gather from

them, resulting in a 5% and 9% performance gap between the full-text and abstract

models on the full-text sets.

The drop in performance for the ASD model is smaller than that in the Pheno model.

This suggests that categories with a higher number of unique labels benefit more from

being trained on full-text data rather than abstracts.

4.3.6 Retraining at the Phenotype-level and ASD-Phenotype-

level

For my final experiment using silver standard training and testing data, I wanted

to explore the importance of data selection when re-training a BERT-based Devlin

et al. (2019) model. BioBERT J. Lee et al. (2019) the first domain adaptation to

the biomedical field of the BERT-based method showed improvement in biomedical

named entity recognition over the original method on multiple biomedical categories.

In this experiment, I look at the difference in performance between a model re-

trained on phenotype terms specialized in ASD in comparison to a model re-trained on

general human phenotype terms. I want to observe both their specialized and general

performance by analyzing their F1 score on general and ASD-specialised HPO test

sets.

To perform this experiment I used the ASD corpus, the phenotype explo corpus

obtained using the [MeSH Major Topic] filter, and the phenotype no explo corpus

generated using the [MeSH Major Topic:noexp] filter. Following the results obtained

in Section 4.3.2 and in Section 4.3.4 the same tokenization technique was applied

for all the data used in this experiment and the documents were split in consecutive

bins of 512 tokens maximum finishing at the last complete sentence before going

above 512 tokens. Since the information embedded in the text is specialized in the

abstract as well, I did not take into consideration the results obtained in Section 4.3.5

as comparing the performances of specialization in the abstract and in the full text

are both relevant to this experiment.

The results are reported in Tables 4.10 and 4.11.
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ASD model trained
using the abstract
(512 tokens bin)

Pheno explo
model

trained using the
abstract

(512 tokens bin)

Pheno no explo
model

trained using the
abstract

(512 tokens bin)
ASD abstract test
(512 tokens bin)

94.249/94.882/
94.564

92.253/88.988/
90.591

92.006/88.614/
90.278

Pheno abstract test
(512 tokens bin)

72.586/69.764/
71.147

89.170/89.452/
89.311

88.927/89.245/
89.086

|∆ in test set F1-score| 23.417 1.280 1.192

ASD full text test
(512 tokens bin)

91.278/87.896/
89.555

89.815/77.201/
83.031

88.936/79.675/
84.051

Pheno full text test
(512 tokens bin)

72.351/64.696/
68.310

86.285/79.053/
82.511

85.643/79.699/
82.564

|∆ in test set F1-score| 21.245 0.520 1.487

Table 4.10: Summary of the comparison between the ABS ASD model, ABS pheno
explo model, ABS pheno no explo model, and their respective abstract and full-
text test sets using bins of a maximum size of 512 tokens. The scores reported are
Precision/Recall/F1-Score.

ASD model trained
using the full

text
(512 tokens bin)

Pheno explo
model

trained using the
full text

(512 tokens bin)

Pheno no explo
model

trained using the
full text

(512 tokens bin)
ASD abstract test
(512 tokens bin)

95.031/96.446/
95.733

94.624/94.715/
94.670

94.559/94.109/
94.334

Pheno abstract test
(512 tokens bin)

79.173/77.090/
78.118

92.988/93.447/
93.217

92.913/93.586/
93.248

|∆ in test set F1-score| 17.615 1.453 1.086

ASD full text test
(512 tokens bin)

94.455/94.873/
94.664

93.736/91.821/
92.769

92.998/91.419/
92.201

Pheno full text test
(512 tokens bin)

80.502/76.943/
78.682

92.397/91.920/
92.158

92.220/91.993/
92.107

|∆ in test set F1-score| 15.982 0.611 0.094

Table 4.11: Summary of the comparison between the FT ASD model, FT pheno
explo model, FT pheno no explo model, and their respective abstract and full-text
test sets using bins of a maximum size of 512 tokens. The scores reported are
Precision/Recall/F1-Score.
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The models trained in a highly specialized ASD phenotype domain performed better

on the ASD test sets than the ones trained on a generally specialized phenotype

domain but proved less reliable when applied beyond its main focus like here on

general phenotype entity recognition. In both the abstract and full-text contexts, the

ASD models demonstrated better performance in recognizing phenotype terms within

the ASD test sets compared to the models designed for general phenotypes.

The ASD model trained using the abstract had ∼4% improvement in the F1 score on

the ASD abstract test set over the phenotype models and ∼5.5% improvement over

the ASD full-text test set.

The ASD model trained using the full text had ∼1% improvement in the F1 score on

the ASD abstract test set over the phenotype models and ∼2% improvement over

the ASD full-text test set.

However, when attempting predictions on any phenotype test sets, a significant decline

was observed in the ASD model, unlike the phenotypes models, which exhibited similar

performances. Notably, the drop in performance is more pronounced in the ABS model

than in the full-text model. This suggests that, when using the full text, the model has

a better chance of encountering a broader range of terms during training, contributing

to its overall performance.

