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A B S T R A C T

Improving road safety is hugely important with the number of deaths on the world’s roads remaining
unacceptably high; an estimated 1.35 million people die each year (WHO, 2020). Current practice for treating
collision hotspots is almost always reactive: once a threshold level of collisions has been exceeded during some
predetermined observation period, treatment is applied (e.g. road safety cameras). However, more recently,
methodology has been developed to predict collision counts at potential hotspots in future time periods,
with a view to a more proactive treatment of road safety hotspots. Dynamic linear models provide a flexible
framework for predicting collisions and thus enabling such a proactive treatment. In this paper, we demonstrate
how such models can be used to capture both seasonal variability and spatial dependence in time dependent
collision rates at several locations. The model allows for within- and out-of-sample forecasting for locations
which are fully observed and for locations where some data are missing. We illustrate our approach using
collision rate data from 8 Traffic Administration Zones in the US, and find that the model provides a good
description of the underlying process and reasonable forecast accuracy.
1. Introduction

Every year the lives of approximately 1.3 million people are cut
short as a result of a road traffic crash. Between 20 and 50 million more
people suffer non-fatal injuries, with many incurring a disability as a
result of their injury [1]. Working with collision counts can introduce
issues of zero-inflation, especially over short time-frames. By working
with rates over zones, we have the advantage of fewer zeros in the
data set and upon removing these, we may treat the data as contin-
uous, which can be mathematically convenient in terms developing a
tractable model. Most road traffic data are recorded sequentially over
time and it is common for there to be dependencies between each
observation. Hence, it is necessary to account for these dependencies
in the model via a time-series model, such as a state–space model. The
use of state–space models in road safety analysis is relatively new and
uncommon, though they provide advantages for prediction.

State–space models can be used for modelling univariate or mul-
tivariate time-series in the presence of non-stationarity, structural
changes and irregular patterns (see e.g. [2,3]). Time-series analysis
typically begins with the formulation of a model that accounts for
temporal dependence, for example through auto-correlation, trend or
seasonality. The use of state–space models within a time-series setting
allows for uncertainty quantification in both the observation process
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and any dynamic variables that are not observed directly. Forecast-
ing therefore accounts for these different sources of uncertainty and,
when inferences are made within the Bayesian paradigm, additional
parameter uncertainty. Throughout, we focus on a particular class of
state–space model within which the observation and system equations
involve linear functions of the latent process. Such models are known
as dynamic linear models (DLMs, see e.g. [3,4]) and offer several prac-
tical benefits over their nonlinear counterparts. Notably, they admit a
tractable observed data likelihood function, allowing a computationally
efficient approach to inference and forecasting.

Gamerman and Migon [5] give a list of hierarchical dynamic linear
models (DLMs) used for the state evolution, smoothing and filtering
through the stages of the hierarchy. Previous applications of (hierar-
chical) state–space models in the road safety context have focused on
temporal models of short-term travel time on a freeway stretch [6],
road traffic collision analysis and prediction (see e.g [7–9]) and the
impact of speed limit policies [10]. Despite their flexibility in describing
the underlying data generating mechanism, state–space models and
DLMs in particular, have been to date rarely exploited in the road safety
context (see e.g. [6,11]).

Our contribution is a joint spatio-temporal model of collision rates
over multiple zones. A DLM is used at the level of a single zone, and
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Fig. 1. Left: Time series plots of monthly collision rate in each of the 8 zones. Right: Histograms of collision rates for zones 2,3,5,6.
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llows for seasonality via a single harmonic with time-varying ampli-
ude and phase parameters. We then account for spatial dependence at
earby locations by adding a spatial Gaussian process to the system
quation, thereby smoothing spatial deviations from the underlying
emporal process. A similar approach in an environmental setting can
e found in [12] (see also [13]). The resulting model allows for both
ithin- and out-of-sample forecasting for locations which are fully
bserved and for locations at which some data are missing. A Bayesian
pproach is used to infer both dynamic and static model components
nd leverages the tractability of the observed data likelihood, which
an be efficiently computed via a forward filter (see e.g. [14,15]).
e apply the inference scheme to data consisting of monthly collision

ates from neighbouring Traffic Administration Zones across a region
f Florida/Georgia, USA. We assess the assumption of time-varying
arameters governing the seasonal component to each zone separately
efore considering a joint model of all zones.

The remainder of this paper is organised as follows. A brief descrip-
ion of the data is given in Section 2. The structure of the DLM for a
ingle zone and joint zones is given in Section 3. In Section 4 we outline
he details of the Bayesian inference scheme, before considering the
ata application in Section 5. Conclusions are drawn in Section 6.

. Data

We consider monthly collision rate data for neighbouring Traffic
dministration Zones in North Florida/Southern Georgia, USA. For
Traffic Administration Zones we have monthly collision rates; for

ach zone we have 115 months of observations, the most recent being
rom April 2014. Fig. 1 shows the multiple data streams over time
or the different zones. For all zones, the monthly collision rates ex-
ibit sinusoidal patterns over a 12 month period. Histograms of the
onthly collision rates suggest that a Gaussian observation model may

dequately describe the observation process. Through scatter plots, we
etermined that there was clear temporal dependence between certain
onths in year 𝑡 to year 𝑡+1, precluding the use of a simpler model with

‘‘month’’ as a fixed effect. Furthermore, zones geographically closer are
more strongly correlated (see Fig. 2).

3. Dynamic linear model (DLM)

State–space models build on the relatively simple dependence struc-
ture of a (first order) Markov chain (in that information about some
state 𝜃𝑡𝑖 carried by all previous values of the chain up to time 𝑡𝑖−1
is the same as that carried by 𝜃𝑡𝑖−1 alone). They are made of two
main components, observed data (𝑥𝑡1 ,… , 𝑥𝑡𝑛 ) and unobserved/latent
states (𝜃𝑡0 ,… , 𝜃𝑡𝑛 ). Fig. 3 shows the evolution of a simple univari-
2

ate state–space in which the continuous valued latent state process 𝑋
{𝜃𝑡0 , 𝜃𝑡1 ,… , 𝜃𝑡𝑖−1 , 𝜃𝑡𝑖 ,…} evolves according to a first order Markov chain
with transition density 𝜋(𝜃𝑡𝑖 |𝜃𝑡𝑖−1 ). The continuous-valued observation
process {𝑥𝑡1 , 𝑥𝑡2 ,… , 𝑥𝑡𝑖−1 , 𝑥𝑡𝑖 ,…} is linked to the latent state process at
an arbitrary time 𝑡𝑖 via the density 𝜋(𝑥𝑡𝑖 |𝜃𝑡𝑖 ); here it is assumed that
he observed data are conditionally independent given the latent states.
he observable process {𝑋𝑡𝑖} depends on the underlying, unobservable

atent state process {𝜃𝑡𝑖} and we can reasonably assume that the ob-
ervation 𝑋𝑡𝑖 only depends on the state of the system at the time the
easurement is taken, 𝜃𝑡𝑖 . It remains that we specify the relationship