The ASD model trained using the abstract had a greater than 21% drop in F1 score

between the ASD test sets and the Pheno test sets when the Pheno models only had

a less than 2% variation between both sets. Once again, the ASD model trained using

the full text had a greater than 15.9% drop in F1 score between the ASD test sets

and the Pheno test sets when the Pheno models only had a less than 2% variation

between both sets.

The results show that there is a trade-off to make between general, specialized, and

hyper-specialized that will result in higher performance at the cost of generalizability.

4.4 Result on Phenotype Gold Standard

In Section 4.3, I used silver standard data to train and test models under various

settings, aiming to identify the best training strategy. Recently, in 2017, 2022 and

2023, three gold standard sets (Lobo et al. (2017), Feng et al. (2022), Islamaj et

al. (2023)) focusing on Phenotype Named Entity Recognition have become publicly
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available. The release of these three human annotated sets allowed me to compare

the optimal models obtained in Section 4.3 with other Phenotype NER methods and

assess whether the training strategy presented in Section 4.3 outperformed or offers

comparable performance when the models used are trained using silver standard data.

4.4.1 GSC+

The GSC+ Lobo et al. (2017) is an extension of the original human-annotated

data for phenotype named entity recognition and normalization called HPO Gold

Standard Corpora (GSC) released in Groza et al. (2015). Due to inconsistencies

and missing annotations, the authors of Lobo et al. (2017) released GSC+ which

is an improvement of the previously released dataset and among fixing some of the

inconsistencies also added 881 entities to the original version. The dataset is composed

of 228 abstracts available on PubMed covering 44 complex dysmorphology syndromes.

In total 1,933 annotations were annotated from the 228 abstracts of which 460 are

unique annotations.

The most recent benchmark and state-of-the-art method on this dataset are presented

in Feng et al. (2022). The scores presented in Feng et al. (2022) are different than the

ones in our evaluation as our evaluation metric is different. In Feng et al. (2022) the

authors aim to identify the spans of text related to phenotype mention and normalize

the text extracted to its corresponding HPO Robinson et al. (2008) identifiers. For

example, the term ’Polydactyly’ or ’More than five fingers or toes on hands or feet’

must be mapped to ’HP:0010442’ as they both are synonyms. The scores presented

in Feng et al. (2022) rely on the ability to identify the right HPO identifiers present

in the text rather than the exact span location and correct entity extraction. A partial

entity extraction can lead to the right HPO identifiers and on the contrary, the right

spans of text can lead to the wrong HPO identifier.

For reference, the results for all the methods doing HPO normalization are presented

in Table 4.12. In Table 4.13 I report the results of the re-trained BERT Devlin

et al. (2019) model presented in Section 4.3 as no gold standard training set was

made available to retrain our model in accordance with the annotator’s guidelines

and style. The best F1 score was obtained by the pheno explo full-text corpus, (see

Section 4.3.2, and Section 4.3.4). I also report the performance of PhenoBERT

Feng et al. (2022) as it is the state-of-the-art method and MetaMap Aronson (2001)
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Precision Recall F1 Score
NCBO 72.41 46.78 56.84
Clinphen 64.60 41.37 50.44
MetaMapLite 69.43 48.61 57.18
Doc2hpo 77.40 47.41 58.81
NeuralICR 74.49 66.43 70.23
PhenoTagger 79.90 63.25 70.60
PhenoBERT 80.11 66.98 72.96

Table 4.12: Summary of the current known methods for phenotype extraction and
normalization, as reported in Feng et al. (2022), on the GSC+ dataset.

Overlap Strict
P R F1 P R F1

PhenoBert 94.11 80.58 86.82 69.50 59.33 64.01
MetaMap 69.58 60.80 64.89 47.24 42.27 44.62

Our 94.61 74.49 83.35 72.01 58.49 64.55

Table 4.13: Named Entity Recognition performance using the strict and overlap
scores on the GSC+ dataset. P stands for Precision, R for recall, and F1 for F1 score.
The overlap means part of the entity was extracted by the model while strict means
the extraction is the same as the human annotators.

since our training data was annotated by it. The scores presented in Table 4.13

show the performance of the models for named entity recognition regardless of their

normalization. The overlap score was computed based on incomplete span extraction

while the strict score must match exactly the same span as the human annotators.

Despite being trained with labels obtained from MetaMap, our model exhibits a

significant performance boost, showing an improvement of around 20% in F1 score

compared to MetaMap. This shows that the re-training of the model resulted in

learning how to contextually identify phenotype terms as well as the benefit of training

a BERT-based model using silver-standard labels.
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The drop observed between the Overlap and Strict metrics is similar for both Phen-

oBERT and our model. This suggests that both models face challenges in correctly

classifying the same set of labels, indicating common difficulties in entity extraction.

Both PhenoBERT and our model demonstrate notably higher precision than recall.

This implies that the models are confident in their entity extractions but may miss

certain entities due to their absence in the training.

Our model achieves higher precision than PhenoBERT in both strict and overlap

scores, indicating a more accurate identification of entities with fewer false positives.

In contrast, PhenoBERT exhibits better recall in overlap score and similar recall in

strict score, meaning it tends to identify more entities than our method. This suggests

that PhenoBERT is more inclusive in recognizing entities but may be more prone to

false positives.

While PhenoBERT achieves a higher overlap score due to its higher recall, our model

wins in the strict F1 score. This is attributed to our method’s higher precision, making

it a preferable choice when precision is crucial. While PhenoBERT may identify more

entities, some of them may be incorrect, emphasizing the precision advantage of our

method in scenarios where accuracy is the priority.

In Tables 4.15 and 4.14 I report examples where disagreements were observed

between PhenoBERT, our method, and the human annotation labels on the GSC+

dataset.

4.4.2 ID-68

The ID-68 dataset consists of 68 medical clinical notes from patients with intellectual

anonymized and made public by Feng et al. (2022) where phenotypic descriptions

were described. This dataset was annotated by the authors of Feng et al. (2022) to

offer an alternative to the only named entity recognition gold standard phenotype

corpus at the time. They follow the same annotation procedure as employed by the

GSC+ Lobo et al. (2017) dataset extracting the phenotype terms and linking them

to their corresponding HPO Robinson et al. (2008) identifiers. The set counts 866

annotations of which 578 are unique mapping to 437 HPO identifiers.

As both GSC+ and ID-68 are used in Feng et al. (2022) I use the same structure and

reasoning as introduced in Section 4.4.1. The results are reported in Table 4.16 and

in Table 4.17.
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’[...] NF2 allele is more susceptible to mesothelioma.’
PhenoBERT [”]

Our [’mesothelioma’]
Gold label [’mesothelioma’]

’Palmar pits and plantar pits were seen in 87%.’
PhenoBERT [”]

Our [’Palmar pits’]
Gold label [’Palmar pits’]

’[...] carcinomas, keratocysts of the jaw, palmar [...]’
PhenoBERT [’keratocysts of the jaw’]

Our [”]
Gold label [’keratocysts of the jaw’]

’[...] had at least one basal cell carcinoma [...]’
PhenoBERT [’basal cell carcinoma’]

Our [”]
Gold label [’basal cell carcinoma’]

Table 4.14: Examples of text from the GSC+ dataset where either PhenoBERT or
our method was incorrect but the other was not.
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’[...] total jaw cysts ranged from [...]’
PhenoBERT [”]

Our [”]
Gold label [’jaw cysts’]

’[...] anomalous, cranial nerve-end organ innervation.’
PhenoBERT [”]

Our [”]
Gold label [’cranial nerve-end organ innervation’]

’[...] ocular and branchial abnormalities normally [...]’
PhenoBERT [’branchial abnormalities’]

Our [’branchial abnormalities’]
Gold label [”]

’[...] presence of cataracts and retinal abnormalities.’
PhenoBERT [’retinal abnormalities]

Our [’retinal abnormalities]
Gold label [”]

Table 4.15: Examples of text from the GSC+ dataset where both PhenoBERT and
our method were incorrect according to the gold labels.

Precision Recall F1 Score
NCBO 87.42 66.00 75.21
Clinphen 74.89 61.50 67.54
MetaMapLite 80.44 59.13 68.16
Doc2hpo 84.40 57.50 68.40
NeuralICR 78.61 77.62 78.11
PhenoTagger 89.75 75.50 82.01
PhenoBERT 94.27 78.12 85.44

Table 4.16: Summary of the current known methods for phenotype extraction and
normalization, as reported in Feng et al. (2022), on the ID-68 dataset.
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Overlap Strict
P R F1 P R F1

PhenoBert 98.01 83.15 89.97 77.38 65.62 71.02
MetaMap 94.45 73.43 82.62 71.06 56.43 62.91

Our 98.80 77.54 86.88 78.31 62.72 69.66

Table 4.17: Named Entity Recognition performance using the strict and overlap
scores on the ID-68 dataset. P stands for Precision, R for recall, and F1 for F1 score.
The overlap means part of the entity was extracted by the model while strict means
the extraction is the same as the human annotators.

Many of the observations noted in Section 4.4.1 hold true for the ID-68 dataset.

However, there is a distinction, the gap in recall between PhenoBERT Feng et al.

(2022) and our method, which has widened. This resulted in our strict F1 score

remaining lower than that achieved by PhenoBERT while still competitive compared to

the other methods reported in Table 4.16. A plausible explanation for this result could

be the dataset’s inclination towards clinical notes rather than biomedical research. The

change in sentence structures and the mention of entities in clinical notes compared

to our model’s training data might be influencing the performance observed in the

recall. This highlights the impact of dataset characteristics on model generalization

and underscores the need for considering the specific context and nuances of the

target data during the training phase.