etween 𝑋𝑡𝑖 and 𝜃𝑡𝑖 , and between 𝜃𝑡𝑖 and 𝜃𝑡𝑖−1 . In each case, we adopt
inear relationships, and further assume that the errors in the state and
bserved components are independent and normally distributed. This
tructure leads to a dynamic linear model (DLM), given by the following
quations:

bservation Equation ∶ 𝑋𝑡𝑖 = 𝐹𝑡𝑖𝜃𝑡𝑖 + 𝜈𝑡𝑖
System Equation ∶ 𝜃𝑡𝑖 = 𝐺𝑡𝑖𝜃𝑡𝑖−1 + 𝜔𝑡𝑖

Here, 𝑋𝑡𝑖 is a scalar, 𝜃𝑡𝑖 is a 𝑝×1 vector, 𝐹𝑡𝑖 is a 1×𝑝 vector, 𝐺𝑡𝑖 is a 𝑝×𝑝
atrix and 𝜈𝑡𝑖 ∼ N(0, 𝑉𝑡𝑖 ) and 𝜔𝑡𝑖 ∼N(0,𝑊𝑡𝑖 ) are independent white noise
rocesses with known variance matrices 𝑉𝑡 and 𝑊𝑡, typically assumed
o be constant. Assuming that the initial latent state follows a Gaussian
istribution gives

𝜃0 ∼ N(𝑚0, 𝐶0)

𝑡𝑖 |𝜃𝑡𝑖−1 ∼ N(𝐺𝑡𝑖𝜃𝑡𝑖−1 ,𝑊𝑡𝑖 )

𝑋𝑡𝑖 |𝜃𝑡𝑖 ∼ N(𝐹𝑡𝑖𝜃𝑡𝑖 , 𝑉𝑡𝑖 )

or suitably chosen hyperparameters 𝑚0 and 𝐶0. In what follows we
onsider a DLM appropriate for data at a single zone, before considering
joint model over all zones.

.1. Zone specific model

The data set described in Section 2 showed seasonality in that, over
ll zones there was a clear sinusoidal pattern about the rate of collisions
ver a year. Therefore, to account for this within the DLM we include
single harmonic. Note that it is possible to account for seasonality

hrough the inclusion of multiple harmonics in the system equation (see
.g. [4]), however, we find that using a single harmonic and allowing
he amplitude and phase to vary over time, provides a parsimonious
odelling approach.

Consider first a single location. We assume constant variance ma-
rices 𝑉 and 𝑊 and data at irregularly spaced times 𝑡1, 𝑡2,… , 𝑡𝑛. The
bservation equation is

𝑖𝑛𝑑𝑒𝑝

𝑡𝑖 = 𝐹𝑡𝑖𝜃𝑡𝑖 + 𝜈𝑡𝑖 , 𝜈𝑡𝑖 ∼ N(0, 𝑉 ), (1)
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Fig. 2. Left: Correlation between the 8 zones against distance between zones (km). Right: The temporal dependence between observations in months 2,3,4,5 in consecutive years
across all zones.
Fig. 3. Directed acyclic graph showing the dependence structure of the state–space model.
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where 𝜃𝑡𝑖 = (𝜃1,𝑡𝑖 , 𝜃2,𝑡𝑖 , 𝜃3,𝑡𝑖 )
𝑇 and the observation matrix is given by

𝑡𝑖 =
(

sin
(

2𝜋𝑖
𝑃𝑥

)

, cos
(

2𝜋𝑖
𝑃𝑥

)

, 1
)

where 𝑃𝑥 is the time corresponding to one complete period (𝑃𝑥 = 12
for seasonal data). Note that the observation equation can be written
as

𝑋𝑡𝑖 = 𝜃1,𝑡𝑖 cos
(

2𝜋𝑖
𝑃𝑥

− 𝜃2,𝑡𝑖

)

+ 𝜃3,𝑡𝑖 + 𝜈𝑡𝑖 (2)

where the dynamic parameters in Eqs. (1) and (2) are related using

𝜃1,𝑡𝑖 =
√

𝜃21,𝑡𝑖 + 𝜃
2
2,𝑡𝑖
, 𝜃2,𝑡𝑖 = tan−1

(

𝜃1,𝑡𝑖
𝜃2,𝑡𝑖

)

. (3)

e impose some smoothness in these dynamic parameters by taking
he system equation to be of the form

𝑡𝑖 = 𝜃𝑡𝑖−1 + 𝑘𝑡𝑖𝜔𝑡𝑖 , 𝜔𝑡𝑖
𝑖𝑛𝑑𝑒𝑝∼ N(0,𝑊 )

hich has been further altered to allow for measurements that are
rregularly spaced on a temporal grid. That is, we include a coefficient,
𝑡𝑖 , in the variance in the state equation such that 𝑘2𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Hence,
he sinusoidal form DLM captures seasonality via a single harmonic
hose amplitude 𝜃1,𝑡𝑖 and phase 𝜃2,𝑡𝑖 vary according to two transformed

ndependent random walk processes. Other approaches for capturing
easonality include the use of multiple harmonics in the system equa-
ion (see e.g. [4]). A comparison of this approach versus the use of a
ingle harmonic with time-varying amplitude and phase can be found
n [12], who find that the latter offers a good compromise between
odel fit and computational cost.

.2. Joint model over zones

We now consider a model of monthly collision rates that captures
3

oth the seasonality, and additionally, the correlation between nearby 𝜃
zones. Let 𝑋𝑡𝑖 = (𝑋1
𝑡𝑖
,… , 𝑋𝑛𝑧

𝑡𝑖
)𝑇 denote the collection of monthly colli-

sion rates at time 𝑡𝑖 with 𝑋𝑗
𝑡𝑖

corresponding to zone 𝑗, and 𝑗 = 1,… , 𝑛𝑧.
n Section 5.1 we find that amplitude and phase are plausibly constant
or each zone. Therefore, for ease of notation, we fix 𝜃1,𝑡𝑖 = 𝜃1 and
2,𝑡𝑖 = 𝜃2 in what follows. The model at zone 𝑗 is

𝑋𝑗
𝑡𝑖
= 𝜃𝑗1 sin

𝜋𝑡𝑖
6

+ 𝜃𝑗2 cos
𝜋𝑡𝑖
6

+ 𝜃𝑗3,𝑡𝑖 + 𝜈
𝑗
𝑡𝑖
, 𝜈𝑗𝑡𝑖

𝑖𝑛𝑑𝑒𝑝∼ 𝑁(0, 𝑉 𝑗 ),

𝜃𝑗3,𝑡𝑖 = 𝜃𝑗3,𝑡𝑖−1 + 𝑘𝑡𝑖𝜔
𝑗
𝑡𝑖
+ 𝑝𝑗𝑡𝑖 , 𝜔𝑗𝑡𝑖

𝑖𝑛𝑑𝑒𝑝∼ 𝑁(0,𝑊 𝑗 ),

To induce correlation between nearby zones, we include the term 𝑝𝑗𝑡𝑖 as
a component of a spatially smooth error process 𝑝𝑡𝑖 = (𝑝1𝑡𝑖 ,… , 𝑝𝑛𝑧𝑡𝑖 )

𝑇 . We
model {𝑝𝑡𝑖 , 𝑡𝑖 = 1,… , 𝑛} using independent (over 𝑖) zero-mean Gaussian
processes so that

𝑝𝑡𝑖
𝑖𝑛𝑑𝑒𝑝∼ 𝐺𝑃 {0, 𝑓3(⋅; 𝜂3)}.