In Tables 4.19 and 4.18 I report examples where disagreements were observed

between PhenoBERT, our method, and the human annotation labels on the ID-68

dataset. As opposed to Table 4.15, Table 4.19 does not contain examples where Phen-

oBERT and our methods agree on a term being present but the human annotations

disagree. Due to their extremely high precision overlap score, 98.8 for our model and

98.01 for PhenoBERT, both models only made a few predictions that are not present

in the human annotations. These predictions did not overlap between them thus I was

not able to include any examples in Table 4.19.
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’[...] noted to have flattened nails, [...]’
PhenoBERT [”]

Our [’flattened nails’]
Gold label [’flattened nails’]

’[...] due to meconium-stained liquor and [...]’
PhenoBERT [”]

Our [’meconium-stained liquor’]
Gold label [’meconium-stained liquor’]

’[...] fissures, depressed nasal bridge, posteriorly [...]’
PhenoBERT [’depressed nasal bridge’]

Our [”]
Gold label [’depressed nasal bridge’]

’[...] deformity and poor visual contact.’
PhenoBERT [’poor visual contact’]

Our [”]
Gold label [’poor visual contact’]

Table 4.18: Examples of text from the ID-68 dataset where either PhenoBERT or
our method was incorrect but the other was not.

’[...] showed atrophied thalami and [...]’
PhenoBERT [”]

Our [”]
Gold label [’atrophied thalami’]

’[...] due respiratory complications at [...]’
PhenoBERT [”]

Our [”]
Gold label [’respiratory complications’]

Table 4.19: Examples of text from the ID-68 dataset where both PhenoBERT and
our method were incorrect according to the gold labels.
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4.4.3 The BioCreative VIII task 3

The objective of BioCreative8 Track 3 Islamaj et al. (2023) is to extract phenotypic

key medical findings embedded within EHR texts and subsequently normalize these

findings to their Human Phenotype Ontology (HPO) Robinson et al. (2008) terms.

As opposed to the GSC+ Lobo et al. (2017) and ID-68 Feng et al. (2022) datasets,

the BioCreative VIII task 3 dataset is not only composed of continuous phenotype-

named entities. I participated in the challenge as a team with members of the DMIS

group, our work can be found in Kim et al. (2023). I personally contributed to the

development of the NER part of the pipeline and I will focus this subsection on the

NER performance.

All phenotype descriptions cannot be described continuously. Instead, one observation

is scattered throughout a patient’s record. For example, the observation“long fingers

and toes” contains two phenotype terms, where ‘long’ and ‘toes’ are separated by

an intervening word, more examples can be find in Table 4.20. Features like these

make it difficult for computer systems to recognize and understand phenotype terms.

The BioCreative VIII task 3 aims at phenotype NER of continuous and discontinuous

cases. The organizers provided the participants with two sets of data composed of

observations extracted from dysmorphology physical examinations. The training set

had 2,767 phenotype observations mapped to 1,716 unique consultations while the

validation set had 734 phenotype observations mapped to 454 unique consultations.

In this subsection, I present the models we used in the challenge as well as the

performance of the models presented in Section 4.3 in both the continuous and

discontinuous cases of the dataset.

Data Description

Looking at the 1,716 unique clinical consultations provided by the organizer for

training I identified 5 edge cases:

• 125 unique observations with normal findings (no anomalies observed but visible

part of the body is mentioned), i.e. normal lips

• 205 unique observations with no finding. This means no phenotype entities are

present in the observation.

• 205 unique discontinuous observations

• 85 unique observations with both normal findings and discontinuity
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’MOUTH: Mildly high arched palate. Normal lips and tongue.’
Gold label [’high arched palate’]
Finding type Key

’MOUTH: Mildly high arched palate. Normal lips and tongue.’
Gold label [’Normal lips’]
Finding type Normal

’MOUTH: Mildly high arched palate. Normal lips and tongue.’
Gold label [’Normal tongue’]
Finding type Normal

’EYES: Long thick eyelashes’
Gold label [’Long eyelashes’]
Finding type Key

’EYES: Long thick eyelashes’
Gold label [’thick eyelashes’]
Finding type Key

Table 4.20: Examples of text from the BioCreative VIII task 3 dataset with sample
text, the human expert label describes as ’gold model’ and finding type.

• 1,096 unique observations composed only of continuous key findings

After removing the normal findings and observations with no finding from the training

set, there are 2,233 phenotype annotations of which 274 are discontinuous and 1,959

are continuous. The validation set contains 607 phenotype annotations of which 79

are discontinuous and 528 are continuous.

I split the data 70%/30% taking into account the same proportion for every edge

case to generate the training and validation sets. The validation set provided by the

organizer was kept as such for testing.