We impose smoothness by taking a squared exponential kernel for the
covariance function. Hence, the covariance between spatial errors at
locations 𝑗 and 𝑗′ is

𝑓3(𝑑𝑗𝑗′ ; 𝜂3) = Cov(𝜃𝑗3,𝑡𝑖 , 𝜃
𝑗′
3,𝑡𝑖

) = 𝜎23exp(−𝜙3𝑑𝑗𝑗′ ), (4)

with 𝜂3 = (𝜎3, 𝜙3)𝑇 parameterising the kernel; note that 𝜙3 determines
the decay ratio of the correlation as the distance between sites 𝑗 and 𝑗′
(𝑑𝑗𝑗′ ) increases [16]. Similarly, we adopt GP priors for 𝜃1 = (𝜃11 ,… , 𝜃𝑛𝑧1 )𝑇

and 𝜃2 = (𝜃12 ,… , 𝜃𝑛𝑧2 )𝑇 so that 𝜃1 ∼ 𝐺𝑃 (𝑚1(⋅), 𝑓1(⋅; 𝜂1)) and 𝜃2 ∼
𝐺𝑃 (𝑚2(⋅), 𝑓2(⋅; 𝜂2)) with 𝑓1 and 𝑓2 defined analogously to Eq. (4) with
he addition of 𝑚1(⋅) and 𝑚2(⋅) as appropriate mean functions. Hence,
he full spatial DLM model (over all locations) is

𝑋𝑡𝑖 =𝐹𝑡𝑖𝜃𝑡𝑖 + 𝜈𝑡𝑖 , 𝜈𝑡𝑖
𝑖𝑛𝑑𝑒𝑝∼ N(0,diag{𝑉 1,… , 𝑉 𝑛𝑧}),

𝑖𝑛𝑑𝑒𝑝 1 𝑛𝑧
3,𝑡𝑖 =𝜃3,𝑡𝑖−1 + 𝑘𝑡𝑖𝜔𝑡𝑖 , 𝜔𝑡𝑖 ∼ N(0,diag{𝑊 ,… ,𝑊 } +𝐾3),



Journal of Computational Science 80 (2024) 102326N. Hewett et al.

v
c
a
p
𝜃

𝜋

where 𝐹𝑡𝑖 = diag(𝐹 1
𝑡1
,… , 𝐹 𝑛𝑧𝑡𝑖 ), 𝜃3,𝑡𝑖 = (𝜃13,𝑡𝑖 ,… , 𝜃𝑛𝑧3,𝑡𝑖 )

𝑇 , 𝜃𝑡𝑖 = (𝜃11 , 𝜃
1
2 , 𝜃

1
3,𝑡𝑖
,

… , 𝜃𝑛𝑧1 , 𝜃
𝑛𝑧
2 , 𝜃

𝑛𝑧
3,𝑡𝑖

)𝑇 and 𝐾3 is an 𝑛𝑧 × 𝑛𝑧 matrix with (𝑖, 𝑗)th element
𝑓3(𝑑𝑖𝑗 , 𝜂3).

4. Bayesian inference

For simplicity, suppose we have 𝑛𝑧 zones with 𝑛 observations in each
zone. Let 𝑉 = (𝑉 1,… , 𝑉 𝑛𝑧 )𝑇 and 𝑊 = (𝑊 1,𝑊 2,… ,𝑊 𝑛𝑧 )𝑇 . Further-
more, let 𝜂3 = (𝜎3, 𝜙3)𝑇 denote the hyperparameters governing 𝑓3(⋅),
with 𝜂1 = (𝜎1, 𝜙1)𝑇 and 𝜂2 = (𝜎2, 𝜙2)𝑇 denoting the hyperparameters
governing 𝑓1(⋅) and 𝑓2(⋅) respectively. Let 𝑥𝑗 = (𝑥𝑗𝑡1 ,… , 𝑥𝑗𝑡𝑛 )

𝑇 denote the
ector of collision rates at site 𝑗 so that 𝑥 = (𝑥1,… , 𝑥𝑛𝑧 ) denotes the
omplete data set over all zones. The joint posterior over all dynamic
nd static parameters is proportional to the marginal static parameter
osterior multiplied by the conditional posterior of the dynamic process
3 = (𝜃3,𝑡0 ,… , 𝜃3,𝑡𝑛 ) such that

(𝜃1, 𝜃2, 𝑉 ,𝑊 ,𝜂1, 𝜂2, 𝜂3, 𝜃3|𝑥) ∝

𝜋(𝜃1, 𝜃2, 𝑉 ,𝑊 , 𝜂1, 𝜂2, 𝜂3|𝑥) × 𝜋(𝜃3|𝜃1, 𝜃2, 𝑉 ,𝑊 , 𝜂1, 𝜂2, 𝜂3, 𝑥).

Let 𝜓 denote all fixed model parameters. To simulate realisations from
the joint posterior we use a two step approach:

1. Simulate from the marginal posterior 𝜓 ∼ 𝜋(𝜓|𝑥).
2. Simulate from the conditional posterior 𝜃3 ∼ 𝜋(𝜃3|𝜓, 𝑥).

For step 1, as the marginal static parameter posterior is intractable,
we use Markov chain Monte Carlo (see e.g. [17]). For step 2 we use
a forward filter backward sampling (FFBS) algorithm (see e.g. [3]) to
directly draw from 𝜋(𝜃3|𝜓, 𝑥). We provide details as follows.