Experiments

After analyzing the data, we selected multiple models that showed state-of-the-art

(SOTA) performance for biomedical NER (BioBERT J. Lee et al. (2019), SciBERT

Beltagy et al. (2019)), NER for HPO (PhenoTagger Luo et al. (2020), PhenoBERT

Feng et al. (2022)) and discontinuous NER (TransE Dai, Karimi, Hachey, and Paris

(2020), ChatGPT, W2NER J. Li et al. (2022)). Following our optimization of each

of these models we realized that ChatGPT and W2NER outperformed the other

methods for both continuous and discontinuous cases and decided to focus on them

only. As opposed to Kim et al. (2023) I also included the models trained in Section 4.3
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and MetaMap Aronson (2001). I only focus on strict NER performance without

normalization. Also, I benchmark taking the limitations of the methods into account. I

report the performance of all methods on the continuous case and only keep methods

that could adapt to the discontinuous case on the full dataset.

MetaMap was used with the following parameters:

• data version = ’NLM’

• data year = ’2022AB’

• ignore stop phrases = True

• word sense disambiguation=True

• no derivational variants=True

• restrict to sources = [’HPO’]

PhenoBERT, PhenoTagger and TransE were run using base parameters.

We used 2 versions of GPT and 2 different strategies as well. We employed GPT4

with zero-shot and we finetuned GPT3.5 using the ChatGPT Finetuning API to

finetune ChatGPT on our training dataset. Upon analyzing the characteristics of the

dataset, we found that many sentences contained abbreviations, and some included

mathematical symbols. The context for the abbreviations isn’t included in the text,

and the corpus trained on ChatGPT is not specialized enough to infer biomedical

abbreviations, presenting a limitation. Therefore, we converted abbreviations into their

full names. For sentences with statistical mathematical symbols, it is necessary to infer

their meanings. We expanded these into full sentences; for example, “HC < 1% for

age”was expanded to“Head Circumference is below the 1st percentile for age.”The

extraction part using finetuned ChatGPT was conducted in two steps. The first step

involved extracting all findings, regardless of whether they were key or normal. The

second step consisted of classifying the extracted findings into their corresponding

categories.

W2NER J. Li et al. (2022) is a deep learning architecture that leverages the power of

BERT for contextual representation before diving into a unique 2D grid of word

pairs. Each word interacts with its neighbours on a semantic map, where NNW

(Next-Neighboring-Word) and THW-(Tail-Head-Word-) relations capture dependen-

cies. Multi-granularity 2D convolutions refine these interactions, extracting features

from the grid. Finally, a co-predictor, combining a Biaffine classifier and MLP, analyzes

these refined relations to identify and predict potential entity mentions. I did a grid

search to optimize the initial performance of W2NER J. Li et al. (2022) by fine-tuning

the hyperparameters. The choice of pre-trained BERT model used in the first layer of
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Precision Recall F1 score
GPT4 zero-shot 38.50 27.27 31.93
PhenoBERT 58.76 32.39 41.76
MetaMap 44.70 47.92 46.25
TransE 51.30 67.42 58.27

PhenoTagger 56.30 71.97 63.18
W2NER (dmis-lab/

biobert-base-cased-v1.2)
68.66 78.41 73.21

W2NER (allenai/
scibert scivocab uncased)

73.37 74.62 73.99

GPT3.5 finetuned 75.27 80.11 77.61
W2NER (Our) 78.37 80.30 79.32

W2NER (/clinical-pubmed
-bert-base-512)

80.15 81.06 80.60

Table 4.21: Performance of all the phenotype-trained models on the validation
continuous dataset of the BioCreative VIII task 3.

the W2NER architecture had the biggest impact on model performance. I evaluated

BioBERT, SciBERT, the model presented in Section 4.3 (our) and ClinicalBERT

Alsentzer et al. (2019). ClinicalBERT showed the best performance with an improve-

ment of 6.5% F1 score over the worst-performing model. The rest of the grid search

resulted in training our model using 15 epochs, batch size of 8, learning rate of 0.001,

BERT learning rate of 5e-5, and dropout of 0.3. W2NER was trained to extract only

the key findings.

I first trained each model using only the continuous annotations and the results on

the continuous validation set can be found in Table 4.21. Then the models that can

be trained for discontinuity were trained using the complete training dataset and the

results on the validation set are reported in Table 4.22.

Summary

In the continuous evaluation of strict Named Entity Recognition F1 scores, a notable

performance discrepancy was observed across various models. The GPT4 zero-shot

model, not leveraging training data for retraining, emerged as the least effective, while

the GPT3.5 finetuned model exhibited superior performance. Despite GPT3.5’s ex-

cellence, ChatGPT displayed limitations in biomedical inference compared to clinical-

pubmed-bert-base-512, which specialized in Electronic Health Record (EHR) reports.

GPT3.5 finetuned even outperformed BioBERT and SciBERT, designed for biomed-

ical and scientific contexts, respectively. This success is attributed to BioBERT and
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Precision Recall F1 score
GPT4 zero-shot 38.50 23.72 29.36

TransE 51.30 58.65 54.73
W2NER (dmis-lab/

biobert-base-cased-v1.2)
66.32 72.65 69.24

W2NER (allenai/
scibert scivocab uncased)

71.36 69.36 70.34

GPT3.5 finetuned 72.76 73.48 73.11
W2NER (Our) 77.36 74.30 75.80

W2NER (/clinical-pubmed
-bert-base-512)

79.62 76.61 78.09

Table 4.22: Performance of all the discontinuous phenotype-trained models on the
validation complete dataset of the BioCreative VIII task 3.

SciBERT’s lack of training on EHR reports and phenotype recognition, diverging from

their intended applications. In discontinuous NER, a slight decline in F1 scores across

all methods was observed, yet their high overall performance remained consistent,

showcasing adaptability to the discontinuity challenge crucial for phenotype term ex-

traction. While our method proved competitive, it did not surpass ClinicalBERT, em-

phasizing our model’s focus on BioNLP over ClinicalNLP. Finally, leveraging available

training data allowed us to outperform PhenoBERT, highlighting the significance of

adaptable training approaches in achieving superior results under different annotation

guidelines.

4.5 Discussion

In this chapter, I initially provided an overview of important methods in Named Entity

Recognition, Biomedical NER, and Phenotype NER.

In the next section, a series of experiments were executed to identify the most effective

pre-processing approaches for re-training an ASD phenotype BERT Devlin et al.

(2019) model and our Pheno BERT model. This started with improving tokenization

quality, using the SocialDisNER Gasco et al. (2022) challenge I demonstrated the

effectiveness of the proposed improved tokenization resulting in a +12.8% F1 score

over the average and +4.2% F1 score over the median of all submissions. The

subsequent experiment into sentences versus 512 tokens bin input length training

uncovered a correlation between input length and model performance. The findings

emphasize the higher performance of 512-token inputs over sentence-level training. I
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next compared models trained using abstract only or full-text training revealing the

superior performance of full-text models. Finally, I examined the effect of specialized

corpora, particularly for ASD Phenotype models, and showed the potential for tailoring

models to specific domains, albeit with certain limitations when used outside of their

main scope.

In the final section, using gold standard human-annotated data, our model showed

the highest precision score and comparable or better F1 score performance to existing

state-of-the-art models, validating the efficacy of my approach.

In an era where deep learning language models have improved their performance on

complex biomedical information extraction, the optimization of BERT-based models

still has a role to play. This chapter, with its systematic approach to data curation and

model refinement, not only contributes to the state-of-the-art in Phenotype NER but

also lays down a roadmap for enhancing models across diverse biomedical domains.

The significance lies not only in the achievements but also in the reproducibility

and transferability of the methodologies presented due to the absence of human

annotations in the training process. By demonstrating the effectiveness of these

strategies at minimal cost and human effort, this research advocates for a strategic

and informed approach to data pre-processing, a crucial element in realising the full

potential of BERT-based models.

4.5.1 Limitations

This chapter, while yielding promising results, is subject to limitations that prompt

further considerations for future research and optimization. The first limitation is

the nature of our training data, which consists solely of silver standard annotations

generated by machines (except for Section 4.4.3). The absence of large-scale gold

standard data, annotated by human experts, introduces challenges in capturing the

nuanced and contextual information that may be more accurately extracted by human

annotators. I believe that access to a corpus of gold standard data could significantly

enhance the performance of our model, offering a more robust phenotypic information

extraction. I do not expect this limitation to be lifted in the foreseeable future.

Despite this limitation, our model achieved competitive results when evaluated on

gold-standard test sets. Nevertheless, the observed performance gap compared to

certain biomedical categories with higher F1 scores emphasizes the need for more

comprehensive and representative training datasets as they are available in the other

categories.
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The second notable limitation resides in our token binning analysis. I limited my

investigation to comparing sentences versus bin size of 512 tokens. The release of

models like the Longformer Beltagy et al. (2020) for exploring larger bin sizes, such

as 4096 tokens, could potentially offer more contextual information and improve model

performance. Additionally, the exploration of optimal bin sizes and the implementation

of overlap strategies for bin generation were not pursued in this study. A more detailed

examination of these aspects could provide valuable insights into refining the token

binning process, offering an opportunity for optimization in handling longer documents

and further enhancing our model’s capabilities.

A third limitation lies in the scope of my document-level analysis, specifically the

comparison between abstracts and full texts. My research did not look into variations

in performance when contrasting abstracts, full texts, full texts without abstracts, or

specific sections of full texts. Understanding how our model responds to different docu-

ment structures and lengths is crucial for its applicability across varied information-rich

contexts. An exploration of these variations could improve the embeddings obtained

in the BERT model as it will change the embedded information the model is trained

on.