4.1. Simulation based inference

Let 𝜃3,𝑡0∶𝑛 = (𝜃3,𝑡0 , 𝜃3,𝑡1 ,… , 𝜃3,𝑡𝑛 ) denote the collection of latent states
up to time 𝑡𝑛 and let 𝑥 = 𝑥𝑡1∶𝑛 = (𝑥𝑡1 ,… , 𝑥𝑡𝑛 ) denote the observed
data. Note that 𝜃3,𝑡𝑖 = (𝜃13,𝑡𝑖 ,… , 𝜃𝑛𝑧3,𝑡𝑖 )

𝑇 and 𝑥𝑡𝑖 = (𝑥1𝑡𝑖 ,… , 𝑥𝑛𝑧𝑡𝑖 )
𝑇 . Upon

assuming an independent prior specification for the constituent terms
of 𝜓 , Bayesian inference may proceed as follows. Integrating out the
dynamic parameters, gives us the marginal posterior:

𝜋(𝜃1, 𝜃2,𝑉 ,𝑊 , 𝜂1, 𝜂2, 𝜂3|𝑥) ∝

𝜋(𝜃1|𝜂1)𝜋(𝜃2|𝜂2)

[ 𝑛𝑧
∏

𝑗=1
𝜋(𝑉 𝑗 )𝜋(𝑊 𝑗 )

]

×

𝜋(𝜂1)𝜋(𝜂2)𝜋(𝜂3) × 𝜋(𝑥|𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 )

where the marginal likelihood 𝜋(𝑥|𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 ) is given by

𝜋(𝑥|𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 ) = 𝜋(𝑥𝑡1 |𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 )
𝑛−1
∏

𝑖=1
𝜋(𝑥𝑡𝑖+1 |𝑥𝑡1∶𝑖 , 𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 )

(5)

and whose constituent terms are analytically tractable. Moreover,
𝜋(𝜃1|𝜂1) = 𝑁(𝜃1;𝑚1, 𝐾1) and 𝜋(𝜃2|𝜂2) = 𝑁(𝜃2;𝑚2, 𝐾2) are multivariate
normal densities, 𝜋(𝑉 𝑗 ) and 𝜋(𝑊 𝑗 ) are the prior densities ascribed to
𝑉 𝑗 and 𝑊 𝑗 , 𝜋(𝜂1), 𝜋(𝜂2) and 𝜋(𝜂3) are the prior densities ascribed to 𝜂1,
𝜂2 and 𝜂3.

The marginal likelihood can be efficiently evaluated using a forward
filter. It will be helpful here to define

𝑋̃𝑡𝑖 ≡ 𝑋𝑡𝑖 − 𝜃1 sin
𝜋𝑡𝑖
6

− 𝜃2 cos
𝜋𝑡𝑖
6

= 𝐹𝑡𝑖𝜃3,𝑡𝑖 + 𝜈𝑡𝑖 ,

𝜈𝑡𝑖
𝑖𝑛𝑑𝑒𝑝∼ N(0,diag{𝑉 1,… , 𝑉 𝑛𝑧}),

so that

𝑋̃ |𝜃 ∼ 𝑁(𝐹 𝜃 ,diag{𝑉 }),
4

𝑡𝑖 3,𝑡𝑖 𝑡𝑖 3,𝑡𝑖
where 𝐹𝑡𝑖 is the 𝑛𝑧 × 𝑛𝑧 identity matrix and will be omitted for ease of
notation in what follows. We also write

𝜃3,𝑡𝑖 |𝜃3,𝑡𝑖−1 ∼ 𝑁(𝜃3,𝑡𝑖−1 , 𝑊̃𝑡𝑖 )

where 𝑊̃𝑡𝑖 = 𝑘2𝑡𝑖 (diag{𝑊 1,… ,𝑊 𝑛𝑧} +𝐾3).

Algorithm 1 Forward filter

1. Initial distribution: 𝜃3,𝑡0 ∼ 𝑁(𝑚0, 𝐶0). Store the values of 𝑚0 and 𝐶0.
2. For 𝑡𝑖, 𝑖 = 1,… , 𝑛,

(a) Prior at 𝑡𝑖. Using the system equation, we have that

𝜃3,𝑡𝑖 |𝑥̃𝑡1∶𝑖−1 ∼ 𝑁(𝑚𝑡𝑖−1 , 𝐶𝑡𝑖−1 + 𝑊̃𝑡𝑖 ).

Store 𝑅𝑡𝑖 = 𝐶𝑡𝑖−1 + 𝑊̃𝑡𝑖 .
(b) One step forecast. Using the observation equation, we have

that

𝑋̃𝑡𝑖 |𝑥̃𝑡1∶𝑖−1 ∼ 𝑁(𝑚𝑡𝑖−1 , 𝑅𝑡𝑖 + diag{𝑉 }).

Store the marginal likelihood contribution

𝜋(𝑥̃𝑡𝑖 |𝑥̃𝑡1∶𝑖−1 ) = 𝑁(𝑥̃𝑡𝑖 ;𝑚𝑡𝑖−1 , 𝑅𝑡𝑖 + diag{𝑉 }).

(c) Posterior at 𝑡𝑖: 𝜃3,𝑡𝑖 |𝑥̃𝑡1∶𝑖 ∼ 𝑁(𝑚𝑡𝑖 , 𝐶𝑡𝑖 ) where

𝑚𝑡𝑖 = 𝑚𝑡𝑖−1 + 𝐴𝑡𝑖 (𝑥̃𝑡𝑖 − 𝑚𝑡𝑖−1 ),

𝐶𝑡𝑖 = 𝑅𝑡𝑖 − 𝐴𝑡𝑖𝑄𝑡𝑖𝐴
𝑇
𝑡𝑖
,

where 𝐴𝑡𝑖 = 𝑅𝑡𝑖𝑄
−1
𝑡𝑖

and 𝑄𝑡𝑖 = 𝑅𝑡𝑖 +diag{𝑉 }. Store the values
of 𝑚𝑡𝑖 and 𝐶𝑡𝑖 .

Algorithm 1 gives the steps of the forward filter. We see that the
constituent terms in Eq. (5) are obtained from the forward pass as

𝜋(𝑥̃𝑡𝑖 |𝑥̃𝑡1∶𝑖−1 , 𝜃1, 𝜃2, 𝜂3, 𝑉 ,𝑊 ) = N(𝑥̃𝑡𝑖 ;𝑚𝑡𝑖−1 , 𝑅𝑡𝑖 + 𝑉 ),

where 𝑅𝑡𝑖 = 𝐶𝑡𝑖−1 +𝑊̃𝑡𝑖 and 𝑚𝑡𝑖−1 , 𝐶𝑡𝑖−1 are updated recursively; we refer
the reader to Petris et al. [4] (see also [3,14,15]) for further details.

Although the marginal likelihood is tractable, the posterior will typ-
ically be unavailable in closed form. Hence we use Metropolis–Hastings
to generate draws from 𝜋(𝜓|𝑥̃); see Algorithm 2.

Algorithm 2 MCMC scheme

1 Initialise the chain with 𝜓 (0). Set 𝑟 = 1.
2 Propose 𝜓∗ ∼ 𝑞(𝜓∗

|𝜓 (𝑟−1)).
3 Calculate the acceptance probability 𝛼(𝜓∗

|𝜓 (𝑟−1)) of the proposed
move, where

𝛼(𝜓∗
|𝜓 (𝑟−1)) = min

{

1, 𝐴(𝜓∗
|𝜓 (𝑟−1))

}

= min
{

1,
𝜋(𝜓∗

|𝑥̃1∶𝑛)𝑞(𝜓 (𝑟−1)
|𝜓∗)

𝜋(𝜓 (𝑟−1)
|𝑥̃1∶𝑛)𝑞(𝜓∗

|𝜓 (𝑟−1))

}

4 With probability 𝛼(𝜓∗
|𝜓 (𝑟−1)), set 𝜓 (𝑟) = 𝜓∗; otherwise set 𝜓 (𝑟) =

𝜓 (𝑟−1).
5 Set 𝑟 ∶= 𝑟 + 1. Return to step 2.

It remains that, given draws of 𝜓 (1),… , 𝜓 (𝑁) we can sample 𝜃(𝑟)3 ∼
𝜋(𝜃3|𝜓, 𝑥), 𝑟 = 1,… , 𝑁 . This can be achieved by noting the factorisation

𝜋(𝜃3|𝜓, 𝑥) = 𝜋(𝜃3,𝑡𝑛 |𝜓, 𝑥𝑡1∶𝑛 )
𝑛−1
∏

𝜋(𝜃3,𝑡𝑖 |𝜃3,𝑡𝑖+1 , 𝜓, 𝑥𝑡1∶𝑖 )

𝑖=0
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where the constituent densities are tractable and can be sampled recur-
sively via a backward sampling algorithm. The key steps are given in
Algorithm 3.

Algorithm 3 Backward sampler
3. Sample 𝜃3,𝑛|𝑥̃𝑡1∶𝑛 ∼ 𝑁(𝑚𝑛, 𝐶𝑛).
4. For 𝑡𝑖, 𝑖 = 𝑛,… , 1,

(a) Backward distribution: 𝜃3,𝑡𝑖 |𝜃3,𝑡𝑖+1 , 𝑥̃𝑡1∶𝑖 ∼ 𝑁(ℎ𝑡𝑖 ,𝐻𝑡𝑖 ), where

ℎ𝑡𝑖 = 𝑚𝑡𝑖 + 𝐶𝑡𝑖 (𝐶𝑡𝑖 + 𝑊̃𝑡𝑖+1 )
−1(𝜃3,𝑡𝑖+1 − 𝑚𝑡𝑖 ),

𝐻𝑡𝑖 = 𝐶𝑡𝑖 − 𝐶𝑡𝑖 (𝐶𝑡𝑖 + 𝑊̃𝑡𝑖+1 )
−1𝐶𝑡𝑖 .

(b) Sample 𝜃3,𝑡𝑖 |𝜃3,𝑡𝑖+1 , 𝑥̃𝑡1∶𝑖 ∼ 𝑁(ℎ𝑡𝑖 ,𝐻𝑡𝑖 ).

Missing data
Missing observations are commonplace, that is, only observations on

a subset of components of 𝑋𝑡 may be available at time 𝑡𝑖. To account
or this in the model we let 𝑋̃𝑜

𝑡𝑖
denote the observed rates at time 𝑡𝑖.

he observation model is then written as

̃ 𝑜
𝑡𝑖
= 𝑃𝑡𝑖 𝑋̃𝑡𝑖 (6)

here the 𝑛𝑜𝑏𝑠 × 𝑛𝑧 incidence matrix 𝑃𝑡𝑖 determines which components
re observed at time 𝑡𝑖 [12]. For example, if we have data from 5 zones
nd data are missing at the second and third zone at time 𝑡𝑖, then the
ncidence matrix is

𝑡𝑖 =
⎛

⎜

⎜

⎝

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟

⎟

⎠

.

he forward filter and backward sampler can be modified straightfor-
ardly to allow for this scenario. In brief, each occurrence of 𝐹𝑡𝑖 is

eplaced by 𝑃𝑡𝑖𝐹𝑡𝑖 and each occurrence of 𝑉 is replaced by 𝑃𝑡𝑖𝑉 𝑃
𝑇
𝑡𝑖

n Algorithm 1, which extracts the relevant portion of the variance–
ovariance matrix corresponding to the observed data points.

.2. Within-sample predictive density

In order to assess model fit, we consider the within-sample predic-
ive density. The within-sample predictive density is given by

(𝑥̂𝑡1∶𝑛 |𝑥𝑡1∶𝑛 ) = ∬ 𝜋(𝑥̂𝑡1∶𝑛 |𝜃3,𝑡1∶𝑛 , 𝜓)𝜋(𝜃3,𝑡1∶𝑛 , 𝜓|𝑥𝑡1∶𝑛 )𝑑𝜃3,𝑡1∶𝑛𝑑𝜓

where

𝜋(𝜃3,𝑡1∶𝑛 , 𝜓|𝑥𝑡1∶𝑛 ) = 𝜋(𝜃3,𝑡1∶𝑛 |𝜓, 𝑥𝑡1∶𝑛 )𝜋(𝜓|𝑥𝑡1∶𝑛 ).

Although the within-sample predictive density is intractable, draws
from 𝜋(𝜃3,𝑡1∶𝑛 , 𝜓|𝑥𝑡1∶𝑛 ) are readily available and therefore 𝜋(𝑥̂𝑡1∶𝑛 |𝑥𝑡1∶𝑛 )
can be obtained via Monte Carlo. Given draws (𝜓 (𝑟), 𝜃(𝑟)3,𝑡1∶𝑛

), 𝑟 = 1,… , 𝑁 ,
we can simulate

𝑋̂(𝑟),𝑗
𝑡𝑖

|𝜃(𝑟),𝑗𝑡𝑖
, 𝜓 (𝑟),𝑗 ∼ 𝑁(𝐹𝑡𝑖𝜃

(𝑟),𝑗
𝑡𝑖

, 𝑉 (𝑟),𝑗 ), 𝑟 = 1,… , 𝑁, 𝑖 = 1,… , 𝑛,

𝑗 = 1,… , 𝑛𝑧, (7)

where 𝜃(𝑟),𝑗𝑡𝑖
= (𝜃(𝑟),𝑗1 , 𝜃(𝑟),𝑗2 , 𝜃(𝑟),𝑗3,𝑡𝑖

) denotes the 𝑟th sample of 𝜃𝑗𝑡𝑖 , with 𝑋̂(𝑟),𝑗
𝑡𝑖

defined similarly. Draws obtained from (7) can be summarised (e.g. via
the mean, upper and lower quantiles) and bench-marked against the
observed data.

4.3. 𝑘-Step ahead prediction

The system and observation forecast distributions can be obtained
5

by exploiting the linear Gaussian structure of the DLM. The one-step
ahead system forecast density is given by

𝜋(𝜃3,𝑡𝑛+1 |𝑥𝑡1∶𝑛 ) = ∬ 𝜋(𝜃3,𝑡𝑛+1 |𝜃3,𝑡𝑛 , 𝜓, 𝑥𝑡1∶𝑛 )𝜋(𝜃3,𝑡𝑛 |𝜓, 𝑥𝑡1∶𝑛 )𝜋(𝜓|𝑥𝑡1∶𝑛 )𝑑𝜃3,𝑡𝑛𝑑𝜓

= ∫ 𝜋(𝜃3,𝑡𝑛+1 |𝜓, 𝑥𝑡1∶𝑛 )𝜋(𝜓|𝑥𝑡1∶𝑛 )𝑑𝜓

where

𝜋(𝜃3,𝑡𝑛+1 |𝜓, 𝑥𝑡1∶𝑛 ) = 𝑁(𝜃3,𝑡𝑛+1 ;𝑚𝑡𝑛 , 𝐶𝑡𝑛 + 𝑊̃𝑡𝑛+1 ).