A fourth limitation of this study is in regard to the accessibility of scientific literature

for text data mining purposes. Our model was trained based on the scientific literature

to which the University of Edinburgh had the right to access. The broader issue of

research articles not being universally open access poses a substantial limitation, as it

impedes the ability to access and utilize the entirety of publicly available information.

This constraint underscores the importance of considering the accessibility of research

literature in training deep learning language models, acknowledging that limitation in

access may affect the comprehensiveness of models.

A fifth limitation is the practical constraints of the data collection, annotation, and

training processes. The endeavour to collect a comprehensive corpus, annotate it, and

train a deep-learning language model is inherently expensive and time-consuming.

As a result, I had to limit the size of the training dataset, balancing the need

for a sufficiently representative sample with the resources available. This constraint

highlights the challenges associated with large-scale data-driven approaches in natural

language processing and emphasizes the importance of doing the right pre-processing

steps to avoid wasting resources. All this work was made possible using 196 GB of

RAM and a GeForce RTX 4090 (24 GB GPU).
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These limitations underscore the importance of ongoing efforts to address better pre-

processing strategies. Future efforts should focus on acquiring a targeted phenotype

gold standard corpus, exploring diverse token bin strategies, conducting more detailed

analyses of document structures, and optimizing the search strategy/accessibility

when generating the corpus used for training. This is true for phenotype NER but more

broadly for any NLP using research articles for data as it improves the performance

of the model and reduces the cost of training and time required to train the model.

4.5.2 Future work

In the future, as a continuation of my PhD and personal interest, I would have

wanted to develop a specialized biomedical Longformer Beltagy et al. (2020). Training

a Longformer specifically to the biomedical domain, using PubMed abstracts and

PMC OA Maloney et al. (2017), could show the potential of using larger bin sizes

as it has for in general NLP with the original implementation of Longformer. This

research is particularly crucial in assessing the impact of bin size on biomedical NLP.

Investigating how increased contextual information influences the performance of

models in handling biomedical information extraction tasks can offer valuable insights

and contribute to optimizing token binning strategies and observing if it follows the

same phenomenon as in general NLP.

Secondly, the creation of a biomedical corpus composed of XML and HTML docu-

ments holds the potential to enhance the training data selection for training models

by specifically curating a corpus in these formats, that are amenable to refinement by

document section using tools like AutoCorpus Hu et al. (2021) and the Information

Artifact Ontology (IAO) Ceusters (2012). This approach could determine the optimal

set of information needed for training BERT Devlin et al. (2019) models, allowing for

removing sections that might worsen the quality of training by including information

not directly aligned with one’s interest.

Thirdly, the implementation of a specialized sequential training approach. Rather than

directly training the ASD BERT model, an intermediate step could involve training

first the Pheno explo BERT model. Subsequently, the Pheno explo BERT model could

be retrained specifically for the ASD BERT model. This sequential training approach

aims to investigate the impact of model performance on the ASD test set and assess

whether this strategy enhances the generalization capabilities of the model. This step-

wise fine-tuning process is designed to explore whether a more targeted pre-training

approach improves the model’s effectiveness and generality.
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Discussion

Cadmus Campbell et al. (2023) a novel method designed to revolutionize the land-

scape of biomedical corpora generation is my solution in addressing the question of

how to automatically and dynamically generate in-domain biomedical raw full-text

data. Cadmus features a range of capabilities that render it both space and time-

efficient. One further improvement would be the incorporation of additional data

sources to augment the coverage of publicly available research literature. Crucially,

Cadmus stands out as the only method to date that does not exclusively rely on

PubMed abstracts and OA PMC, setting it apart as a valuable and comprehensive

resource for the generation of full-text in-domain biomedical corpora.

In assessing the reliability of MetaMap Aronson (2001) as an annotator for creating

silver standard annotation for use in training BERT-type models, my investigation

yielded promising results for phenotype-named entity recognition. This model was

subsequently benchmarked against existing methods on three gold standard challenges

(GSC+ Lobo et al. (2017), ID-68 Feng et al. (2022), and Biocreative VIII Islamaj

et al. (2023)). For the first two challenges (GSC+. ID-68), where no training data

were provided to align the model with the annotator’s guidelines, my method exhib-

ited either superior or competitive performance against state-of-the-art approaches,

showcasing the highest precision across all tests. In the case of the third challenge,

where training data aligned with the annotator’s guidelines were available, my model

surpassed existing NER phenotype models after retraining. This underscores the

effectiveness of a model trained using large-scale data and annotated by MetaMap,

positioning it competitively within the landscape of existing methods. A limitation

arises from the constraint of retraining the model based on categories available in the

Unified Medical Language System Bodenreider (2004) or data sources available in

MetaMap, potentially limiting the number of categories that can be incorporated into

the model. However, the methodology employed in this study offers a reproducible

framework that can be adapted for other diseases or categories present in MetaMap.