Similarly, the one-step ahead observation forecast density is given by

𝜋(𝑥𝑡𝑛+1 |𝑥𝑡1∶𝑛 ) = ∫ 𝜋(𝑥𝑡𝑛+1 |𝜓, 𝑥𝑡1∶𝑛 )𝜋(𝜓|𝑥𝑡1∶𝑛 )𝑑𝜓

where

𝜋(𝑥𝑡𝑛+1 |𝜓, 𝑥𝑡1∶𝑛 ) = 𝑁(𝑥𝑡𝑛+1 ;𝑚𝑡𝑛 , 𝐶𝑡𝑛 + 𝑊̃𝑡𝑛+1 + 𝑉 ).

Hence, given 𝑁 posterior summaries (𝑚(𝑟)
𝑡𝑛
, 𝐶 (𝑟)

𝑡𝑛
), 𝑟 = 1,… , 𝑁 from

𝜋(𝜃3,𝑡𝑛 |𝜓, 𝑥𝑡1∶𝑛 ) and 𝜓 (𝑟) from 𝜋(𝜓|𝑥𝑡1∶𝑛 ), the one-step ahead state and
observation forecast distributions can be sampled via Monte Carlo, by
drawing

𝜃(𝑟)3,𝑡𝑛+1
|𝜓 (𝑟), 𝑥𝑡1∶𝑛 ∼ 𝑁(𝑚(𝑟)

𝑡𝑛
, 𝐶 (𝑟)

𝑡𝑛
+ 𝑊̃ (𝑟)

𝑡𝑛+1
),

𝑋̃(𝑟)
𝑡𝑛+1

|𝜓 (𝑟), 𝑥𝑡1∶𝑛 ∼ 𝑁(𝑚(𝑟)
𝑡𝑛
, 𝐶 (𝑟)

𝑡𝑛
+ 𝑊̃ (𝑟)

𝑡𝑛+1
+ 𝑉 (𝑟)).

Then, 𝑋(𝑟)
𝑡𝑛+1

can be obtained from 𝑋̃(𝑟)
𝑡𝑛+1

by adding the term 𝜃(𝑟)1 sin 𝜋𝑡𝑛+1
6 +

𝜃(𝑟)2 cos 𝜋𝑡𝑛+16 to the latter. For the general 𝑘-step ahead forecast, the
above draws are replaced by

𝜃(𝑟)𝑛+𝑘|𝜓, 𝑥𝑡1∶𝑛 ∼ 𝑁
{

𝑚(𝑟)
𝑡𝑛
, 𝑅(𝑟)

𝑡𝑛+𝑘

}

,

𝑋̃(𝑟)
𝑡𝑛+𝑘

|𝜓 (𝑟), 𝑥𝑡1∶𝑛 ∼ 𝑁
{

𝑚(𝑟)
𝑡𝑛
, 𝑅(𝑟)

𝑡𝑛+𝑘
+ 𝑉 (𝑟)

}

,

where

𝑅(𝑟)
𝑡𝑛+𝑘

= 𝐶 (𝑟)
𝑡𝑛

+
𝑘
∑

𝑖=1
𝑊̃ (𝑟)
𝑡𝑛+𝑖
.

5. Application

In what follows, and where required, we implement the MCMC
scheme from Section 4 by taking a random walk proposal with Gaussian
innovations. We have that 𝑞(𝜓∗

|𝜓) = 𝑁(𝜓∗;𝜓,𝛴) where the innovation
atrix 𝛴 = 𝛾𝑉 𝑎𝑟(𝜓|𝑥), with 𝑉 𝑎𝑟(𝜓|𝑥) obtained from a pilot run and
is chosen to give an acceptance rate of around 25% [18]. Within

he MCMC scheme, for mathematical convenience, we will work with
recisions so that 𝜏𝑉 = 1∕𝑉 , 𝜏𝑊 = 1∕𝑊 . Moreover, for parameter
ectors whose components must be strictly positive (i.e. 𝑉 ,𝑊 , 𝜂) we
mplement the proposal on the log scale.

The inference scheme was coded in R [19]; code to reproduce the
nalysis can be found at https://doi.org/10.25405/data.ncl.24204726.
1.

.1. Single zone analysis

In this section we assess the assumption that amplitude and phase
ary with time. We present results for zone 4 and note similar findings
namely that amplitude and phase are plausibly constant) for the
emaining zones.

For the single zone model, 𝜓 = (𝜏𝑉 , 𝜏𝑊1
, 𝜏𝑊2

, 𝜏𝑊3
)′ is the vector of

recision parameters. We set the mean and variance of 𝜃𝑡0 to be 𝑚0 =
1.5, 1.5, 6) and 𝐶0 = diag{1.5, 1.5, 20} respectively. We take an uninfor-
ative and independent prior specification for the components of 𝜓 , via
𝑉 , 𝜏𝑊1

, 𝜏𝑊2
, 𝜏𝑊3

∼ 𝐺𝑎(0.1, 0.1). We assessed convergence of the MCMC
imulations using Geweke’s diagnostic, the Gelman–Rubin statistic, and
ffective sample size (ESS) across six distinct chains, confirming robust
onvergence and sampling efficiency for all parameters. Each MCMC
un used 22k iterations with the first 2k iterations discarded as burn-in,
eaving 20k iterations on which to base posterior summaries.

https://doi.org/10.25405/data.ncl.24204726.v1
https://doi.org/10.25405/data.ncl.24204726.v1
https://doi.org/10.25405/data.ncl.24204726.v1
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Fig. 4. Density plots of 𝜏𝑉 , 𝜏𝑊1
, 𝜏𝑊2

, 𝜏𝑊3
respectively, from multiple chains of 20k iterations and a thin of 20 with prior densities overlaid in red.
Fig. 5. Phase, amplitude and 𝜃3,𝑡𝑖 mean and 95% CI at zone 4 from time 𝑡1 to 𝑡115.
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The marginal MH scheme gives the estimated marginal posterior
ensities for the components of 𝜓 shown in Fig. 4 with their prior
ensities overlaid. The 𝜓 samples were thinned to obtain 1k (near
ncorrelated) draws form the marginal parameter posterior, denoted
𝜓 (𝑟)}1000𝑟=1 . The FFBS algorithm was then executed for each 𝜓 (𝑟), to
btain samples of the dynamic parameter vector, {𝜃(𝑟)𝑡𝑖 }

1000
𝑟=1 , 𝑖 = 1,… , 𝑛,

rom the within-sample predictive. Samples of the dynamic components
1,𝑡𝑖 and 𝜃2,𝑡𝑖 can be transformed via (3) to obtain phase and amplitude
raws from their respective within-sample predictive densities; see Sec-
ion 4.2 for further details regarding the method for obtaining samples
rom these predictive distributions. These distributions are summarised
n Fig. 5 via their means and 95% credible intervals. We can conclude
hat, upon allowing for the uncertainty in amplitude and phase, they
re plausibly constant over time for this zone. Performing the analysis
n the remaining zones shows that the same conclusions can be drawn.
his suggests that the dynamic parameters 𝜃1,𝑡𝑖 and 𝜃2,𝑡𝑖 , 𝑖 = 1,… , 𝑛, can
easonably be replaced with static parameters 𝜃1 and 𝜃2.

We assess the validity of the proposed model for a single zone
y comparing observed data with their model-based within-sample
osterior predictive distributions and with model-based out-of-sample
6

1

orecast distributions. For the latter, we withheld the last 10 observa-
ions when fitting the model. Fig. 6 shows the within-sample predictive
istribution for the observation process, summarised by the mean and
5% credible interval calculated for each time point. This suggests that
he model is able to reasonably account for the observation process.
imilarly, the 10-step ahead forecast distribution is summarised by the
ean and 95% credible interval at each time point. We see that the

orecast distribution is able to capture the general trend exhibited by
he observations.

.2. Joint zone analysis

We now consider the joint model over all zones detailed in Sec-
ion 3.2. Our prior specification takes the following form.

We expect that amplitude and phase should be similar at nearby
ones. Recall that 𝜃1 ∼ 𝐺𝑃 (𝑚1(⋅), 𝑓1(⋅; 𝜂1)), 𝜃2 ∼ 𝐺𝑃 (𝑚2(⋅), 𝑓2(⋅; 𝜂2)) and
he Gaussian process components in the dynamic mean process are
𝑡𝑖

𝑖𝑛𝑑𝑒𝑝∼ 𝐺𝑃 {0, 𝑓3(⋅; 𝜂3)}. We take the mean functions to be constant
o that 𝑚1(⋅) = 𝑚2(⋅) = 1.5𝟏, with 𝟏 defined as an 𝑛𝑧 × 1 vector of

s. We have that 𝑓 (𝑑 ; 𝜂 ) = 𝜎2exp(−𝜙 𝑑 ), 𝑘 = 1, 2, 3. We take
𝑘 𝑗𝑗′ 𝑘 𝑘 𝑘 𝑗𝑗′
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Fig. 6. Left: Zone 4 observed data (black) with overlaid within-sample predictions — mean (blue) and 95% credible intervals (green). Right: Observed data (black) with overlaid
10 step ahead predictions — mean (blue) with 95% credible interval (green).
log 𝜎𝑘
𝑖𝑛𝑑𝑒𝑝∼ 𝑁(log(0.1), 0.1) representing fairly strong prior beliefs about

he amplitude variance and phase within a zone. For the logarithm of
he inverse length scales, we take log𝜙𝑘 ∼ 𝑁(log(0.1), 0.1) giving typical
ength scales of around 10 km, reflecting typical distances between
ones. The precisions of the observation equations governing each zone
re 𝜏𝑉 𝑗

𝑖𝑛𝑑𝑒𝑝∼ 𝐺𝑎(0.1, 0.1) and similarly for the system variances, 𝜏𝑊 𝑗
𝑖𝑛𝑑𝑒𝑝∼

𝐺𝑎(0.1, 0.1), 𝑗 = 1,… , 𝑛𝑧. Finally, the initial values 𝜃𝑗3,𝑡0 for each site
were assumed to follow 𝑁(6, 20) distributions.

The MCMC scheme was run for 106 iterations; the output is sum-
marised by Table 1. Fig. 7 shows the mean value and 95% credible
interval of the posterior densities for amplitude and phase at each
zone against longitude. There are signs of spatial dependence as the
phase seems to decrease and amplitude increases in zones further to
the east. Fig. 8 shows a single period of the sine curve, averaged over
draws of amplitude and phase for the most eastern versus most western
zone with 95% credible intervals. From this we would expect to see
more pronounced fluctuations in the rate of collisions across the year
for eastern zones. Furthermore, we would expect the highest rate of
collisions to be a month sooner (August) in eastern zones than that in
western zones (September).

Fig. 9 shows summaries (mean and 95% credible interval) of the
difference between observations and the within-sample predicted ob-
servation process for zones 2, 4 and 8. The left-hand-side plots show the
differences from the single zone analysis and the right-hand-side from
the joint analysis. It is clear that the mean difference at each time-zone
combination is small and that a mean difference of zero is plausible (the
95% credible intervals include zero). Comparing left to right, shows the
improvement in the within-sample predictions from a single zone anal-
ysis to a joint model; that is, the spatial information included through
the GP has increased prediction precision. We additionally calculated
the root mean square error (RMSE) at each time-point (observation vs.
prediction) and averaged this measure over all time points for each
zone; the results are shown in Table 2. We see that the mean RMSEs are
approximately 5 times larger for the single zone analysis, giving further
evidence of an improvement in fit when considering a joint model over
all zones.

Fig. 10 shows 10-step ahead predictions for zones 2, 4, 6 and 8,
following application of the method in Section 4.3. Note that the last
10 observations were removed from each zone before running the
inference scheme. The figure shows that the forecast distributions are
consistent with the data as they lie within the forecast intervals for all
zones. As we would expect, uncertainty grows as we move away from
the last recorded observation.
7

Table 1
Marginal parameter posterior means and quantile-based 95% credible intervals obtained
from the MCMC scheme.
𝜓 Mean 95% CI 𝜓 Mean 95% CI

𝑉 1 0.034 (0.021, 0.052) 𝜃41 0.251 (−0.045, 0.532)
𝑉 2 0.025 (0.015, 0.039) 𝜃51 0.226 (−0.065, 0.514)
𝑉 3 0.059 (0.039, 0.084) 𝜃61 0.249 (−0.039, 0.526)
𝑉 4 0.037 (0.022, 0.058) 𝜃71 −0.181 (−0.501, 0.133)
𝑉 5 0.031 (0.018, 0.048) 𝜃81 −0.014 (−0.308, 0.271)
𝑉 6 0.041 (0.023, 0.066) 𝜃12 0.585 (0.301, 0.877)
𝑉 7 0.119 (0.059, 0.196) 𝜃22 0.651 (0.367, 0.944)
𝑉 8 0.045 (0.026, 0.071) 𝜃32 0.566 (0.285, 0.856)
𝑊 1 0.021 (0.011, 0.037) 𝜃42 0.424 (0.144, 0.722)
𝑊 2 0.024 (0.012, 0.041) 𝜃52 0.809 (0.530, 1.098)
𝑊 3 0.023 (0.011, 0.044) 𝜃62 0.601 (0.311, 0.896)
𝑊 4 0.025 (0.012, 0.044) 𝜃72 1.264 (0.931, 1.587)
𝑊 5 0.024 (0.013, 0.043) 𝜃82 0.945 (0.660, 1.249)
𝑊 6 0.034 (0.016, 0.061) 𝜎1 1.688 (1.315, 2.309)
𝑊 7 0.099 (0.031, 0.213) 𝜎2 1.545 (1.201, 2.253)
𝑊 8 0.029 (0.014, 0.055) 𝜎3 1.352 (1.349, 1.355)
𝜃11 0.357 (0.066, 0.642) 𝜙1 1.527 (1.278, 1.917)
𝜃21 0.213 (−0.077, 0.494) 𝜙2 1.603 (1.387, 1.903)
𝜃31 0.213 (−0.084, 0.499) 𝜙3 1.103 (1.098, 1.107)

Table 2
The mean RMSE over all time-points for each zone, from the single zone and joint
zone analyses.