126
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Leveraging our innovative approach, highlighted by our method Cadmus and the

novel implementation of ParallelPyMetaMap Lain and Simpson (2021), I successfully

automatically generated the first disease-specific corpus for Autism Spectrum Dis-

order (ASD). This accomplishment has opened new horizons in biomedical-specific

research as this can be reproduced for any other biomedical term of interest. Through

comprehensive metadata and textual analysis, facilitated by the data provided by

both Cadmus and ParallelPyMetaMap, we gained an understanding of the state of

research in ASD. The focus on phenotype terms within the ASD corpus, representing

clinically significant descriptions linked to ASD, further enriched the understanding of

the disease by isolating which part of HPO is present in the ASD corpus. Employing

diverse Topic Modeling techniques, I uncovered latent topics embedded within the full

text, contributing to a nuanced comprehension of the complexities inherent in Autism

research covering many clinical area like ’genetics’, ’psychology’, ’physiopathology’,

and ’metabolism’. Inspired by the success of the CoronaCentral Jake Lever (2020), the

next logical step involves implementing a similar framework for the ASD corpus. This

next step aims to facilitate the sharing of information with healthcare professionals

and the broader public, fostering collaborative efforts to enhance Autism awareness

and understanding.

Through a series of experiments, I identified a set of pre-processing optimization tech-

niques that enhance the performance of BERT-based Devlin et al. (2019) models. The

first noteworthy improvement involved refining tokenization by strategically spacing

out punctuation and special characters from the token. This approach resulted in an

enhancement, as demonstrated in our work Lain et al. (2022), showcasing a higher F1

score than both the average and median F1 scores of all participants in the challenge.

While this experiment was not reproduced on the ASD and phenotype corpora, due

to the presence of punctuation and mathematics symbols in the research literature

this finding was directly applied to the corpora. Additionally, an exploration into the

correlation between input sequence length and training sequence during prediction

revealed interesting insights. Notably, employing a bin of 512 tokens yielded superior

performance compared to a sentence-level bin. Furthermore, I demonstrated that

biomedical BERT-based models exhibited enhanced performance when trained on full

text rather than abstracts across all my tests. Remarkably, I observed no significant

change in performance when re-training the model using data generated by the ’noexp’

filter from PubMed. The fact that the ’noexp’ filter did not influence the performance

of any model means that when designing the search strategy, including the child nodes

in case the initial corpus is too small, will not impact the performance of the model.
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While these results are promising, further exploration is warranted to ascertain their

validity when trained on gold standard data or within different biomedical categories.

This comprehensive investigation into pre-processing optimization techniques not only

contributes to refining BERT-based models but also sets the stage for continued

advancements in the field of natural language processing.

I trained both category-level BERT-based models utilizing our phenotype corpora and

a specialized disease-category-level BERT-based model with our ASD corpus designed

for phenotype-named entity recognition. A noteworthy finding emerged as the disease-

category-level model exhibited superior performance when tested specifically on the

disease-category-level data, i.e. within in domain. This outcome underscores the

model’s proficiency in capturing disease-related entities within the designated cat-

egory. However, a critical observation is that despite its enhanced performance within

the disease-category context, the generalizability of the disease-category-level model

was notably poor when compared to the category-level models. This discrepancy, due

to its use outside what it was trained for, raises questions about the overall robustness

of the disease-category-level model across broader contexts, limiting its applicability

beyond the specific disease category. To address this limitation, an avenue for further

exploration could involve an additional re-training step. This approach entails initially

re-training a more general model to the category-level and subsequently fine-tuning

the category-level model to the disease-category level. Such a sequential re-training

strategy could potentially enhance the generalizability of the disease-category-level

model, making it more adaptable and robust across various contexts but could also

result in a drop in performance within its domain.

On reflection, I want to emphasize the open-source nature of all the methods presented

in this study, fostering a culture of transparency and reproducibility. Every experiment,

analysis, and model discussed in this research can be reproduced by fellow researchers

and practitioners as all the steps and tools used are described or available to use

(Campbell et al. (2023), Lain and Simpson (2021), Lain and Simpson (2022b), and

Lain and Simpson (2022a)). This commitment to openness enhances the credibility

of the findings. The methods developed, including Cadmus, and ParallelPyMetaMap,

are characterized by efficiency, flexibility, and autonomy. These traits are fundamental

in empowering researchers to adapt and build upon the established frameworks,

promoting iterative improvements and innovation. The codebase and tools are readily

accessible, inviting others to explore, refine, and contribute to the ongoing evolution

of these methodologies. Moreover, the insights gained from this study go beyond
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the specific context of phenotype NER. The learnings and methodologies developed

herein can be seamlessly applied and adapted to various domains within BioNLP

and beyond. The transferability of these findings extends the impact of the research,

serving as a valuable resource for researchers exploring diverse biomedical applications

and contributing to the collective progress of natural language processing in healthcare

and research.
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