Zone Mean RMSE

Single zone Joint zone

1 1.384 0.198
2 1.066 0.167
3 1.214 0.258
4 1.083 0.206
5 1.114 0.185
6 1.191 0.217
7 1.339 0.378
8 1.107 0.227

6. Discussion and limitations

We have developed a spatio-temporal model for collision rates
that allows for serial dependence, seasonality and correlation between
rates at nearby zones. We considered a dynamic linear model (DLM)
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Fig. 7. Mean amplitude and phase with 95% credible intervals against longitude for each zone.

Fig. 8. Mean and 95% credible intervals for the seasonal component for the most western zone (black) against the most eastern (blue).

Fig. 9. Mean (blue) and 95% credible intervals (green) for the difference between the within-sample predictive and the observations over time. Each row shows the differences
from the single zone analysis (left) and the joint zone analysis (right) for zones 2 (top), 4 (middle) and 8 (bottom).
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Fig. 10. Rates of collisions in Florida zones 2, 4, 6 and 8 with overlaid out-of-sample 10-step ahead predictions — mean (blue) and 95% credible intervals (green).
whose observation equation takes the form of a single harmonic with
a smoothly time-varying amplitude and phase, thus accounting for
seasonality and potential long term changes. Spatial consistency is
accounted for at nearby zones by adding a Gaussian process (GP)
component in the system equation. The model can be fitted in Bayesian
paradigm using an efficient two-stage Markov chain Monte Carlo pro-
cedure, targeting the joint posterior over the parameters, the latent
time-varying harmonic coefficients (amplitude and phase) and dynamic
mean. At the first stage, parameter samples are generated from the
marginal parameter posterior using a random walk Metropolis algo-
rithm with the likelihood evaluated via a forward filter. At the second
stage, samples of the dynamic parameters are generated conditionally
on the static parameter draws from stage one using a backward sam-
pler. Further details of this FFBS approach can be found in [4] (see also
[14,15]).

We applied our approach to a data set consisting of 115 months of
collision rates over eight Traffic Administration Zones in Florida and
Georgia, USA. An exploratory analysis that considered separate models
for each zone found that the phase and amplitude were plausibly
constant. We were therefore able to simplify the joint model over
all zones by treating the harmonic components as static, with a GP
prior allowing correlation between these parameters at nearby zones.
The validity of both the single zone and joint models was assessed
using within-sample posterior predictive distributions, which suggested
a satisfactory fit in both cases. Moreover, the within-sample predictions
were improved substantially when using the joint model, with the
credible intervals of our predictions narrowing almost fivefold, and a
reduction in root mean squared error (RMSE) between the observations
and predictions of around a factor of 5.

Our analysis suggests clear spatial patterns between phase and
longitude and amplitude and longitude. For all zones we found that the
lowest rates of collisions would fall earlier in the year. The model also
suggests that for western zones, the lowest rates would be in March, and
in February for eastern zones. It appears that peak collision rates are in
September in the East and August in the West. We would also expect
to see a larger fluctuation in the rate of collisions in an eastern zone.
Our interest also lies in the ability to forecast collision rates in future
months. Model-based out-of-sample forecast distributions suggest that
our model is able to capture observed trend and seasonality in monthly
collision rates up to around a year ahead.

Our modelling approach can be improved in a number of ways. For
example, it is common to have covariate information such as traffic
9

flow or average speed associated with a particular location at which a
collision has occurred. However, pooling such data over zones is time-
consuming and not always straightforward. Nevertheless, incorporation
of covariates into the DLM framework is straightforward in principle,
via the observation equation, and we anticipate improved prediction in
this scenario. Although not pursued here, our model can also be used
to predict collision rates at zones for which observations are not avail-
able. Interpolation of the fitted GP component in the system equation
governing the dynamic mean and GP prior over the static parameters
governing the harmonic, can be performed for unobserved zones of
interest; see e.g. [20] for further details. In scenarios with many zones,
it may be beneficial to model spatial dependence via a conditional
autoregressive (CAR) process, which can be seen as a special case of our
approach (see e.g. [21]). In particular, conditioning the latent dynamic
component in the DLM via a local neighbourhood structure could lead
to a more computationally efficient inference scheme.
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Appendix. Additional convergence checks

We assessed the convergence of the MCMC simulations using mul-
tiple diagnostics to ensure the reliability of parameter estimates. Con-

vergence diagnostics included Geweke’s diagnostic, the potential scale
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Fig. 11. Trace plots for 𝜓 from the single zone analysis across multiple MCMC chains. Each line represents one of the six independent chains used in the analysis.
Fig. 12. Trace plots for a subset of 𝜓 from the joint zone analysis across multiple MCMC chains. Each line represents one of the six independent chains used in the analysis.
reduction factor (PSRF) as per Gelman–Rubin, and the Effective Sample
Size (ESS) (see e.g. [22]). These diagnostics were obtained using the
R coda package [23]. Geweke’s diagnostic was applied to evaluate
the equality of the means of the first 10% and the last 50% of the
chains, across all parameters and six independent runs. The diagnostic
yielded z-scores within the range of −1.3785 to 1.8647, suggesting no
significant difference between the early and late phases of the chains,
thus indicating convergence of all chains and parameters. The Gelman–
Rubin PSRF was calculated for each parameter, with all point estimates
and upper confidence intervals equalling 1. This indicates that between-
chain variance is negligible compared to within-chain variance, further
supporting convergence across all parameter chains. ESS was computed
for each parameter, revealing sizes of 6000 for 𝑉 and 𝑊3, 6189.358 for
𝑊1, and 6773.519 for 𝑊2. These suggest adequate sampling efficiency,
roviding a solid basis for the posterior estimates derived from the
hains. Together, these diagnostics provide strong evidence of conver-
ence and adequate sampling within the MCMC simulations, supporting
he robustness of the parameter estimates obtained. Fig. 11 shows
race plots for the parameters 𝜓 = (𝜏𝑉 , 𝜏𝑊1

, 𝜏𝑊2
, 𝜏𝑊3

), derived from
ix distinct chains. The overlapping and mixing of chains suggest good
onvergence behaviour for each parameter, indicating that they have
eached their stationary distributions. Similar tests were performed
or the joint analysis which also showed good convergence for all
arameters (example trace plots shown in Fig. 12).
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